

1 Title

2 **Mechanism of cellular production and *in vivo* seeding effects of hexameric β -amyloid assemblies**

3

4 Authors

5

6 Céline Vrancx¹, Devkee M Vadukul¹, Sabrina Contino^{1*}, Nuria Suelves^{1*}, Ludovic D'Auria², Florian

7 Perrin¹, Vincent Van Pesch², Bernard Hanseeuw³, Loïc Quinton⁴ and Pascal Kienlen-Campard¹

8 *SC and NS contributed equally to this work.

9

10 ¹Alzheimer Research Group, Molecular and Cellular division (CEMO), Institute of Neuroscience,
11 Université Catholique de Louvain, Brussels, Belgium.

12 ²Neurochemistry NCHM Unit, Molecular and Cellular division (CEMO), Institute of Neuroscience,
13 Université Catholique de Louvain, Brussels, Belgium.

14 ³Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain,
15 Brussels, Belgium.

16 ⁴Laboratory of Mass Spectrometry, Department of Chemistry, Université de Liège, Liège, Belgium.

17

18 Corresponding author:

19 Pascal Kienlen-Campard

20 pascal.kienlen-campard@uclouvain.be

21

22

23

24

25

26

27 Abstract

28

29 **Background:** The β -amyloid peptide (A β) plays a key role in Alzheimer's disease. After its production by
30 catabolism of the amyloid precursor protein (APP) through the action of presenilin 1 (PS1)- or presenilin
31 2 (PS2)-dependent γ -secretases, monomeric A β can assemble in oligomers. In a pathological context,
32 this eventually leads to the formation of fibrils, which deposit in senile plaques. Many studies suggest
33 that A β toxicity is related to its soluble oligomeric intermediates. Among these, our interest focuses on
34 hexameric A β , which acts as a nucleus for A β self-assembly.

35 **Methods:** Biochemical analyses were used to identify hexameric A β in a wide range of models; cell lines,
36 cerebrospinal fluid from cognitively impaired patients and transgenic mice exhibiting human A β
37 pathology (5xFAD). We isolated this assembly and assessed both its effect on primary neuron viability
38 *in vitro*, and its contribution to amyloid deposition *in vivo* following intracerebral injection. In both cases,
39 we used wild-type mice (C57BL/6) to mimic an environment where hexameric A β is present alone and
40 5xFAD mice to incubate hexameric A β in a context where human A β species are pre-existing. Using
41 CRISPR-Cas9, we produced stable *knockdown* human cell lines for either PS1 or PS2 to elucidate their
42 contribution to the formation of hexameric A β .

43 **Results:** In WT mice, we found that neither *in vitro* or *in vivo* exposure to hexameric A β was sufficient to
44 induce cytotoxic effects or amyloid deposition. In 5xFAD mice, we observed a significant increase in
45 neuronal death *in vitro* following exposure to 5 μ M hexameric A β , as well as a 1.47-fold aggravation of
46 amyloid deposition *in vivo*. At the cellular level, we found hexameric A β in extracellular vesicles and
47 observed a strong decrease in its excretion when PS2 was knocked down by 60%.

48 **Conclusions:** Our results indicate the absence of cytotoxic effects of cell-derived hexameric A β by itself,
49 but its capacity to aggravate amyloid deposition by seeding other A β species. We propose an important
50 role for PS2 in the formation of this particular assembly in vesicular entities, in line with previous reports
51 linking the restricted location of PS2 in acidic compartments to the production of more aggregation-
52 prone A β .

53 Key-words

54 Alzheimer's disease – amyloid pathology – A β oligomers – hexameric A β – seeding – 5xFAD model –
55 CRISPR-Cas9 – presenilins

56

57 Background

58

59 The β -amyloid peptide (A β) is the major constituent of the senile plaques, a typical histological hallmark
60 of Alzheimer's disease (AD). This peptide is produced by the amyloidogenic catabolism of the amyloid
61 precursor protein (APP) [1]. APP undergoes a first cleavage by β -secretase, producing a C-terminal
62 fragment (β CTF), which in turn is cleaved by γ -secretase to generate the intracellular domain of APP
63 (AICD) and A β . To note, different isoforms of A β are produced, mostly ranging from 38 to 43 amino
64 acids [2]. After its release as a monomer, A β , particularly in its longer forms (A β ₄₂, A β ₄₃), is very prone
65 to self-assembly. In AD, this ultimately leads to the formation of amyloid fibrils, aggregating into senile
66 plaques in the brain. Many studies suggest that the toxicity of A β does not lie in these insoluble fibrils
67 but rather in its soluble oligomeric intermediates, as a result of their intrinsically misfolded nature and
68 aggregation propensity that might contribute to trapping vital proteins or cause cell membrane
69 alterations [3, 4]. Further, A β has been reported to have seeding properties. A particular study showed
70 that A β -rich brain extracts are capable of inducing cerebral amyloidosis when inoculated into APP
71 transgenic mice, but not into APP *knockout* mice. However, brain extracts from these previously
72 inoculated APP *knockout* mice, that themselves do not bear amyloidosis, were still capable of inducing
73 amyloidosis when in turn inoculated into APP transgenic mice [5]. This model of secondary transmission
74 reveals the potential of A β to stably persist in the brain and also to retain pathogenic activity by acting
75 as seeds when in the presence of host A β that can be propagated. Hence, it is believed that the stability
76 of A β , and particularly A β oligomers, gives them persistent and aggravating pathological properties for
77 the formation of amyloid deposits [6].

78 A β assembly is thought to rely on a process of nucleated polymerization [7-9], involving a nucleation

79 phase during which unfolded or partially folded A β monomers self-associate to form an oligomeric
80 nucleus. This will give rise to protofibrils through further elongation, and eventually to mature amyloid
81 fibrils. Many A β assemblies have been identified as important intermediates of this pathway converting
82 A β monomers into amyloid fibrils. The so-called on-pathway assemblies range from low-molecular-
83 weight oligomers including dimers, trimers, tetramers and pentamers, to midrange-molecular-weight
84 oligomers including hexamers, nonamers and dodecamers [10-14]. In addition, globular non-fibril
85 forming A β aggregates have also been identified and labelled as off-pathway assemblies [15]. These
86 include annulus and amylospheroid structures as well as dodecameric A β -derived diffusible ligands
87 (ADDLs).

88 Many oligomeric structures seem to play an important role in A β assembly and to have deleterious
89 effects that could explain A β -related toxicity [10, 16-21]. Among these assemblies, A β hexamers
90 currently gain increasing interest. Indeed, they have recently been identified, together with pentamers,
91 as the smallest oligomeric species that A β_{42} forms in solution [22]. Other studies based on mass
92 spectrometry reported these assemblies as the previously mentioned nucleus (also termed
93 "paranucleus") that can serve as a building block for the elongation step of A β assembly [15, 23, 24].
94 This idea is supported by the fact that at least four other A β species are comprised of multiples of this
95 basic hexameric unit [15, 17, 25, 26].

96 Altogether, these findings prompt a more in-depth understanding of the role of the different A β
97 assemblies in fibrillation and deposition, but also in unravelling their intrinsic toxic properties,
98 particularly in the case of the potentially nucleating hexamers discussed above. In this context, we
99 previously reported the presence of ~28kDa oligomeric assemblies in cell lysates and culture media of
100 CHO (Chinese hamster ovary) cells expressing amyloidogenic fragments of human APP [27]. The data
101 reported herein demonstrate that these assemblies likely correspond to A β_{42} hexamers. Importantly,
102 we identified hexameric A β assemblies across several cell lines, as well as in a well-established mouse
103 model of amyloid pathology (5xFAD [28]) and in the cerebrospinal fluid (CSF) of cognitively impaired
104 patients. We isolated hexameric A β from CHO cells and assessed its cytotoxic potential *in vitro* on

105 primary neurons, as well as its potential to drive amyloid deposition *in vivo* following intracerebral
106 stereotaxic injection. Very recent biochemical studies from our group revealed the ability of cell-derived
107 hexameric A β to enhance the aggregation of synthetic A β monomers [29]. To address the pathological
108 properties of hexameric A β in the brain, we used two mouse models: WT mice (C57BL/6) to measure
109 the ability of the hexamers to form amyloid deposits in a non-pathological context, and transgenic
110 5xFAD mice to study their effect on the spreading of amyloid pathology. We found that cell-derived
111 hexameric A β is a stable assembly that does not induce toxic effects by itself, but nucleates A β assembly
112 in a pathological context where human A β accumulates (5xFAD).

113 As mentioned above, the production of A β relies on the cleavage of the β CTF membrane fragment of
114 APP by the γ -secretase complex [1]. The catalytic core of γ -secretase is formed by either presenilin 1
115 (PS1) or presenilin 2 (PS2) [30, 31]. A recent cryo-EM study revealed a similar structure and
116 conformational state between both presenilins (PSs), suggesting similar catalytic activities, but
117 differences in their membrane-anchoring motifs [32]. We and others have repeatedly shown a major
118 contribution of PS1 to A β production intended as substrate cleavage [33-37], rendering the exact role
119 of PS2 in the amyloid pathology less understood, and in turn PS2 less attractive as a therapeutic target.

120 However, more recent findings revealed the enrichment of PS2 γ -secretases in endosomal
121 compartments, which might explain its lesser overall contribution to substrate cleavage simply by
122 secondary encounters; substrates such as APP and its CTFs are indeed likely to be efficiently processed
123 in cells first along trafficking through the secretory pathway and at the plasma membrane before
124 reaching the endosomal pathway [38]. Further, PS2-dependent γ -secretases were shown to produce
125 the intracellular pool of A β , in which longer forms prone to aggregation are accumulating [39].
126 Interestingly, extracellular vesicles (EVs), which are enclosed lipid membrane entities stemmed from
127 cells circulating in biological fluids, are increasingly referred to as mediators of AD pathogenesis [40].
128 EVs could thus be involved in the extracellular release of specific A β assemblies and resulting seeding.
129 Together, these observations indicate that understanding the respective contribution of PS1- and PS2-
130 dependent γ -secretases and related cellular pathways in the production of A β species that underpin the

131 pathological processes at stake is of critical importance. In this context, we developed a model of stable
132 human neuroblastoma-derived SH-SY5Y cell lines *knockdown* for each of the two PSs using the CRISPR-
133 Cas9 homology-directed repair (HDR) technique [41, 42]. We assessed the profile of A β production in
134 these cells in an effort to understand the contribution of PS1- and PS2-dependent γ -secretases in the
135 formation of the A β hexamers discussed above. Our findings reveal a potentially important role of PS2
136 in the extracellular release of hexameric A β inside EVs, in agreement with the recent findings re-
137 appraising the role of PS2 in the amyloid pathology.

138

139 **Materials and methods**

140

141 **Chemicals and reagents**

142 Reagents used for Western blotting – Pierce BCA protein assay kit, SeeBlueTM Plus2 pre-stained
143 standard, NuPAGETM 4-12% Bis-Tris protein gels, NuPAGETM MES SDS Running Buffer (20X), NuPAGETM
144 Transfer Buffer (20X), nitrocellulose 0.1 μ m membranes and GE Healthcare ECL AmershamTM HyperfilmTM
145 – were purchased from ThermoFisher (Waltham, MA, USA). Western Lightning[®] Plus-ECL was from
146 Perkin Elmer (Waltham, MA, USA). CompleteTM protease inhibitor cocktail was from Roche (Basel,
147 Switzerland). Primary antibodies targeting human A β ; anti-A β clone W0-2 (MABN10), anti-A β ₄₀ and anti-
148 A β ₄₂ were from Merck (Kenilworth, NJ, USA); anti-A β clone 6E10 (803001) was from BioLegend (San
149 Diego, CA, USA). Primary antibody directed against the C-terminal part of APP (APP-C-ter) (A8717) was
150 purchased from Sigma-Aldrich (St-Louis, MO, USA). Anti-PS1 (D39D1) and anti-PS2 (D30G3) antibodies
151 were from Cell Signalling (Danvers, MA, USA). Anti- α -tubulin primary antibody as well as secondary
152 antibodies coupled to horseradish peroxidase (HRP) were obtained from Sigma-Aldrich. AlexaFluor-
153 labelled secondary antibodies were obtained from ThermoFisher. Thioflavin T (ThT) amyloid stain was
154 obtained from Sigma-Aldrich. Mowiol[®] 4-88 used for mounting medium was purchased from Merck
155 (Kenilworth, NJ, USA). Cell culture reagents – Ham's-F12, DMEM-F12, DMEM and Neurobasal[®] growth
156 media, penicillin-streptomycin (p-s) cocktail, Lipo2000[®] transfection reagent, Opti-MEM[®], HBSS,

157 glutamine and B-27® – were all purchased from ThermoFisher. Fetal bovine serum (FBS) was from VWR
158 (Radnor, PA, USA). GELFrEE™ 8100 12% Tris Acetate cartridge kits were purchased from Expedeon
159 (Heidelberg, Germany). ReadyProbes® cell viability assay kit was from ThermoFisher. Reagents used for
160 plate-based immuno-Europium assay were ELISA strip plate (F8, high-binding 771261) from Greiner Bio-
161 One, reagent diluent-2 10x (DY995) from R&D systems. Anti-CD9 primary antibody (MAB1880) was from
162 R&D systems, anti-CD81 (TAPA-1, 349502) from Biolegend, anti-CD63 (MCA2142) from Serotec Bio-Rad
163 and anti-GM130 (610823) from BD transduction. The anti-mouse IgG-biotin (NEF8232001EA),
164 Europium-labeled streptavidin (1244-360), Delfia wash concentrate 25x (4010-0010), Delfia assay buffer
165 (1244-111) and Delfia enhancement solution (1244-105) were all from Perkin-Elmer.

166

167 **DNA constructs**

168 The pSVK3-empty (EP), -C42 and -C99 vectors used for expression in rodent cell lines (CHO, MEF) were
169 described previously [27, 43]. C42 and C99 are composed of the human APP signal peptide fused to the
170 A β ₄₂ and β CTF sequences, respectively. For expression in human cell lines (HEK293, SH-SY5Y), the C99
171 construct in a pCDNA3.1 plasmid was kindly provided by R. Pardossi-Piquard (University of Sophia
172 Antipolis, Nice, France). The pCDNA3.1 plasmid bearing the C99-GVP construct used in reporter gene
173 assays was a gift from H. Karlström (Karolinska Institute, Stockholm, Sweden). The associated Gal4RE-
174 *Firefly* luciferase reporter gene (pG5E1B-luc) and *Renilla* luciferase reporter vector (pRL-TK) have been
175 described previously [37, 44].

176

177 **Cell lines culture and transfection**

178 Chinese hamster ovary (CHO) cell lines were grown in Ham's F12 medium. Human neuroblastoma SH-
179 SY5Y and mouse embryonic fibroblasts (MEF) cell lines were grown in DMEM-F12. Human embryonic
180 kidney (HEK293) cell lines were grown in DMEM. All media were supplemented with 10% of heat-
181 inactivated FBS and 1% of p-s solution (100units/ml final). All cell cultures were maintained at 37°C in a
182 humidified atmosphere and 5% CO₂.

183 For transient transfection, cells were seeded 24h before transfection at a density of 40.000cells/cm².
184 Transfection mixes containing desired DNA and Lipo2000® were prepared in Opti-MEM® and pre-
185 incubated for 15min at room temperature (rt) to allow for liposomal complex formation. One day after
186 transfection, medium was changed to fresh FBS-free culture medium and incubated for another 24h.
187 Cell lysates and culture media were harvested 48h after transfection for analysis.

188

189 **Western blotting**

190 Cells were rinsed and scraped in phosphate-buffered saline (PBS) and centrifuged for 5min at 7.000 x g.
191 Pellets were sonicated in lysis buffer (125mM Tris pH 6.8, 20% glycerol, 4% SDS) with Complete™
192 protease inhibitor cocktail. Protein concentration was determined using the BCA protein assay kit
193 (Pierce, Rockford, IL, USA). Fifteen (for detection with anti-PS1 or PS2 primary antibodies) or forty (for
194 detection with anti-Aβ or APP-C-ter primary antibodies) micrograms of protein were heated for 10min
195 at 70°C in loading buffer (lysis buffer containing 50mM DTT and NuPAGE™ LDS sample buffer
196 (ThermoFisher)). Samples were loaded and separated by SDS-PAGE electrophoresis on NuPage™ 4-
197 12% Bis-Tris gels with MES SDS Running buffer, using SeeBlue™ Plus2 pre-stained as a protein standard.
198 Proteins were then transferred for 2h at 30V with NuPAGE™ transfer buffer onto 0.1μm nitrocellulose
199 membranes. After blocking (5% non-fat milk in PBS-Tween 0.1%), membranes were incubated overnight
200 at 4°C with the primary antibodies, then washed, and incubated with the secondary antibodies coupled
201 to HRP for 1h prior to ECL detection. Primary antibodies were used as follows: anti-human Aβ clone W0-
202 2 (1:1.500), anti-human Aβ clone 6E10 (1:1.500), anti-APP-C-ter (1:2.000), anti-PS1 (1:1.000), anti-PS2
203 (1:1.000), anti-β-actin (1:3.000) or anti-α-tubulin (1:3.000). Secondary antibodies were used as follows:
204 HRP-coupled anti-mouse IgG (1:10.000) or anti-rabbit IgG (1:10.000).

