

1 **cDC1 and interferons promote spontaneous CD4⁺ and CD8⁺ T cell**
2 **protective responses to breast cancer**

3

4 Raphaël Mattiuz¹, Carine Brousse¹, Marc Ambrosini¹, Jean-Charles Cancel¹, Gilles Bessou¹,
5 Julie Mussard², Amélien Sanlaville², Christophe Caux², Nathalie Bendriss-Vermare², Jenny
6 Valladeau-Guilemond², Marc Dalod^{1*}, Karine Crozat^{1*}

7

8 **Author affiliations:**

9 ¹Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, CNRS,
10 INSERM, Aix Marseille Univ, Marseille, France

11 ²Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon
12 Bérard, Cancer Research Center of Lyon, Lyon, France.

13

14 *Equal contribution and correspondence: Marc Dalod dalod@ciml.univ-mrs.fr, Karine Crozat
15 crozat@ciml.univ-mrs.fr

16

17 **Running title (58 characters):** cDC1 and IFNs promote spontaneous control of breast cancer

18

19 **Keywords:** cDC1, Cancer immuno-surveillance, Interferons, IFN- γ , CD4⁺ T cells, CD8⁺ T cells,
20 breast cancer

21

22 **Conflicts of Interest:** The authors declare no potential conflicts of interest.

23

24 **Manuscript length:** 7 main figures; 6,518 characters for (introduction; materials and
25 methods, results, discussion and figure legends); 52 references.

26 **Synopsis (38 words)**

27 Type 1 conventional dendritic cells cross-present tumor antigens to CD8⁺ T cells.
28 Understanding the regulation of their antitumor functions is important. Cell-intrinsic
29 STAT1/IFN- γ signaling licenses them for efficient CD4⁺ and CD8⁺ T cell activation during
30 breast cancer immunosurveillance.

31

32 **Abstract (219 words)**

33 Here we show that efficient breast cancer immunosurveillance relies on cDC1, conventional
34 CD4⁺ T cells, CD8⁺ cytotoxic T lymphocytes (CTL) and later NK/NK T cells. For this process,
35 cDC1 were required constitutively, but especially during the T cell priming phase. In the tumor
36 microenvironment, cDC1 interacted physically and jointly with both CD4⁺ T cells and tumor-
37 specific CD8⁺ T cells. We found that interferon (IFN) responses were necessary for the rejection
38 of breast cancer, including cDC1-intrinsic signaling by IFN- γ and STAT1. Surprisingly, cell-
39 intrinsic IFN-I signaling in cDC1 was not required. cDC1 and IFNs shaped the tumor immune
40 landscape, notably by promoting CD4⁺ and CD8⁺ T cell infiltration, terminal differentiation
41 and effector functions. XCR1, CXCL9, IL-12 and IL-15 were individually dispensable for
42 breast cancer immunosurveillance. Consistent with our experimental results in mice, high
43 expression in the tumor microenvironment of genes specific to cDC1, CTL, helper T cells or
44 interferon responses are associated with a better prognosis in human breast cancer patients. Our
45 results show that immune control of breast cancer depends on cDC1 and IFNs as previously
46 reported for immunogenic melanoma or fibrosarcoma tumor models, but that the underlying
47 mechanism differ. Revisiting cDC1 functions in the context of spontaneous immunity to cancer
48 should help defining new ways to mobilize cDC1 functions to improve already existing
49 immunotherapies for the benefits of patients.

50 **Introduction**

51 Conventional dendritic cells (cDC) are specialized in antigen (Ag) capture, processing and
52 presentation for T cell priming (1). cDC are present in lymphoid organs and peripheral tissues.
53 Lymphoid resident-cDC (Res-cDC) of the spleen and lymph nodes (LNs) participate in the
54 capture of Ag from blood and lymph respectively. cDC in non-lymphoid tissues capture Ag at
55 the periphery and migrate to the LNs via the afferent lymphatic vessels. cDC encompass two
56 distinct cell types. Type 1 cDC (cDC1) excel in cytotoxic CD8⁺ T cell (CTL) activation,
57 particularly via Ag cross presentation (2-4). Type 2 cDC (cDC2) are particularly effective for
58 helper CD4⁺ T cell activation (1).

59 Previous studies suggested that cDC1 play a non-redundant role in anti-tumor immunity, both
60 for spontaneous control of syngeneic tumor grafts used as a surrogate model for cancer
61 immunosurveillance, and for rejection of established tumors upon immunotherapy (5,6). Yet,
62 most of these studies used mutant mice whose deficiencies were not affecting exclusively
63 cDC1. *Irf8* deficiency in CD11c-expressing cells also affected the differentiation and functions
64 of plasmacytoid dendritic cells (7) and inflammatory cDC2 (8). *Batf3* knock-out does not only
65 abrogate cDC1 differentiation (9) but was also recently shown to enhance CD4⁺ regulatory T
66 cell (Treg) induction (10) and to hamper CTL survival and memory (11,12) in a cell-intrinsic
67 manner. Hence, mouse models targeting cDC1 with a higher specificity are mandatory to
68 investigate whether and how they contribute to antitumor immunity (11). This is the case of
69 mice knocked-in for the Cre recombinase in the *Xcr1* locus (13).

70 A number of key features of cDC1 are proposed to contribute to their critical role in antitumor
71 immunity, beyond their efficiency at cross-presenting cell-associated antigens (5,6). cDC1 may
72 have the unique ability to simultaneously deliver to CTLs a series of complementary output
73 signals ensuring their optimal response. CXCL9 attracts CXCR3-expressing memory or
74 effector CTLs to the tumors. IL-12 production and IL-15 trans-presentation promote CTL IFN-

75 γ expression and proliferation. cDC1 could also promote delivery to CTLs of help from other
76 immune cells including CD4 $^{+}$ T cells (5,14). However, which of these output signals are critical
77 for cDC1 antitumor immunity remains to be rigorously investigated (5,15).

78 The antitumor functions of cDC1 has been proposed to depend on their integration of specific
79 input signals, instructing them to deliver the right output signals to CTLs. cDC1 recruitment
80 into the tumor bed can be promoted by engagement of their chemokine receptor Xcr1 (16),
81 whose ligand Xcl1 is produced by activated NK cells and CTLs (17). Triggering of the receptor
82 for type I interferons (IFNAR) on cDC1 is necessary for rejection of immunogenic melanoma
83 and fibrosarcoma by promoting Ag cross-presentation (18,19). It also boosts their expression
84 of co-stimulation molecules, induces their trans-presentation of IL-15, and can promote their
85 production of IL-12 (5,20). However, whether these input signals are always required by cDC1s
86 for their antitumor functions is unknown. Moreover, to which extent and how different types of
87 interferons promote the immunogenic maturation of cDC1, not only IFN-I but also IFN-III or
88 IFN- γ , remains to be formally investigated.

89 Here, we studied whether cDC1 promote spontaneous immunity to breast cancer, and when,
90 where and how this is achieved. To this aim, we used a mouse model of spontaneous immune
91 control of breast cancer in C57BL/6 female mice, consisting of an orthotopic graft of a subclone
92 of the NOP23 syngeneic breast adenocarcinoma cell line expressing epitopes from the
93 ovalbumin (OVA) model antigen (21). This experimental system enabled us to study the
94 cellular and molecular mechanisms underpinning spontaneous immune control of breast cancer,
95 by harnessing the *Karma-tmt-hDTR* (22), *Xcr1-DTA*, *Xcr1*^{Cre} and *Karma*^{Cre} (13) mutant mouse
96 models that we have generated and validated to specifically target cDC1, in combination with
97 other mutant C57BL/6 mice.

98

99 **Materials and Methods**

100 **Ethics statement regarding care and use of animals for experimentation**

101 Mice were bred and maintained the CIPHE pathogen-free animal facility. The study was carried
102 out in accordance with institutional guidelines and with protocols approved by the Comité
103 National de Réflexion Ethique sur l'Expérimentation Animale #14 and the Ministère de
104 l'Enseignement Supérieur, de la Recherche et de l'Innovation (ROXinAIR APAFiS #1221 and
105 #16555).

106

107 **Mice and in vivo treatments**

108 All experiments were performed with female littermate mice at 7–15 weeks of age. The mouse
109 strains used are all on the C57BL/6J background and listed in Table S1. For a sustained and
110 efficient cDC1 conditional depletion for at least 10 consecutive days, *Karma-tmt-hDTR* and
111 *Xcr1*^{Cre/wt}; *Rosa26*^{hDTR/wt} mice received a first dose of 32 ng/g of body weight of DT (Merck),
112 followed by one injection of 16 ng/g every 60h. For *in vivo* antibody-mediated cell depletion,
113 C57BL/6 mice were injected i.p. with the antibody and doses indicated in Table S2, starting 1d
114 before tumor engraftment and then as indicated in the figures. To block lymphoid cell egress
115 from peripheral lymphoid organs, mice received 20 µg of FTY720 (Cayman Chemical) starting
116 1d before tumor engraftment, then every 2d.

