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Abstract

The search for molecular species that are di�erentially expressed between biological states is an important step towards discovering
promising biomarker candidates. In imagingmass spectrometry (IMS), performing this searchmanually is o�en impractical due
to the large size and high-dimensionality of IMS datasets. Instead, we propose an interpretable machine learning workflow that
automatically identifies biomarker candidates by their mass-to-charge ratios, and that quantitatively estimates their relevance
to recognizing a given biological class using Shapley additive explanations (SHAP). The task of biomarker candidate discovery is
translated into a feature ranking problem: given a classification model that assigns pixels to di�erent biological classes on the basis
of their mass spectra, the molecular species that the model uses as features are ranked in descending order of relative predictive
importance such that the top-ranking features have a higher likelihood of being useful biomarkers. Besides providing the user with
an experiment-wide measure of a molecular species’ biomarker potential, our workflow delivers spatially localized explanations of
the classification model’s decision-making process in the form of a novel representation called SHAPmaps. SHAPmaps deliver
insight into the spatial specificity of biomarker candidates by highlighting in which regions of the tissue sample each feature provides
discriminative information and in which regions it does not. SHAPmaps also enable one to determine whether the relationship
between a biomarker candidate and a biological state of interest is correlative or anticorrelative. Our automated approach to
estimating a molecular species’ potential for characterizing a user-provided biological class, combined with the untargeted and
multiplexed nature of IMS, allows for the rapid screening of thousands ofmolecular species and the obtention of a broader biomarker
candidate shortlist than would be possible through targetedmanual assessment. Our biomarker candidate discovery workflow is
demonstrated onmouse-pup and rat kidney case studies.

Keywords: supervised machine learning, model interpretability, biomarker discovery, imaging mass spectrometry, Shapley additive
explanations, explainable artificial intelligence, molecular imaging

Highlights

• Our workflow automates the discovery of biomarker candidates in imagingmass spectrometry data by using state-of-
the-art machine learning methodology to produce a shortlist of molecular species that are di�erentially expressed
with regards to a user-provided biological class.

• A model interpretability method called Shapley additive explanations (SHAP), with observational Shapley values,
enables us to quantify the local and global predictive importance of molecular species with respect to recognizing a
user-provided biological class.

• By providing spatially localized explanations for a classificationmodel’s decision-making process, SHAPmaps deliver
insight into the spatial specificity of biomarker candidates and enable one to determine whether (and where) the
relationship between a biomarker candidate and the class of interest is correlative or anticorrelative.
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Nomenclature
IMS imaging mass spectrometry
m/z mass-to-charge ratio
MALDI matrix assisted laser desorption/ionization
ML machine learning

PI permutation importance
Q-TOF quadrupole time-of-flight
SHAP Shapley additive explanations
XGBoost extreme gradient boosting

1 Introduction

A biomarker can generally be considered an objectively measurable indicator of a specific biological state or disease
condition [1, 2]. Biomarkers can be used to di�erentiate between anatomical structures, cell types, and disease states,
and lend themselves to the screening, diagnosis, and monitoring of disease, the identification of new drug targets,
and the assessment of therapeutic response [1, 3, 4]. In our work, the term "biomarker candidate" refers to a putative
molecular biomarker (i.e. a chemical species) that is di�erentially expressed between biological states [2]. One technol-
ogy for discovering suchmolecular markers at scale is mass spectrometry, which characterizes molecular species in
terms of their mass-to-charge ratio (m/z). It was demonstrated in 2003 that matrix assisted laser desorption/ionization
(MALDI) mass spectrometry could facilitate the discovery of diagnostic and prognostic biomarkers for lung cancer
when applied directly to clinical patient samples [5, 6]. Imaging mass spectrometry (IMS) is a multiplexed, label-free
imaging technology that uses mass spectrometry for the molecular mapping of tissues down to cellular resolution [7,
8, 9]. An IMS experiment involves collecting spatially localizedmass spectra for each pixel in a grid of measurement
locations across a sample surface [10, 11]. Each pixel has an associated mass spectrum and each mass spectrum plots
the measured signal intensity, which is indicative of relative abundance, versus the analytes’m/z values. The spatial
distribution and relative abundance of an analyte can be visualized as an ion image, which plots the signal intensity
measured for that analyte across all pixels of the sample’s surface [12, 13]. IMS is an excellent tool for biomarker
discovery for the following three reasons: it is able to concurrently detect hundreds to thousands of analytes within a
single experiment in an untargetedmanner, it can probe analytes from awide range of molecular classes (e.g. peptides,
proteins, lipids, glycans, metabolites), and it enables the mapping of analytes’ spatial distributions in relation to the
(patho)histology of tissue samples [14, 15]. There are several examples of IMS facilitating biomarker candidate discovery
in cancer research. For example, MALDI IMS has been used to retrieve proteomic biomarker candidates for high-grade
sarcomas [16] andmelanomas [17]; and another IMSmodality, called desorption electrospray ionization IMS, has been
applied to the molecular study of brain cancer [18] and lung cancer [19], resulting in the discovery of diagnostic and
prognostic biomarker candidates.

Onewaynovel biomarker candidates canbediscovered is by observing thedi�erential expression ofmolecules between
distinct sample classes (e.g. di�erent cell types, di�erent organs, di�erent stages of a disease) [2, 20]. However, the
large size and high-dimensionality of IMS datasets, which commonly yield several hundreds of thousands of pixels
and several hundreds to thousands of molecular ions tracked per pixel, pose a challenge. Manually examining the
spatial mapping of thousands of molecular species across the surface of a sample is laborious and risks introducing
human subjectivity into the process, leading to results whose reproducibility cannot necessarily be guaranteed [12, 21].
The amount of data generated by IMS experiments is so large that it has becomemore e�icient (and in many cases
necessary) to computationally search for biomarker candidates among a multitude of ion intensity signals [22]. In
this work, we suggest a machine learning (ML) workflow for performing biomarker candidate discovery that provides
one with a shortlist of molecular species that are characteristic of the class for which biomarkers are sought. Our
approach uses supervised MLmodels to classify mass spectra into di�erent biological classes of interest and then uses
state-of-the-art methods from the field of interpretable ML [23, 24, 25] to determine the discriminative relevance, and
biomarker potential, of each molecular species.

In our work, an IMS dataset is represented by a data matrixX ∈ Òm×n whose rows xi = X (i ,:) , for i = 1, 2, 3...m, corre-
spond to themass spectraof thepixelsmakingup the sample’s surfaceandwhose columns x j = X (:,j ) , for j = 1, 2, 3...n,

correspond to them/z bins per spectrum. Them rows and n columns ofX can be respectively referred to as observa-
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tions and features. Classification is a form of supervised ML in which the observations xi are annotated with discrete
class labels yi that represent user-provided knowledge related to these observations. Binary classification problems
involve a positive class (e.g. diseased tissue), labeled as yi = +1, and a negative class (e.g. healthy tissue), labeled
as yi = −1. The positive class is usually the class of interest: in our case studies, it is the class for which we want to
discover biomarker candidates. Problems with multiple target classes (e.g. multiple cell types or functional tissue
units) can be decomposed into multiple binary classification problems, each of which involve di�erentiating one class
from the remaining classes. In the context of our work, classification is therefore the task of learning amultivariate
function f ? : Òn ↦→ {−1,+1}, called a classification model, that assigns each pixel xi to a class according to the
molecular information provided by its mass spectrum xi . Note a di�erence between the model’s class prediction
ŷi = f

?(xi ) ∈ {−1,+1} and the model’s raw output f (xi ) ∈ Ò, where f : Òn ↦→ Ò. The model’s prediction is the class
label assigned to a particular observation xi , whereas the classification model’s raw output can be interpreted as the
score (e.g. probability, log-odds ratio) of xi being assigned to the positive class. Figure 1a illustrates the process of
building a classification model in IMS: a supervised ML algorithm fits a classification model to a labeled IMS dataset
called the training dataset (i.e. mass spectra xi whose class membership yi is known). The resulting model can then
be used to classify new unlabeled data (i.e. mass spectra xi whose class membership yi is unknown) as illustrated by
Figure 1b. The performance of a classification model is measured by its ability to generalize, that is to correctly predict
the labels for new data instances such that ŷi = yi .

Traditionally, applications of supervised ML in IMS focus onmaximizing the predictive performance of classification
models designed to automate user-defined recognition tasks, without necessarily examining their decision-making
processes. However, we suggest that examining the relationship between a classificationmodel’s features and its predic-
tion is important because it can reveal which features, and thus which molecular species, enable the di�erentiation of
classes. Model interpretability is the ability to explain the predictions of a supervisedMLmodel by reporting the relative
predictive importance of its features 1. The importance, or relevance, of a feature is a measure of how it influences the
model’s prediction, considering both its direct e�ect (i.e. statistical association with the prediction) and its indirect
e�ect (i.e. statistical association between features) [24, 29]. The local predictive importance of a feature measures its
influence on the predictive model’s output for a specific observation (e.g. the mass spectrum of one pixel), whereas the
global predictive importance of a feature measures its influence on the predictive model’s output for all observations
(e.g. all pixels of a sample) [24, 25, 29]. In addition to reporting which features drive the decision-making processes of
supervised MLmodels, interpretability methods also facilitate model troubleshooting (e.g. debugging, monitoring,
checking for bias). For example, in the context of IMS data analysis, interpretability methods make it possible to trace
whether the decision-making process of a classification model is based on genuine biological patterns rather than on
instrumental patterns or chemical noise that are spuriously associated to the class labels. ML interpretability methods
e�ectively address the issue of supervised ML algorithms producing "black-box" models with unintelligible predictive
mechanisms [23, 24, 25]. The importance of ML interpretability for knowledge discovery has recently been discussed
in genomics [30] and single-cell mass spectrometry [31]. To our knowledge, our work is the first application of ML
interpretability methods to IMS data for the purpose of biomarker candidate discovery. Our aim is to formulate and
demonstrate how ML interpretability methods can be used to understand how the spatial distribution and relative
abundance of certain molecular species relate to the classification of di�erent regions of a tissue sample, e�ectively
automating biomarker candidate discovery in IMS data.