205

206 **GELFrEE isolation of cell-derived hexameric Aβ**

207 Forty-eight hours after transfection with either pSVK3-EP, -C42 or -C99, the culture media of CHO cells
208 was collected, lyophilized, re-suspended in ultrapure water and pre-cleared with recombinant protein

209 A sepharose (GE Healthcare, Chicago, IL, USA). Immunoprecipitation of A β species from the media was
210 performed with the monoclonal anti-A β clone W0-2 (MABN10) antibody. Samples were separated
211 through a Gel Eluted Liquid Fraction Entrapment Electrophoresis (GELFrEETM) 8100 system to allow the
212 collection of the desired kDa range of proteins directly in liquid fraction. The following method was
213 used; step 1: 60min at 50V, step 2: 6min at 70V, step 3: 13min at 85V and step 4: 38min at 85V. Fractions
214 1, 2 and 3 (Fig1) were collected in the system running buffer (1X buffer; 1% HEPES, 0.01% EDTA, 0.1%
215 SDS and 0.1% Tris) at the end of step 2, 3 and 4 respectively. Samples were aliquoted and kept at -20°C
216 until use.

217

218 **Dot blotting**

219 5 μ l of isolated hexameric A β (150 μ M for isoform characterization or 15 μ M for fractions evaluation prior
220 to intracerebral injection) and 5 μ l of 50 μ M synthetic monomeric A β ₄₀ or A β ₄₂ were spotted onto 0.1 μ m
221 nitrocellulose membranes and allowed to dry. Another 5 μ l of sample were then spotted twice on top
222 and dried. The membranes were boiled twice in PBS for 3min, then blocked with 5% non-fat milk in PBS-
223 Tween 0.1% as for Western blotting. Membranes were then washed and incubated with primary and
224 secondary antibodies prior to ECL detection as described above. Primary antibodies dilutions were used
225 as follows: anti-human A β clone W0-2 (1:1.500), anti-A β ₄₀ (1:1.000), anti-A β ₄₂ (1:1.000). Secondary
226 antibodies were used as described for Western blotting.

227

228 **Animal models**

229 Transgenic 5xFAD mice (Tg6799) harboring human APP and PS1 transgenes were originally obtained
230 from the Jackson Laboratory: B6SJL-Tg(APPSwFLon,PSEN1*M146L*L286V)6799Vas/Mmjjax (34840-
231 JAX). Colonies of 5xFAD and non-transgenic (wild-type, WT) mice were generated from breeding pairs
232 kindly provided by Pr. Jean-Pierre Brion (ULB, Brussels, Belgium). All mice were kept in the original
233 C57BL/6 background strain. Animals were housed with a 12h light/dark cycle and were given *ad*
234 *libitum* access to food and water. All experiments conducted on animals were performed in compliance

235 with protocols approved by the UCLouvain Ethical Committee for Animal Welfare (reference
236 2018/UCL/MD/011).

237

238 **Protein extraction from mouse brain tissues**

239 WT and 5xFAD mice were euthanized by cervical dislocation or using CO₂ and brains were quickly
240 removed. The hippocampus as well as a portion of temporal cortex were immediately dissected on ice.
241 Brain tissues were then homogenized by sonication in ice-cold lysis buffer (150mM NaCl, 20mM Tris,
242 1% NP40, 10% glycerol) with CompleteTM protease inhibitor cocktail until homogenous. Samples were
243 stored at -80°C until use. Protein concentration was determined using the BCA protein assay kit prior to
244 analysis.

245

246 **Cerebrospinal fluid collection**

247 Cerebrospinal fluid (CSF) was collected by lumbar puncture from AD patients and symptomatic controls
248 undergoing diagnostic work-up at the Cliniques Universitaires Saint-Luc (UCL, Brussels, Belgium),
249 following the international guidelines for CSF biomarker research [45]. Collected samples were directly
250 frozen at -80°C until analysis and were always manipulated on ice during Western blotting and ECLIA
251 experiments. Included patients signed an internal regulatory document, stating that residual samples
252 used for diagnostic procedures can be used for retrospective academic studies, without any additional
253 informed consent (ethics committee approval: 2007/10SEP/233). AD patients participated in a specific
254 study referenced UCL-2016-121 (Eudra-CT: 2018-003473-94). In total, CSF samples from eight subjects
255 were retrospectively monitored in this study (see Additional File 2).

256

257 **Electro-chemiluminescence immunoassay (ECLIA) for monomeric A β quantification**

258 A β monomeric peptides were quantified in CSF samples as well as in the culture media of SH-SY5Y cells
259 using the A β multiplex ECLIA assay (Meso Scale Discovery, Gaithersburg, MD, USA) as previously
260 described [46]. A β was quantified according to the manufacturer's instructions with the human A β

261 specific 6E10 multiplex assay. For SH-SY5Y, cells were conditioned in FBS-free medium for 24h and cell
262 medium was collected, lyophilized and re-suspended in ultrapure water.

263

264 **Primary neuronal cultures**

265 Primary cultures of neurons were performed on E17 mouse embryos as described previously [47].
266 Briefly, cortices and hippocampi were isolated by dissection on ice-cold HBSS and meninges were
267 removed. Tissues were then dissociated by pipetting up and down 15 times with a glass pipette in HBSS-
268 5mM glucose medium. Dissociation was repeated 10 times with a flame-narrowed glass pipette and
269 allowed to sediment for 5min. Supernatant containing isolated neurons was then settled on 4ml FBS
270 and centrifuged at 1.000 x g for 10min. The pellet was resuspended in Neurobasal® medium enriched
271 with 1mM L-glutamine and 2% v/v B-27® supplement medium. Cells were plated at a density of
272 100.000cells/cm² in 12w plates pre-coated with poly-L-lysine (Sigma-Aldrich). Cultures were maintained
273 at 37°C and 5% CO₂ in a humidified atmosphere. Half of the medium was renewed every 2 days and
274 neurons were cultured for 8 days *in vitro* (DIV8) before being used for cell viability experiments.

275

276 **Cell viability assay (ReadyProbes®)**

277 To assess the toxicity of cell-derived hexameric Aβ *in vitro*, primary neuronal cultures performed from
278 WT and 5xFAD mouse embryos were incubated (at DIV7) with 1 or 5µM of either cell-derived hexameric
279 Aβ (C42 fraction) or control (EP fraction). At DIV8, 2drops/ml of each reagent of the ReadyProbes® assay
280 were added to cells: NucBlue® Live reagent for the staining of all nuclei and NucGreen® Dead reagent
281 for the nuclei of cells with compromised plasma membrane integrity. Staining were detected with
282 standards DAPI and FITC/GFP filters respectively, at an EVOS® FL Auto fluorescence microscope.
283 Quantification was performed by counting dead vs total cells on ImageJ.

284

285 **Intracerebral stereotaxic surgery**

286 Stereotaxic injections of isolated A β hexamers were performed in WT and 5xFAD mice to analyze the
287 effect of cell-derived β -amyloid hexamers on the development of A β pathology *in vivo*. 2-month-old
288 mice were deeply anesthetized by intra-peritoneal injection of a mixture of ketamine (Ketamin $^{\circ}$)
289 (10mg/kg) and medetomidine (Domitor $^{\circ}$) (0.5mg/kg) and placed in a stereotaxic apparatus (Kopf $^{\circ}$
290 Instruments). 2 μ l of 15 μ M cell-derived A β hexamers (C42 fraction) or control (EP fraction) were injected
291 using a 10 μ l Hamilton syringe and an automated pump (RWD $^{\circ}$) in the hippocampus (A/P -1.94; L +2.17;
292 D/V -1.96; mm relative to bregma). 30 days after stereotaxic injection, mice were transcardially perfused
293 with PBS and brains were post-fixed in 4% paraformaldehyde for 24h at 4 $^{\circ}$ C.

294

295 **Immunohistofluorescence**

296 For immunohistological analysis, free-floating coronal sections (50 μ m) were generated from agarose-
297 embedded fixed brains using a vibrating HM650V microtome and were preserved in PBS-sodium azide
298 0.02% at 4 $^{\circ}$ C. Prior to immunomarking, sections were washed in PBS and subsequently blocked and
299 permeabilized with PBS-BSA 3%-TritonX100 0.5% for 1h at rt. Sections were then incubated with anti-
300 human A β clone W0-2 (MABN10, 1:100) overnight at 4 $^{\circ}$ C as a marker for A β . After three PBS washes
301 and incubation with AlexaFluor647-coupled secondary antibody (1:500) for 1h at rt, slices were finally
302 washed three times with PBS and mounted on SuperFrost $^{\circ}$ slides. Slides were then incubated with ThT
303 (0.1mg/ml in ethanol 50%) for 15min at rt as a marker for fibrillar deposits. After three washes with
304 ethanol 80% and a final wash with ultrapure water, coverslips were mounted with Mowiol $^{\circ}$ 4-88-
305 glycerol. W0-2 and ThT staining were detected with FITC/Cy5 and GFP respectively at an EVOS $^{\circ}$ FL Auto
306 fluorescence microscope. Counting of double-positive dots was performed on ImageJ.

307

308 **Generation of SH-SY5Y PS1 and PS2 deficient cells by CRISPR-Cas9**

309 To generate PS1 and PS2 deficient cells, kits each containing 2 guide RNA (gRNA) vectors that target
310 human *PSEN1* or *PSEN2* genes, a GFP-puromycin or RFP-blasticidin donor vector respectively, and a

311 scramble control were obtained from Origene (CAT#: KN216443 and KN202921RB). Target sequences
312 were flanked with specific homology sequences for the stable integration of donor sequences, based
313 on the homology-directed repair technique [41, 42]. SH-SY5Y cells were transfected using Lipo2000®
314 according to the manufacturer's instructions (cf. Cell culture and transfection section). Two days after
315 transfection, cells were FACS-sorted for GFP+ (PS1) or RFP+ (PS2) cells and seeded in 24w plates.
316 Following a few days for cell-growth, a second selection was performed using puromycin (PS1) or
317 blasticidin (PS2) at a concentration of 15µg/ml or 30µg/ml, respectively. Cells were allowed to grow
318 again and split twice before sub-cloning in 96wells. Clonal populations were then assessed for PSs
319 protein expression by Western blotting. PS1 and PS2 clonal populations were selected for following
320 experiments on account of the highest gene-extinction efficiency. Puromycin (2.5µg/ml) and blasticidin
321 (7.5µg/ml) were used for the maintenance of PS1 and PS2 deficient cells, respectively.

322

323 **Dual luciferase assay**

324 SH-SY5Y cells were co-transfected with Lipo2000® (cf. Cell culture and transfection section) in a 1:1:1
325 ratio with pG5E1B-luc, pRL-TK and either a pCDNA3.1-empty plasmid (EP) or the pCDNA3.1-C99-GVP,
326 bearing a tagged C99 to quantify the release of AICD. The system setup was previously described [37,
327 48]. Forty-eight hours after transfection, cells were rinsed with PBS and incubated with the reporter
328 lysis buffer (Promega, Madison, WI, USA) for 15min at rt. *Firefly* and *Renilla* luciferase activities were
329 measured using the Dual-Glo® Luciferase Assay System (Promega, Madison, WI, USA) on a Sirius single
330 tube luminometer (Berthold, Bad Wildbad, Germany). Luciferase activity corrected for transfection
331 efficiencies was calculated as the *Firefly*/*Renilla* ratio.

332

333 **Extracellular vesicles isolation**

334 Ultracentrifugation was performed on media from SH-SY5Y scramble and *knockdown* cells for the
335 isolation of vesicular entities, as previously described [49]. Briefly, culture medium was collected and
336 underwent several centrifugation steps (all at 4°C); 300 x g for 10min for the elimination of living cells,

337 1.000 x g for 10min to discard dead cells, 10.000 x g for 30min for the removal of cellular debris, and
338 finally 100.000 x g for 1h, to collect extracellular vesicles (EVs) as a pellet and soluble proteins as
339 supernatant. Soluble proteins were precipitated by incubation with 10% v:v trichloroacetic acid (TCA)
340 for 30min on ice. Both EVs and soluble proteins fractions were resuspended in 500 μ l of PBS for
341 nanoparticle tracking analysis (NTA) and plate-based immuno-Europium-assay. For Western blotting,
342 both fractions were sonicated in lysis buffer (125mM Tris pH 6.8, 20% glycerol, 4% SDS) with CompleteTM
343 protease inhibitor cocktail. Protein concentration was determined using the BCA protein assay kit.

344

345 **Nanoparticle tracking analysis (NTA)**

346 EVs were counted in each fraction by the Zetaview (ParticleMetrix,GmbH), which captures Brownian
347 motion through a laser scattering microscope combined with a video camera to obtain size distribution
348 (50-1000nm) and concentration. Samples were diluted 1:50 in PBS to reach 50-200 particles/frame,
349 corresponding to \sim 2.107-1.108 particles/ml. Sensitivity was set to 65 and camera shutter to 100 in order
350 to detect less than 3 particles/frame when BPS alone was injected, to assess background signal.
351 Measurements were averaged from particles counted in 11 different positions for 2 repeated cycles
352 with camera at medium resolution mode.

353

354 **Plate-based Europium-immunoassay**

355 50 μ l of EVs and soluble fractions were bound to protein-binding ELISA plates. After overnight incubation
356 at 4°C, the rest of the experiment was performed at rt by shaking on a tilting shaker at 30rpm. The plate
357 was washed with Delfia buffer (diluted to 1x in PBS; Delfia-W), then blocked with reagent diluent-2
358 (diluted to 1% BSA in PBS) for 90min. The bound material was labelled with primary antibodies against
359 CD9, CD81, CD63 and GM130 (1 μ g/ml in reagent diluent-2 diluted to 0.1% BSA in PBS) for 90min. After
360 three Delfia-W washes, goat anti-mouse biotinylated antibody (1:2.500 in reagent diluent-2 diluted to
361 0.1% BSA in PBS) was added for 60min. After three Delfia-W washes, Europium-conjugated streptavidin
362 (diluted to 1:1.000 in Delfia assay buffer assay) was added for 45min. After six final Delfia-W washes,

363 Delfia enhancement solution was incubated for 15min before measurement using time-resolved
364 fluorometry with exc/em 340/615nm, flash energy/light exposure high/medium and integration
365 lag/counting time 400/400 μ s (Victor X4 multilabel plate reader, PerkinElmer).

366

367 **Statistical analyses**

368 The number of experiments (N) and the number of samples per condition in each experiment (n) are
369 indicated in figure legends. All statistical analyses were performed using the GraphPad Prism 8 software
370 (GraphPad Software, La Jolla, CA, USA). Gaussian distribution was assessed using the Shapiro-Wilk test.
371 A parametric test was applied if the data followed normal distribution. Otherwise, non-parametric tests
372 were used. When tested groups were each expressed as a fold-change of their corresponding control,
373 the value of the control was set as the hypothetical value for the use of parametric one-sample *t* test or
374 non-parametric one-sample Wilcoxon single-ranked test. When a correlation between two variables
375 was assessed, Pearson's R correlation coefficient was calculated. When two groups were compared,
376 parametric *t* test with Welch's correction or non-parametric Mann-Whitney test were used. When more
377 than two groups were compared, parametric ANOVA with indicated *post hoc* tests or non-parametric
378 Kruskal-Wallis were used. Significance is indicated as: ns=non-significant, *= $p<0.05$, **= $p<0.01$,
379 ***= $p<0.001$. Actual p-values of each test are indicated in the corresponding figure legend.

380

381 **Results**

382

383 **Identification of cell-derived hexameric A β ₄₂ in CHO cells expressing human APP metabolites**

384 Considering the emerging body of evidence pointing to the pathological properties of oligomeric A β
385 assemblies, we first assessed the profile of A β production in a widely used cell model; the CHO (Chinese
386 hamster ovary) cell line. We transiently transfected these cells with vectors expressing the human
387 sequences of either A β ₄₂ or β CTF, each fused to the signal peptide of the full-length APP protein (Fig1A)
388 to ensure a proper cellular trafficking of the expressed fragments. These constructs will be referred to

389 as C42 and C99 respectively. The cell-derived A β assemblies were analyzed by Western blotting with
390 several monoclonal antibodies targeting the human A β sequence (W0-2 and 6E10 clones) or the APP C-
391 terminal region (APP-C-ter). Strikingly, we reproducibly detected a band at ~28kDa in both C42 and C99
392 conditions with A β -specific antibodies (W0-2 clone in Fig1B and 6E10 clone in Additional File 1). This
393 assembly is not recognized by the APP-C-ter specific antibody (Fig1B), supporting the idea that it is
394 formed by assembly of the A β fragment, and likely corresponds to an A β ₄₂ hexamer. Importantly, we
395 noticed a key difference between C42 and C99 expressing cells; when C42 is expressed, only the
396 hexameric A β assembly is detected in both cell lysates and media, while in the C99 condition, which
397 requires processing by γ -secretase to release A β , we detect several intermediate A β assemblies;
398 monomers, dimers, trimers and hexamers (Fig1B). This suggests that the A β , whether directly expressed
399 or released by processing in the cellular context, will either readily or progressively assemble into the
400 identified hexameric assembly. In addition, as the presence of these low-molecular-weight assemblies
401 is only observed in the media of C99 expressing cells and not inside the cells, the ranges of A β assemblies
402 may be produced differentially or aggregate with different kinetics depending on the extra- or
403 intracellular context in which they accumulate.