117

118 **Tumor experiments**

119 We used a breast adenocarcinoma tumor cell line that is spontaneously rejected when
120 orthotopically implanted in C57BL/6 females. It was derived from the NOP23 cell line, which
121 was established from a spontaneous mammary tumor of a transgenic mouse expressing a
122 dominant negative version of p53 and the rat NEU (HER2) oncogene fused at its COOH
123 terminus to class I and II OVA peptide sequences (21). NOP23 cells were grown in DMEM,

124 10% FCS, supplemented with 10mg/ml of Insulin transferrin Sodium Selenite media
125 supplement (Sigma-Aldrich). 5.10^6 NOP23 cells were injected in the mammary inguinal fat
126 pad, under isoflurane anesthesia. Tumor volume was calculated as $\frac{\pi}{6} \times L \times W^2$, where L is the
127 greatest length and W is the width of the tumor, measured with a caliper. Graphs of tumor
128 volume are represented as mean+/-SEM.

129

130 **Shield bone marrow chimera mice**

131 To generate $Ifngr1^{-/-} \rightarrow Xcr1$ -DTA and $Stat1^{-/-} \rightarrow Xcr1$ -DTA shield bone marrow chimera
132 (SBMC) mice, the hind legs of $Xcr1$ -DTA recipient mice were irradiated with one dose of 8
133 Gy, to preserve most of their hematopoietic system that remained WT. The cDC1 empty niche
134 of these recipient mice was then reconstituted upon injection of 30.10^6 bone marrow cells from
135 $Ifngr1^{-/-}$ or $Stat1^{-/-}$ donor mice. $Xcr1$ -DTA $\rightarrow Xcr1$ -DTA and WT $\rightarrow Xcr1$ -DTA SBMC mice were
136 used as controls. NOP23 cells were engrafted 8 to 14 weeks later.

137

138 **Preparation of cell suspension from tumors and TdLNs for flow cytometry**

139 Tumors and tumor-draining inguinal LNs (TdLNs) were cut into small pieces with a scalpel
140 and incubated in a Collagenase D (1 mg/ml)/ of DNase I (70 μ g/ml) enzymatic cocktail (Roche)
141 in RPMI, for 30min at 37°C. Ice-cold PBS/EDTA (2 mM) was added for 5 min. Digested tissues
142 were crushed through a 70 μ m nylon sieve. For flow cytometry, cells were pre-incubated with
143 2.4G2 mAb to block Fc-receptors, then stained with the mAb listed in Table S2 for 25 min at
144 4°C. Class-I OVA Tetramer (iTAG Tetramer/PE - H-2 Kb OVA [SIINFEKL], MBL
145 International) was incubated at 1/100 at 4°C for 1 hour, and Class-II OVA Tetramer (T-Select
146 I-Ab OVA323-339 [ISQAVHAAHAEINEAGR] Tetramer-APC, MBL International) at 1/12.5
147 at room temperature for 1 hour, before proceeding to staining with mAbs. For CCR7 staining,
148 cells were incubated for 30 min at 37°C. For intracellular staining, cells were re-stimulated *ex*

149 *vivo* for 4h at 37°C with 0.5 µg/ml of SIINFEKL peptide and 10 µg/ml of Brefeldin A (Sigma-
150 Aldrich) in complete RPMI. Cytokines, Ki67 and FoxP3 were stained after
151 fixation/permeabilization with FoxP3/Transcription Factor Staining Buffer Set (eBioscience).
152 Data were acquired on a LSRFortessa X-20 flow cytometer (BD Biosciences), and analyzed
153 using FlowJo (Tree Star, Inc.). Flow cytometry heatmaps were performed using the Morpheus
154 website from the Broad Institute (<https://software.broadinstitute.org/morpheus/>).

155

156 **Immunohistofluorescence**

157 1,000 naive GFP-expressing OT-I cells were purified from a *Tg^{TcrαTcrβ1100Mjb};Rag2^{-/-};Ubc-*
158 *GFP^{+/+}* spleen with the Dynabeads Untouched Mouse CD8 Cells Kit (ThermoFisher Scientific)
159 and transferred i.v. in *Xcr1^{Cre/wt};Rosa26^{tdRFP/wt}* mice 1d before tumor engraftment. 7d after,
160 tumors were harvested and 12-µm frozen sections were stained with the antibodies listed in
161 Table S2, as described previously (23).

162

163 **Quantitative PCR analysis**

164 Total RNA from tumors and TdLNs were prepared with the RNeasy Plus mini kit (QIAGEN).
165 RNA was reverse transcribed into cDNA using the QuantiTect reverse transcription kit
166 (QIAGEN). qPCR was performed with the SybrGreen kit (Takara) and specific primers (Table
167 S3), and run on a 7500 Real Time PCR System apparatus (Applied Biosystems). Relative gene
168 expression was calculated using the $\Delta\Delta Ct$ method with *Hprt* as housekeeping control gene.

169

170 **Transcriptomic data from breast cancer patients**

171 *XCR1* Kaplan Meier plot was obtained from the Kaplan Meier-plotter database
172 (<https://kmplot.com/analysis/>), and *CCR7* and *CCL19* Kaplan Meier plots from The Cancer
173 Genome Atlas (TCGA) database. Transcripts enriched in tumors of breast cancer patients with

174 a better overall survival (367 genes) or with a poor prognosis (210 genes) from TCGA were
175 extracted through the human protein atlas
176 (<https://www.proteinatlas.org/humanproteome/pathology>). A gene is considered prognostic if
177 correlation analysis of gene expression and clinical outcome resulted in Kaplan-Meier plots
178 with high significance ($p<0.001$). The gene ontology analyses on the good and bad prognosis
179 gene lists were performed with DAVID 6.8 (<https://david.ncifcrf.gov/>).

180

181 **Statistical analyses**

182 Statistical analyses were performed using unpaired Student's *t*-tests or nonparametric Mann-
183 Whitney tests (MW) when specified. N.S., non-significant ($P>0.05$); *, $P\leq 0.05$; **, $P\leq 0.01$;
184 ***, $P\leq 0.001$, ****, $P\leq 0.0001$.

185

186

187

188 **Results**

189 **CTL, CD4⁺ T_{conv} and NK1.1⁺ cells are instrumental to rejection of NOP23 mammary
190 tumors.**

191 We first investigated whether T or NK cells were providing the effector arm of the spontaneous
192 rejection of the NOP23 breast adenocarcinoma cells in C57BL/6J females. Tumor rejection was
193 abolished by continuous depletion of CTLs or of NK1.1⁺ cells (*i.e.* NK cells and a fraction of
194 NKT cells) (**Fig. 1A**). However, the anti-NK1.1 mAb-mediated depletion showed a delayed
195 and milder effect than CTL depletion. Continuous depletion of all CD4⁺ T cells also abrogated
196 tumor control (**Fig. 1B**), whereas this was not the case of the selective depletion of intra-tumor
197 Treg as achieved with administration of the anti-CTLA-4 clone 9D9 (24). Thus, CTLs, CD4⁺
198 conventional T cells (T_{conv}) and NK/NK T cells are required for NOP23 tumor rejection.

199

200 **cDC1 are critical for breast cancer control, especially during the T cell priming phase.**

201 We next examined, whether and when cDC1 depletion compromised the immune control of
202 NOP23 growth, by taking advantage of our mutant mouse models specifically targeting cDC1.
203 The *Xcr1*^{Cre/wt}; *Rosa26*^{DTA/wt} (*Xcr1-DTA*) model (Mattiuz et al., 2018) harbored a constitutive
204 and complete lack of all cDC1 in the spleen and IngLNs (**Fig. S1A-B**). The
205 *Xcr1*^{Cre/wt}; *Rosa26*^{hDTR/wt} (*Xcr1-hDTR*) mouse model allowed conditional depletion of cDC1 in
206 spleen, and of Mig-cDC1 and Res-cDC1 in the inguinal lymph nodes (IngLNs), for at least 2
207 days following the administration of a single dose of diphtheria toxin (DT) (**Fig. S1A-B**),
208 similarly to the *Karma-tmt-hDTR* (*Karma*) mice (Alexandre et al., 2016). None of the other
209 immune cell types examined in the spleen and IngLNs were affected in these mice (**Fig. S1C**).
210 *Xcr1-DTA* mice harbored a progressive and unabated growth of NOP23 as compared to control
211 WT animals (**Fig. 2A**), demonstrating that cDC1 are necessary to efficiently reject this breast

212 adenocarcinoma. To determine when cDC1 were required to promote this rejection, we
213 conditionally depleted these cells in *Karma* mice during different time windows relative to
214 tumor engraftment (**Fig. 2A**). The earlier the depletions were initiated, the stronger the tumors
215 grew. However, the tumors never grew as strongly as in the *Xcr1-DTA* mice that are
216 constitutively devoid of cDC1 (**Fig. 2A-B**). TdLN mig-cDC1 showed a high expression of the
217 co-stimulatory molecules CD40 and CD86 at day 4 post-engraftment, as compared to Res-
218 cDC1 or to Mig-cDC1 on any other days (**Fig. 2C**). In summary, cDC1 were required
219 continuously until tumor rejection, but their presence was especially critical during the first 4
220 days after tumor engraftment, most likely during the phase of T cell priming.

221

222 **CCR7- and S1PR1-dependent immune cell trafficking is instrumental to NOP23 rejection.**
223 At day 7 post-engraftment, CCR7 was upregulated on cDC1 that had migrated from the
224 periphery into the TdLN (**Fig. S2A**). We thus investigated whether CCR7-dependent immune
225 cell trafficking was critical for NOP23 rejection. In *Ccr7*^{-/-} mice, the NOP23 tumor grew
226 uncontrolled (**Fig. S2B**). Blocking lymphocyte egress from secondary lymphoid organs with
227 the sphingosine-1-phosphate receptor (S1PR1) inhibitor FTY720 (25) also abrogated
228 spontaneous tumor control (**Fig. S2C**). It reduced intra-tumor infiltration of lymphocytes as
229 compared to control animals or to mice depleted of CTLs or NK1.1⁺ cells (**Fig. S2D**). Taken
230 together, these results suggested that two-way traffic of immune cells between the periphery
231 and TdLN was critical for the establishment of an effective endogenous anti-tumor immune
232 response within the TME.