Our approach to aiding biomarker discovery is to automate and accelerate the identification of promising biomarker
candidates among discriminative molecular features (i.e.m/z values) by empirically learning which molecular species’
overexpression or underexpression enable the recognition of a user-defined class [20]. We translate the problem
of biomarker discovery into a feature ranking problem: ML interpretability methods computationally estimate the
importance of each feature with regards to a specific classification task and produce a ranking of the features in

1 There is no formal definition of supervisedmachine learningmodel interpretability that is agreed-uponwithin the computer science and data science
communities [26, 27, 28]. The definition we propose, namely explaining a model’s decision-making process by quantifying the influence of its input
features on its output, is specific to the analysis of imaging mass spectrometry data using supervisedmachine learning methods other than deep
learning. We use the terms interpretability and explainability interchangeably.
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descending order of predictive importance. Ranking the features in terms of predictive importance facilitates the
identification of a shortlist of molecular species that are characteristic of a class of interest, and thus have a higher
likelihood of being useful biomarkers. In addition to providing one with a global understanding of which molecular
species hold potential for recognizing a user-provided class, our approach uses SHAPmaps to give the user spatially
localized insight into each biomarker candidate’s relationship with the class of interest. SHAP maps are a novel
graphical representation of amodel’s decision-making process that can yield a nuanced local assessment of a biomarker
candidate’s potential and spatial specificity. Our biomarker candidate discovery workflow is therefore a scalable
computational tool that enables one to rapidly, e�iciently, and automatically filter the multitude of molecular species
recorded by IMS down to a panel of promising biomarker candidates that deserve further study and validation.

(a) Diagram of the classificationmodel building process. Imagingmass spectrometry data is obtained from a sagittal mouse brain tissue section. The
pixels making up the sample surface, and their corresponding mass spectra, are assigned to one of four anatomical classes (cerebral cortex,

cerebellum, brainstem, or other). Given the labeled data, a supervised machine learning algorithm learns a classification model that can correctly
assign the pixels’ mass spectra to the correct anatomical classes.

(b) Diagram of the prediction process. The classification model is provided with a new imaging mass spectrometry dataset obtained from another
mouse brain tissue section. The unlabeled pixels making up the new dataset are assigned to one of four anatomical classes (cerebral cortex,

cerebellum, brainstem, or other) on the basis of their mass spectra.

Figure 1. Diagrams of the classification model building and prediction processes in imaging mass spectrometry. Icons from [32, 33].
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2 Machine learningmethodology

2.1 Extreme gradient boosting for imaging mass spectrometry data classification

There are many applications of supervised ML in IMS: random forests [22, 34, 35], support vector machines [34, 36],
convolutional neural networks [37, 38], andgradient boostingmachines [39, 40] are frequently used classificationmodel
types. Decision trees are particularly suitable for IMS data analysis because they are non-linear and non-parametric
predictive models that can account for complex dependencies between features, do not make assumptions about the
underlying data distribution, and do not require feature scaling. A decision tree is a directed graph that partitions the
feature space by recursive binary splitting: its nodes correspond to subsets of the data, and its branches correspond to
the partitioning of a feature above or below a splitting threshold [41, 42, 43]. Given that a single decision tree is neither
flexible nor stable enough to achieve high predictive performance on IMS data classification tasks, combining multiple
decision trees into an ensemble model is usually a preferable strategy [42, 44]. We therefore choose to use extreme
gradient boosting (XGBoost) models for classification. XGBoost is a fast and scalable implementation of (stochastic)
regularized gradient boosting that was developed by Chen and Guestrin in 2016 [45] based on the work of Friedman
[46, 47], Freund and Schapire [48]. An XGBoost model is an ensemble of regression trees (i.e. decision trees that output
real values in their terminal nodes) that can perform classification by additive logistic modeling [49, 50].

min
f

mtrain∑
i=1

L(yi , ŷi ) +
K∑
k=1

Ω (τk ) (1)

Regularized gradient boosting is a forward stagewise additive modeling algorithm for solving numerical optimization
problems of the form of Equation 1. L is a di�erentiable loss function (e.g. negative log-likelihood) that measures
the di�erence between the observations’ labels yi and the predictive model’s predictions ŷi = f ?(xi ), and Ω is a
regularization term that penalizes the complexity of the regression trees making up the ensemble in order to avoid
overfitting 2 [51, 45]. In Equation 1, the regression trees are written τk , for k = 1, 2, 3...K , and mtrain refers to the
number of observations making up the training dataset. The XGBoost algorithm builds a classification model from
sequentially added regression trees, each of which is focused on the observations that the previously added trees
classified incorrectly [51, 52, 53]. Given an initial prediction τ0 (e.g. the logarithm of the odds), the accuracy of
the ensemble model is iteratively improved by functional gradient descent: each newly added regression tree is
parameterized to approximate the negative gradient of the loss function L [51]. In order to avoid overfitting, the
contribution of each newly added regression tree is weighted using a shrinkage parameter ν, with 0 < ν < 1 (ν = 0.3

in our case studies), which determines the learning rate of the boosting procedure [45, 54, 46]. In our automated
biomarker candidate discovery workflow, the XGBoost learning process is stochastic because the regression trees
making up the ensemble are learned on randomized subsamples of the training set, and because the features used for
node splitting are chosen among a random subset of features [45, 54]. The idea is to randomly subsample the rows
and columns of the data matrix during training in order to make each regression tree slightly di�erent from the other
regression trees, and hence prevent overfitting.

f (xi ) = log
(
p (xi )

1 − p (xi )

)
= τ0 (xi ) +

K∑
k=1

ν τk (xi ) with p (xi ) = Pr(yi = +1|xi ) (2)

Equation 2 defines the raw output f (xi ), or raw untransformedmargin value, of an XGBoost classificationmodel as
the (natural) logarithm of the odds, called the log-odds [55, 54]. The odds are defined as the ratio of the probability
p (xi ) of observation xi being assigned to the positive class over the probability of observation xi being assigned to
the negative class. The XGBoost classification model is an additive logistic regression model because it represents
the log-odds as a linear combination of regression trees [52, 50]. The probability of the model predicting a positive

2 Overfitting is a common issue that occurs when a supervised machine learning model adapts too closely to the training data andmemorizes not only
the relationship between inputs and outputs but also the noise. The structure of an overfit model is very sensitive to changes in its training data.
Such a model usually performs poorly on new data. The risk of overfitting tends to increase when handling high-dimensional data like imaging mass
spectrometry data.
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outcome (i.e. assigning an observation to the class of interest) can be obtained from the log-odds thanks to a logistic
transformation [50]: p (xi ) = S (f (xi )) where S : Ò ↦→ [0, 1] is the sigmoid function. Since the sigmoid function is a
non-decreasing saturation function, an increase in the log-odds implies an increase in the probability of predicting
a positive outcome, and, conversely, a decrease in the log-odds implies a decrease in the probability of predicting a
positive outcome. The classification model’s prediction ŷi = f ?(xi ) is either +1 or −1 depending on whether p (xi ) is
above or below a given threshold η, with 0 < η < 1 (η = 0.5 in our case studies).

2.2 Shapley additive explanations for measuring biomarker candidate relevance

Our workflow for biomarker candidate discovery in IMS data uses Shapley additive explanations (SHAP) to quantify
the local and global predictive importance of features (e.g. m/z values in IMS) with respect to a given classification
task. SHAP is a state-of-the-art interpretability method based on Shapley values from cooperative game theory. It
regards the features as players that form coalitions (i.e. ordered subsets) to achieve the classification model’s output,
which is the game’s payout. SHAP is called amodel-agnostic interpretability method because it can derive post-hoc
explanations for the predictions of any type of classification model by relating its input to its outputs [24, 25, 29]. SHAP
was developed by Lundberg and Lee [56, 57] based on the work of Strumbelj and Kononenko [58, 59], and on Ribeiro et
al.’s idea of locally approximating the decision-making process of a "black-box" supervised MLmodel using inherently
interpretable local surrogate models [60].

In order to explain the prediction made by a classification model on a specific observation, SHAP computes the
contributionof each feature to themodel’s output usingShapley values. TheShapley valueof a feature is its contribution
to the model’s output for a specific observation, averaged over all possible feature orderings [57, 61]. In the words of
Lundberg et al., "Shapley values are computed by introducing each feature, one at a time, into a conditional expectation
function of the model’s output, and attributing the change produced at each step to the feature that was introduced"
[61]. Equation 3 defines the Shapley valueφj

i
(f , xi ) of feature x j , with j ∈ {1, 2, 3...n}, when explaining the predictive

model’s decision-making process for one specific observation xi = X (i ,:) , with i ∈ {1, 2, 3...m}. Since a feature’s
contribution to themodel’s output depends on the order in which other features were introduced, the feature’s Shapley
value is obtained by averaging its contribution over all possible feature orderings. In Equation 3, the set of all possible
feature orderings is written Π . The set of features that we are conditioning on, written Sπ

j
, is the set of all features that

precede feature x j in ordering π.