404 For a further characterization of the A β assembly identified in Fig1B, we used a Gel Elution Liquid
405 Fraction Entrapment Electrophoresis technique (GELFrEE™ 8100) to isolate the cell-derived A β
406 hexamers from W0-2-immunoprecipitated media of CHO cells expressing C42 or C99 (Fig1C). Dot
407 blotting with primary antibodies directed against the free C-terminal end of the two major A β isoforms
408 (A β ₄₀, A β ₄₂) was performed on the isolated ~28kDa fraction and identified it as an A β ₄₂ assembly (Fig1D).
409 Synthetic preparations of monomeric A β ₄₀ and A β ₄₂ were used as positive controls. Altogether, these
410 results converge to the identification of the assembly of interest as cell-derived hexameric A β ₄₂.

411

412 **Formation of hexameric A β across a wide range of models**

413 As A β self-assembly strongly depends on the context of its release, we sought to determine whether
414 the assembly of interest was produced particularly by CHO cells or commonly across other models.

415 Using the same procedure as described above, we assessed the A β profile in transiently transfected
416 mouse embryonic fibroblasts (MEF) (Fig2A) as well as two human immortalized models – human
417 embryonic kidney (HEK293) cells (Fig2B) and neuroblastoma-derived SH-SY5Y cells (Fig2C). Importantly,
418 the ~28kDa assembly was consistently detected with the WO-2 A β specific antibody and not by the APP-
419 C-ter targeted antibody in all the tested models (Fig2). This indicates that A β hexamers can readily form
420 in a cellular context and are not restricted to one cell-type, fostering its interest as a primary nucleus
421 for A β toxicity and amyloid pathology.

422 We next investigated the presence of this A β assembly in mice bearing familial AD (FAD) mutations. We
423 readily detected the ~28kDa A β assembly (Fig3A) in brain extracts of 5xFAD mice [28]. Interestingly, the
424 intensity of hexameric A β increases with age. More importantly, the detection of the hexameric
425 assembly precedes that of fibrils, which are recognized as the major indicator of the development of
426 amyloid deposits in the 5xFAD model [28, 50]. Quantitative analysis of hexamers and fibrils relative to
427 human APP expressed in mice brains confirms the appearance of hexameric A β as an early event (Fig3B).
428 To note, the assembly of interest accumulates first in the hippocampus of the mice, as early as 2-month-
429 old, while its increase in cortical regions peaks at 3 to 6-month of age. This is in line with the staging of
430 amyloid pathology observed in AD and again suggests hexameric A β might serve as an early indicator of
431 pathology development, and possibly as a nucleus for further amyloid deposition.

432 Finally, cerebrospinal fluid (CSF) samples from cognitively affected patients (diagnosed with non-AD
433 dementia, pre-clinical AD or symptomatic AD) were monitored with the same Western blotting
434 approach. Only AD-related patients revealed the presence of ~28kDa assemblies, undeniably placing
435 the assembly of interest in the pathological context of AD (Fig3C, left panel). More detailed information
436 on neurological examination and PET-analyses conducted on the patients are displayed in Additional
437 File 2. The same CSF samples were used for a quantitative analysis of monomeric A β isoforms by ECLIA
438 immunoassay and revealed an overall reduction in the A β ₄₂/A β ₄₀ ratio in AD patients (Fig3C, right panel).
439 This reduction correlated with the severity of AD symptoms exerted by the patients (see raw values in
440 Table1), concordantly with previous reports [51]. On the contrary, relative quantification of hexameric

441 A β levels detected by Western blotting, using soluble APP as an intrasubject control, revealed an
442 increase in hexameric levels with the progression of AD (Table1). This suggests a correlation between
443 the reduced proportion of monomeric A β_{42} and its aggregation in higher assemblies, as previously
444 suggested [52, 53], but here particularly with the hexameric assembly. More precisely, statistical
445 analysis revealed that 48.8% of the A β_{42} /A β_{40} ratio variance can be explained by the increase in
446 hexameric A β formation.

447 *Table1. Inverse correlation between monomeric and hexameric A β in human CSF samples.*

Inclusion n°	Classification	A β_{42} /A β_{40}	Hexameric A β /sAPP
1258	Non-AD	0.069	0.079
1506		0.065	0.055
1523	Pre-clinical AD	0.052	0.075
1268		0.080	0.084
1556	Symptomatic AD	0.052	0.092
1272		0.033	0.140
1329		0.039	0.224
1633		0.032	0.143

448 CSF samples from eight subjects were monitored in this study: patients n°1258 and 1506 did not exert
449 any AD-related features. Patients n°1523, 1268 and 1556 were diagnosed with pre-clinical AD and
450 patients n°1272, 1329 and 1633 with symptomatic AD. Ratios of A β_{42} /A β_{40} and of hexameric A β /soluble
451 APP (sAPP) were obtained from ECLIA and Western blot quantifications respectively (see Fig3). Pearson's
452 R correlation test: R=-0.70 (R-squared=0,49), p=0.05.

453

454 **Cell-derived hexameric A β causes cell viability impairment only in primary neurons expressing amyloid
455 proteins *in vitro***

456 Following the detection of hexameric A β in a well-described amyloid mouse model and in the CSF of
457 cognitively impaired patients, identifying it as an important factor in the development of amyloid
458 pathology, we sought to assess whether isolated cell-derived hexameric A β would exert any
459 neurotoxicity. For this, we cultured primary neurons from wild-type (WT) and transgenic (5xFAD)
460 embryos and treated them after 7 days of differentiation *in vitro* (DIV) with hexameric A β . A β hexamers

461 were obtained by W0-2-immunoprecipitation and GELFrEE separation of C42-expressing CHO cells
462 media as described above (Fig1). The corresponding GELFrEE fraction of cells expressing the empty
463 plasmid (EP) were used as a control. Two final concentrations were tested; 1 μ M and 5 μ M. 24h after
464 treatment, cell viability was assessed using a ReadyProbes® assay and a percentage of dead cells out of
465 the total cells was quantified (Fig4A). Results show an absence of any significant cytotoxic effect at
466 tested concentrations on primary neurons cultured from WT mice (Fig4B), even though both are above
467 the reported neurotoxic concentrations from synthetic preparations of oligomeric A β [6, 54]. This
468 suggests that the identified assembly is not cytotoxic by itself, at least in these experimental conditions.
469 However, primary neurons cultured from 5xFAD mice, which can serve as an amyloid model *in vitro* [55-
470 57], displayed increased cell death when exposed to 5 μ M of cell-derived hexameric A β . Importantly,
471 this indicates that A β hexamers may have the ability to cause toxic effects only when there is pre-
472 existing A β in the neuronal environment. This therefore implies that such a cytotoxic ability requires the
473 intermediate seeding of other A β present.

474

475 **Cell-derived hexameric A β aggravates *in vivo* amyloid deposition in a transgenic mouse model**

476 To further assess its potential to drive amyloid formation, we performed hippocampal stereotaxic
477 injections of cell-derived hexameric A β in two mouse models: (i) WT mice (C57BL/6) to assess the
478 potential of A β hexamers to form amyloid deposits in a previously amyloid-free context, (ii) mice
479 developing amyloid pathology (5xFAD) to mimic a situation where the hexamers are incubated with pre-
480 existing A β to serve as seeds and thus study whether they have a nucleating potential *in vivo*, driving
481 the assembly and deposition of A β produced in the brain. Experimental workflow is represented in
482 Fig5A. As for *in vitro* toxicity assays, A β hexamers were obtained by W0-2-immunoprecipitation and
483 GELFrEE separation of C42-expressing CHO cells media and the corresponding fraction of EP-expressing
484 CHO cells media was used as a control. The fraction of cell-derived hexameric A β was diluted from
485 150 μ M to 15 μ M prior to intracerebral injection. The control fraction was diluted in a similar manner.
486 Specific detection of diluted cell-derived hexameric A β was confirmed by dot blotting with the W0-2

487 antibody (Fig5A, left panel). 2-month-old WT or 5xFAD mice were injected in the hippocampus of the
488 left and right hemisphere with 2 μ l of EP (control) and C42 (cell-derived hexameric A β) diluted fractions,
489 respectively. To evaluate A β deposition, mice were sacrificed 30 days after stereotaxic injection and
490 brains were fixed. Coronal sections were co-stained with the human specific W0-2 antibody for A β and
491 the ThT dye for fibrillar aggregates. Quantitative analysis of A β deposition was performed by counting
492 double-positive dots (as indicated in Fig5A). The results showed that cell-derived hexameric A β does
493 not have the ability to form fibrillar deposits by itself in a WT brain (Fig5B), but is capable of enhancing
494 the deposition of A β present in the 5xFAD brain (Fig5C). In transgenic mice, the overall deposition of A β
495 in the hemisphere injected with cell-derived hexameric A β showed a significant 1.47-fold increase when
496 compared to the control-injected hemisphere (average (\pm SEM) of 32.39 (\pm 3.49) and 47.50 (\pm 4.74)
497 deposits per field in control- and hexamer-injected hemispheres, respectively). Deposits were
498 investigated in the two regions mainly affected by amyloid pathology in AD: the hippocampus and the
499 cortical areas (Fig5C). As expected, the highest increase in A β deposition was observed in the
500 hippocampal region, where stereotaxic injections were performed (2.90-fold increase). However, levels
501 of A β deposits were also significantly increased by a 1.74-fold in the cortex. This suggests that the
502 injected cell-derived hexameric A β is able to propagate from the hippocampal formation to associated
503 cortical regions to promote amyloidosis.

504

505 **Insight into the cellular pathways and contribution of presenilins to the formation of cell-derived**
506 **hexameric A β**

507 Together, our results support that the identified cell-derived hexameric A β assembly has nucleating and
508 seeding properties in the amyloid pathology. We aimed at understanding the cellular context in which
509 this specific assembly is formed, and more precisely the contribution of PS1- and PS2-dependent γ -
510 secretases to the formation of pathological A β assemblies. Previous studies demonstrated that PS1 and
511 PS2 have differential substrate specificities [32, 37] and that several factors, including their specific

512 subcellular localization [39], can orientate their amyloidogenic processing activity to the production of
513 more or less aggregation-prone A β isoforms.

514 Hence, we investigated the formation of the assembly of interest in C99 expressing cells lacking PS1 or
515 PS2. In order to use a homogenous system to evaluate processing of the human C99 substrate by human
516 γ -secretases, we developed stable PS1 and PS2 *knockdown* (KD) neuron-derived cell lines (SH-SY5Y
517 cells). SH-SY5Y readily produced the hexameric A β assembly in our conditions (Fig2C). Cells were
518 transfected with a CRISPR-Cas9 expression system targeting either *PSEN1* or *PSEN2* genes, and selected
519 using fluorescent (FACS) and antibiotic resistance double-selections. Scrambled (S) target sequences for
520 both the *PSEN1* and *PSEN2* genes were used for the development of control cell lines. After sub-cloning,
521 the expression of both PSs was verified by Western blotting (Fig6A) which showed a 44.7% and 63.2%
522 reduction of PS1 and PS2 protein levels respectively. We first assessed the ability of the KD cells to
523 perform the initial cleavage of the C99 substrate at the ϵ -site, releasing APP intracellular domain (AICD).
524 The AICD release from a tagged C99-GVP substrate was measured by a Gal4 reporter gene assay, as
525 described previously [37, 48]. Results revealed an efficient cleavage of the construct in both the PS1-KD
526 and PS2-KD cells, when compared to PS1-S and PS2-S respectively, suggesting that neither of the
527 *knockdown* performed here affect the ability to ensure substrate cleavage. We investigated the profile
528 of A β production in these cell lines by Western blotting. Results indicated that the reduction in PS1
529 levels had no significant effect on the profile of A β produced inside or outside of the cell (Fig6B), with
530 no significant decrease in monomeric A β_{40} or A β_{42} measured in culture media. This is quite an
531 unexpected observation, that could be explained by the observation that only 50% of PS1 *knockdown*
532 could be achieved in our model. The remaining PS1-dependent γ -secretase activity could be sufficient
533 to efficiently process APP-derived substrates. However, while the formation of intracellular hexameric
534 A β was similar between PS2-KD and corresponding control cells, detection of intracellular monomeric
535 A β was lost when PS2 expression was reduced. Concomitantly, the extracellular A β assembly profile was
536 altered in PS2-KD cells, with an increase in monomeric form (observed both by Western blotting and
537 ECLIA) and an acute decrease in hexameric A β , suggesting that the extracellular release of hexameric

538 A β is dependent on the presence of PS2 (Fig6C). This would illustrate that the absence of PS2 favors the
539 accumulation of monomeric extracellular A β , but leads to decreased intracellular A β forms and
540 extracellular aggregates. In other words, PS2-dependent γ -secretases could generate aggregation-
541 prone intracellular A β , that is eventually released as an aggregate in the extracellular space. To note,
542 PS2 [32, 39], as well as APP and intermediate fragments of its metabolism [58, 59], were previously
543 found in endolysosomal compartments and extracellular vesicles (EVs). We examined whether
544 hexameric A β assemblies found outside the cells were disposed of through EVs release, stemming from
545 intracellular vesicular compartments. To discriminate whether A β species present in the media were
546 compartmentalized in EVs, we performed a specific ultracentrifugation procedure to separate EVs from
547 soluble proteins in the media of PS1-S, PS1-KD, PS2-S and PS2-KD cells. The efficiency of the separation
548 was confirmed by the Europium-immunoassay with, in the EVs, significantly increased levels of
549 inclusions markers CD9, CD63 and CD81 and lower content of the exclusion marker GM130 (Fig7A, left
550 panel). The specific enrichment of inclusion markers due to higher content in proteins was ruled out
551 since whole-protein assay showed larger protein amounts in soluble than EVs fractions (Fig7A, right
552 panel). Finally, EVs size distribution was similar between all conditions but the number of EVs was higher
553 in PS1-KD and PS2-KD as compared to PS1-S and PS2-S, although not significant except for PS2-S vs PS2-
554 KD (Fig7B). Importantly, extracellular monomeric A β was found exclusively in the soluble proteins
555 fraction while hexameric A β was confined exclusively in vesicles (Fig7C), as was very recently reported
556 with A β oligomeric species [49]. C99 was decreased and hexameric A β assembly almost disappeared in
557 PS2-KD EVs, indicating that PS2 plays a critical role in the extracellular release of this specific A β
558 assembly that displays seeding properties.

559

560 Discussion

561

562 The identification of fibrillar A β as the main component of amyloid plaques present in AD has led to the
563 extensive investigation of the A β self-assembly process and, as a result, to the identification of many

564 intermediate oligomeric assemblies of A β . Today, it is widely agreed that such non-fibrillar soluble
565 assemblies exert a widespread neurotoxic effect and should be the main target of therapeutic
566 prevention or intervention. Among A β oligomers, hexameric A β has repeatedly been identified as a key
567 assembly *in vitro* [15, 22, 60, 61]. Our study shows the identification of a specific ~28kDa assembly in a
568 wide range of models. Using CHO cells, we were able to confirm the nature of this assembly as
569 hexameric A β_{42} . As mentioned previously, many studies, most of which were performed on synthetic
570 preparations of A β , have shed light on the importance of hexameric A β as a crucial nucleating step in
571 the process of A β self-assembly [15, 23, 24, 62]. However, such studies placing hexameric A β at the core
572 of amyloid pathology have, to the best of our knowledge, not been able to characterize the production
573 of A β hexamers in a cellular environment, or to assess its toxic potential and relevance to AD
574 pathogenesis.

575 Here, we report for the first time the identification of hexameric A β assemblies in brain extracts from a
576 well-characterized amyloid mouse model (5xFAD) as well as in the CSF of AD patients. The question of
577 whether this assembly is strictly speaking formed by six A β_{42} monomers associated together would
578 require extensive analytical biochemistry investigation, which are of real interest, but beyond the scope
579 of this study. Nevertheless, the A β assembly we identified and purified by GELFrEE electrophoresis (i)
580 has an apparent molecular weight around 28kDa, (ii) is recognized by WO-2, 6E10 and anti-A β_{42}
581 antibodies but not by an APP-C-ter antibody and (iii) decreases upon PS2 *knockdown*. Together, this
582 clearly indicates that the detected A β assembly contains A β_{42} and has the expected properties of a
583 hexamer.