233

234 **cDC1 interact with CD4⁺ T cells and tumor-specific CTLs in the TME.**

235 Because cDC1, CTL and CD4⁺ T_{conv} were all critical to trigger NOP23 rejection, we wondered
236 whether cDC1 interacted with T cells in the TME. To follow the behavior of Ag-specific CTLs

237 in our experimental models, 1d before tumor engraftment we adoptively transferred low
238 numbers (1,000) of naïve GFP-expressing OT-I cells into *Xcr1*^{Cre/wt}; *Rosa26*^{tdRFP/wt} mice that
239 allow in situ visualization of cDC1 by microscopy due to their specific expression of the RFP
240 fluorescent reporter protein (**Fig. S3**). At d7 in the tumor bed, RFP⁺ cDC1 were engaged in cell-
241 cell contacts with both CD4⁺ T cells and anti-tumor CTLs, in close proximity to the HER2⁺
242 NOP23 cells (**Fig. 3**). This suggested that, in the tumor stroma, cDC1 simultaneously cross-
243 presented tumor Ags to CTLs and relayed them the CD4⁺ T_{conv} help.

244

245 **CXCL9 and IL-12 production by cDC1, as well as their trans-presentation of IL-15, are**
246 **individually dispensable for the immune control of NOP23 tumors.**

247 To dissect how cDC1 promoted spontaneous immune control of NOP23, we first tested the
248 candidate molecules CXCL9, IL-12 and IL-15, which had been proposed to be key output
249 signals delivered by cDC1 to T or NK/NK T cells for their recruitment in the tumor or the
250 activation of their effector functions (5). The NOP23 tumors were controlled in *Cxcl9*^{-/-}, *Il12b*^{-/-}
251 and *Il15ra*^{-/-} mice as efficiently as in control mice (**Fig. 4A**). Consistent with these results,
252 conditional inactivation of *Cxcl9* or *Il15ra* in cDC1 had no impact on tumor growth (**Fig. S4**).
253 Thus, CXCL9 or IL-12 production and IL-15 transpresentation by cDC1 were not required
254 individually for breast cancer rejection in our experimental settings.

255

256 **IFN-I and IFN- γ responses, but not XCR1, are necessary for NOP23 tumor control.**

257 We next sought to identify the input signals received by cDC1 and promoting their anti-tumor
258 functions. *Xcr1*^{-/-} mice efficiently controlled the NOP23 tumor cells (**Fig. 4A**). Hence, XCR1-
259 dependent recruitment of cDC1 to the tumor bed (16) or micro-anatomical attraction to XCL1-
260 producing effector lymphocytes within the tissue (23) was not necessary for breast tumor
261 elimination in our experimental settings. To assess functionally the importance of IFN-I and

262 IFN- γ signaling in NOP23 control, we compared tumor growth between WT animals and
263 *Ifnar1*^{-/-}, *Ifngr1*^{-/-} or *Stat1*^{-/-} mice, respectively lacking the ability to respond to IFN-I, to IFN- γ
264 or to all types of IFNs including type III IFNs (IFN-III). All three mutant mice failed to control
265 tumor growth, with a more pronounced effect in *Stat1*^{-/-} mice (Fig. 4B). Thus, both IFN-I and
266 IFN- γ were promoting antitumor immunity in the NOP23 breast cancer model. The analysis of
267 the kinetics of induction of the *Ifna4*, *Ifna2* and *Ifnb1* genes and of interferon-stimulated genes
268 (ISGs) showed that IFN-I responses were induced in the tumor within the first day after
269 engraftment before rapidly decreasing, while they remained generally low in the TdLNs (Fig.
270 4C and Fig. S5). Conversely, *Ifng* expression increased gradually over time and was higher in
271 the TdLNs than in the tumors (Fig. 4C). These results suggested that distinct IFNs and ISGs
272 could have complementary roles at different times and locations to initiate and maintain
273 protective anti-tumor immune responses.

274

275 **The anti-tumor protective effects of IFN- γ and STAT1 occur at least in part in cDC1,
276 whereas cDC1-intrinsic signaling by IFN-I is dispensable for NOP23 control.**

277 We next investigated whether the protective antitumor roles of IFNs were at least in part due to
278 cell-intrinsic effects on cDC1s. NOP23 cells were efficiently rejected in *Xcr1*^{Cre}; *Ifnar1*^{fl/fl} and
279 *Karma*^{Cre/wt}; *Ifnar1*^{fl/fl} mice that are deficient for IFN-I responsiveness selectively in cDC1 (Fig.
280 4D and S6A). Moreover, cDC1 maturation and tumor-specific CTL activation in tumors of
281 *Xcr1*^{Cre}; *Ifnar1*^{fl/fl} mice were similar to those in control tumors (Fig. S6B-C). Thus, in our
282 experimental settings, cDC1-intrinsic signaling by IFN-I was dispensable for NOP23 control.
283 To determine whether IFN- γ or overall IFN responses in cDC1 were critical for their promotion
284 of NOP23 rejection, we generated shield bone marrow chimera (SBMC) mice deficient
285 selectively in cDC1 for key components of the corresponding signaling pathways, namely
286 *Ifngr1*^{-/-} → *Xcr1-DTA* and *Stat1*^{-/-} → *Xcr1-DTA* animals. Tumors grew progressively in *Ifngr1*^{-/-}

287 →*Xcr1-DTA* SBMC mice, but to a lower extent than in *Stat1*^{-/-}→*Xcr1-DTA* SBMC mice that
288 harbored a progressive and unabated tumor growth, like *Xcr1-DTA* animals and *Xcr1-*
289 *DTA*→*Xcr1-DTA* SBMC mice (**Fig. 4E**). Thus, the beneficial antitumor effects of IFN-γ and
290 STAT1 signaling occurred at least in part in cDC1.

291 Compared to controls, Mig-cDC1 from *Ifnar1*^{-/-} and *Ifngr1*^{-/-} TdLNs expressed less CCR7, and
292 their Res-cDC1 were less mature with a decrease in CD40, CD80 and CD86 expression (**Fig.**
293 **4F**), contrasting with a higher expression of CD40 on Res-cDC2 at d4-7, and of CD80 on Mig-
294 cDC2 at d7 (**Fig. 4F**). cDC1 expressed less CD40 in the tumors from *Ifnar1*^{-/-} and *Ifngr1*^{-/-} mice
295 at d15 (**Fig. 4G**). This suggested that loss of IFN responses led to a defective cDC1 maturation
296 in the tumor and TdLNs, with a compensatory increase in cDC2 maturation that was not
297 sufficient to maintain protective antitumor immunity.

298

299 **cDC1 and IFNs promote the infiltration of the tumor and its draining lymph node by**
300 **protective over putatively deleterious immune cell types**

301 To better understand the respective roles of cDC1 and IFNs in the anti-tumor response, we
302 quantified different immune populations in control, *Ifnar1*^{-/-}, *Ifngr1*^{-/-} and *Xcr1-DTA* tumor at
303 d4, d7 and d15 (**Fig. 5** and **S7A**). The overall immune cell infiltration in the tumors increased
304 between d4 and d7, the highest in WT mice as compared to mutant animals, and later decreased
305 in all mice (**Fig. 5A**). At d4, the major difference observed between mutant mice and WT
306 controls was a decrease in cDC1 (**Fig. 5B**). At this stage, the tumor was mainly infiltrated in all
307 mouse strains by neutrophils, macrophages and γδ T lymphocytes identified as CD8⁻ CD4⁻
308 CD3ε⁺ cells (**Fig. S7A**). At day 7, the proportion of cDC1 and NK cells within immune cells
309 remained lower in mutant animals as compared to WT mice (**Fig. 5B-C** and **S7A**). In contrast,
310 the immune infiltrate from the tumors of mutant animals harbored increased proportion of Lin⁻
311 Siglec-H⁻ CD64⁻ CD11c⁺ MHC-II⁻ cells (**Fig. 5D** and **S7A**), corresponding most likely to DC

312 precursors (26) or immature DC. As compared to WT controls, the mutant mice showed a slight
313 decrease in CD8⁺ T cell proportion at d7 (**Fig. 5D-E** and **S7**), and a marked decrease in the
314 proportions of CD4⁺ T cells mostly at d7 (**Fig. 5D, F** and **S7**). The delayed tumor growth
315 observed upon NK1.1⁺ cell depletion as compared to CTL depletion (**Fig. 1A**) was consistent
316 with the late infiltration of the tumor by NK cells (**Fig. 5C**) and NK T cells (**Fig. 5G**) as
317 compared to T cells (**Fig. 5E-F**). The fraction of activated (CD44⁺) CTLs in the immune
318 infiltrates remained lower in all mutant animals (**Fig. 5D** and **S7**). This was also the case for the
319 fraction of CD4⁺ T cells in *Xcr1-DTA* mice (**Fig. 5D, F** and **S7**), and for the fraction of NK cells
320 in *Ifngr1^{-/-}* animals (**Fig. 5C, D** and **S7**). Conversely, at d15, the proportion of neutrophils in
321 the immune infiltrates was much higher in mutant mice than in WT controls (**Fig. 5D**), even
322 though the absolute numbers of neutrophils in tumors decreased sharply over time (**Fig. S7A**).
323 In the TdLNs, the proportion of activated (CD44⁺) CTL was lower at all times in *Xcr1-DTA*
324 and *Ifnar1^{-/-}* mice (**Fig. S7B**). Neutrophils were increased over time in all mutant mice, and
325 monocytes or macrophages in *Xcr1-DTA* and *Ifngr1^{-/-}* mice, as compared to WT animals (**Fig.**
326 **S7B**). Starting at d4, Mig-cDC1 accumulated less in *Ifnar1^{-/-}* and *Ifngr1^{-/-}* mice than in WT
327 animals (**Fig. S7B**). Conversely, the proportion of Mig-cDC2 increased over time (**Fig. S7B**).
328 This suggested that the early migration of cDC1 from the tumor to the TdLN is IFN-dependent
329 and that its absence leads to a compensatory phenomenon of increased cDC2 migration from
330 the tumor to the TdLN.
331 Altogether, these results showed that IFNs and cDC1 contributed to sculpt the immune
332 composition of the tumor and TdLN by promoting a higher ratio of protective immune cells,
333 not only NK and CTL but also CD4⁺ T_{conv}, over potentially deleterious myeloid cells including
334 macrophages and neutrophils. IFN effects on the tumor immune infiltration may have occurred
335 in part indirectly through promoting early cDC1 recruitment.