φ
j
i
(f , xi ) =

∑
π∈Π

1

n!
[
fxi (Sπj ∪ j ) − fxi (S

π
j )

]
(3)

The set function fxi (Sπj ) is defined by Equation 4 as the conditional expectation of the classificationmodel’s output.
The n-dimensional vector xi is considered to be a random variable where only the features belonging to subset Sπ

j

(i.e. the features before j in the feature ordering π) are known [62]. The unknown features (i.e. the features a�er j in
the feature ordering π) are obtained by sampling from the training dataset [62]. Note that f (xi ) in Equation 4 is the
model’s raw output for observation xi , rather than the predicted class label f ?(xi ) ∈ {−1,+1}. By focusing on the raw
model output, SHAP does not require knowledge of an observation’s true class label (yi for i ∈ 1, 2, 3...m) to evaluate
the degree to which a classification model depends on a specific feature. SHAP can therefore be used to explain the
decision-making process of a model on new unlabeled data, which is useful for measuring the influence of each feature
on the model’s generalization performance.

fxi (Sπj ) = E [f (xi ) |S
π
j ] (4)

The sign of a feature’s Shapley value provides information about the direction of its e�ect on a classification model’s
output. A positive Shapley value indicates that feature x j increases the raw output f (xi ) of the predictive model
for observation xi . Conversely, a negative Shapley value indicates that feature x j decreases the raw output. The
Shapley value’s magnitude indicates how strongly the corresponding feature influences the classification model’s local
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decision-making process. In our work, we refer to the Shapley value of a feature for a given observation as its local
SHAP importance score. In the context of IMS data classification, the Shapley valueφj

i
(f , xi ) reports the contribution of

the j th m/z bin or peak when assigning the i th pixel’s mass spectrum to a class. Computing the local SHAP importance
scores of all features (i.e.m/z values) for all observations (i.e. mass spectra) yields anm × n matrix whose (i , j )th entry
is the Shapley value of feature x j for observation xi .

SHAP owes its reliability to the fact it satisfies the local accuracy and consistency properties [61]. The local accuracy
property, also known as the e�iciency property in cooperative game theory, guarantees that the Shapley values of
all features add up to the di�erence between the predictive model’s raw output f (xi ) for a given observation xi and
themodel’s expected output E [f (xi )] over the entire dataset [61]. The local accuracy property is given by Equation
5. SHAP o�ers contrastive explanations that compare the model’s local output to it’s average global output. In IMS
terminology, the local accuracy property states that, given a mass spectrum of interest, the sum of the Shapley values
of its molecular features (i.e.m/z values) is equal to the classificationmodel’s raw output for that mass spectrumminus
the model’s average raw output over all mass spectra. SHAP distributes the di�erence between the model’s output for
a mass spectrum of interest and the model’s average output, among the di�erentm/z values that the model uses as
inputs.

f (xi ) = φ0 (f ) +
n∑
j=1

φ
j
i
(f , xi ) with φ0 (f ) = E [f (xi )] (5)

The consistency property, also known as the monotonicity property in cooperative game theory, states that if a
classification model changes so that some feature’s influence on the output increases, the importance score assigned
to that feature does not decrease [63]. Consistency is necessary for the ranking of a model’s features according to their
importance scores because it guarantees that a feature with a higher importance score than another feature is actually
more important to the model than the other feature. Note that impurity-based measures of global feature importance,
which are popular for measuring feature importance in decision tree ensembles 3 and have been used in IMS [39], are
actually inconsistent and can therefore produce unreliable feature rankings [63].

Φj (f ,X ) =
1

m

m∑
i=1

|φj
i
(f , xi ) | (6)

A globalmeasure of feature importance can be obtained by averaging themagnitude of each feature’s local SHAP scores,
or Shapley values, over all observations in the dataset [61]. Equation 6 defines what we refer to as the global SHAP score
Φj of feature x j = X (:,j ) for j ∈ {1, 2, 3...n}. The global SHAP score of a feature quantifies its influence on the model’s
decision-making process, averaged over all possible feature orderings and all observations. Computing the global SHAP
importance scores of all features yields an n-dimensional vector where n is the total number of features. In the context
of IMS data analysis, the global SHAP score of a feature is an experiment-wide measure of the feature’s predictive
importance with respect to a given classification task. Promising biomarker candidates can be easily identified by
ranking IMS features (i.e.m/z values) in descending order of global SHAP importance. Retaining the top-ranking features
yields a shortlist of biomarker candidates that are worthy of further study.

In our workflow for biomarker candidate discovery in IMS data, we use a fast implementation of SHAP called TreeSHAP,
or TreeExplainer [67], that is specific to decision tree based predictive models like XGBoost. Unlike other SHAP imple-
mentations (e.g. KernelSHAP) that calculate sampling-based approximations of Shapley values (o�en in exponential
time), TreeSHAP is able to compute the exact Shapley values of features within low-order polynomial time by exploit-
ing the structure of decision trees [63, 61]. When using TreeSHAP tomeasure the local and global SHAP importance

3 Gini importance, which is the default measure of feature importance in Scikit-Learn’s implementation of random forest [64], and gain, which is the
default measure of feature importance in the Scikit-Learn wrapper interface for XGBoost’s implementation of extreme gradient boosting [65], are two
examples of popular yet inconsistent impurity-based approaches for estimating features’ predictive importances. The Gini importance of a feature is
computed by averaging the weighted decrease in node impurity achieved by splitting a node using that feature over all decision trees making up the
ensemble [66].
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scores of features, one has to choose between two feature perturbation approaches [67]. In this paper, we opt for the
tree-path dependent approach because it involves computing the observational, rather than interventional, Shapley
values [62]. Observational Shapley values are defined by Equations 3 and 4, whereas interventional Shapley values
define the set function di�erently. The di�erence between observational and interventional Shapley values relates to
how SHAP handles statistical dependencies between the features that the model uses as inputs [62]. Accounting for
high-dimensional feature dependencies is what makes measuring the predictive importance of IMS features, many of
which are involved in common biochemical pathways, particularly challenging. Another measure of global feature
predictive importance, called permutation importance (PI), has been used for ranking IMS features with regards to
tissue classification tasks [22] despite it only partially accounting for feature inter-dependencies. PI is a popular global
model-agnostic interpretability method that defines the importance of a feature as the average decrease in model
accuracy when its values are randomly permuted across all observations4. PI only accounts for correlation, whereas
SHAP also accounts for high-order feature inter-dependencies and enables the discovery of both linear and non-linear
patterns in the data [61]. Furthermore, PI relies uponout-of-distributiondata instances (that are not necessarily realistic),
whereas computing the global SHAP score of a feature using observational Shapley values constrains the sampling of
unknown features to a range of values (i.e. partitions of the feature space) allowed by the decision trees making up the
ensemble [69]. A detailed discussion of how TreeSHAP computes observational Shapley values, and how observational
Shapley values handle feature dependencies, is beyond the scope of this paper, and we therefore refer the reader to [61,
62, 63]. Observational Shapley values are recommended for knowledge discovery in biology and chemistry because
they spread credit among correlated features that are jointly informative of the outcome of interest [62].

2.3 SHAPmaps for a spatial understanding of a classification model’s decision-making process

In addition to automatically establishing an experiment-wide biomarker candidate shortlist by means of global SHAP
score ranking, we furthermore introduce a novel spatially-aware representation of local SHAP-based explanations,
called a SHAPmap. The SHAPmap of a molecular feature is obtained by plotting that feature’s local SHAP importance
scores, or Shapley values, across all pixels. SHAPmaps facilitate a spatially localized understanding of a classification
model’s decision-making process. In the context of biomarker candidate discovery, SHAPmaps provide one with a
nuanced and location-specific (e.g. cell type specific, tissue region specific) view into a molecular species’ biomarker
potential. Unlike global SHAP importance scores, local SHAP importance scores avoid conflating the magnitude of the
feature’s e�ect with the prevalence of its e�ect across the sample surface area.

The SHAPmap of a feature answers the following two questions:

• Where does the feature increase or decrease the classificationmodel’s output?
The feature increases the probability of the model assigning a pixel to the class of interest (i.e. the positive class)
where its local SHAP scores are positive (red pixels). The feature decreases the probability of the classification model
assigning a pixel to the positive class where its local SHAP scores are negative (blue pixels). In our application,
studying the sign of a feature’s Shapley values together with the feature’s spatial distribution (e.g. the feature’s ion
image) enables the user to determine whether it is the presence or the absence of a feature that is indicative of the
biological state or disease condition of interest. If the regions where the feature’s measured intensity is high coincide
with the regions where the feature’s Shapley values are positive, the feature’s presence is indicative of the class of
interest. The relationship between the feature’s abundance and the class prediction is correlative. Conversely, if the
regions where the feature’smeasured intensity is low coincide with the regions where the feature’s Shapley values are
positive, the feature’s absence is indicative of the class of interest. The relationship between the feature’s abundance
and the class prediction is anticorrelative.