584 Our observations conclusively place the assembly of interest at the center of amyloid pathogenesis. In
585 the 5xFAD model, the presence of hexameric A β followed a regional pattern of progression that
586 corresponds to the neuropathological staging of human AD pathogenesis described by Braak and Braak
587 [63]. Indeed, the ~28kDa assembly was detected first in the hippocampus, as early as 2-month-old, and
588 further spread to the cortex starting from 3 to 6-month-old. On the contrary, amyloid plaques formation
589 in the 5xFAD mice have previously been reported to appear first in deep layers of the cortex and in the

590 subiculum, and to later spread to the hippocampus as mice aged [28]. As the spreading properties of
591 hexameric A β are likely to depend on the initial site where they are formed, it would be of interest to
592 investigate the aggravation of amyloid pathology upon injection of cell-derived hexameric A β in the
593 cortical areas. The pattern of hexameric A β detection reported here is also of particular importance
594 considering the urgent need to identify early biomarkers in the development of A β pathology. In line
595 with this, the detection of the ~28kDa assembly in CSF extracted from human patients diagnosed with
596 pre-clinical AD and symptomatic AD supports its implication in the onset and development of the
597 pathology. More importantly, its presence as a soluble entity in CSF is a strong argument to consider it
598 as a novel detectable biomarker.

599 Furthermore, the isolation of hexameric A β from our CHO cell model has also allowed the
600 characterization of its detrimental properties. The treatment of primary WT neurons with 1 μ M of cell-
601 derived hexameric A β for 24h did not indicate any cytotoxic effect. These experimental conditions mimic
602 a cellular environment comparable to the early phase of oligomeric A β pathology, as reported in several
603 studies [64-67]. Still, as concentrations of oligomeric A β_{42} have been reported to reach concentrations
604 of up to 3 μ M inside AD-affected neurons [68], we also tested a 5 μ M concentration in our assay. Yet, we
605 did not observe any increase in cell death when comparing neurons treated with cell-derived hexameric
606 A β to control-treated neurons. Interestingly, another study from our group based on ThT assays and
607 Western blotting revealed a very stable behavior of the hexameric assembly when incubated by itself *in*
608 *vitro*, unable to further aggregate [29]. The lack of direct harmful effects on neurons is in line with the
609 fact that (i) the process of A β self-assembly is thought to be vital in mediating cytotoxicity [69, 70], and
610 that (ii) the pathological properties of A β oligomers could rely not only on their synaptotoxic effects but
611 also on their seeding properties, propagating amyloid pathology throughout the brain parenchyma.
612 In line with the observation that cell-derived hexameric A β does not appear cytotoxic by itself, and
613 considering its suggested role as a nucleus for A β self-assembly, we studied whether the harmful
614 potential of A β hexamers could be unraveled when pre-existing A β species are present. Cytotoxic assay
615 on primary neurons derived from transgenic 5xFAD mice was performed. It was previously reported

616 that cultured neurons from AD transgenic animal models can reflect AD phenotypes *in vitro* [55-57]. We
617 observed a significant increase in the proportion of cell death when neurons were treated with 5 μ M of
618 cell-derived hexameric A β . This suggests that this specific assembly can indeed exert a toxic effect in a
619 FAD context, when A β to seed is likely present. To further assess this hypothesis, we performed
620 stereotaxic injections of isolated cell-derived hexameric A β in 5xFAD mouse brains and followed A β
621 deposition, in parallel to WT injected mice. The results obtained in WT mice suggest that the identified
622 assembly is not able to induce A β deposition *in vivo* by itself. This is in agreement with the absence of
623 cytotoxicity on WT primary neurons reported above. To note, A β deposition *in vivo* was assessed in a
624 time-frame of 30 days. One cannot exclude that pathogenic mechanisms might take place upon longer
625 incubation time. In addition, the absence of cytotoxicity or A β deposits formation by cell-derived
626 hexameric A β *per se* does not exclude its ability to cause changes in primary neurons or in the brain
627 function apart from toxicity or amyloid deposition. Indeed, cellular dysfunctions or alterations of
628 neuronal connectivity might be present in our WT models and simply not yet sufficient to cause
629 cytotoxicity or amyloidosis. Additionally, the absence of A β deposits after injection of cell-derived
630 hexameric A β in the brain of WT mice also does not exclude the possibility that the stable seeds injected
631 might not directly cause amyloidosis in the injected animals, but persist in the brain and retain
632 pathogenic activity, as was previously shown with second-transmission studies [5].

633 A major observation in this study is the ability of cell-derived hexameric A β to act as a seeding nucleus
634 and cause both cytotoxicity in primary neurons and aggravation of A β deposition in the brain when
635 using transgenic 5xFAD mice. These mice express five familial AD mutations that together trigger A β ₄₂
636 overproduction and result in a rapid and severe development of amyloid pathology [28, 50]. 5xFAD mice
637 therefore represented a useful model to assess the nucleating hypothesis *in vivo* in a reasonable
638 timeframe. An earlier onset of A β aggregation in this model was previously reported upon single
639 intracerebral injection of brain homogenates containing oligomeric A β , following a prion-like seeding
640 mechanism [71]. A β oligomers have been further suggested as early initiating actors of the seeding
641 process, as their depletion by passive immunization delays A β aggregation and lead to a transient

642 reduction of seed-induced A β deposition [72]. Here, our study has the advantage of focusing on a
643 specific cell-derived A β aggregate, that not only is an oligomeric entity of its own but also suspected,
644 based on *in vitro* studies, to be heavily involved in the processes of nucleation and seeding [15, 29]. We
645 chose to perform intracerebral injections at 2 months of age, when amyloid deposition begins in the
646 5xFAD mice [28]. The significant increase of A β deposition observed in hexamer-injected hemispheres
647 suggests that hexameric A β is indeed able to promote amyloidosis. As very recent *in vitro* studies from
648 our group revealed the ability of the isolated A β hexamers to drive the aggregation of synthetic
649 monomers of A β [29], it is likely that the enhancement in A β aggregation observed here relies on the
650 same process of nucleation, with A β hexamers serving as a template for aggregation. The greater
651 increase of A β deposition in the hippocampus when compared to the cortex of the injected mice
652 supports this hypothesis, as hexameric A β is likely to seed and promote A β aggregation to a higher rate
653 at the site of injection. Still, the significant aggravation of deposition in the cortex also suggests that
654 hexameric A β is able to spread throughout the brain, as rapidly as in 30 days. Together, these
655 observations strongly suggest that hexameric A β accounts for a key factor in the self-assembly process,
656 which is able to promote amyloidosis and might serve, when naturally present, as an early biomarker
657 for A β deposition.

658 Following this important hypothesis, we sought to understand the cellular context in which hexameric
659 A β is produced, in hope of unraveling potential therapeutic targets. In particular, we assessed the
660 respective involvement of both presenilins in its production. Indeed, the distinct subcellular localizations
661 [39] and differential substrate specificities [37] of the two types of PSs regulate the production of
662 different A β pools. Production of A β can differ considerably between cellular compartments [39].
663 Pathological A β formation is related to dysfunction of the endocytic pathway, and PS1 and PS2 are
664 differentially distributed between the secretory compartments and the late endosomes/lysosomes to
665 which PS2 is shuttled [39]. Our results showed the absence of any significant change in the processing
666 of C99 or the release of A β when cells have a nearly 50% reduction of PS1 protein levels. This was rather
667 surprising regarding the previous reports on the preponderant importance of PS1 for γ -secretase

668 substrates cleavage and overall A β production [33-37]. One can imagine, as mentioned above, that the
669 reduction of PS1 protein levels is not significant enough to observe any effect. PS1 *knockdown* might
670 induce compensatory mechanisms and still ensure its primary function even when its protein levels are
671 reduced by half. In any case, results reported here bring interesting information regarding the
672 production of hexameric A β at the cellular level. Indeed, in the PS2 *knockdown* cells, the reduction of
673 PS2 protein levels by just over 60% was sufficient to cause clear changes in A β production. While the
674 initial cleavage of the C99 construct (ϵ -site) remained unaffected, the production of monomeric A β was
675 strongly diminished inside the cell and, in an opposite manner, strongly increased in the medium. In
676 particular, the A β_{40} isoform was increased in the extracellular medium of PS2-KD cells. Hexameric A β
677 levels were unchanged in the cell lysates but strongly diminished in the extracellular environment.
678 Importantly, we could discriminate for the first time that the extracellular hexameric A β was almost
679 exclusively enriched in EVs while monomeric A β was identified solely in the soluble fraction. Notice that,
680 although the amount of EVs tended to increase upon *knockdown* of PS1/PS2, it did not seem to impact
681 A β fate. As PS1 and PS2 have been respectively shown to produce the extra- and intracellular pools of
682 A β [39], the direct release of soluble A β outside the cellular environment is likely to rely mostly on the
683 action of PS1, while the intracellular pool is likely to be mainly dependent of PS2 activity in vesicular
684 compartments. Our observations suggest that a reduction of PS2 levels strongly influences the
685 production of A β from the C99 fragment. Monomeric A β_{42} is likely to completely aggregate into
686 hexamers, while monomeric A β_{40} might not be able to aggregate, causing the observed increase in the
687 detection of this isoform outside the cell. Importantly, this is supported by observations reported in a
688 biochemical *in vitro* study [29], showing the isolation of monomeric A β from the medium of C99-
689 expressing CHO cells and identifying it as A β_{40} , not forming any aggregates when followed over 48h.
690 Together, our results in both *knockdown* cell lines drive towards the emergence of a new hypothesis
691 according to which extracellular hexameric A β might be exclusively released in EVs emerging from the
692 intracellular pool of A β and likely produced through the activity of PS2. The identification of such a
693 specific role for PS2 in the release of hexameric A β that might exert intercellular nucleating effects is of

694 particular importance. To note, PS1 and PS2 were reported to exert different sensibilities to γ -secretase
695 inhibitors [37]. This is quite promising in the hope of re-evaluating A β modulators and developing
696 therapeutic agents targeting a specific γ -secretase activity depending on the PS present in the complex.
697 Importantly, the intracellular pool of A β , generated by PS2, has been repeatedly associated with the
698 progression of AD [73-76]. FAD mutations in *PSEN2* have been shown to dramatically increase the
699 proportion of longer length A β intracellularly, accelerating its assembly. Further, a subset of familial
700 mutations on *PSEN1* have been reported to shift the localization of the PS1 protein to fit that of PS2
701 [39]. Thus, it is likely that the production of aggregation-prone A β inside intracellular compartments and
702 its resulting accumulation and excretion are enhanced in the context of AD.

703

704 Conclusions

705

706 Altogether, our findings have shed light on a particular cell-derived A β assembly that likely corresponds
707 to an A β_{42} hexamer. Combining *in vitro* and *in vivo* approaches, we have revealed an absence of
708 detrimental effects of cell-derived hexameric A β by itself, but its capacity to induce cytotoxicity and
709 aggravate amyloid deposition when there is A β to seed at disposal. An insight in cellular mechanisms at
710 stake suggests a stronger correlation of PS2 with the formation of this particular A β oligomer, in line
711 with previous reports linking the restricted location of PS2 in acidic compartments to the production of
712 more aggregation-prone A β .

713 Figure legends

714

715 **Fig1. Detection of hexameric A β_{42} in CHO cells expressing human APP metabolites. A.** Full-length APP is
716 cleaved by β -secretase at the β site, located at the N-terminus of A β , to produce a 99-amino acid long
717 membrane-bound fragment called β CTF (encompassing A β and AICD). The construct referred to as C99
718 here is composed of the signal peptide (SP) of APP fused to the sequence of the β CTF fragment. This
719 fragment is then cleaved by γ -secretase at the γ site to release A β . The C42 construct is composed of

720 the SP of APP and the A β ₄₂ sequence. The epitopes of the primary antibodies directed against human
721 A β (clones W0-2 and 6E10) and the C-terminal region of APP (APP-C-ter) used in this study are indicated
722 on the scheme. Nt: N-terminus. Ct: C-terminus. sAPP=soluble APP. AICD=APP intracellular domain,
723 EC=extracellular, IM=intramembrane, IC=intracellular. **B.** Detection of an assembly of ~28kDa by
724 Western blotting in CHO cell lysates and culture media following expression of either C42 or C99. This
725 assembly is recognized by the W0-2 antibody, but not by the APP-C-ter, suggesting it emerges by
726 assembly of A β . In the media of C99-expressing cells, intermediate assemblies are also observed;
727 monomers, dimers and trimers. EP=empty plasmid. **C.** Isolation of cell-derived A β . The media of CHO
728 cells expressing either EP, C42 or C99 were immunoprecipitated and separated using the GELFrEE
729 technique. We optimized a method to collect the ~28kDa A β assembly as an isolated liquid fraction.
730 Dashed lines indicate that proteins were run on the same gel, but lanes are not contiguous. **D.** Dot
731 blotting of the isolated ~28kDa assemblies revealed they are composed of A β ₄₂. Synthetic preparations
732 of monomeric A β ₄₀ and A β ₄₂ were used as positive controls. Combined with the observed size, we
733 identify the assemblies of interest as A β ₄₂ hexamers. Dashed lines indicate that proteins were loaded
734 on the same membrane, but image was readjusted.

735

736 **Fig2. Commonality of hexameric A β production in several cell lines.** Cell lysates and media from human
737 neuroblastoma SH-SY5Y (in **A.**) and embryonic HEK293 (in **B.**) cells, as well as from murine MEF
738 fibroblasts (in **C.**) expressing C99 all revealed the presence of a ~28kDa band recognized by the human
739 A β specific W0-2 antibody, and not by the anti-APP-C-ter. EP= empty plasmid.

740

741 **Fig3. Identification of hexameric A β as an assembly involved in the context of AD. A.** Detection of A β
742 assemblies in brain samples from an amyloid mouse model (5xFAD). Cortices and hippocampi of
743 euthanized mice were lysed and analyzed by Western blotting. A β fibrils appear stuck in the wells and
744 hexameric A β assemblies are detected at ~28kDa. To note, A β monomers are also detected in all 5xFAD
745 samples and reflect an efficient metabolism of the human APP protein expressed in these mice. Dashed

746 lines indicate that proteins were run on the same gel, but lanes are not contiguous. Hipp.=hippocampus.
747 **B.** The signal intensities of A β hexamers and A β fibrils were quantified relatively to the APP signal.
748 Samples used for quantitative analysis derived from the same experiment, with Western blots
749 processed in parallel. The displayed graphs represent the profile of A β assemblies as related to both the
750 analyzed brain area (cortex, hippocampus) and the age (2, 3, 6, 9, 12 months of age) (min N=3 each). **C.**
751 Identification of hexameric A β in the cerebrospinal fluid (CSF) of cognitively affected patients. Western
752 blotting analysis was performed using the W0-2 and APP-C-ter antibodies. Dosage of monomeric
753 A β ₄₂/A β ₄₀ by ECLIA immunoassay confirmed the correct classification of individuals, with a reduction in
754 ratio along with AD progression.

755
756 **Fig4. Cell-derived A β hexamers are only cytotoxic in primary neurons that express amyloid proteins. A.**
757 Experimental workflow. Primary neurons were isolated from wild-type (WT) or transgenic (5xFAD)
758 mouse embryos at stage E17 and cultured for 8 days *in vitro* (DIV). At DIV7, cells were incubated for 24h
759 with 1 μ M or 5 μ M of cell-derived hexameric A β or control, isolated from the media of C42- and EP-
760 expressing CHO cells respectively. Cell viability was assessed using the ReadyProbes[®] assay and
761 fluorescent staining was captured at an EVOS[®] FL Auto fluorescence microscope. A representative
762 image of the assay is shown. Scale bar=50 μ m. **B, C.** Quantification of the proportion of dead cells
763 compared to the total cells in WT (in **B.**) and 5xFAD cultures (in **C.**). Total number of cells counted
764 (number of dead cells counted in brackets) was as follows in WT: n=1183(439), 1070(472), 650(314),
765 813(318), 797(400) and 5xFAD: n=528(212), 640(270), 1019(442), 465(224), 775(544) for NT, control
766 (equivalent of 1 μ M), control (equivalent of 5 μ M), hexameric A β (1 μ M) and hexameric A β (5 μ M)
767 respectively. NT=not treated. N=4 independent experiments in WT, N=3 independent experiments in
768 5xFAD. One-way ANOVA with Tukey's multiple comparison test: ns=non-significant, *= $p<0.05$,
769 **= $p<0.01$ (in WT: p=0.99 NT vs hexameric A β (1 μ M), p=0.38 NT vs hexameric A β (5 μ M), p=0.95 control
770 (1 μ M) vs hexameric A β (1 μ M), p=0.97 control (5 μ M) vs hexameric A β (5 μ M); in 5xFAD: p=0.70 NT vs

771 hexameric A β (1 μ M), p=0.004 NT vs hexameric A β (5 μ M), p=0.85 control (1 μ M) vs hexameric A β (1 μ M)
772 and p=0.009 control (5 μ M) vs hexameric A β (5 μ M)).