336

337 **cDC1 and IFNs are necessary for CD4⁺ T_{conv} and CTL terminal activation and effector
338 functions in the TME**

339 We then focused on tumor-specific (Tetramer⁺) CD4⁺ T cells and CTL responses. Their
340 proportions within tumor-infiltrating immune cells did not differ between experimental groups
341 (**Fig. 6A**). As compared to total T cells, tumor-infiltrating Tetramer⁺ T cells expressed higher
342 levels of the checkpoint receptors PD-1, Tim-3 or LAG3 (**Fig. 6B** and **S8**), whose individual
343 expression has been shown to peak at maximal effector phase and reflect CTL activation rather
344 than exhaustion (27,28). Tumor-infiltrating Tetramer⁺ CD4⁺ T cells or CTLs harbored
345 decreased percentages of PD-1⁺ or Tim-3⁺ cells in mutant mice as compared to control animals,
346 suggesting an incomplete effector differentiation (**Fig. 6B** and **Fig. S8**). This was also the case
347 for Tetramer⁺ CTLs in TdLN (**Fig. S9**). The co-expression on the same cell of multiple
348 checkpoint receptors, such as PD-1, Tim-3 and LAG3, has been proposed to define functionally
349 exhausted or dysfunctional lymphocytes (27). The proportion of triple-positive cells were very
350 low on both total and Tetramer⁺ T lymphocytes in all mouse strains, suggesting that the vast
351 majority of anti-tumor T cells were not exhausted (**Fig. S10**). Altogether, these results showed
352 that cDC1 and IFNs were essential to promote CTL and CD4⁺ T cell effector differentiation in
353 the tumor and TdLNs.

354 We next compared mouse strains for the ability of their tumor- or TdLN-associated T cells to
355 expand and to produce cytokines upon *ex vivo* Ag-specific re-stimulation. Tumor-infiltrating
356 naïve (CD44⁻) and activated (CD44⁺) T_{conv} and CTLs proliferated less in mutant mice than in
357 control animals (**Fig. 6B**). Activated (CD44⁺) CTLs expressed less Granzyme B, IFN- γ and
358 TNF in mutant mice than in control animals, at all-time points examined in the tumor (**Fig. 6B**)
359 and at day 7 in TdLN (**Fig. 6C**). Altogether, these results showed that IFNs and cDC1 in tumor
360 and TdLN contributed to promote the terminal differentiation of anti-tumor CTLs and CD4⁺
361 T_{conv} for the acquisition of protective effector functions.

362

363 **Genes associated to cDC1, CTLs, helper T cells, IFN-I and IFN- γ are associated with a**
364 **better prognosis in human breast cancer patients**

365 We wanted to know whether the immune cells and signaling pathways associated to the immune
366 control of the mouse NOP23 breast adenocarcinoma model were of good prognosis in breast
367 cancer patients. We used the TCGA database to analyze the transcriptomes of human tumors to
368 infer the degree of their infiltration by cDC1 and its association with the clinical outcome.
369 XCR1 is the only marker fully specific for cDC1 in both mice and humans (17,29). The patients
370 who harbored a high *XCR1* expression in their tumor had a significantly better overall survival
371 (**Fig. 7A**), strongly suggesting that a higher cDC1 infiltration in breast tumors was associated
372 with a better prognosis. Patients whose tumor harbored a higher expression of *CCR7* and of its
373 ligand *CCL19* also had a significantly better overall survival (**Fig. 7B**), suggesting that
374 activation of the CCR7/CCL19 axis in human breast tumors promotes more efficient immune
375 responses as shown in the NOP23 mouse model. Finally, we used gene ontology (GO) to
376 determine whether the gene lists associated with a good (n=367, **Fig. 7C**) or bad (n=210, **Fig.**
377 **S11**) prognosis in breast cancer patients were enriched for associations with specific biological
378 processes or signaling pathways. The GO terms enriched in the gene list associated to a good
379 prognosis were linked to the activation and helper or cytotoxic functions of T cell responses as
380 well as to IFN-I and IFN- γ signaling pathways (**Fig. 7C**). Conversely, the GO terms associated
381 to the bad prognosis gene list were linked to mitochondria and translation, likely reflecting
382 active metabolism and proliferation of tumor cells (**Fig. S11**). In conclusion, these analyses
383 strongly suggested that cDC1, CD4⁺ T cells, CTLs, NK cells and IFNs play together a crucial
384 role in the immune control of breast cancer, not only in the NOP23 mouse model but also in
385 human patients.

386

387 **Discussion**

388 Here, we investigated whether and how cDC1 promote the spontaneous control of breast cancer
389 in mice, by combining mutant animals enabling specific targeting of cDC1 *in vivo* with an
390 orthotopic model of engraftment of the syngeneic breast adenocarcinoma cell line NOP23.
391 Specifically, we investigated how tumor growth and the nature of the immune infiltrate in the
392 tumor or its draining lymph node were affected by a specific, constitutive or conditional,
393 depletion of cDC1, or by the genetic inactivation of candidate input or output signals
394 specifically in cDC1.

395

396 We showed unequivocally that cDC1 were required for the CTL-dependent control of the
397 NOP23 breast adenocarcinoma, throughout the entire antitumor immune response, but
398 especially very early on at the time when anti-tumor T cells are primed. We then wondered
399 which molecular mechanisms promoted cDC1 infiltration into the tumor, and their later
400 migration to the draining lymph node. CXCL9 has been proposed to promote infiltration of pre-
401 cDC1 in the tumor bed (30). XCR1 expression by cDC1 can contribute to their recruitment by
402 XCL1-producing NK/NK T cells and CTLs in infected tissues (23,31). However, neither XCR1
403 nor CXCL9 were individually required for this function in the NOP23 model. Hence, different
404 chemokine receptors may redundantly promote cDC1 recruitment into the tumor bed, close to
405 effector lymphocytes, as observed for XCR1 and CCR5 in melanoma or colorectal tumors in
406 mice (16). The lack of tumor control in *Ccr7*^{-/-} mice could reflect at least in part a strict
407 requirement of this chemokine receptor for cDC1 migration from the tumor to the TdLNs, as
408 previously suggested in a model of melanoma (32).

409

410 We then investigated the role of candidate output signals delivered by cDC1 for the promotion
411 of the recruitment of cytotoxic lymphocytes to the tumor and for the activation of their anti-

412 tumor functions. In microbial infections, cDC1 production of high levels of CXCL9 promote
413 the recruitment of effector and memory CTLs expressing CXCR3 in secondary lymphoid
414 organs (22). This has been proposed to be also the case in tumors (33-35). cDC1 are also a
415 major source of IL-12 and IL-15 promoting activation, survival and cytotoxic functions of NK
416 cells and CTLs (22,34-40). However, CXCL9 and IL-12 production as well as IL-15 trans-
417 presentation by cDC1 were individually dispensable for the immune control of the NOP23
418 breast adenocarcinoma. These results suggest a level of redundancy higher than expected
419 between different types of output signals delivered by cDC1. Indeed, CXCL9 and CXCL10 can
420 both promote the recruitment of CXCR3-expressing effector or memory CTLs in inflamed
421 tissues. In our experimental settings, IL-12, IL-15, IL-18 and IFN-I/III or other cytokines might
422 exert overlapping effects for promoting the proliferation, IFN- γ production and cytotoxic
423 activity of NK and CTLs, as had been reported during certain microbial infections (41,42).