4 Permutation importancewas originally developed by Breiman, under the nameofmean decrease accuracy, as amodel-specificmethod formeasuring
feature importance in random forests [68]. The idea is to randomly permute a feature across all observations to break its association with the model
prediction (and the other features) and e�ectively cancel its predictive power [69]. Therefore, if the feature under study is strongly associated to
the prediction, permuting its values should result in a large drop in predictive performance. Conversely, if the feature is weakly associated to the
prediction, permuting it should have little to no impact on performance.
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• Where does the feature strongly or weakly influence the classificationmodel’s output?
The feature has a relatively large influence on the classificationmodel where its Shapley values have a highmagnitude
(pixels with high saturation). Conversely, the feature has a relatively small influence on the model where its Shapley
values have a low magnitude (pixels with low saturation). Studying the magnitude of a feature’s Shapley values
provides insight into how large or small the feature’s local influence on a model is. In our application, we consider a
feature (i.e.m/z value) to be relevant to recognizing a given class in the regions of the sample were its Shapley values
have a high magnitude.

Figure 2. Diagram of the model interpretation process. SHAP is used to measure the local and global predictive importance of the
features that the classification model from Figure 1 uses to assign the pixels making up the sample surface (and their corresponding
mass spectra) to one of four di�erent anatomical classes (cerebral cortex, cerebellum, brainstem, or other). The global SHAP scores

provide an experiment-wide measure of each biomarker candidate’s relevance, whereas the local SHAP scores measure the
direction andmagnitude of each biomarker candidate’s influence on the model output for one single pixel. SHAPmaps deliver

spatially localized explanations of the classification model’s decision-making process. Icons from [32, 33].
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3 Results & Discussion

Our biomarker candidate discovery workflow is demonstrated on two IMS datasets that were acquired by MALDI
quadrupole time-of-flight (Q-TOF) IMS using the prototype MALDI timsToF Pro (Bruker Daltonics, Germany) in positive
ion mode [70]. Please refer to the supplementary material for information regarding the materials, sample preparation,
experiments, histology, and IMS data preprocessing. Since the following five case studies do not involve the study of
diseased tissue, the ranked features are not indicative of any pathological processes but rather of anatomical structures.
Therefore, the term "molecular marker" is preferred over the term "biomarker" in Section 3. It should be noted that,
methodologically speaking, there is no di�erence: in both cases our workflow looks for di�erentiating markers (i.e.m/z
values) corresponding to user-provided classes of interest.

• Dataset no1 was acquired from the sagittal whole-body section of a mouse-pup. The autofluorescencemicroscopy
image of the tissue section is presented in Figure 3a and was used to guide annotation of the regions of interest [71].
The sample was cryosectioned at 20 µm thickness and a 1,5-diaminonaphthalene matrix was applied by sublimation.
The mean mass spectrum of the dataset was retrieved and peak-picked to produce a feature list of 879 distinct
ion species. Them/z acquisition range is 300-1,200 and the pixel size is 50 µm×50 µm. The dataset consists of a
total of 164,808 pixels. Our workflow is therefore applied to a dataset of 164,808 observations and 879 features.
The challenge of molecular marker discovery in the two case studies tied to this dataset therefore amounts to
automatically determining which molecular species, among the 879 measuredm/z values, are most relevant to
recognizing two anatomical regions: the mouse-pup’s brain and its liver.

• Dataset no2 was acquired from the sagittal section of a rat kidney. The hematoxylin & eosin stained microscopy
image of the tissue section is presented in Figure 3b. The sample was cryosectioned at 12 µm thickness and a
1,5-diaminonaphthalene matrix was applied by sublimation. The meanmass spectrum of the dataset was retrieved
and peak-picked to produce a feature list of 1,428 distinct ion species. Them/z acquisition range is 300-2,000 and the
pixel size is 15 µm×15 µm. Our workflow is applied to a data table of 591,534 observations and 1,428 features. The
challenge of molecular marker discovery amounts to automatically determining which molecular species, among
the 1,428measuredm/z values, are most relevant for recognizing three di�erent regions of the kidney: the cortex, the
inner and outer medulla.

Five anatomical regions were delineated within the two tissue samples on the basis of the microscopy images in Figure
3. Each tissue region was given a class label: a brain and a liver region in dataset no1 and a cortex, inner medulla, and
outer medulla region in dataset no2. Our aim is to discover molecular markers for each of these user-provided class
labels. Themolecular marker discovery is treated separately for each class, using the one-versus-all procedure, yielding
five binary classification problems whose target (i.e. positively labeled) classes are the following: the mouse-pup’s
brain and liver in dataset no1; the rat kidney’s inner medulla, outer medulla, and cortex in dataset no2. Note that,
although user-definedmasks are employed to label the data in our case studies, our approach would work equally well
if provided with automatically-generated class annotations. The first three case studies (i.e. discovering molecular
markers for the mouse-pup’s brain and liver in dataset no1, discovering molecular markers for the rat kidney’s inner
medulla in dataset no2) are covered in Section 3, whereas the remaining two case studies (i.e. discovering molecular
markers for the rat kidney’s outer medulla and cortex in dataset no2) are provided in the supplementary material.

As discussed in subsection 2.1, XGBoost models are used to classify the pixels on the basis of their mass spectra. These
five classification problems are imbalanced because their corresponding datasets have unequal class cardinality (i.e.
the negatively labeled pixels outnumber the positively labeled pixels). We avoid using accuracy (i.e. the proportion of
predictions that are correct) to measure the classification models’ predictive performance since accuracy tells us little
aboutwhether false negatives or false positives aremore common [72]. Instead, we choose tomeasure our classification
models’ predictive performance using balanced accuracy, precision, and recall. Recall (also called sensitivity or the
true positive rate) is the proportion of positive observations that are correctly identified. Precision is the proportion of
all positive predictions that are correct. Specificity (also called the true negative rate) is the proportion of negative
observations that are correctly identified. Balanced accuracy is the arithmetic mean of sensitivity and specificity [72].
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As discussed in subsections 2.2 and 2.3, the TreeSHAP implementation of the SHAP interpretability method (with
observational Shapley values) is used to rank the features (i.e. m/z values) in descending order of global predictive
importance. The top-ranking features are highly discriminative with regards to a labeled tissue class and are therefore
considered to be promising molecular markers for that class of interest. In addition to automatically establishing a
shortlist of molecular species that are statistically related to user-provided tissue class labels, our workflow delivers
spatially localized insight into the relationship (e.g. correlative, anticorrelative) between eachmeasured ion species
and the class of interest by means of a novel visualization approach called SHAPmaps.

(a) Autofluoresence microscopy image of the mouse-pup whole-body section fromwhich imaging mass spectrometry dataset no1 is obtained.

(b) Hematoxylin & eosin stained microscopy image of the rat kidney tissue sample from which imaging mass spectrometry dataset no2 is obtained.

Figure 3. Microscopy images of the tissue sections imaged in IMS datasets no1 and no2.

3.1 Dataset no1: Recognition of the brain and liver of a mouse-pup

Classification-oriented supervised ML algorithms require labeled training data (in our case, labeled pixels) to build
a classification model. In the two mouse-pup case studies, anatomical class labels are obtained as user-provided
spatial delineations of the mouse-pup’s brain and liver in the tissue sample. Exploratory analysis of the IMS data was
performed using non-negative matrix factorization to aid in that delineation task [73, 74, 21]. The low-dimensional
latent patterns extracted by non-negativematrix factorization fromdataset no1 directly delineated several organswithin
the mouse-pup whole-body section, which facilitated easier and more robust manual localization and annotation
of the target organs. In the context of molecular marker discovery, the target organs (or tissue regions, cell types, or
cells) that are provided as masks to the supervised ML algorithm are also the organs (or tissue regions, cell types,
or cells) for which we want to discover molecular markers. Figure 4 shows a spatial representation of the masks
used to build the XGBoost classification models for the mouse-pup cases. Pixels are either annotated as belonging
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to the target organ (i.e. positive class) or not belonging to the target organ (i.e. negative class). Some pixels (e.g. at
the borders of target organs) were di�icult to annotate definitively and were excluded from the training set to avoid
providing the supervised ML algorithm erroneous or unreliable training examples. Furthermore, the negative class was
downsampled to avoid the one-versus-all classification of the brain and liver being severely imbalanced. A�er down-
sampling, ~25%of the pixels used to build themodel belong to the positive class, and ~75%belong to the negative class.

(a) Masks used for building the XGBoost classification model designed to
recognize the mouse-pup brain.

(b) Masks used for building the XGBoost classificationmodel designed to
recognize the mouse-pup liver.

Figure 4. Class-defining masks used as inputs for training the two XGBoost classification models designed to recognize the
mouse-pup brain and liver. For each task, regions of the tissue sample were manually annotated as belonging to one of three

categories: dark blue pixels are labeled as belonging to the target organ andmake up the positive class, light blue pixels are labeled
as not belonging to the target organ andmake up the negative class, and gray pixels are close to borders between the target organ
and other anatomical structures, making it di�icult to annotate them definitively. The latter are therefore excluded from the training

data to avoid feeding the model unreliable annotations during training.