773

774 **Fig5. Intracerebral injection of cell-derived hexameric A β in WT and 5xFAD mice. A.** Experimental
775 workflow. 2-month-old mice were deeply anesthetized, placed in a stereotaxic apparatus and bilaterally
776 injected with 2 μ l of either 15 μ M GELFrEE-isolated A β hexamers (C42) or control (EP) in the
777 hippocampus (A/P -1.94; L +2.17; D/V -1.96; mm relative to bregma). Both fractions were analyzed by
778 dot blotting prior to injection. 30 days later, mice were transcardially perfused, brains were fixed and
779 coronally sectioned (50 μ m) using a vibrating HM650V microtome. Immunostaining was performed on
780 free-floating sections using the anti-human A β (W0-2) antibody as a marker for A β and the Thioflavin T
781 (ThT) dye as a marker for fibrillar deposits. W0-2 and ThT staining were detected with FITC/Cy5 and GFP
782 filters respectively. Right panel displays an example of double-positive counting. Scale bar=400 μ m. **B, C.**
783 Quantification of fibrillar deposits in full hemispheres of WT (in **B.**) and 5xFAD brains (in **C.** upper panel,
784 scale bar=1000 μ m) injected with control vs hexameric A β . n=32 slides from N=8 mice for both WT and
785 5xFAD. Mann-Whitney test: ns=non-significant, *= p <0.05 (in WT: p >0.99 control vs hexameric A β ; in
786 5xFAD: p =0.04 control vs hexameric A β). For transgenic mice, deposits were also classified according to
787 the two most affected brain regions, hippocampus and cortex, as a function of the control-injected
788 hemisphere (in **C.** middle and lower panel, scale bar=400 μ m). A 2.90-fold and a 1.74-fold increase were
789 observed in the hippocampus and cortex respectively. One-sample Wilcoxon signed-rank test with
790 hypothetical value set at 1: *= p <0.05, **= p <0.01 (in 5xFAD hippocampus: p =0.008 control vs hexameric
791 A β ; in 5xFAD cortex: p =0.02 control vs hexameric A β).

792

793 **Fig6. Contribution of presenilins to the production of hexameric A β . A.** SH-SY5Y knockdown (KD) cell
794 lines were generated using CRISPR-Cas9, with guide RNA vectors targeting either human *PSEN1* (PS1-
795 KD) or *PSEN2* (PS2-KD) genes. Control cells were transfected with respective scrambled sequences. Left,
796 a representative Western blot; middle and right, quantitative decrease in PS1 and PS2 protein levels in

797 KD compared to S cells. N=3. One-sample *t* test with hypothetical value set as 100: *=p<0.05,
798 ***=p<0.001 (S vs KD, in PS1: p=0.03; in PS2: p=0.0001). WT=wild-type, S=scramble. **B, C.** Initial cleavage
799 ability was monitored by a reporter gene assay. The release of APP intracellular domain (AICD) from a
800 tagged C99-GVP substrate was measured by the Gal4-*Firefly* reporter gene. Results are represented as
801 *Firefly/Renilla* luciferases ratios, with *Renilla* serving as a transfection-efficiency control. The profile of
802 A β production was assessed after transfection with either an empty plasmid (EP) or C99, using Western
803 blotting and ECLIA immunoassay, in PS1-KD vs PS1-S (in **B**) and in PS2-KD vs PS2-S (in **C**). Dashed line
804 indicates that proteins were run on the same gel, but lanes are not contiguous. Luciferase assays (initial
805 cleavage of C99): N=4 each, one-way ANOVA with Tukey's multiple comparison test: ns=non-significant
806 (S vs KD, in PS1 control: p>0.99; in PS1 C99-GVP: p=0.10; in PS2 control: p=0.99; in PS2 C99-GVP: p=0.99).
807 Western blots quantitative analyses (hexameric A β , in cell lysates and released, relative to C99 and %
808 to S): N=3 each, one-sample *t* test with hypothetical value set as 1: ns=non-significant, **=p<0.01 (S vs
809 KD, in PS1 cell lysates: p=0.16; in PS1 media: p=0.97; in PS2 cell lysates: p=0.99; in PS2 media: p=0.01).
810 ECLIA assays (monomeric A β released): N=5 each, Mann-Whitney test: ns=non-significant, *=p<0.05 (S
811 vs KD, in PS1 A β ₄₀: p>0.99; in PS1 A β ₄₂: p>0.99; in PS2 A β ₄₀: p=0.04; in PS2 A β ₄₂: p=0.12).
812

813 **Fig7. Localization of hexameric A β in extracellular vesicles (EVs).** Media of PS1-S, PS1-KD, PS2-S and
814 PS2-KD cells underwent an ultracentrifugation process to separate putative enrichment of EVs, in pellet,
815 from soluble proteins. **A.** The efficiency of EV isolation was confirmed by plate-based Europium-
816 immunoassay (left panel) showing an enrichment of EV inclusion markers CD9, CD63 and CD81 while
817 EV exclusion marker GM130 was lower in EVs as compared to soluble fractions. N=6 independent
818 experiments. Mann-Whitney test: *=p<0.05, ***=p<0.001 (CD9 (n=22), CD63 (n=22) and CD81 (n=18):
819 p<0.0001; GM130 (n=19): p=0.0362). Quantification of protein levels by BCA (right panel) showed larger
820 protein amounts in soluble than EVs fractions, ruling out the specific enrichment of inclusion markers
821 due to higher content in proteins. **B.** EVs ultracentrifugation pellets were counted for number of
822 particles of 70-400nm by nanoparticle tracking analysis (NTA). n=9 in N=3 independent experiments.

823 Two-way ANOVA with Bonferroni's multiple comparison: *=p<0.05 (PS2-KD EP vs PS2-S EP: p<0.05). **C**.
824 Both EVs and soluble extracts were monitored by Western blotting with the W0-2 antibody. Dashed
825 lines indicate that proteins were run on the same gel, but lanes are not contiguous. EP=empty plasmid,
826 EV(s)=extracellular vesicle(s), Sol=soluble proteins fraction.

827

828 Declarations

829

830 **Ethics approval and consent to participate**

831 All animal experiments were performed with the approval of the UCLouvain Ethical Committee for
832 Animal Welfare (reference 2018/UCL/MD/011). Human cerebrospinal fluids were collected as part of
833 clinical analyses performed at Cliniques Universitaires Saint-Luc (UCL, Brussels, Belgium). Symptomatic
834 non-AD patients signed an internal regulatory document, stating that residual samples used for
835 diagnostic procedures can be used for retrospective academic studies, without any additional informed
836 consent (ethics committee approval: 2007/10SEP/233). AD patients participated to a specific study
837 referenced UCL-2016-121 (Eudra-CT: 2018-003473-94).

838

839 **Consent for publication**

840 All authors have given consent for publication.

841

842 **Availability of data and materials**

843 All datasets generated and analyzed during this study are included in this published article and its
844 supplementary information files. Materials are available upon request.

845

846 **Competing interests**

847 The authors declare that the research was conducted in the absence of any commercial or financial
848 relationships that could be construed as a potential conflict of interest.

849 **Funding**

850 This work was supported by a grant of the Belgian F.N.R.S FRIA (Fonds National pour la Recherche
851 Scientifique) and a grant of UCLouvain Fonds du Patrimoine to CV. Funding to PKC is acknowledged from
852 SAO-FRA Alzheimer Research Foundation, Fondation Louvain and Queen Elisabeth Medical Research
853 Foundation (FMRE to PKC and LQ). The work was supported by funds from FNRS grant PDRT.0177.18 to
854 PKC and LQ.

855

856 **Authors' contributions**

857 CV designed and performed experiments, analyzed and interpreted data, and wrote the manuscript.
858 DMV performed experiments and analyzed data. SC and NS provided neuronal cultures and analyzed
859 data. LD'A performed nanoparticle tracking and Europium-immunoassay analyses on isolated EVs, and
860 helped with the analysis of related data. FP participated in experiment design and analysis. VVP and BH
861 together provided the human CSF specimens. BH provided significant input in the interpretation of
862 clinical data. LQ provided the GELFrEE technique and contributed to data collection. PKC designed and
863 supervised the research project and contributed to interpretation of data. All authors revised and
864 approved the final manuscript.

865

866 **Abbreviations**

867 A β : β -amyloid. AD: Alzheimer's disease. AICD: APP intracellular domain. APP: amyloid precursor protein.
868 CHO: Chinese hamster ovary. CRISPR: clustered regularly interspaced short palindromic repeats. Cryo-
869 EM: cryo-electron microscopy. CSF: cerebrospinal fluid. CTF: C-terminal fragment. HEK293: human
870 embryonic kidney. KD: *knockdown*. MCI: mild cognitive impairment. PET: positron-emission
871 tomography. *PSEN*: presenilin (gene). PS: presenilin (protein). S: scrambled. ThT: Thioflavin T. WT: wild-
872 type.

873

874

875 **Acknowledgments**

876 We thank Esther Paître, Sarah Houben and Pierre Burguet for technical support. We are grateful to Jean-
877 Noël Octave, Nathalie Pierrot and Jean-Pierre Brion for providing scientific input as well as materials and
878 animal models.

879

880 Additional files

881

882 **Additional File 1.**

883 Format: .pdf

884 Title: **Detection of hexameric A β ₄₂ by the anti-A β clone 6E10 primary antibody.**

885 Description: Cell lysates and media of CHO cells were processed as in Fig1. Detection with the 6E10
886 clone targeting human A β revealed the same ~28kDa bands as W0-2 when cells are expressing either
887 C42 or C99, reinforcing their identification as A β assemblies. Dashed lines indicate that proteins were
888 run on the same gel, but lanes are not contiguous.

889

890 **Additional File 2.**

891 Format: .xls

892 Title: **Clinical analyses performed on the patients used in this study.**

893 Description: Non-AD (1258 and 1506), pre-clinical AD (1523, 1268 and 1556), and symptomatic AD
894 (1272, 1329 and 1633) patients were monitored for memory impairments by the Mini-Mental State
895 Examination (MMSE). Their CSF was collected for measurement of the two biomarkers of AD; A β and
896 Tau. PET imaging using amyloid and/or Tau specific ligands was conducted in patients where the
897 measurements exceeded pathological threshold. +=positive, N/A=non acquired.

898

899

900

901 References

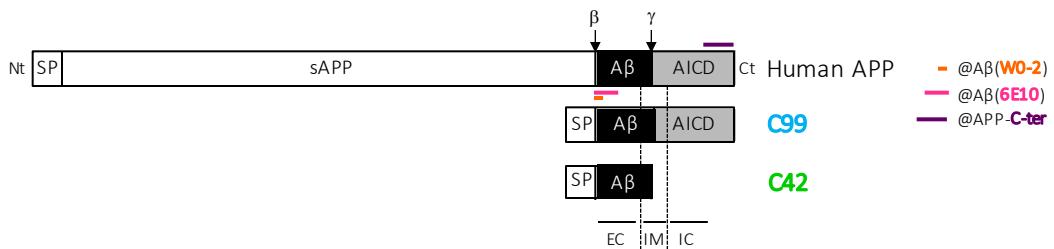
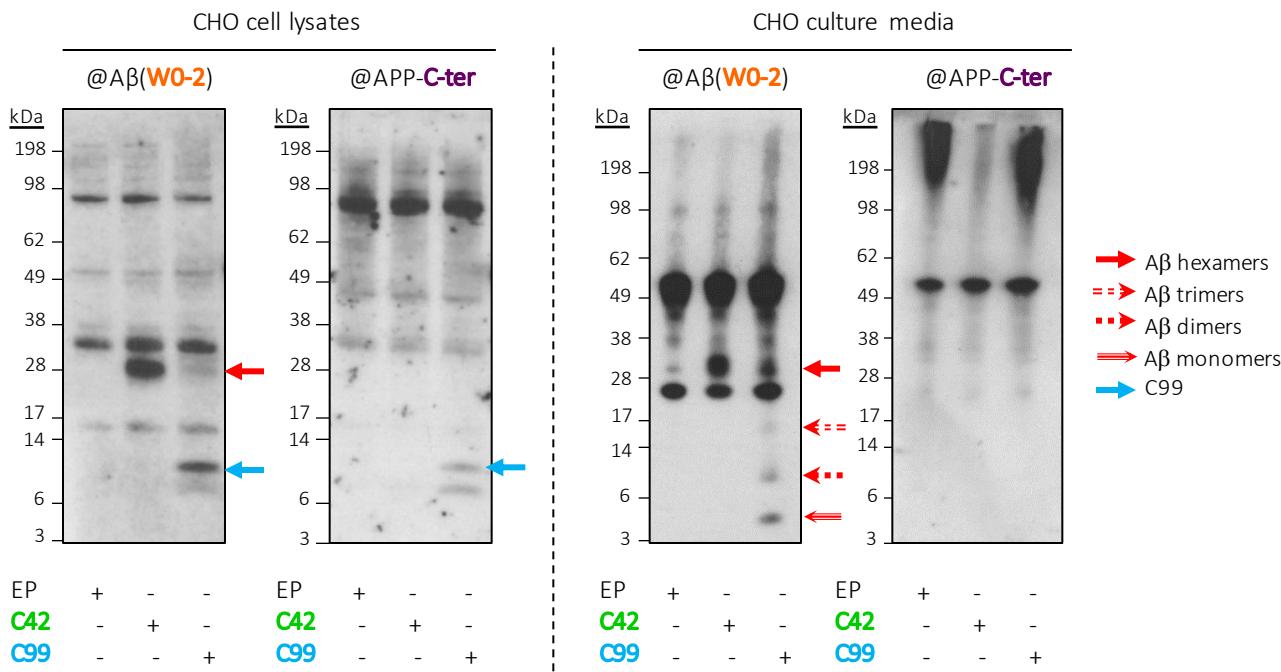
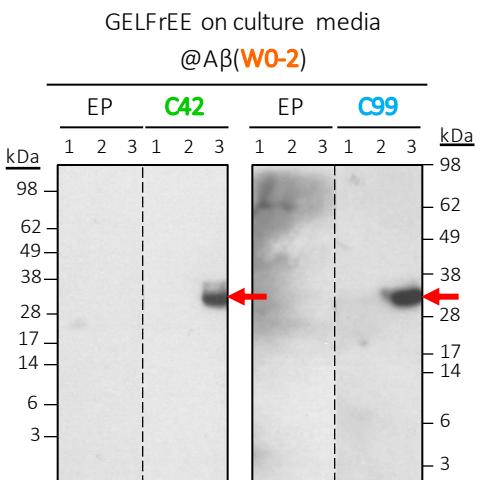
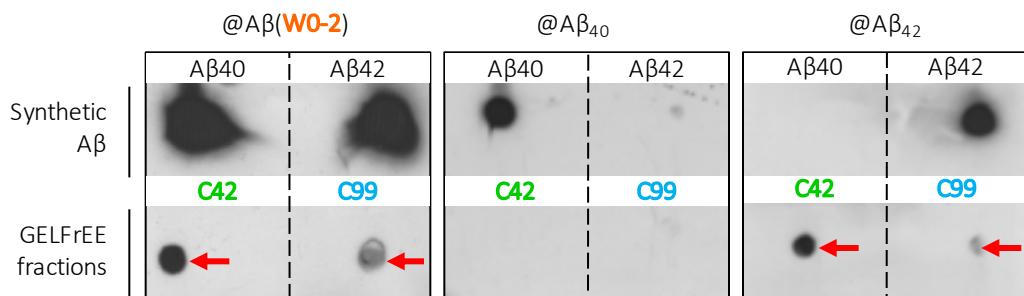
- 902 1. Haass C, Kaether C, Thinakaran G, Sisodia S: Trafficking and proteolytic processing of APP. *Cold*
903 *Spring Harb Perspect Med* 2012, 2:a006270.
- 904 2. Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y: *gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of*
905 *beta-carboxyl terminal fragment.* *J Neurosci* 2009, 29:13042-13052.
- 906 3. Benilova I, Karra E, De Strooper B: The toxic A β oligomer and Alzheimer's disease: an emperor
907 in need of clothes. *Nat Neurosci* 2012, 15:349-357.
- 908 4. Almeida ZL, Brito RMM: Structure and Aggregation Mechanisms in Amyloids. *Molecules* 2020,
909 25.
- 910 5. Ye L, Fritschi SK, Schelle J, Obermüller U, Degenhardt K, Kaeser SA, Eisele YS, Walker LC,
911 Baumann F, Staufenbiel M, Jucker M: Persistence of A β seeds in APP null mouse brain. *Nat Neurosci*
912 2015, 18:1559-1561.
- 913 6. Sengupta U, Nilson AN, Kayed R: The Role of Amyloid- β Oligomers in Toxicity, Propagation, and
914 Immunotherapy. *EBioMedicine* 2016, 6:42-49.
- 915 7. Ferrone F: Analysis of protein aggregation kinetics. *Methods Enzymol* 1999, 309:256-274.
- 916 8. Serpell LC: Alzheimer's amyloid fibrils: structure and assembly. *Biochim Biophys Acta* 2000,
917 1502:16-30.
- 918 9. Fu Z, Aucoin D, Davis J, Van Nostrand WE, Smith SO: Mechanism of Nucleated Conformational
919 Conversion of A β 42. *Biochemistry* 2015, 54:4197-4207.
- 920 10. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I,
921 Trommer B, Viola KL, et al: Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central
922 nervous system neurotoxins. *Proc Natl Acad Sci U S A* 1998, 95:6448-6453.
- 923 11. Sunde M, Blake CC: From the globular to the fibrous state: protein structure and structural
924 conversion in amyloid formation. *Q Rev Biophys* 1998, 31:1-39.
- 925 12. Klein WL, Krafft GA, Finch CE: Targeting small Abeta oligomers: the solution to an Alzheimer's
926 disease conundrum? *Trends Neurosci* 2001, 24:219-224.
- 927 13. Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE: Amyloid beta: structure, biology and
928 structure-based therapeutic development. *Acta Pharmacol Sin* 2017, 38:1205-1235.
- 929 14. Cline EN, Bicca MA, Viola KL, Klein WL: The Amyloid- β Oligomer Hypothesis: Beginning of the
930 Third Decade. *J Alzheimers Dis* 2018, 64:S567-s610.
- 931 15. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB: Amyloid beta-protein assembly and Alzheimer
932 disease. *J Biol Chem* 2009, 284:4749-4753.
- 933 16. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ: Amyloid-beta oligomers: their
934 production, toxicity and therapeutic inhibition. *Biochem Soc Trans* 2002, 30:552-557.