424

425 Finally, we sought to identify key input signals required for cDC1 to mediate protective
426 antitumor effects. During microbial infections, the induction of protective NK and T cell
427 responses critically depends on the immunogenic maturation of cDC1, which is driven at least
428 in part by their responses to IFN-I (20) or IFN- γ (22,43,44). Here, we showed that overall IFN-
429 I, IFN- γ and STAT1 responses were critical for rejection of the NOP23 breast adenocarcinoma.
430 Only IFN- γ and STAT1 responses were required to occur in cDC1, whereas cell-intrinsic
431 response to IFN-I in cDC1 were dispensable for tumor rejection. Hence, we show here that
432 IFN-I is not always critical for enhancing cDC1 cross-presentation and more generally for
433 licensing them to promote tumor control. This raises the question of the extent to which cDC1-
434 intrinsic IFN-I signaling is critical for effective immunity against cancer, besides for immune-
435 mediated rejection of syngeneic and immunogenic fibrosarcoma and melanoma in mice (18,19).
436 However, cDC1-specific inactivation of *Stat1* led to a higher tumor growth than the loss of IFN-

437 γ signaling alone, suggesting some level of redundancy between these two activation pathways
438 for the promotion of cDC1 immunogenic maturation. STAT1 is also key in transducing the
439 signal of IFN-III, whose expression is associated with a better prognosis for breast cancer
440 patients, together with the level of cDC1 infiltration in the tumor (45). Moreover, cDC1 are a
441 main source of IFN-III in human breast tumors (45). Hence, it would be interesting in future
442 studies to investigate whether cDC1 produce, and respond to, IFN-III in the NOP23 breast
443 adenocarcinoma model, and how this may contribute to the spontaneous rejection of the tumor.
444 It will also be interesting to investigate whether further boosting cDC1 development and IFN-
445 III production could help improve immune responses against triple negative breast cancer,
446 similarly to what was recently reported in a therapeutic vaccination trial in human melanoma
447 patients (46). Since overall IFN-I responses but not cDC1 responses to IFN-I were essential for
448 the immune control of the NOP23 breast adenocarcinoma, IFN-I must exert critical effect on
449 other immune cells, likely CTL themselves as was reported in microbial infections (42,47,48).
450

451 Finally, to attempt better understanding how IFN and cDC1 were promoting immune rejection
452 of the NOP23 breast adenocarcinoma, we examined how their loss affected the immune
453 landscape of the tumor bed and of the TdLN. We observed that cDC1 and IFNs shaped the
454 tumor immune landscape by promoting CD4⁺ T_{conv} and CTL infiltration and their terminal
455 differentiation with enhanced effector functions. Conversely, cDC1 and IFN responses limited
456 the numbers of putatively deleterious myeloid cell types in the tumor and in TdLN, including,
457 macrophages and neutrophils. In the tumors from *Ifnar1*^{-/-} and *Ifngr1*^{-/-} mice, cDC1 expressed
458 less CD40. Together with our observation of the simultaneous interactions of cDC1 with CD4⁺
459 T cells and CTLs in the tumor bed, this suggested that cell-intrinsic responses of cDC1 to IFN
460 may be critical to promote their ability to deliver to CTL the help from CD4⁺ T_{conv} in a manner
461 depending on their interactions via CD40/CD40L. This hypothesis is consistent with the

462 demonstration that simultaneous presentation of viral antigens by cDC1s to CTLs and CD4⁺ T
463 cells is key for robust antiviral cellular immunity (49,50) and with publications linking CD40
464 expression on cDC1, their ability to activate CD4⁺ T_{conv} and the CTL-dependent rejection of
465 tumors (14,51).

466

467 To the best of our knowledge, we show here for the first time in tumors that cDC1 act as a
468 unique cellular platform docking simultaneously CD4⁺ T_{conv} and CTLs, which is likely key to
469 their ability to relay CD4⁺ T cell help to CTLs *in situ* in tumor, akin to what had been previously
470 shown in infectious settings (49,50). We also rigorously demonstrate for the first time that cell-
471 intrinsic signaling by IFN- γ and STAT1 in cDC1 is critical to their anti-tumor functions.
472 Although this had been suggested before (19,52), it was never formally proven due to lack of
473 adequate models to specifically inactivate IFN- γ signaling in cDC1 without also affecting it in
474 other CD11c⁺ cells. Moreover, in our experimental settings, the licensing of cDC1 by IFN- γ for
475 promoting the control of the NOP23 breast cancer model does not require IL-12 contrary to
476 what has been previously observed or proposed (36,40,52). Beside tumor Ag cross-
477 presentation, the precise nature of the output signals delivered by cDC1 that are critical to
478 induce and maintain protective functions of antitumor CD4⁺ T_{conv} and CTLs remain to be
479 identified, but may encompass IFN-I/III production and CD40 expression. Future studies based
480 on comparative gene expression profiling of WT versus *Ifngr1*^{-/-} or *Stat1*^{-/-} cDC1 infiltrating
481 the tumor or having migrating to the TdLN should help to identify the output signals whose
482 delivery from cDC1 to effector anti-tumor lymphocytes is critical for the spontaneous rejection
483 of the NOP23 cancer adenocarcinoma model.

484

485 Consistent with our experimental results in mice, human breast cancer patients harboring a high
486 expression in their tumor of genes specific to cDC1, CTL, helper T cells or IFN responses have

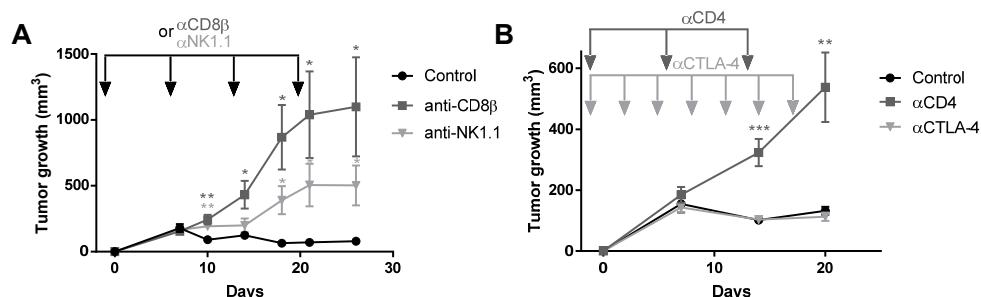
487 a significantly better clinical outcome. Therefore, we propose the following model of how
488 cDC1 promote tumor immuno-surveillance (**Fig. S12**). Following tumor cell immunogenic
489 death, cDC1 capture tumor Ag, undergo immunogenic maturation and migrate to the TdLNs in
490 a CCR7-dependent manner to prime CD4⁺ T_{conv} towards T_{H1} and CD8⁺ T cells towards
491 multipotent protective CTLs. In turn, activated anti-tumor T cells infiltrate the tumor,
492 contributing i) to enhance local recruitment of cDC1, by producing redundant chemokines such
493 as XCL1 and CCL5, and ii) to induce their immunogenic maturation via IFN- γ . This leads to
494 quadripartite interactions in the tumor between cDC1, tumor cells, CD4⁺ T_{conv} and CTLs,
495 ensuring local amplification and maintenance of the effector functions of anti-tumor T cell
496 responses, leading to tumor eradication. IFN-I and IFN-III produced by the cDC1 themselves
497 or other cells might also redundantly contribute to induce cDC1 immunogenic maturation,
498 together with IFN- γ .

499

500

501 **Authors' Contributions**

502 **R. Mattiuz:** Conceptualization, methodology, investigation, formal analysis, visualization,
503 writing—original draft, writing— review and editing. **C. Brousse:** Resources, investigation. **M.**
504 **Ambrosini:** Resources, investigation, visualization. **J.-C. Cancel:** Investigation. **Julie**
505 **Mussard:** investigation. **Amélien Sanlaville:** Resources. **G. Bessou:** Resources,
506 investigation. **C. Caux:** Resources, funding acquisition, methodology, writing— review and
507 editing. **N. Bendifriss-Vermare:** Resources, methodology, writing— review and editing. **J.**
508 **Valladeau-Guilemond:** Resources, methodology, writing— review and editing. **M. Dalod:**
509 Conceptualization, funding acquisition, methodology, supervision, formal analysis,
510 visualization, data curation, validation, writing— review and editing. **K. Crozat:**
511 Conceptualization, funding acquisition, methodology, supervision, investigation, formal
512 analysis, visualization, data curation, validation, writing— review and editing.