Molecular marker discovery for themouse-pup brain
Our brain molecular marker discovery workflow starts with building a classification model from IMS dataset no1 and
the user-provided brain mask shown in Figure 4a. The model building process is illustrated in Figure 1a. We obtain an
XGBoost model that automatically recognizes brain tissue pixels on the basis of their mass spectra. To demonstrate
the recognition capabilities of the learned XGBoost model, we supply it with all IMSmeasurements (both labeled and
unlabeled pixels), e�ectively going through the prediction process illustrated in Figure 1b. Figure 5a, which is the result
of the prediction process, shows whichmouse-pup tissue regions are predicted to belong to the brain according to
the XGBoost classification model. As is apparent from Figure 5a, the mouse-pup’s brain (as well as parts of its spinal
cord) are successfully di�erentiated from the other organs. Regarding generalization performance, the XGBoost model
trained to recognize pixels belonging to themouse-pup brain achieves a balanced accuracy of 0.9925, a precision of
0.9967, and a recall of 0.9974. Note that generalization performance is evaluated on a testing dataset, which is a labeled
selection of pixel measurements that di�er from the training dataset.

Figure 5b shows the top ten molecular markers of the global ranking of 879 features (i.e. m/z values) obtained by
TreeSHAP. The features are ranked in descending order of global SHAP score, and thus in descending order of relevance
to brain tissue recognition, yielding a shortlist of molecular markers for mouse-pup brain tissue. Figure 5b provides
insight into a feature’s global (i.e. tissue-wide) relevance to the recognition task of Figure 5a. However, the spatially
localized nature of IMS measurements together with the SHAP map representation developed above allows us to
obtain tissue location specific insights into anm/z value’s relevance. Figure 6 shows the ion images and SHAPmaps of
the three top-ranking features of Figure 5b. The le� column of Figure 6 displays the spatial distribution and relative
abundance of the three top-ranking molecular features for recognizing the mouse brain. Figures 6a, 6c, and 6e are
ion images of the features ranked no1, no2, and no3 respectively, and they are displayed using a pseudo-color scale
whose brightness is indicative of the signal intensity measured at a given pixel. These ion images provide a classical
view onmolecular distribution by reporting the ion intensity signal corresponding to the molecular species at hand.
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However, ion images do not provide any information about how that ion intensity relates to the recognition of brain
tissue. The right column of Figure 6 provides information on the signs andmagnitudes of the local SHAP scores across
the sample for each top-ranking feature. Figures 6b, 6d, and 6f are the SHAPmaps of the features ranked no1, no2, and
no3 respectively. These SHAPmaps provide information on where and how a given ion intensity signal relates to the
task of brain tissue recognition.

(a) Brain class prediction in the mouse-pup whole-body section. The class labels are predicted by the classification model designed to di�erentiate
the pixels belonging to the mouse-pup’s brain from the pixels not belonging to the mouse-pup’s brain.

(b) Global feature importance of the tenm/z values most relevant to recognizing brain tissue in the mouse-pup, as per the SHAP interpretability
method. The features of the XGBoost classification model trained to recognize the mouse-pup’s brain tissue are ranked in descending order of
global feature importance. The global SHAP score of a feature is obtained by averaging themagnitude of the feature’s Shapley values, or local SHAP
scores, over all labeled and unlabeled pixels in dataset no1. The tenm/z values shown here score the highest in terms of di�erentiating relevance,

and automatically provide a shortlist of molecular markers for mouse-pup brain tissue.

Figure 5. Mouse-pup brain recognition and global feature ranking.

Figure 6a is the ion image of the feature ranked no1, whosem/z value is 912.474. Themeasured intensity of this feature is
high in the brain and spinal cord. According to Figure 6b, feature no1 increases the log-odds (raw) output of the XGBoost
model in the brain region: the Shapley values in the brain and spinal cord are positive, and negative elsewhere. The
presence of feature no1 increases the log-odds (and probability) of the XGBoost classification model predicting that a
given pixel belongs to the brain. The ion image and SHAPmap of the feature ranked no2 (m/z 800.567) are very similar
to those of the feature in first position. Both top-ranking features are positively correlated with themodel assigning
a pixel to the brain. Measuring high intensity signals for features no1 and no2 in a given pixel increases the log-odds
(and probability) of the model assigning that pixel to the brain. Given the high predictive performance of the XGBoost
classification model, which indicates that the model is probably a good approximation of the biochemical processes
taking place in the tissue, it can be assumed and inferred that measuring a high intensity signal for features no1 and no2
in a given pixel also increases the probability of that pixel actually belonging to the brain. In other words, the presence
of these features (m/z values) is characteristic of themouse-pup’s brain and spinal cord and di�erentiates the brain and
spinal cord from other regions in the tissue.
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(a) Ion image of the feature ranked no1 (m/z 912.474) (b) SHAPmap of the feature ranked no1 (m/z 912.474)

(c) Ion image of the feature ranked no2 (m/z 800.567) (d) SHAPmap of the feature ranked no2 (m/z 800.567)

(e) Ion image of the feature ranked no3 (m/z 759.411) (f) SHAPmap of the feature ranked no3 (m/z 759.411)

Figure 6. Three promising molecular markers for the mouse-pup’s brain. The ion images (le�) and SHAPmaps (right) of three
features (i.e.m/z values) with the most influence on the decision-making process of the classification model trained to recognize the
mouse-pup’s brain are shown. The ion images plot the spatial distribution andmeasured intensity of each feature across the sample,
and are not specifically tied to the task of recognizing the brain. The SHAPmaps plot the spatial distribution of Shapley values, or
local SHAP predictive importance scores, of each feature across the sample, and provide information on where and how the feature

is relevant to the task of recognizing brain.

Figure 6e indicates that the feature ranked no3, whosem/z value is 759.411, has a low intensity both in the brain and the
spinal cord. Its measured intensity in the spinal cord is slightly higher than its intensity in the brain. Figure 6f shows
that the Shapley values of that feature are negative in the spinal cord (with amagnitude between -1.0 and -1.5). The
area highlighted (negatively, hence in dark blue) in Figure 6f, namely the spinal cord, is where feature no3 plays a role
in helping to obtain a biomolecular signature unique to the brain. The way in which this feature helps the classification
model correctly identify the brain pixels can be read from the sign of its Shapley values, or local SHAP scores. The local
SHAP values in the spinal cord are negative, meaning that whatever the signal is that is measured for this feature in the
spinal cord, it lowers the log-odds (and probability) of assigning a pixel to the brain. Studying the ion image of feature
no3 furthermore reveals that the ion intensity form/z 759.411 is low in the spinal cord, but still higher than in the brain.
This means that a relative increase in signal intensity ofm/z 759.411 strongly decreases the log-odds (and probability)
of predicting a pixel belonging to the brain. Unlike the features ranked no1 and no2 that are goodmolecular markers for
both the brain and spinal cord, the feature ranked no3 enables the XGBoost classification model to tell the brain apart
from the spinal cord. We would not be able to di�erentiate the mouse’s brain from its spinal cord if we were to use
only the two top-ranking features (m/z 912.474 andm/z 800.567). This example illustrates the subtle understanding
of molecular marker spatial specificity that can be obtained from SHAPmaps. If one needs a molecular marker for
both the brain and spinal cord, bothm/z 912.474 andm/z 800.567 are good candidates. If one requires the ability to tell
brain tissue apart from spinal cord tissue, a more elaborate panel of molecular markers is proposed: ifm/z 912.474 and
m/z 800.567 are present in high abundance in a tissue area, and ifm/z 759.411 is present in very low abundance, the
probability of those pixels describing brain tissue (exclusively) is very high.
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Molecular marker discovery for themouse-pup liver
Our liver molecular marker discovery workflow starts with building a classification model from IMS dataset no1 and
the user-provided liver mask shown in Figure 4b. Figure 7a shows the result of applying the classification model to all
pixels of dataset no1: the mouse-pup’s liver is successfully di�erentiated from the other organs, demonstrating that the
model was able to capture a liver-specific mass spectral signature in the data. Regarding generalization performance,
the XGBoost classificationmodel trained to recognize pixels belonging to the mouse-pup liver achieves a balanced
accuracy of 0.9960, a precision of 0.9984, and a recall of 0.9989.

(a) Liver class prediction in the mouse-pup whole-body section. The class labels are predicted by the classification model designed to di�erentiate
the pixels belonging to the mouse-pup’s liver from the pixels not belonging to the mouse-pup’s liver.

(b) Global feature importance of the tenm/z values most relevant to recognizing liver tissue in the mouse-pup, as per the SHAP interpretability
method. The features of the classification model trained to recognize the mouse-pup’s liver tissue are ranked in descending order of global feature
importance. The global SHAP score of a feature is obtained by averaging the magnitude of the feature’s Shapley values, or local SHAP scores, over

all labeled and unlabeled pixels in dataset no1. The tenm/z values shown here score the highest in terms of di�erentiating relevance, and
automatically provide a shortlist of molecular markers for mouse-pup liver tissue.

Figure 7. Mouse-pup liver recognition and global feature ranking.

Figure 7b shows the top tenmolecular markers out of the global ranking of 879 features (i.e.m/z values) as obtained
by TreeSHAP. The features are ranked in descending order of global SHAP predictive importance score, and thus in
descending order of relevance to liver tissue recognition. Figure 7b therefore provides insight into a feature’s global
relevance to the recognition task of Figure 7a. The feature with the highest influence on the XGBoost classification
model used to assign pixels to the liver (or not) has am/z value of 746.624 and a global SHAP score of 1.595.