- 936 17. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH: A specific
937 amyloid-beta protein assembly in the brain impairs memory. *Nature* 2006, 440:352-357.
- 938 18. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ: Effects of secreted oligomers of
939 amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. *J Physiol* 2006,
940 572:477-492.
- 941 19. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA,
942 Rowan MJ, Lemere CA, et al: Amyloid-beta protein dimers isolated directly from Alzheimer's brains
943 impair synaptic plasticity and memory. *Nat Med* 2008, 14:837-842.
- 944 20. Lesné SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, Bennett DA, Ashe KH: Brain
945 amyloid- β oligomers in ageing and Alzheimer's disease. *Brain* 2013, 136:1383-1398.
- 946 21. Müller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schäble S, Wedel D, Horn AH,
947 Sticht H, de Souza Silva MA, Gottmann K, et al: Amyloid- β dimers in the absence of plaque pathology
948 impair learning and synaptic plasticity. *Brain* 2016, 139:509-525.
- 949 22. Wolff M, Zhang-Haagen B, Decker C, Barz B, Schneider M, Biehl R, Radulescu A, Strodel B,
950 Willbold D, Nagel-Steger L: A β 42 pentamers/hexamers are the smallest detectable oligomers in
951 solution. *Sci Rep* 2017, 7:2493.
- 952 23. Cernescu M, Stark T, Kalden E, Kurz C, Leuner K, Deller T, Göbel M, Eckert GP, Brutschy B: Laser-
953 induced liquid bead ion desorption mass spectrometry: an approach to precisely monitor the
954 oligomerization of the β -amyloid peptide. *Anal Chem* 2012, 84:5276-5284.
- 955 24. Österlund N, Moons R, Ilag LL, Sobott F, Gräslund A: Native Ion Mobility-Mass Spectrometry
956 Reveals the Formation of β -Barrel Shaped Amyloid- β Hexamers in a Membrane-Mimicking Environment.
957 *J Am Chem Soc* 2019, 141:10440-10450.
- 958 25. Deshpande A, Mina E, Glabe C, Busciglio J: Different conformations of amyloid beta induce
959 neurotoxicity by distinct mechanisms in human cortical neurons. *J Neurosci* 2006, 26:6011-6018.
- 960 26. Gellermann GP, Byrnes H, Striebinger A, Ullrich K, Mueller R, Hillen H, Barghorn S: Abeta-
961 globulomers are formed independently of the fibril pathway. *Neurobiol Dis* 2008, 30:212-220.
- 962 27. Decock M, Stanga S, Octave JN, Dewachter I, Smith SO, Constantinescu SN, Kienlen-Campard P:
963 Glycines from the APP GXXXG/GXXXA Transmembrane Motifs Promote Formation of Pathogenic A β
964 Oligomers in Cells. *Front Aging Neurosci* 2016, 8:107.
- 965 28. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J,
966 Van Eldik L, et al: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in
967 transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque
968 formation. *J Neurosci* 2006, 26:10129-10140.
- 969 29. Vadukul DM, Vrancx C, Burguet P, Contino S, Suelves N, Serpell LC, Quinton L, Kienlen-Campard
970 P: Cell-derived hexameric β -amyloid: a novel insight into composition, self-assembly and nucleating
971 properties. Submitted bioRxiv doi: 101101/20201215422916 2020.
- 972 30. De Strooper B: Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase
973 complex. *Neuron* 2003, 38:9-12.

- 974 31. Sato T, Diehl TS, Narayanan S, Funamoto S, Ihara Y, De Strooper B, Steiner H, Haass C, Wolfe
975 MS: Active gamma-secretase complexes contain only one of each component. *J Biol Chem* 2007,
976 282:33985-33993.
- 977 32. Dehury B, Tang N, Blundell TL, Kepp KP: Structure and dynamics of γ -secretase with presenilin
978 2 compared to presenilin 1. *RSC Advances* 2019, 9:20901-20916.
- 979 33. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van
980 Leuven F: Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. *Nature*
981 1998, 391:387-390.
- 982 34. Frånberg J, Svensson AI, Winblad B, Karlström H, Frykman S: Minor contribution of presenilin 2
983 for γ -secretase activity in mouse embryonic fibroblasts and adult mouse brain. *Biochem Biophys Res
984 Commun* 2011, 404:564-568.
- 985 35. Pintchovski SA, Schenk DB, Basi GS: Evidence that enzyme processivity mediates differential A β
986 production by PS1 and PS2. *Curr Alzheimer Res* 2013, 10:4-10.
- 987 36. Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E, Bolshakov VY, Shen J, Kelleher RJ, 3rd: Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer's disease. *Neuron*
988 2015, 85:967-981.
- 990 37. Stanga S, Vrancx C, Tasiaux B, Marinangeli C, Karlström H, Kienlen-Campard P: Specificity of
991 presenilin-1- and presenilin-2-dependent γ -secretases towards substrate processing. *J Cell Mol Med*
992 2018, 22:823-833.
- 993 38. Meckler X, Checler F: Presenilin 1 and Presenilin 2 Target γ -Secretase Complexes to Distinct
994 Cellular Compartments. *J Biol Chem* 2016, 291:12821-12837.
- 995 39. Sannerud R, Esselens C, Ejsmont P, Mattera R, Rochin L, Tharkeshwar AK, De Baets G, De Wever
996 V, Habets R, Baert V, et al: Restricted Location of PSEN2/ γ -Secretase Determines Substrate Specificity
997 and Generates an Intracellular A β Pool. *Cell* 2016, 166:193-208.
- 998 40. Lee S, Mankhong S, Kang JH: Extracellular Vesicle as a Source of Alzheimer's Biomarkers:
999 Opportunities and Challenges. *Int J Mol Sci* 2019, 20.
- 1000 41. Wiedenheft B, Sternberg SH, Doudna JA: RNA-guided genetic silencing systems in bacteria and
1001 archaea. *Nature* 2012, 482:331-338.
- 1002 42. Hsu PD, Lander ES, Zhang F: Development and applications of CRISPR-Cas9 for genome
1003 engineering. *Cell* 2014, 157:1262-1278.
- 1004 43. Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T, Fei JZ, Aimoto S, Courtoy
1005 PJ, Smith SO, et al: Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-
1006 terminal domain production requires a precisely oriented APP dimer assembled by transmembrane
1007 GXXXG motifs. *J Biol Chem* 2008, 283:7733-7744.
- 1008 44. Huysseune S, Kienlen-Campard P, Hébert S, Tasiaux B, Leroy K, Devuyst O, Brion JP, De Strooper
1009 B, Octave JN: Epigenetic control of aquaporin 1 expression by the amyloid precursor protein. *Faseb j*
1010 2009, 23:4158-4167.

- 1011 45. Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D,
1012 Frederiksen JL, Fleming JO, Furlan R, et al: A consensus protocol for the standardization of cerebrospinal
1013 fluid collection and biobanking. *Neurology* 2009, 73:1914-1922.
- 1014 46. Hage S, Stanga S, Marinangeli C, Octave JN, Dewachter I, Quetin-Leclercq J, Kienlen-Campard P:
1015 Characterization of *Pterocarpus erinaceus* kino extract and its gamma-secretase inhibitory properties. *J*
1016 *Ethnopharmacol* 2015, 163:192-202.
- 1017 47. Opsomer R, Contino S, Perrin F, Gualdani R, Tasiaux B, Doyen P, Vergouts M, Vrancx C, Doshina
1018 A, Pierrot N, et al: Amyloid Precursor Protein (APP) Controls the Expression of the Transcriptional
1019 Activator Neuronal PAS Domain Protein 4 (NPAS4) and Synaptic GABA Release. *eNeuro* 2020, 7.
- 1020 48. Karlström H, Bergman A, Lendahl U, Näslund J, Lundkvist J: A sensitive and quantitative assay
1021 for measuring cleavage of presenilin substrates. *J Biol Chem* 2002, 277:6763-6766.
- 1022 49. Perrin F, Papadopoulos N, Suelves N, Opsomer R, Vadukul DM, Vrancx C, Smith SO, Vertommen
1023 D, Kienlen-Campard P, Constantinescu SN: Dimeric Transmembrane Orientations of APP/C99 Regulate
1024 γ-Secretase Processing Line Impacting Signaling and Oligomerization. *ISCIENCE* 2020.
- 1025 50. Eimer WA, Vassar R: Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates
1026 with intraneuronal Aβ42 accumulation and Caspase-3 activation. *Mol Neurodegener* 2013, 8:2.
- 1027 51. Doecke JD, Pérez-Grijalba V, Fandos N, Fowler C, Villemagne VL, Masters CL, Pesini P, Sarasa M:
1028 Total Aβ(42)/Aβ(40) ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis.
1029 *Neurology* 2020, 94:e1580-e1591.
- 1030 52. Gravina SA, Ho L, Eckman CB, Long KE, Otvos L, Jr., Younkin LH, Suzuki N, Younkin SG: Amyloid
1031 beta protein (A beta) in Alzheimer's disease brain. Biochemical and immunocytochemical analysis with
1032 antibodies specific for forms ending at A beta 40 or A beta 42(43). *J Biol Chem* 1995, 270:7013-7016.
- 1033 53. Jarrett JT, Berger EP, Lansbury PT, Jr.: The carboxy terminus of the beta amyloid protein is critical
1034 for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease.
1035 *Biochemistry* 1993, 32:4693-4697.
- 1036 54. Li X, Buxbaum JN: Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin
1037 protective in Alzheimer's disease? *Mol Neurodegener* 2011, 6:79.
- 1038 55. Kim H, Kim B, Kim HS, Cho JY: Nicotinamide attenuates the decrease in dendritic spine density
1039 in hippocampal primary neurons from 5xFAD mice, an Alzheimer's disease animal model. *Mol Brain*
1040 2020, 13:17.
- 1041 56. Mariani MM, Malm T, Lamb R, Jay TR, Neilson L, Casali B, Medarametla L, Landreth GE:
1042 Neuronally-directed effects of RXR activation in a mouse model of Alzheimer's disease. *Sci Rep* 2017,
1043 7:42270.
- 1044 57. Noh H, Park C, Park S, Lee YS, Cho SY, Seo H: Prediction of miRNA-mRNA associations in
1045 Alzheimer's disease mice using network topology. *BMC Genomics* 2014, 15:644.
- 1046 58. Lauritzen I, Pardossi-Piquard R, Bourgeois A, Pagnotta S, Biferi MG, Barkats M, Lacor P, Klein W,
1047 Bauer C, Checler F: Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-
1048 independent lysosomal-autophagic pathology. *Acta Neuropathol* 2016, 132:257-276.

- 1049 59. Evrard C, Kienlen-Campard P, Coevoet M, Opsomer R, Tasiaux B, Melnyk P, Octave JN, Buée L,
1050 Sergeant N, Vingtdeux V: Contribution of the Endosomal-Lysosomal and Proteasomal Systems in
1051 Amyloid- β Precursor Protein Derived Fragments Processing. *Front Cell Neurosci* 2018, 12:435.
- 1052 60. Bitan G, Kirkkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB: Amyloid beta -protein
1053 (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. *Proc Natl Acad Sci U S*
1054 *A* 2003, 100:330-335.
- 1055 61. Roychaudhuri R, Yang M, Deshpande A, Cole GM, Frautschy S, Lomakin A, Benedek GB, Teplow
1056 DB: C-terminal turn stability determines assembly differences between A β 40 and A β 42. *J Mol Biol* 2013,
1057 425:292-308.
- 1058 62. Lendel C, Bjerring M, Dubnovitsky A, Kelly RT, Filippov A, Antzutkin ON, Nielsen NC, Härd T: A
1059 hexameric peptide barrel as building block of amyloid- β protofibrils. *Angew Chem Int Ed Engl* 2014,
1060 53:12756-12760.
- 1061 63. Braak H, Braak E: Neuropathological staging of Alzheimer-related changes. *Acta Neuropathol*
1062 1991, 82:239-259.
- 1063 64. Nath S, Agholme L, Kurudenkandy FR, Granseth B, Marcusson J, Hallbeck M: Spreading of
1064 neurodegenerative pathology via neuron-to-neuron transmission of β -amyloid. *J Neurosci* 2012,
1065 32:8767-8777.
- 1066 65. Hallbeck M, Nath S, Marcusson J: Neuron-to-neuron transmission of neurodegenerative
1067 pathology. *Neuroscientist* 2013, 19:560-566.
- 1068 66. Domert J, Rao SB, Agholme L, Brorsson AC, Marcusson J, Hallbeck M, Nath S: Spreading of
1069 amyloid- β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance.
1070 *Neurobiol Dis* 2014, 65:82-92.
- 1071 67. Sackmann C, Hallbeck M: Oligomeric amyloid- β induces early and widespread changes to the
1072 proteome in human iPSC-derived neurons. *Sci Rep* 2020, 10:6538.
- 1073 68. Hashimoto M, Bogdanovic N, Volkmann I, Aoki M, Winblad B, Tjernberg LO: Analysis of
1074 microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular
1075 concentrations of Abeta42 and Alzheimer's disease neuropathology. *Acta Neuropathol* 2010, 119:543-
1076 554.
- 1077 69. Marshall KE, Vadukul DM, Dahal L, Theisen A, Fowler MW, Al-Hilaly Y, Ford L, Kemenes G, Day
1078 IJ, Staras K, Serpell LC: A critical role for the self-assembly of Amyloid- β 1-42 in neurodegeneration. *Sci*
1079 *Rep* 2016, 6:30182.
- 1080 70. Castelletto V, Ryumin P, Cramer R, Hamley IW, Taylor M, Allsop D, Reza M, Ruokolainen J, Arnold
1081 T, Hermida-Merino D, et al: Self-Assembly and Anti-Amyloid Cytotoxicity Activity of Amyloid beta
1082 Peptide Derivatives. *Sci Rep* 2017, 7:43637.
- 1083 71. Morales R, Callegari K, Soto C: Prion-like features of misfolded A β and tau aggregates. *Virus Res*
1084 2015, 207:106-112.
- 1085 72. Katzmarski N, Ziegler-Waldkirch S, Scheffler N, Witt C, Abou-Ajram C, Nuscher B, Prinz M, Haass
1086 C, Meyer-Luehmann M: A β oligomers trigger and accelerate A β seeding. *Brain Pathol* 2020, 30:36-45.





1087 73. Bayer TA, Wirths O: Intraneuronal A β as a trigger for neuron loss: can this be translated into
1088 human pathology? *Biochem Soc Trans* 2011, 39:857-861.

1089 74. Friedrich RP, Tepper K, Rönicke R, Soom M, Westermann M, Reymann K, Kaether C, Fändrich
1090 M: Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. *Proc
1091 Natl Acad Sci U S A* 2010, 107:1942-1947.

1092 75. Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E: Intraneuronal beta-amyloid
1093 accumulation and synapse pathology in Alzheimer's disease. *Acta Neuropathol* 2010, 119:523-541.

1094 76. Pensalfini A, Albay R, 3rd, Rasool S, Wu JW, Hatami A, Arai H, Margol L, Milton S, Poon WW,
1095 Corrada MM, et al: Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques.
1096 *Neurobiol Dis* 2014, 71:53-61.