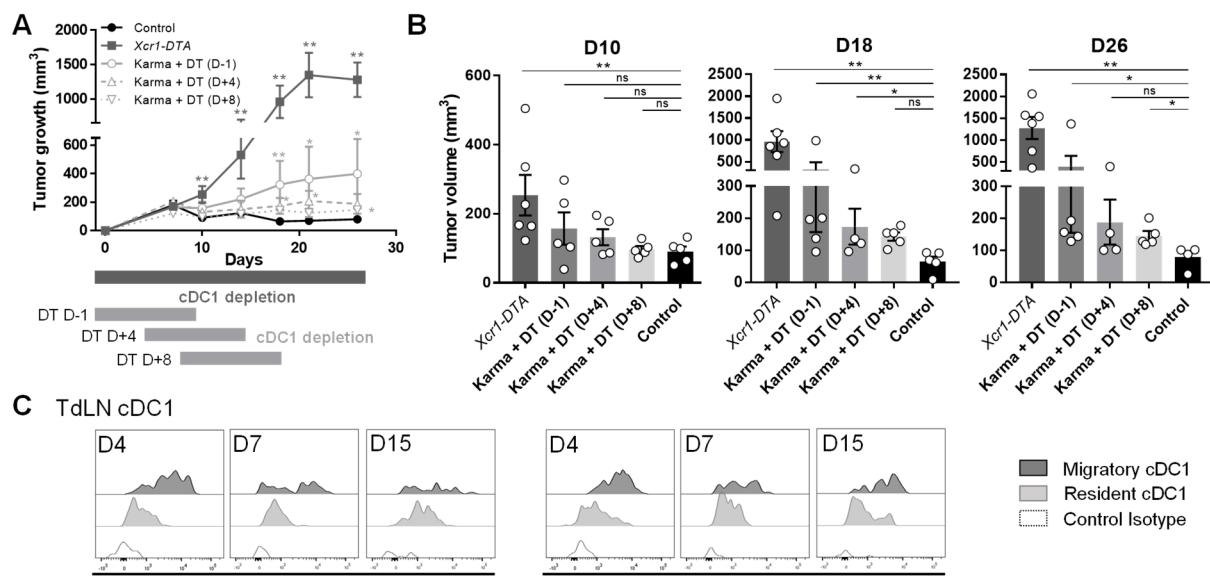

513

514 **Acknowledgments**

515 This work was supported by grants from the ANR (XCR1-DirectingCells to KC), the Fondation
516 pour la Recherche Médicale (label Equipe FRM 2011, project number DEQ20110421284 to
517 MD), the Fondation ARC (to KC), the Institut National du Cancer (INCa PLBIO 2018-152 to
518 CC and MD), and from the European Research Council under the European Community's
519 Seventh Framework Program (FP7/2007–2013 grant agreement number 281225 to MD). This
520 work also benefited from institutional funding by CNRS and INSERM. RM was supported by
521 doctoral fellowships from the Biotrail Ph.D. program (Fondation A*MIDEX) and from
522 Fondation ARC. JCC had a doctoral fellowship from LNCC. We thank Dr. Brad Nelson
523 (Director, Deeley Research Centre, BC Cancer Agency, Victoria BC, Canada) for authorization
524 to use the NOP23 cell line. We thank members of the CIML cytometry, Immagimm and
525 histology facilities and from the CIML/CIPHE mouse houses. We acknowledge France Bio

526 Imaging infrastructure supported by the Agence Nationale de la Recherche (ANR-10-INBS-04-
527 01, call “Investissement d’Avenir”). We thank Hugues Lelouard (CIML) for sharing mice, and
528 Rebecca Gentek and Pierre Golstein (CIML) for helpful discussions and protocols. This work
529 benefited from data assembled by the TCGA, The Human Protein Atlas, and Kaplan Meier-
530 plotter databases. Figure S12 has been created with BioRender (<https://biorender.com/>) under
531 academic license.

532 **Figures and Figure legends:**

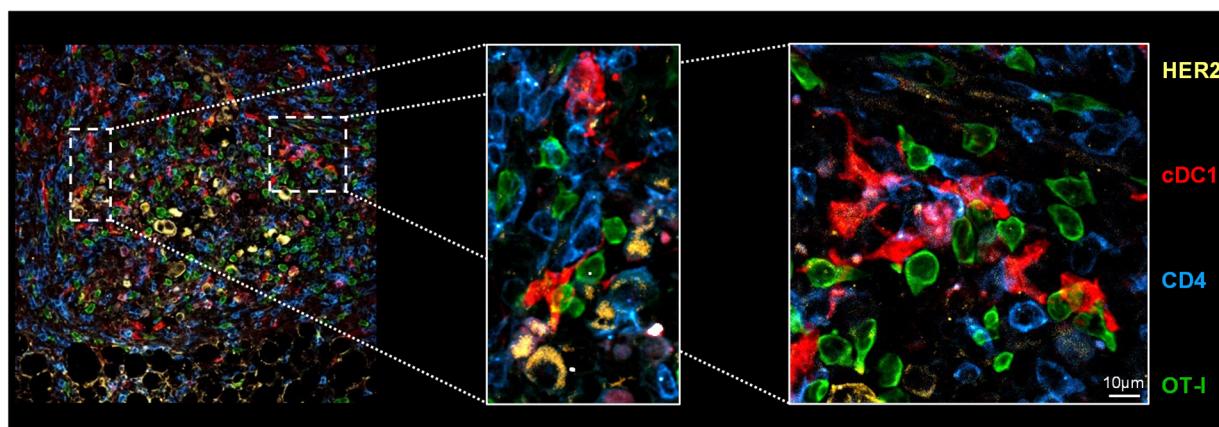


533

534 **Figure 1.**

535 CTL, CD4⁺ T_{conv} and NK1.1⁺ cells are instrumental in spontaneous rejection of breast cancer
 536 NOP23. **A**, NOP23 tumor growth in the mammary fat pad of female mice treated or not with anti-CD8β
 537 or anti-NK1.1 mAb at the indicated time (arrows) with the first injection given 1d before tumor
 538 engraftment. One experiment representative of at least 2 independent ones with 5 mice per group is
 539 shown. **B**, NOP23 tumor growth in female mice treated or not with anti-CD4 (once a week) or anti-
 540 CTLA-4 (every 3 days) mAb at the indicated time (arrows) with the first injection given 1d before tumor
 541 engraftment. n=7 mice per group. *, p < 0.05; **, p < 0.01; ***, p < 0.001 (unpaired t test).