The le� column of Figure 8 provides information about the spatial distribution and relative abundance of the three
top-ranking molecular features for recognizing themouse liver in this dataset. Figures 8a, 8c, and 8e are the ion images
of the features ranked no1, o2, and o3 respectively. The right column of Figure 8 provides information on the signs and
magnitudes of the local SHAP scores, or Shapley values, across the sample for each top-ranking feature. Figures 8b, 8d,
and 8f are the SHAPmaps of the three top-ranking features. These SHAPmaps provide information onwhere and how a
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given ion intensity signal relates to the task of liver tissue recognition. Studying the le� and the right columns of Figure
8 enables one tounderstandwhich features arepositively or negatively correlatedwith apixel being assigned to the liver.

The ion image of the feature ranked no1 (Figure 8a) indicates that it has a very low abundance in the liver region. Yet the
SHAPmap of that feature (Figure 8b) shows that the local SHAP scores are positive, with a high magnitude, in the liver
region. The feature ranked no1 can therefore be considered negatively correlated with a pixel being assigned to the
liver. The feature ranked no2 is also negatively correlated with the XGBoost classification model assigning a pixel to the
liver. In short, measuring a low intensity for features ranked no1 and no2 in a given pixel increases the log-odds (and
probability) of the classification model assigning that pixel to the liver. Given the high predictive performance of the
classification model, we can assume that measuring a low intensity of features ranked no1 and no2 in a given pixel also
increases the probability of that pixel actually belonging to the liver. Conversely, the feature ranked no3 is positively
correlated with a pixel being assigned to the liver: its ion image (Figure 8e) indicates that the feature ranked no3 has
a high abundance in the liver, and its SHAP map (Figure 8f) indicates that its local SHAP scores are high in the liver
region. Measuring a high intensity of the feature ranked no3 in a given pixel increases the log-odds (and probability)
of the classification model assigning that pixel to the liver. Furthermore, given the high predictive performance of
the classification model, we can assume that measuring a high intensity of the feature ranked no3 in a given pixel
also increases the probability of that pixel actually belonging to the liver. The absence of features ranked no1 and no2,
and the presence of the feature ranked no3 are therefore characteristic of the mouse-pup liver. If one measures a low
abundance ofm/z 746.624 andm/z 757.640 and a high abundance ofm/z 558.310 in a pixel, the probability of that pixel
belonging to the liver is very high.

(a) Ion image of the feature ranked no1 (m/z 746.624) (b) SHAPmap of the feature ranked no1 (m/z 746.624)

(c) Ion image of the feature ranked no2 (m/z 757.640) (d) SHAPmap of the feature ranked no2 (m/z 757.640)

(e) Ion image of the feature ranked no3 (m/z 558.310) (f) SHAPmap of the feature ranked no3 (m/z 558.310)

Figure 8. Three promising molecular markers for the mouse-pup’s liver. The ion images (le�) and SHAPmaps (right) of three
features (i.e.m/z values) with the most influence on the decision-making process of the classification model trained to recognize the
mouse-pup’s liver are shown. The ion images plot the spatial distribution andmeasured intensity of each feature across the sample,
and are not specifically tied to the task of recognizing the liver. The SHAPmaps plot the spatial distribution of Shapley values, or
local SHAP predictive importance scores, of each feature across the sample, and provide information on where and how the feature

is relevant to the task of recognizing the liver.
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3.2 Dataset no2: Recognition of renal inner medulla, outer medulla, and cortex

Annotating the three di�erent functional tissue regions of the rat kidney - namely the inner medulla, outer medulla
and cortex - is required to generate the class labels needed to train the three corresponding XGBoost classification
models. Similar to the previous case studies (subsection 3.1), exploratory analysis by means of non-negative matrix
factorization was used to aid in delineatingmasks. Figure 9 shows the pixels annotated as belonging to one of the three
target regions. The pixels that were di�icult to annotate manually were excluded from the training and testing datasets.
Similar to the previous case studies (subsection 3.1), downsampling of the negative class was performed. The inner
medulla, outer medulla, and cortex are di�erentiated from the other two regions using one-versus-all classification
where the target region is the positive class, and the two other regions make up the negative class. Please refer to the
supplementary material for the outer medulla and cortex case studies.

Figure 9. Masks used as inputs for training the three XGBoost classification models directed at recognizing the kidney’s inner
medulla, outer medulla, and cortex. Di�erent regions of the tissue sample were manually annotated as belonging to one of four
categories: light blue pixels belong to the inner medulla, medium blue pixels belong to the outer medulla, dark blue pixels belong to

the cortex, and gray pixels are close to borders between these anatomical structures, making it di�icult to annotate them
definitively. The latter are excluded from the training data to avoid feeding the model unreliable annotations during training. The

black circle outlines a region of the renal cortex that was a�ected by a sample preparation artefact.

Molecular marker discovery for the renal inner medulla
Figure 10a presents the class prediction result for the renal inner medulla model, showing that the inner medulla is
successfully di�erentiated from the outer medulla and cortex. Regarding generalization performance, the XGBoost
classification model trained to recognize pixels belonging to the inner medulla achieves a balanced accuracy of 0.9992,
a precision of 0.9989, and a recall of 0.9985. Note the slightly noisy region to the top-le� of the medulla in Figure 10a.
The di�iculties encountered by themodel in this region, which is outlined by a black circle in Figure 9, are probably
due to a sample preparation artefact known as visceral fat delocalization [75]. Figure 10b shows the top ten molecular
markers out of the global ranking of 1,428 features (i.e.m/z values) as obtained by TreeSHAP. The features are ranked in
descending order of global SHAP score, and thus in descending order of relevance to inner medulla tissue recognition.
Figure 10b therefore provides insight into a feature’s global relevance to the recognition task of Figure 10a. The most
important feature to the XGBoost classification model used to assign pixels to the inner medulla (or not) has am/z
value of 1401.043 and a global SHAP score of 2.036.

The le� column of Figure 11 provides information about the spatial distribution and relative abundance of the three
top-ranking molecular features for recognizing the inner medulla: Figures 11a, 11c, and 11e are the ion images of the
features ranked no1, o2, and o3 respectively. The right column of Figure 11 provides information on the signs and
magnitudes of the local SHAP scores, or Shapley values, of each top-ranking feature across the sample: Figures 11b, 11d,
and 11f are the SHAPmaps of the three top-ranking features. These SHAPmaps provide information on where and how
a given ion intensity signal relates to the task of inner medulla tissue recognition. Combining the le� and right columns
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of Figure 11 provides insight into the predictive model’s decision-making process. The signal intensity measured in
the inner medulla for features ranked no1 and no2 is low (Figures 11a and 11c), and yet their Shapley values are high
in the inner medulla (Figures 11b and 11d). These features,m/z 1401.043 andm/z 870.539 respectively, are negatively
correlated to the XGBoost classification model assigning a pixel to the inner medulla. In other words, measuring a low
intensity form/z 1401.043 andm/z 870.539 in a given pixel increases the log-odds (and probability) of the classification
model assigning that pixel to the inner medulla. Given the high predictive performance of the classification model,
we can assume that measuring a low intensity form/z 1401.043 andm/z 870.539 in a given pixel also increases the
probability of that pixel actually belonging to the inner medulla. Conversely, the feature ranked no3 (m/z 1551.260) is
positively correlated with the model predicting a pixel as belonging to the inner medulla: its intensities (Figure 11e)
and its Shapley values (Figure 11f) are both high in the inner medulla. Measuring a high intensity form/z 1551.260 in a
given pixel increases the log-odds (and probability) of the classificationmodel assigning that pixel to the inner medulla.
Given the high predictive performance of the classification model, we can assume that measuring a high intensity for
m/z 1551.260 in a given pixel increases the probability of that pixel actually belonging to the innermedulla. The absence
of features ranked no1 and no2, and the presence of the feature ranked no3 seem to be characteristic of renal inner
medulla tissue.

(a) Inner medulla class prediction in the rat kidney section. The class labels are predicted by the classification model designed to di�erentiate the
pixels belonging to the inner medulla from the pixels not belonging to the inner medulla.

(b) Global feature importance of the tenm/z values most relevant to recognizing the renal inner medulla, as per the SHAP interpretability method.
The features of the classification model trained to recognize the inner medulla tissue are ranked in descending order of global feature importance.
The global SHAP score of a feature is obtained by averaging the magnitude of the feature’s Shapley values, or local SHAP scores, over all labeled
and unlabeled pixels in dataset no2. The tenm/z values shown here score the highest in terms of di�erentiating relevance, and automatically

provide a shortlist of molecular markers for rat renal inner medulla tissue.

Figure 10. Renal inner medulla recognition and global feature ranking.
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(a) Ion image of the feature ranked no1 (m/z 1401.043) (b) SHAPmap of the feature ranked no1 (m/z 1401.043)

(c) Ion image of the feature ranked no2 (m/z 870.539) (d) SHAPmap of the feature ranked no2 (m/z 870.539)

(e) Ion image of the feature ranked no3 (m/z 1551.26) (f) SHAPmap of the feature ranked no3 (m/z 1551.26)

Figure 11. Three promising molecular markers for the renal inner medulla. The ion images (le�) and SHAPmaps (right) of three
features (i.e.m/z values) with the most influence on the decision-making process of the classification model trained to recognize the
rat’s renal inner medulla are shown. The ion images plot the spatial distribution andmeasured intensity of each feature across the
sample, and are not specifically tied to the task of recognizing the inner medulla. The SHAPmaps plot the spatial distribution of
Shapley values, or local SHAP predictive importance scores, of each feature across the sample, and provide information on where

and how the feature is relevant to the task of recognizing the inner medulla.