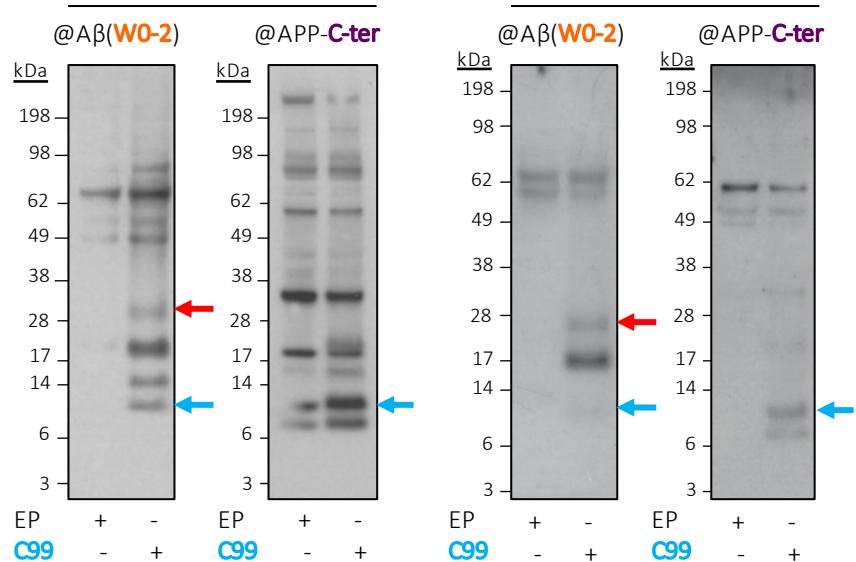
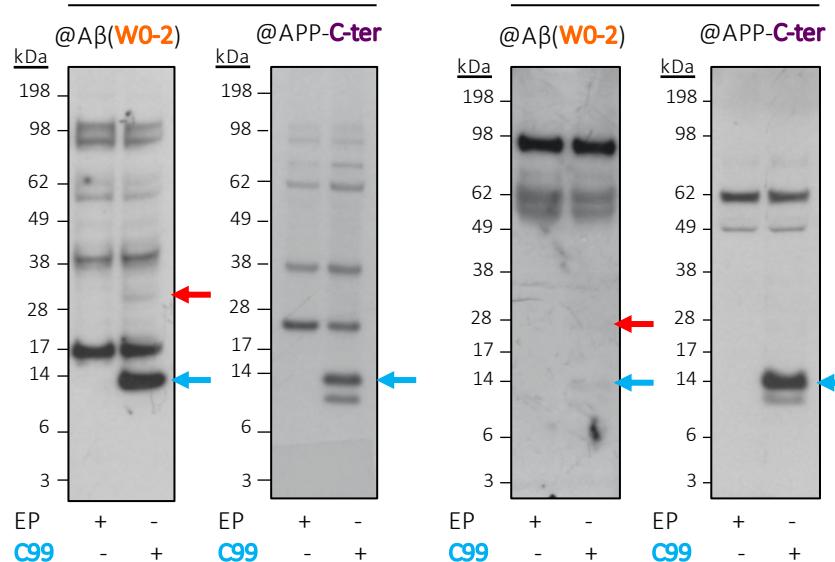

1097

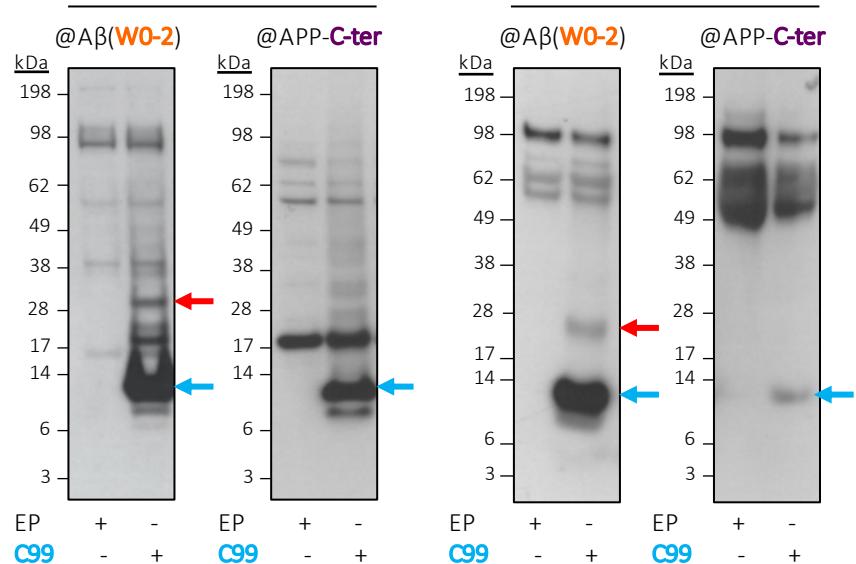
Fig1**A****B****C****D**

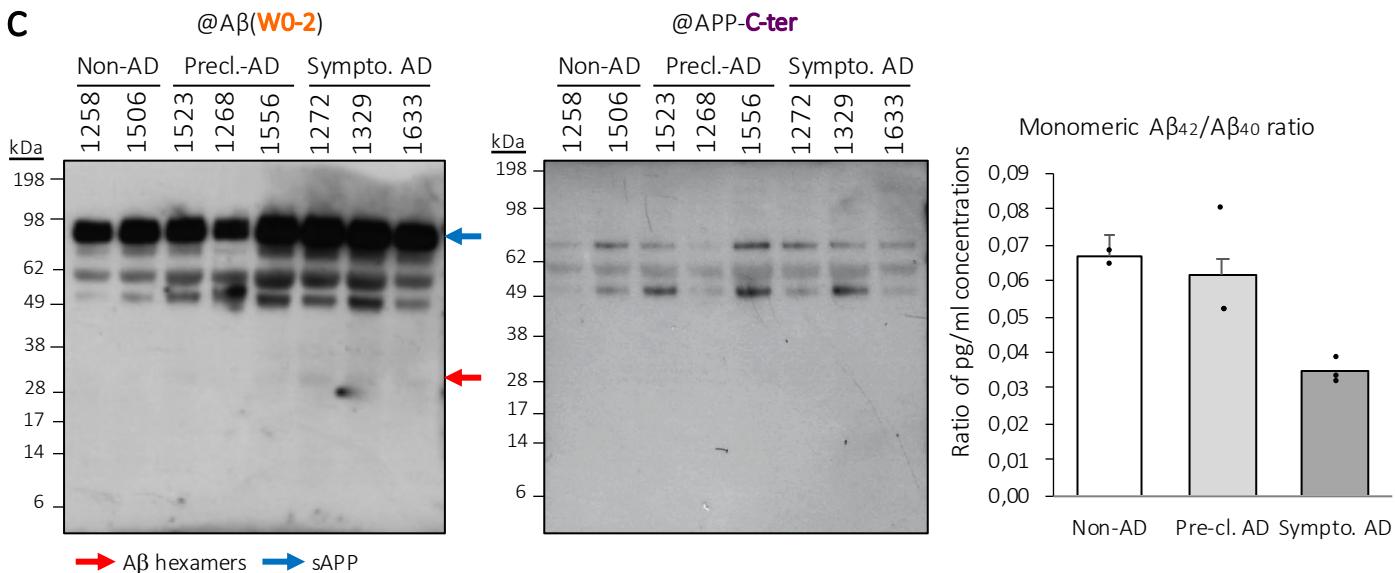
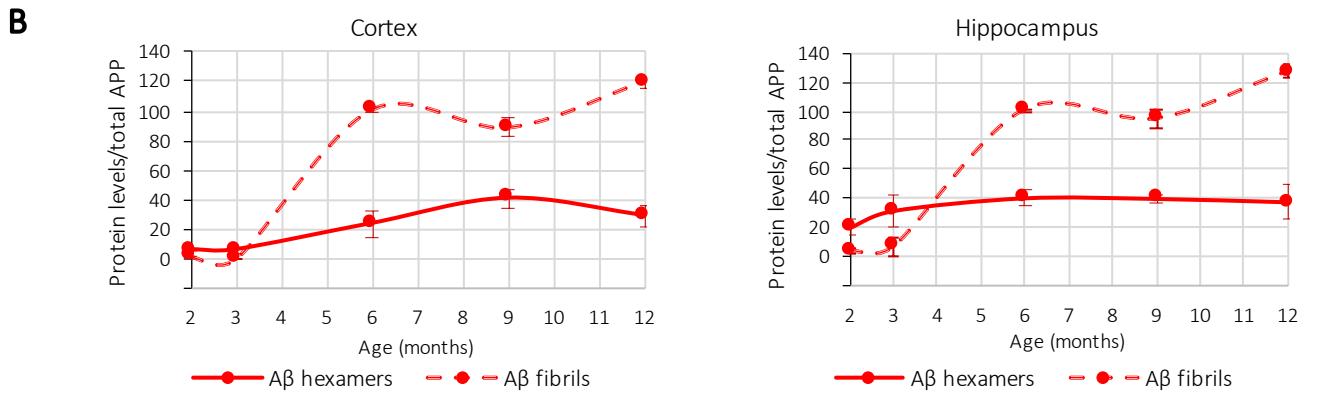
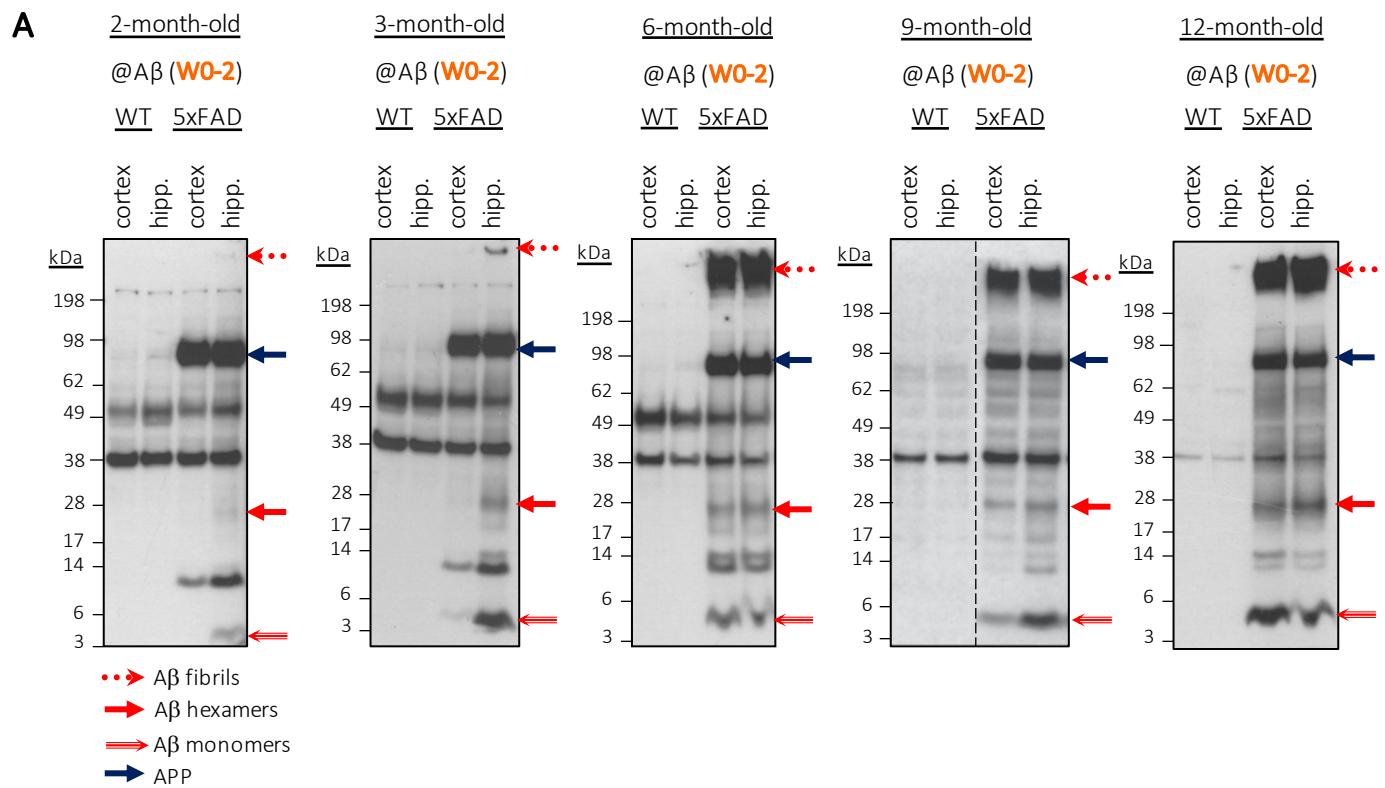
Fig2**A**

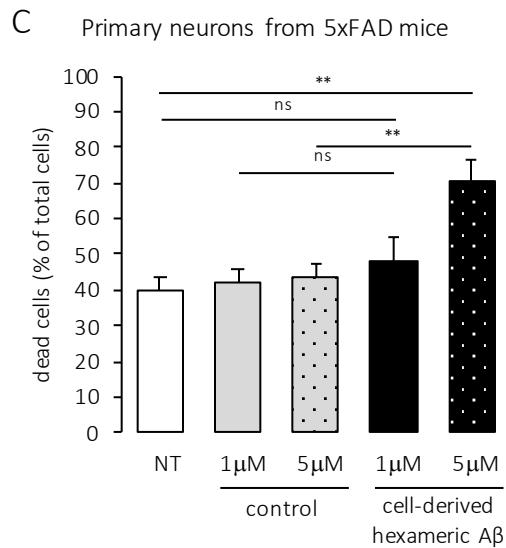
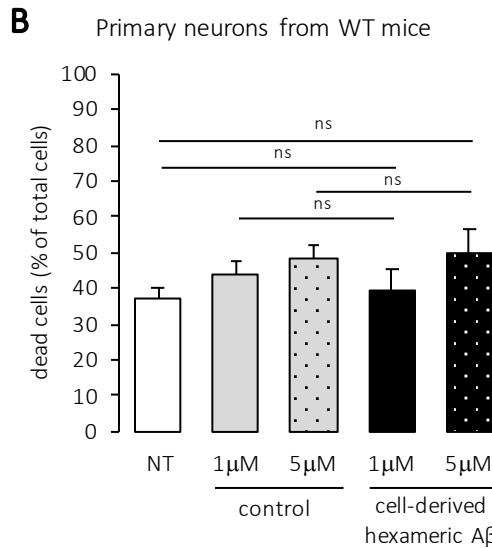
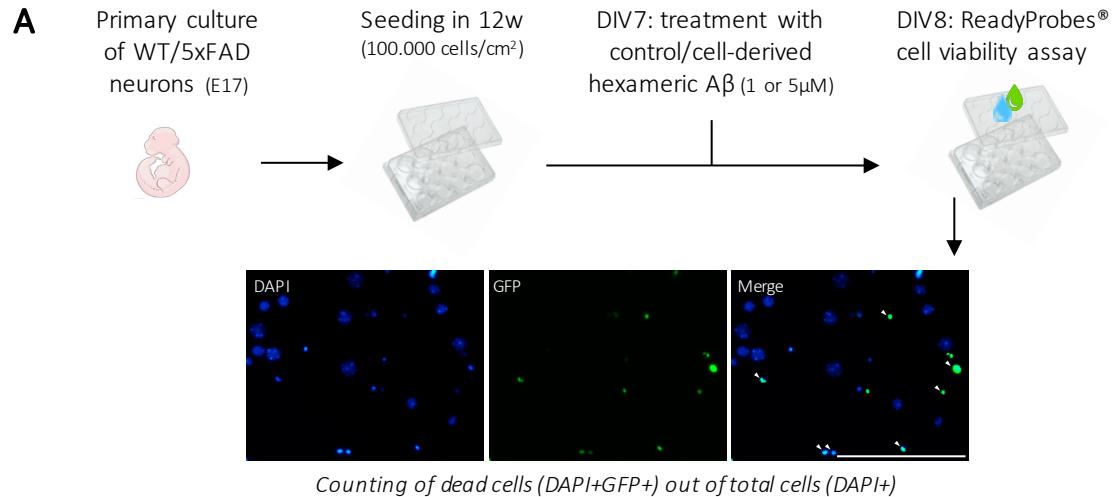