542

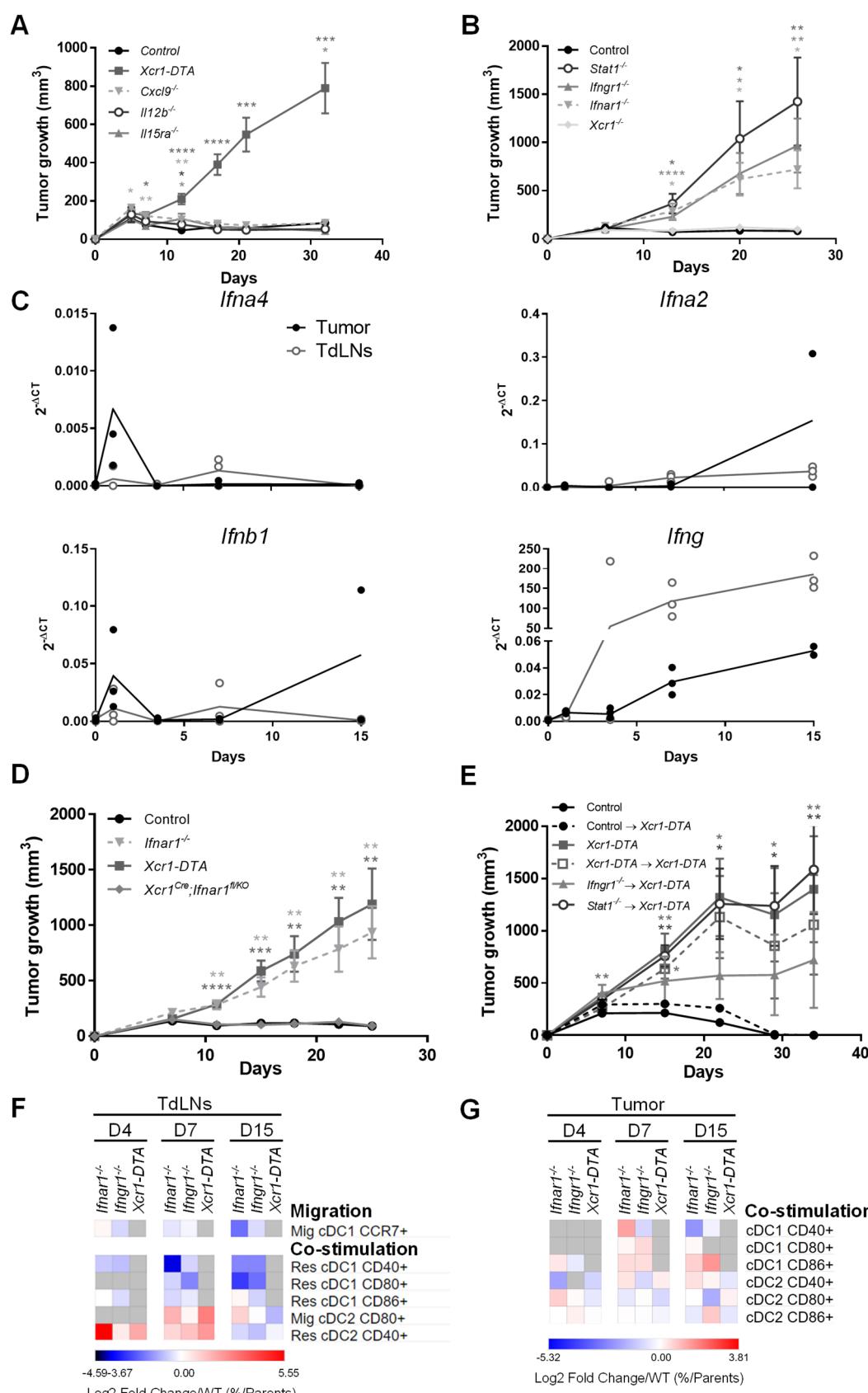


543

544 **Figure 2.**

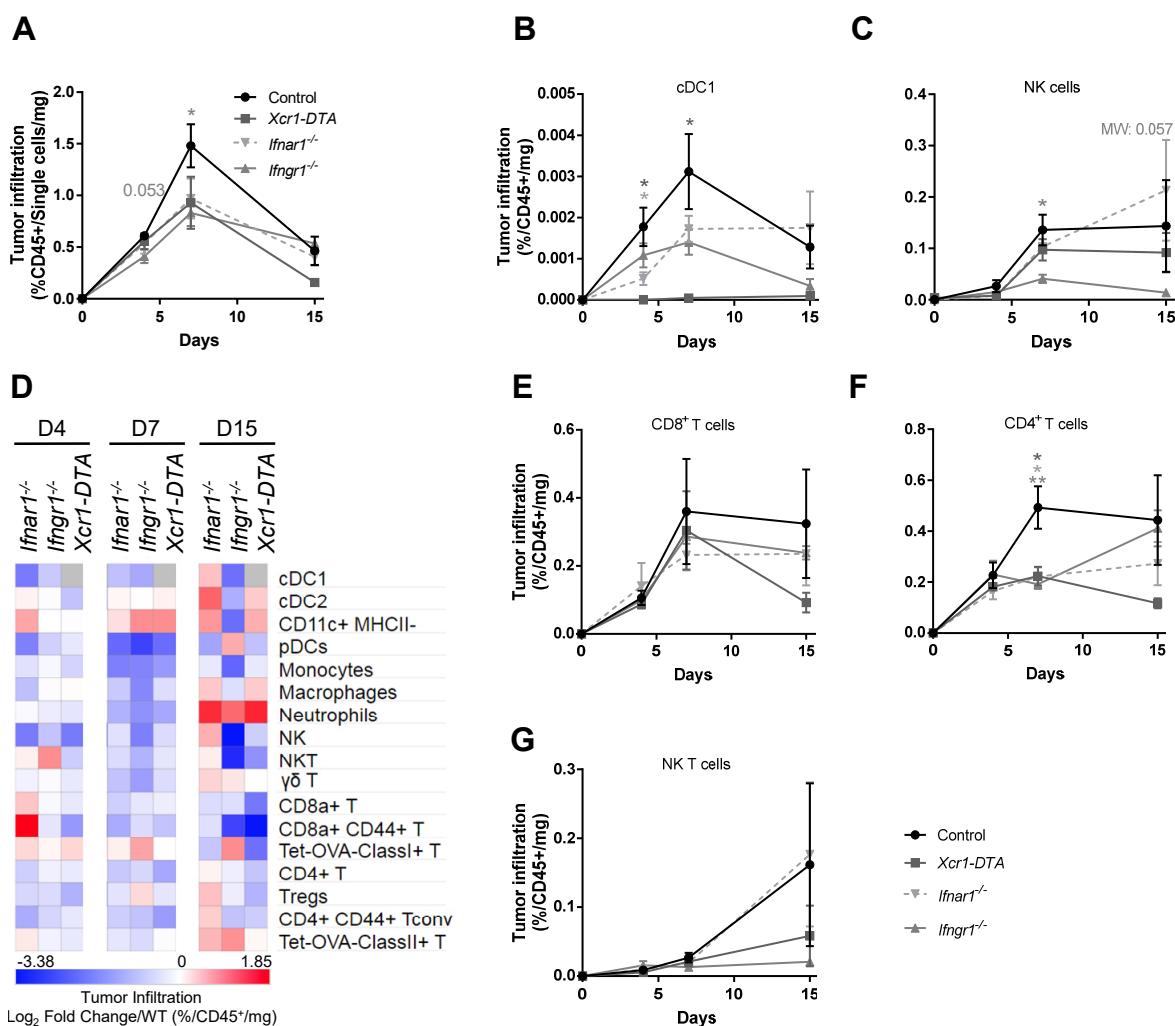
545 cDC1 are instrumental in spontaneous rejection of breast cancer NOP23, especially during the
546 phase of T cell priming. **A**, Tumor growth in control (n=5), in constitutively cDC1-depleted (*Xcr1-*
547 *DTA*, n=6) or conditionally cDC1-depleted (*Karma-tmt-DTR* + DT) female mice. *Karma-tmt-DTR* mice
548 were injected 4 times with DT every 60h, starting 1d before engraftment (n=5, representative of 3
549 independent datasets), at d+4 post-engraftment (n=5, representative of 2 independent datasets), or at d+8
550 post engraftment (n=5, representative of 2 independent datasets). **B**, Tumor volumes as measured in
551 panel (A) at day 10, 18 and 26. ns, not significant (p > 0.05); *, p < 0.05; **, p < 0.01; ***, p < 0.001;
552 (non-parametric Mann–Whitney test). **C**, Analysis of CD40 and CD86 expression by flow cytometry on
553 TdLN Mig-cDC1 and Res-cDC1. The data shown are from one experiment representative of two
554 independent ones.

555


556 **cDC1 RFP⁺ (*Xcr1*^{Cre/wt}; *Rosa26*^{tdRFP/wt}) / OT-I GFP⁺ / CD4⁺ T cells / NOP23 HER2⁺ at Day 7 post tumor engraftment**

557 **Figure 3.**

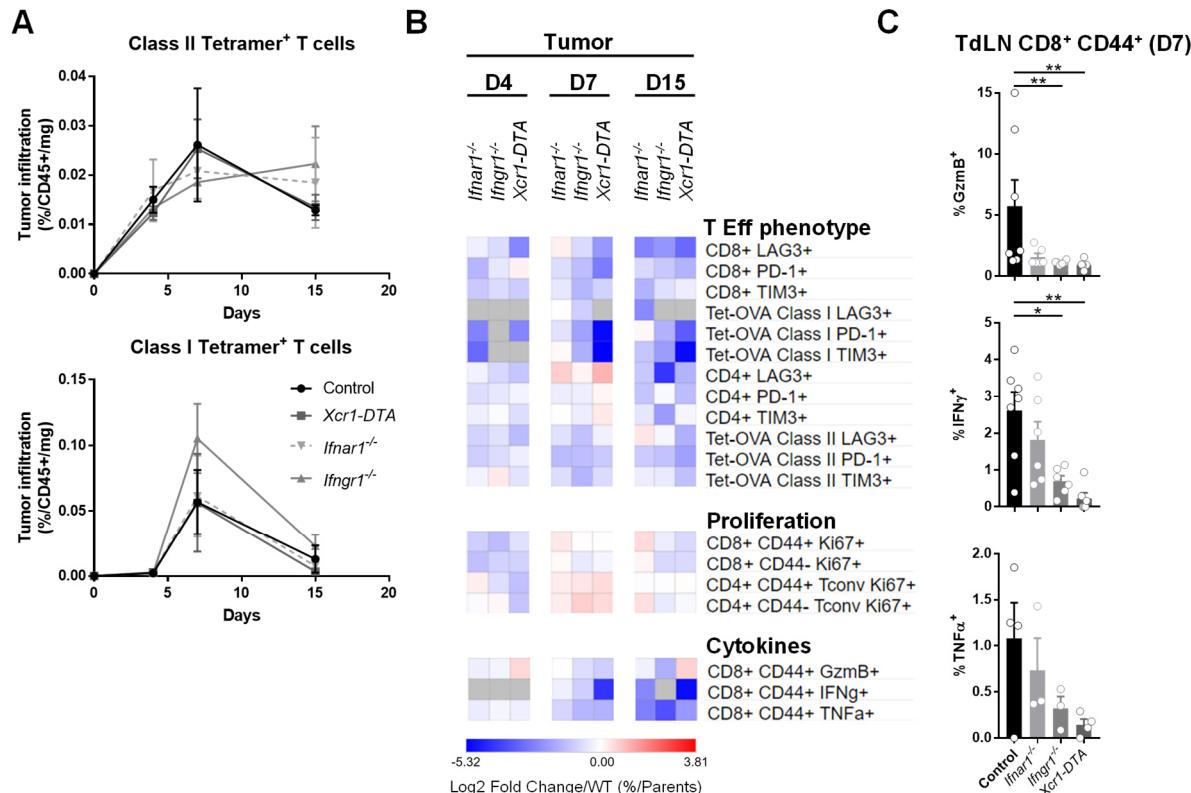
558 cDC1 interact with CD4⁺ T and tumor-specific CD8⁺ T cells together in the tumor
559 microenvironment. *Xcr1*^{Cre/wt}; *Rosa26*^{tdRFP/wt} mice were adoptively transferred with 1,000 GFP⁺ OT-I
560 cells 1d prior to tumor engraftment. 7d post-engraftment, tumors sections were stained for RFP
561 expression (cDC1), GFP (OT-I), CD4 (CD4⁺ T cells) and HER2 (NOP23 cells). This image is
562 representative of 5 individual mice.


563

564

567 IFNs and cDC1-intrinsic IFN- γ and STAT1 signaling are necessary for breast cancer
568 spontaneous rejection. **A**, Tumor growth in *Xcr1-DTA* (n=10), *Cxcl9*^{-/-} (n=9), *Il12b*^{-/-} (n=6), *Il15ra*^{-/-}
569 (n=5) and control (n=8) female mice. One experiment representative of two independent ones is shown.
570 **B**, Tumor growth in *Xcr1*^{-/-} (n=4), *Ifnar1*^{-/-} (n=7), *Ifngr1*^{-/-} (n=5), *Stat1*^{-/-} (n=5) and control (n=6) female
571 mice. One experiment representative of at least 2 independent ones is shown. **C**, Expression analysis of
572 the *Ifna4*, *Ifna2*, *Ifnb* and *Ifng* genes in control tumors and their TdLNs (n=2-4) by qPCR. **D**, Tumor
573 growth in *Xcr1-DTA* (n=7), *Ifnar1*^{-/-} (n=8), *Xcr1*^{cre}; *Ifnar1*^{fl/fl} (n=13) and control (n=7) female mice. One
574 experiment representative of two independent ones is shown. **E**, Tumor growth in different types of
575 shield bone marrow chimera female mice, control → *Xcr1-DTA* (n=4), *Xcr1-DTA* → *Xcr1-DTA* (n=4),
576 *Ifngr1*^{-/-} → *Xcr1-DTA* (n=4) and *Stat1*^{-/-} → *Xcr1-DTA* (n=4). *Xcr1-DTA* (n=5) and control (n=5) female
577 mice were used as controls. One experiment representative of two independent ones is shown. *, P <
578 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001 (unpaired *t* test). **F-G**, Heatmaps representing the
579 expression of co-stimulatory receptors on lymphoid resident (res) and migratory (Mig) cDC1 and cDC2
580 in the TdLNs (**F**) and tumors (**G**) at d4, d7 and d15 after engraftment in *Ifnar1*^{-/-}, *Ifngr1*^{-/-}, *Xcr1-DTA*
581 compared to control mice. The data are shown as Log2 Fold Changes in the ratio of % Population/Parent
582 population from mutant animals to WT (n=3-6 mice per group). The data shown are from two
583 independent experiments pooled together.