Wenow focus on the tissue region to the top-le� of themedulla that actually belongs to the cortex, and that was di�icult
for the XGBoost classification model to correctly di�erentiate from the inner medulla (see Figure 10a). The SHAPmap
of the feature ranked no1 shows (by coloring the di�icult-to-classify area red) that this feature strongly increases the
log-odds (andprobability) of the cortex pixels to the top-le�of the innermedulla being erroneously assigned to the inner
medulla: the Shapley values of the feature ranked no1 are positivewith a highmagnitude in this region of the cortex. The
SHAPmap of the feature ranked no3 shows (by coloring the di�icult-to-classify area blue) that the classification model
uses this feature to correct for the labeling suggested by the feature ranked no1: the Shapley values of the feature ranked
no3 in the region to the top-le� of the inner medulla are negative with a high magnitude. This case study demonstrates
an interesting level of nuance in molecular marker discovery, uniquely provided by the SHAP map representation.
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If only the global SHAP scores of the features are taken into account (i.e. only the global information provided in
Figure 10b, without the localized information provided in Figures 11b, 11d, and 11f), one might be tempted to consider
m/z 1401.043 (corresponding to the feature ranked no1) as the most promising marker candidate for inner medulla
tissue in this dataset. Althoughm/z 1401.043 has the most influence on the XGBoost classification model designed to
recognize the inner medulla, its global SHAP score is based on a sample-wide assessment of discriminative relevance
and disregards subtle spatially localized patterns. In fact, Figure 11b shows thatm/z 1401.043 has a positive influence on
the model’s prediction in the inner medulla but also in a region of the cortex where visceral fat delocalization probably
occurred. Unlikem/z 1401.043 andm/z 870.539 (corresponding to the features ranked no1 and no2 respectively),m/z
1551.260 (corresponding to feature ranked no3) is exclusive to the inner medulla. Although the global SHAP scores
ofm/z 1401.043 andm/z 870.539 are higher than that ofm/z 1551.260 (respectively 2.036 and 1.007 versus 0.548), a
localized study using SHAPmaps shows thatm/z 1551.260 is the more reliable molecular marker of the three for the
renal inner medulla because of its high spatial specificity. Unlike the signal ofm/z 1551.260, the signals corresponding
tom/z 1401.043 andm/z 870.539 were a�ected by the sample preparation artefact that took place in the renal cortex.
This example also illustrates the importance of not basing one’s estimate of a molecular marker candidate’s relevance
exclusively on its global SHAP predictive importance score. When visualized in the form of SHAPmaps, the local SHAP
scores (or Shapley values) provide useful spatially localized information as to how and where themolecular marker
influences the predictive model’s output and (assuming the classificationmodel has good predictive performance)
how it ties to the underlying tissue.

4 Conclusion

In this work, we propose an innovative computational approach for automating the discovery of biomarker candidates
in molecular imaging data. Our approach enables one to e�iciently filter a multitude of molecular species down to a
panel of promising biomarker candidates. Applying the automated biomarker candidate discovery workflow to imaging
mass spectrometry (IMS) data is especially interesting because of the massively multiplexed nature of IMS. By enabling
the untargeted concurrentmapping of hundreds to thousands ofmolecular species across a tissue sample, IMS enables
one to cast a wide net for molecular species with biomarker potential. However, the wide range of candidates can pose
di�iculties since manual examination of IMS data is impractical. Automating biomarker candidate discovery in IMS
using machine learning (ML) methodologies, rather than resorting to manual examination, can help re-establish the
practical feasibility of IMS-based biomarker discovery, and can helpmaintain objectivity, scalability, and reproducibility.
Our biomarker candidate discovery workflow produces a ranking of molecular species according to the discriminative
relevance they hold for a given tissue structure or disease condition, such that the top-ranking molecular species are
highly promising biomarker candidates that merit further study.

Our approach to biomarker candidate discovery is to identify highly discriminative molecular species whose overex-
pression or underexpression characterize a user-defined biological class of interest. A supervised ML algorithm, called
extreme gradient boosting (XGBoost), is used to learn a classification model from labeled imaging mass spectrometry
data, and a state-of-the-art ML model interpretability method, called Shapley additive explanations (SHAP), is used to
measure the local and global predictive importance of them/z values that themodel uses as features. We translate
the task of biomarker candidate discovery into a feature ranking problem: the features are ranked in descending
order of global SHAP importance and the top-ranking features are retained for further investigation. The TreeSHAP
implementation of Shapley additive explanations, with observational Shapley values, is used for quantifying the
local and global predictive importance of features. In order to add nuance to our analysis, we furthermore introduce
SHAP maps, a novel representation and visualization that brings a spatial dimension to our understanding of the
decision-making processes of a classification model. The SHAPmap of a feature is obtained by plotting that feature’s
local SHAP importance scores, or Shapley values, across all pixels making up the sample surface. A feature’s local
SHAP importance score is informative of the direction (e.g. positive or negative) andmagnitude (e.g. large or small)
of the feature’s influence on the classification model’s output for a given pixel. SHAPmaps provide insight into the
spatial specificity of biomarker candidates by showing how and where a feature influences the classification model’s
probability of assigning a pixel, and its corresponding mass spectrum, to the class of interest.
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Although our two case studies concern imaging mass spectrometry data, our biomarker candidate discovery workflow
is also applicable to other forms ofmultiplexed imaging data such asmultiplexed fluorescencemicroscopy (e.g. CODEX),
imaging mass cytometry, near-infrared imaging, and Raman spectroscopic imaging, and therefore holds the potential
to substantially advance biomarker development across a wide range of spectral imaging modalities. One area where
our approach can be employed is in the discovery of clinically relevant molecular signatures for functional tissue
units in the context of large-scale molecular mapping projects such as the NIH-sponsored Human BioMolecular Atlas
Program [76], which aims to build a complete molecular map of the human body at single-cell resolution, and the
Kidney Precision Medicine Project [77], which aims to build a comprehensive molecular, cellular, and anatomical map
of the kidney. Our work on ML interpretability for multiplexed imaging may also help advance research in biomedical
imaging, for example in the field of data-driven multi-modal image fusion [78], where a cross-modal regression model
ties the observations in one imaging modality to the observations in another modality. Obtaining spatially-localized
insight into how cross-modal connections are made holds potential for advancing all fusion applications, including
prediction to a higher spatial resolution, out-of-sample predictions, as well as cross-modal denoising and relationship
discovery [79].
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Experimental protocol

Materials
Acetic acid, 1,5-diaminonaphthalene (DAN), ammonium formate, hematoxylin, and eiosin were purchased from Sigma-
Aldrich Chemical Co. (St. Louis, MO, USA). HPLC-grade ethanol was purchased from Fisher Scientific (Pittsburgh, PA,
USA).

Sample Preparation
One-week old C57BL/6 control mouse pup was snap frozen at -80oC, shaved over dry ice, and cryosectioned at 20
µm thickness, using a CM3050 S cryostat (Leica Biosystems, Wetzlar, Germany). The tissue was thaw-mounted onto a
conductive indium tin oxide coated glass slide (Delta Technologies, Loveland, CO, USA). Rat kidney tissuewas purchased
from PelFreeze Biologicals (Rogers, AR, USA), sectioned at 10 µm thickness and thaw-mounted onto a conductive slide.
Autofluorescencemicroscopy images were acquired using EGFP, DAPI, and DsRed filters on a Zeiss AxioScan Z1 slide
scanner (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). Approximately 500mg of DAN was sublimed at 130oC
and 24mTorr for 3.5 min onto the tissue surface for a final density of ~1.0 mg/cm2.

MALDI TIMS-IMS
Our biomarker candidate discovery workflow is demonstrated on two imagingmass spectrometry (IMS) datasets. All ex-
perimentswere carried out on a prototype timsTOF fleXmass spectrometer (Bruker Daltonik, Bremen, Germany).

• Dataset no1: Mouse pup images were acquired in trapped ion mobility (TIMS) mode of operation with an ion transfer
time of 100 µs, prepulse storage time of 8 µs, and a collision RF of 2,000 Vpp, a TIMS funnel 1 (accumulation) RF of
450 Vpp, a TIMS funnel 2 RF (analysis) of 400 Vpp, a multipole RF of 400 Vpp, and a collision cell entrance (in) voltage
of 300 V. Tissue imaging data (164,808 pixels) were collected at 50 µm spatial resolution, using 200 shots per pixel
and 48% laser power. Data were collected in positive ionization mode fromm/z 300 to 1,200. The TIMS scan time was
set to 400ms, with a reducedmobility (1/K0) range of 0.4 - 1.9 (V·s)/cm2.

• Dataset no2: Murine kidney images were generated in Q-TOFmode of operation. Tissue imaging data (591,534 pixels)
were collected at 15 µm spatial resolution, using 400 shots per pixel, and 35% laser power. Data were collected in
positive ionization mode fromm/z 200 to 1,500.