MEF cell lysates

- A β hexamers
→ C99

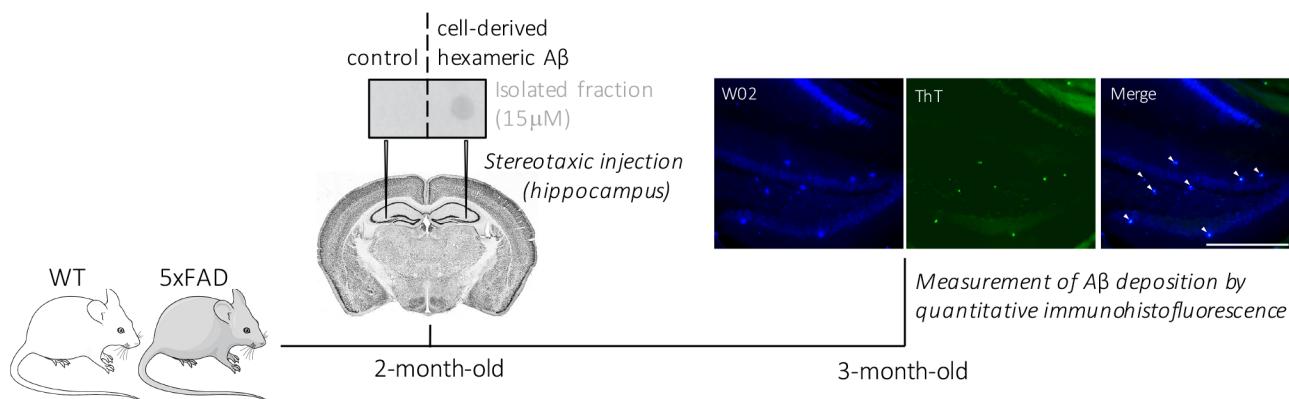
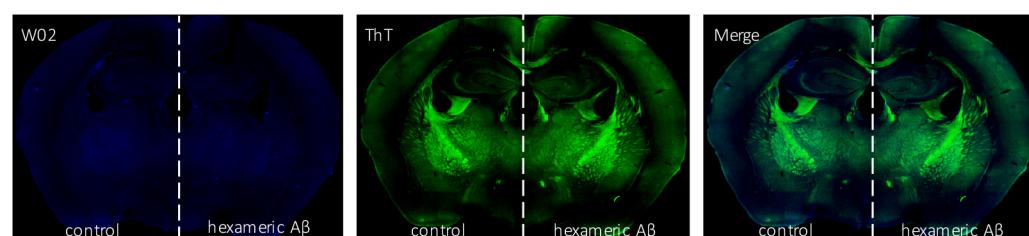
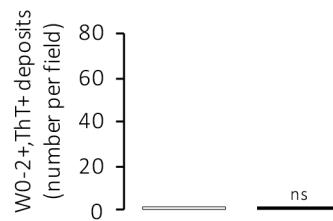
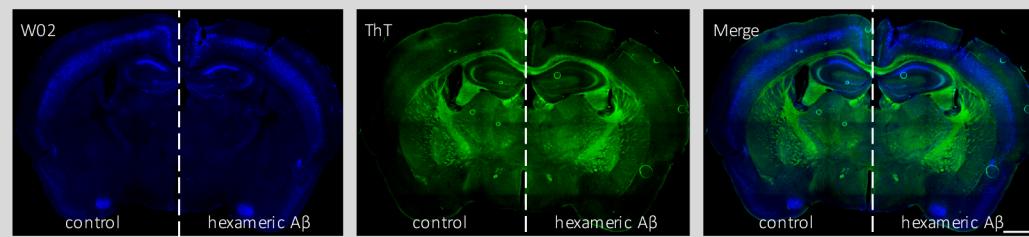
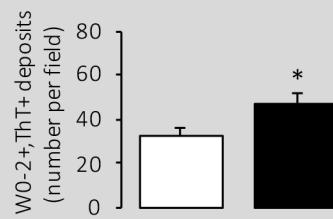
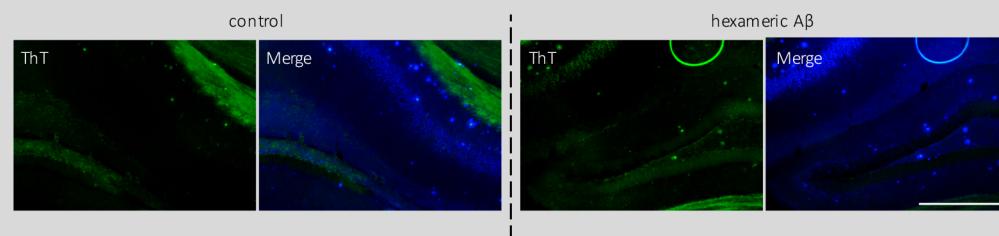
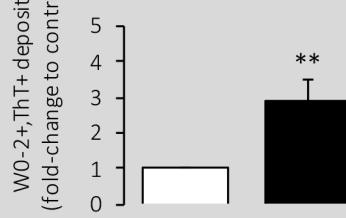
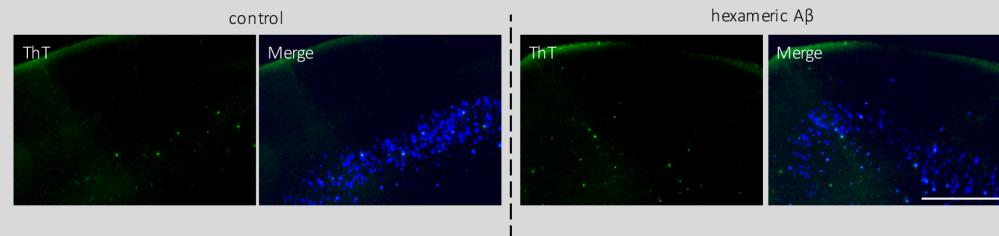
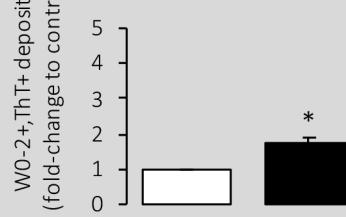
B

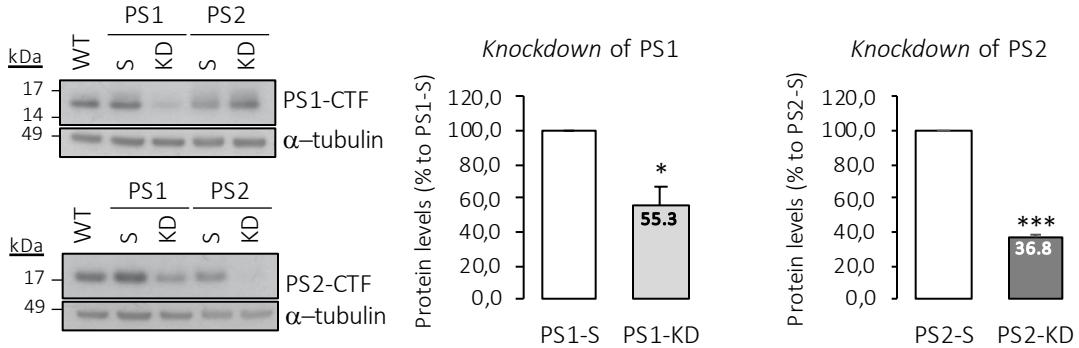
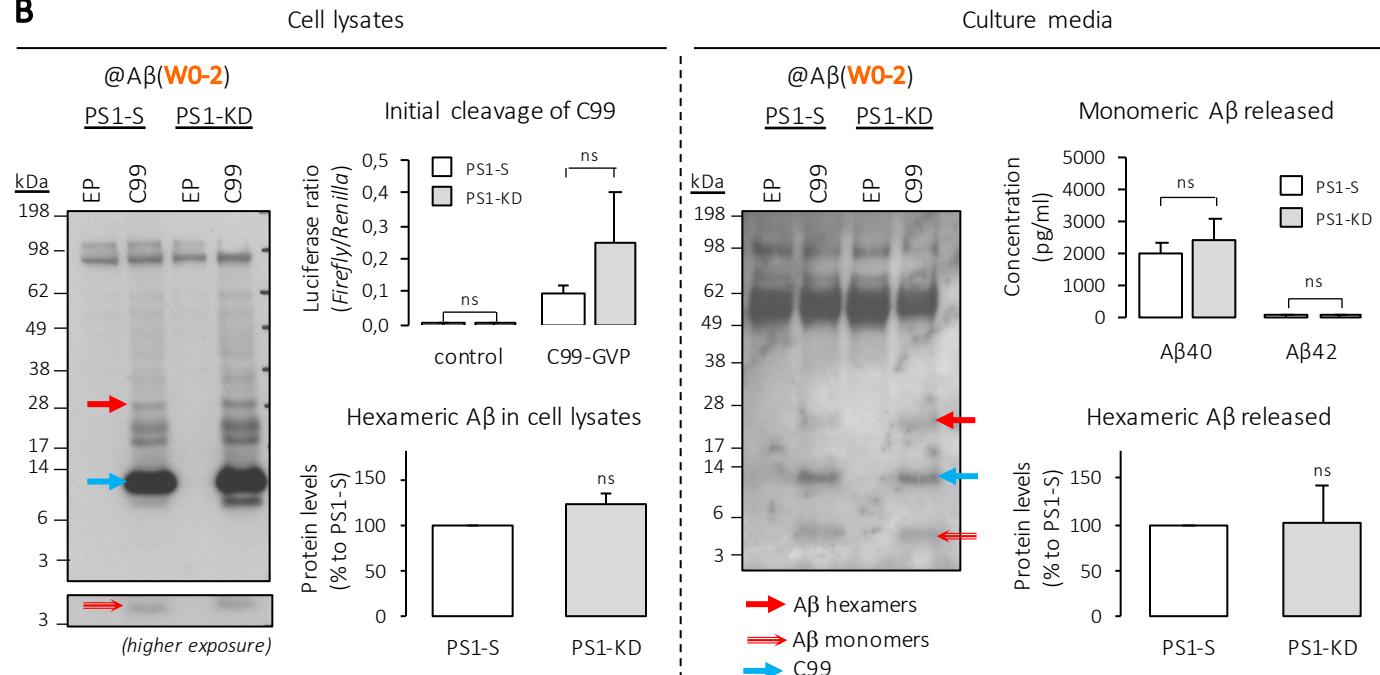
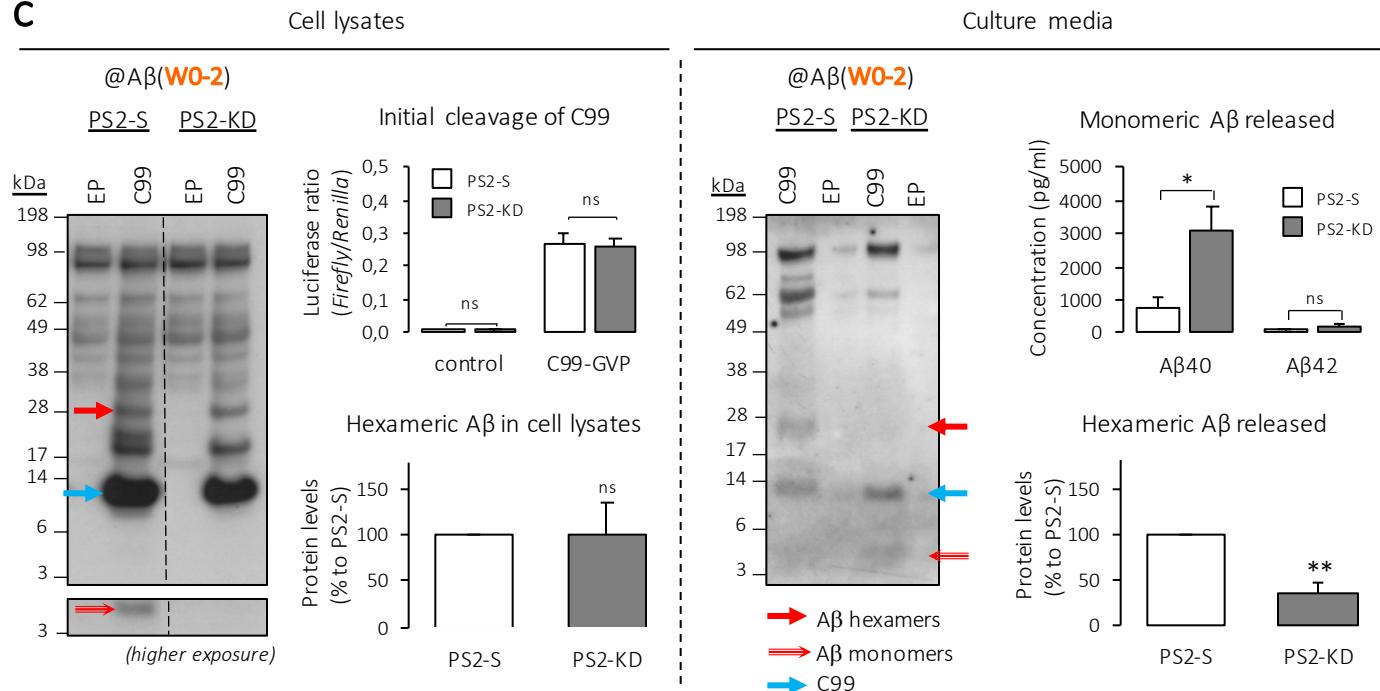

HEK293 cell lysates




HEK293 culture media




C

SH-SY5Y cell lysates










SH-SY5Y culture media

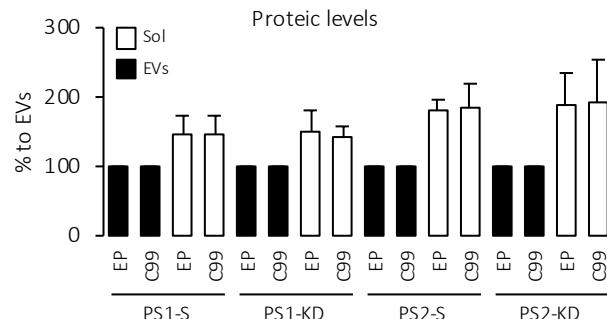
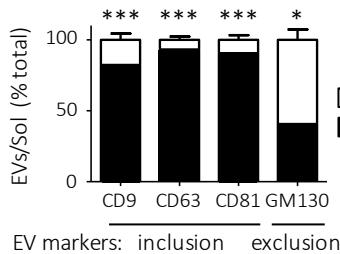
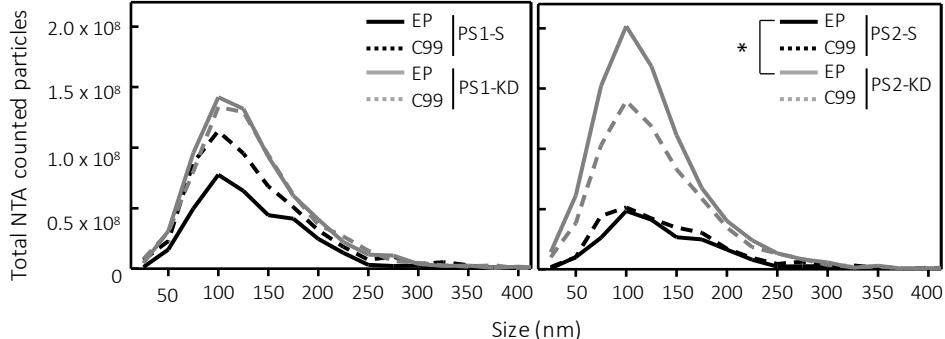
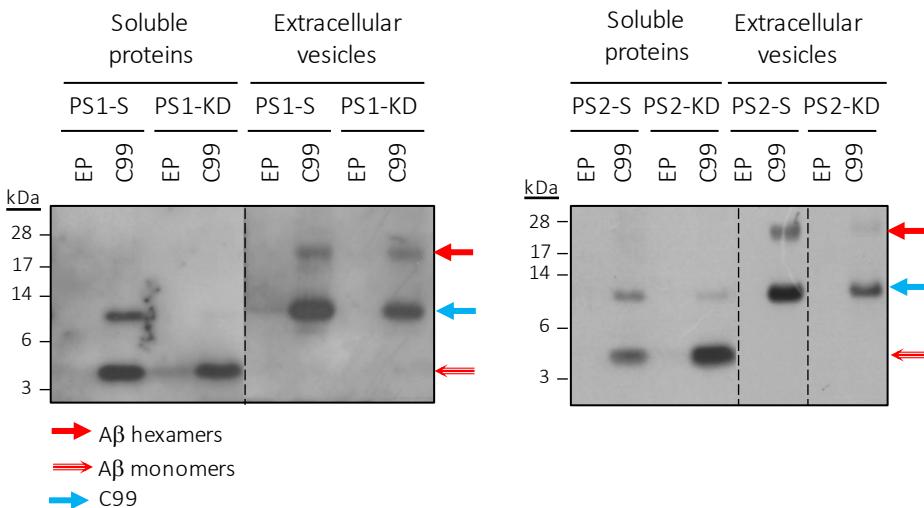




Fig3

Fig4

Fig5

A**B** □ control ■ cell-derived hexameric A β A β deposition in WT mice (full hemisphere)**C** □ control ■ cell-derived hexameric A β A β deposition in 5xFAD mice (full hemisphere)A β deposition in 5xFAD mice (hippocampus)A β deposition in 5xFAD mice (cortex)

Fig6**A****B****C**

Fig7**A****B****C**