Histology
Following MALDI IMS, matrix was removed from tissue using 100% ethanol and rehydrated with graded ethanol and
double distilledH2O. The tissueswere then stained using a hematoxylin and eosin (H&E) stain. Brightfieldmicroscopy of
stained tissues was obtained at 20×magnification using a Leica SCN400 Brightfield Slide Scanner (Leica Microsystems,
Bu�alo Grove, IL, USA).
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Data preprocessing

• Dataset no1: The mouse-pup data was exported into a custom binary format optimized for storage and speed of
analysis of the ionmobility-IMS data. Each frame/pixel contains between 10,000-100,000 centroid peaks that span the
acquisition range ofm/z 300-1,200 and 1/K0 0.4-1.9 (V·s)/cm2with 221,888 and 4,001 bins in themass spectrometry and
ion mobility dimensions, respectively. The processing pipeline requires commonm/z and 1/K0 axes, hence individual
centroid peaks were inserted at their correct bin positions along themass spectrometry and ionmobility dimensions;
missing values were set to zero. Following the conversion process, a meanmass spectrum of the entire dataset was
generated, and peak picked. A total of 879 features were selected and extracted to generate ion mobility-rich ion
images. Since our biomarker candidate discovery workflow is optimized for non-ion mobility data, the ion mobility
information is removed by summation of all ion mobility bins of the ion mobility-rich images to a single vector,
resulting in a standard ion image.

• Dataset no2: The murine kidney data was exported into a custom binary format as described above. Data were
acquired in the Q-TOF only mode, hence the ion mobility dimension is not present, in which case we introduce
secondary dimension by enforcing the dataset to contain one ion mobility bin. This is carried out to ensure e�icient
storage and data processing without having any impact on the actual data. Following the conversion process, a mean
mass spectrum of the entire dataset was generated, and peak picked resulting in a total of 1,428 ion images.

Low variance noise was removed from both datasets by principal component analysis: principal component analysis is
a matrix factorization technique that can be used to reduce the dimensionality of an IMS dataset while retaining most
of its original variance, and hence most of its latent molecular information [21, 80]. Feature centering, which consists in
subtracting the mean from each column of the IMS data matrix, is performed without feature scaling. We argue that
feature scaling prior to classification model training is not necessary because large di�erences in high intensity peaks
are biologically informative, and high intensity peaks should therefore have more influence on the model than low
intensity peaks [21].
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Additional case studies: IMS dataset no2

Biomarker candidate discovery for the outer renal medulla
Figure S1a presents the classification result: the outer medulla has successfully been di�erentiated from the cortex and
inner medulla. Regarding generalization performance, the XGBoost classificationmodel trained to recognize pixels
belonging to the outer renal medulla achieves a balanced accuracy of 0.9970, a precision of 0.9972 and a recall of
0.9958.

(a) Outer medulla class prediction in the rat kidney section. The class labels are predicted by the classification model designed to di�erentiate the
pixels belonging to the outer medulla from the pixels not belonging to the outer medulla.

(b) Global feature importance of the tenm/z values most relevant to recognizing the renal outer medulla, as per the SHAP interpretability method.
The features of the classification model trained to recognize the outer medulla tissue are ranked in descending order of global feature importance.
The global SHAP score of a feature is obtained by averaging the magnitude of the feature’s Shapley values, or local SHAP scores, over all labeled
and unlabeled pixels in dataset no2. The tenm/z values shown here score the highest in terms of di�erentiating relevance, and automatically

provide a shortlist of biomarker candidates for rat renal outer medulla tissue.

Figure S1. Renal outer medulla recognition and global feature ranking.

Figure S1b shows the top tenmolecularmarkers out of the global ranking of 1428 features (i.e.m/z values) as obtained by
TreeSHAP. The features are ranked in descending order of global SHAP score, and thus in descending order of relevance
to outer medulla tissue recognition. The model used to assign pixels to the outer medulla (or not) relies heavily on the
feature ranked no1, whosem/z value is 588.486 and whose global SHAP score of 2.311. The le� column of Figure S2
provides information about the spatial distribution and relative abundance of the three top-ranking molecular features
for recognizing the outer medulla. The right column of Figure S2 provides information on the signs andmagnitudes of
the local SHAP scores, or Shapley values, of each top-ranking feature across the sample. These SHAPmaps provide
information on where and how a given ion intensity signal relates to the task of outer medulla tissue recognition. The
feature ranked no1 is strongly positively correlated with assigning a pixel to the outer medulla because its ion image
(Figure S2a) shows a high intensity in the outer medulla and because its SHAPmap (Figure S2b) shows positive Shapley
values in the outer medulla and negative Shapley values in the inner medulla and cortex. Given the high predictive
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performance of the classification model, we can assume that measuring a high intensity of the feature ranked no1 in a
given pixel also increases the probability of that pixel actually belonging to the outer medulla. Features ranked no2
and no3 (m/z 1444.145 andm/z 1543.26 respectively) are negatively correlated with the model assigning a pixel to the
outer medulla. Given the high predictive performance of the classificationmodel, we can assume that measuring a
low intensity of the features ranked no2 and no3 in a given pixel also increases the probability of that pixel actually
belonging to the outer medulla. The SHAP maps of features ranked no2 and no3 (Figures S2d and S2f respectively)
show that the XGBoost classificationmodel uses the feature ranked no2 to di�erentiate the outer medulla from the
inner medulla and cortex, and that it uses the feature ranked no3 to di�erentiate the outer medulla and inner medulla
from the cortex.

(a) Ion image of the feature ranked no1 (m/z 588.486) (b) SHAPmap of the feature ranked no1 (m/z 588.486)

(c) Ion image of the feature ranked no2 (m/z 1444.145) (d) SHAPmap of the feature ranked no2 (m/z 1444.145)

(e) Ion image of the feature ranked no3 (m/z 1543.260) (f) SHAPmap of the feature ranked no3 (m/z 1543.260)

Figure S2. Three promising molecular markers for the renal outer medulla. The ion images (le�) and SHAPmaps (right) of three
features (i.e.m/z values) with the most influence on the decision-making process of the classification model trained to recognize the
rat’s renal outer medulla are shown. The ion images plot the spatial distribution andmeasured intensity of each feature across the
sample, and are not specifically tied to the task of recognizing the outer medulla. The SHAPmaps plot the spatial distribution of
Shapley values, or local SHAP predictive importance scores, of each feature across the sample, and provide information on where

and how the feature is relevant to the task of recognizing outer medulla.
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Biomarker candidate discovery for the renal cortex
Figure S3a presents the classification result. The cortex has successfully been di�erentiated from the inner and outer
medulla. Regarding generalization performance, the XGBoost classificationmodel trained to recognize pixels belonging
to the renal cortex achieves a balanced accuracy of 0.9974, a precision of 0.9976 and a recall of 0.9973.

(a) Cortex class prediction in the rat kidney section. The class labels are predicted by the classification model designed to di�erentiate the pixels
belonging to the cortex from the pixels not belonging to the cortex.

(b) Global feature importance of the tenm/z values most relevant to recognizing the renal cortex, as per the SHAP interpretability method. The
features of the classification model trained to recognize the cortex tissue are ranked in descending order of global feature importance. The global
SHAP score of a feature is obtained by averaging themagnitude of the feature’s Shapley values, or local SHAP scores, over all labeled and unlabeled
pixels in dataset no2. The tenm/z values shown here score the highest in terms of di�erentiating relevance, and automatically provide a shortlist of

biomarker candidates for rat renal cortex tissue.

Figure S3. Renal cortex recognition and global feature ranking.

Figure S3b shows the top ten molecular markers out of the global ranking of 1428 features (i.e.m/z values) as obtained
by TreeSHAP. The features are ranked in descending order of global SHAP score, and thus in descending order of
relevance to cortex tissue recognition. The XGBoost model used to assign pixels to the cortex (or not) relies heavily
upon one feature, whosem/z value is 1540.300 and whose global SHAP score is 2.507. The le� column of Figure S4
presents the ion images of the three top-ranking features. The right column of Figure S4 presents the SHAPmaps of the
three top-ranking features. The ion image of the feature ranked no1 (Figure S4a) shows that feature ranked no1 has high
intensity in the cortex; and the SHAPmap of feature ranked no1 (Figure S4b) shows that feature ranked no1 has positive
Shapley values in the cortex, and negative Shapley values in the inner and outer medulla. Therefore, feature ranked no1
(i.e.m/z 1540.300) is positively correlated to a pixel being assigned to the cortex. Conversely, features ranked no2 and
no3 (i.e.m/z 816.676 andm/z 1546.288 respectively) are negatively correlated with the XGBoost classificationmodel
assigning a pixel to the cortex. Given the high predictive performance of the classification model, we can assume that
measuring a high intensity of feature ranked no1, and a low intensity of features ranked no2 and no3, increase the
probability of that pixel actually belonging to the cortex.
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(a) Ion image of the feature ranked no1 (m/z 1540.300) (b) SHAPmap of the feature ranked no1 (m/z 1540.300)

(c) Ion image of the feature ranked no2 (m/z 816.676) (d) SHAPmap of the feature ranked no2 (m/z 816.676)

(e) Ion image of the feature ranked no3 (m/z 1546.288) (f) SHAPmap of the feature ranked no3 (m/z 1546.288)

Figure S4. Three promisingmolecular markers for the renal cortex. The ion images (le�) and SHAPmaps (right) of three features (i.e.
m/z values) with the most influence on the decision-making process of the classification model trained to recognize the rat’s renal
cortex are shown. The ion images plot the spatial distribution andmeasured intensity of each feature across the sample, and are not
specifically tied to the task of recognizing the cortex. The SHAPmaps plot the spatial distribution of Shapley values, or local SHAP
predictive importance scores, of each feature across the sample, and provide information on where and how the feature is relevant

to the task of recognizing the cortex.
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