584

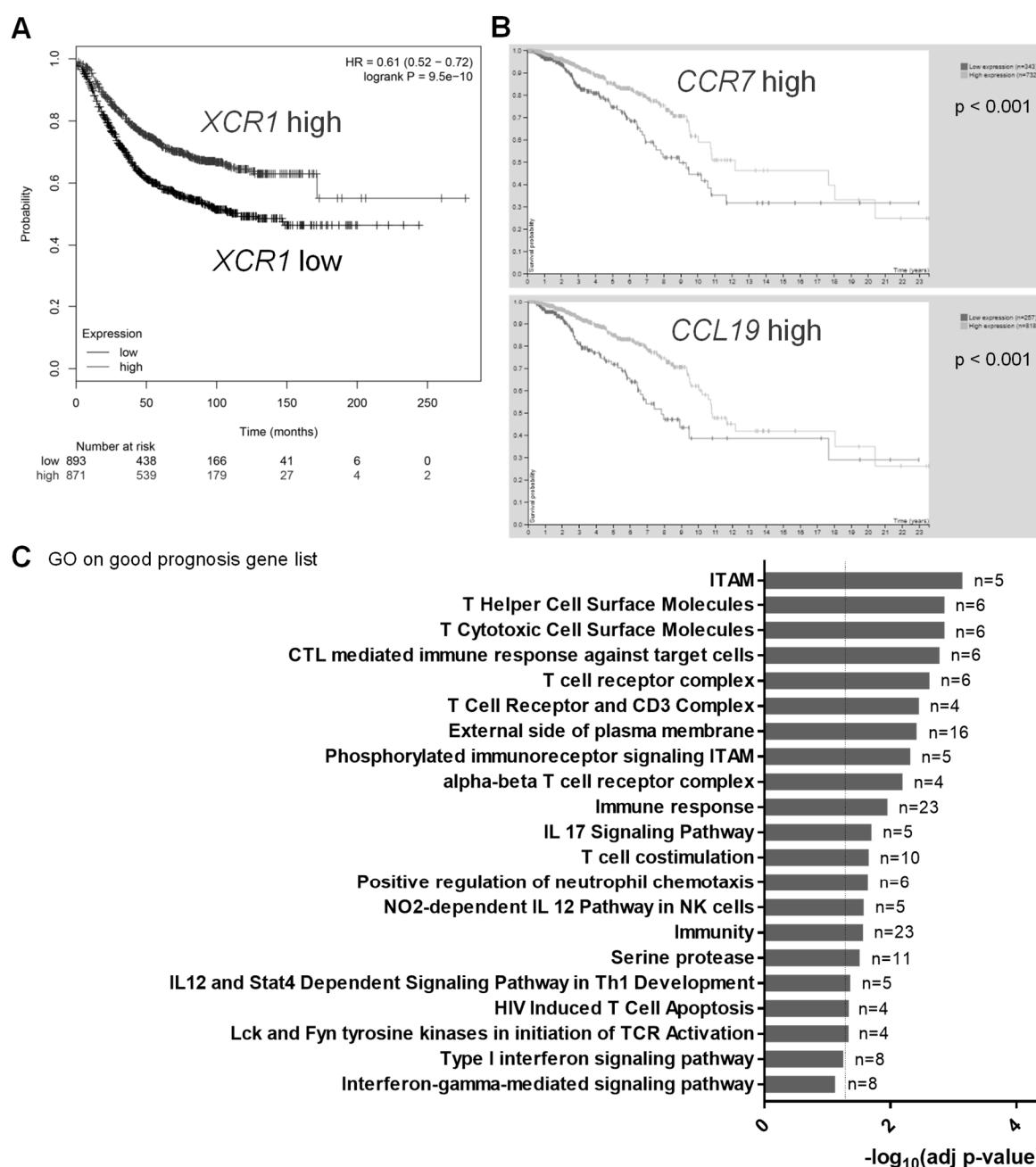


585

586 **Figure 5.**

587 cDC1, type I IFN and type II IFN signaling shape the tumor immune landscape. **A**, Kinetics of
 588 the tumor infiltration by CD45⁺ cells at d4, d7 and d15, in control, *Ifnar1*^{-/-}, *Ifngr1*^{-/-} and *Xcr1-DTA* mice,
 589 as assessed by flow cytometry. **B-C**, Kinetics of the tumor infiltration by cDC1 (B) and NK cells (D) at
 590 d4, d7 and d15, in control, *Ifnar1*^{-/-}, *Ifngr1*^{-/-} and *Xcr1-DTA* mice. **D**, Heatmap representing the tumor
 591 immune landscapes in *Ifnar1*^{-/-}, *Ifngr1*^{-/-} and *Xcr1-DTA* mice at d4, d7 and d15. The data are shown as
 592 Log2 Fold Changes calculated as the ratio of % Population/CD45⁺/mg of tumor from mutant animals to
 593 WT (n=3-6 mice per group). The data shown are from two independent experiments pooled together.
 594 **E-G**, Kinetics of the tumor infiltration by CD8⁺ T cells (E), CD4⁺ T cells (F) and NK T cells (G) in
 595 control, *Ifnar1*^{-/-}, *Ifngr1*^{-/-} and *Xcr1-DTA* mice. For (A-C) and (E-G), the data shown (mean+/-SEM) are
 596 from two independent experiments pooled together (n=3-6 mice per group). ns, not significant (p >

597 0.05); *, p < 0.05; **, p < 0.01; ***, p < 0.001 according to unpaired *t* test or nonparametric Mann–
 598 Whitney test (MW) when specified.
 599



600

601 **Figure 6.**

602 cDC1, type I IFN and type II IFN signaling are necessary for CD4⁺ and CD8⁺ T cell terminal
 603 activation and effector functions in the TME. **A**, Kinetics of the tumor infiltration by Ag-specific
 604 CD4⁺ (up) and CD8⁺ (bottom) T cells at d4, d7 and d15 in *Ifnar1*^{-/-}, *Ifngr1*^{-/-} *Xcr1-DTA* and control mice.
 605 The data shown (mean+/-SEM) are from two independent experiments pooled together (n=3-6 mice per
 606 group). **B**, Heatmap representing T cell effector phenotype and proliferation, and CTL cytokine
 607 production. The data are shown as Log2 Fold Changes in the ratio of % Population/Parent population
 608 from mutant animals to WT (n=3-6 mice per group). **C**, Expression of GzmB, IFN- γ and TNF α by OVA-
 609 specific CD44⁺ CD8⁺ T cells in the TdLN of *Ifnar1*^{-/-}, *Ifngr1*^{-/-} *Xcr1-DTA* and control mice day 7 post-
 610 engraftment. The data shown are from two independent experiments pooled together. *, p < 0.05; **, p
 611 < 0.01; ***, p < 0.001; (non-parametric Mann–Whitney test).

612

613

614 **Figure 7.**

615 Intratumor expression of *XCR1* and gene ontology annotations linked to CTL, Helper T cell
616 and IFN-I/II signaling are all associated to a better prognosis in human breast cancer patients.

617 **A-B**, Kaplan Meier plot of *XCR1* expression (A), and of *CCR7* and *CCL19* expression (B) in human
618 breast cancer. **C**, Gene Ontology of breast cancer good prognosis gene set performed with DAVID 6.8.
619 A gene is considered prognostic if correlation analysis of gene expression and clinical outcome resulted
620 in Kaplan-Meier plots with high significance (p<0.001). (A) is from Kaplan Meier-plotter database, (B)
621 and (C) data from the TCGA database.

622 **References**

- 623 1. Vu Manh TP, Bertho N, Hosmalin A, Schwartz-Cornil I, Dalod M. Investigating
624 Evolutionary Conservation of Dendritic Cell Subset Identity and Functions. *Front*
625 *Immunol* **2015**;6:260 doi 10.3389/fimmu.2015.00260.
- 626 2. Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, *et al.*
627 Identification of a dendritic cell receptor that couples sensing of necrosis to immunity.
628 *Nature* **2009**;458(7240):899-903 doi 10.1038/nature07750.
- 629 3. Theisen DJ, Davidson JT, Briseno CG, Gargaro M, Lauron EJ, Wang Q, *et al.* WDFY4
630 is required for cross-presentation in response to viral and tumor antigens. *Science*
631 **2018**;362(6415):694-9 doi 10.1126/science.aat5030.
- 632 4. Laoui D, Keirsse J, Morias Y, Van Overmeire E, Geeraerts X, Elkrim Y, *et al.* The
633 tumour microenvironment harbours ontogenically distinct dendritic cell populations
634 with opposing effects on tumour immunity. *Nat Commun* **2016**;7:13720 doi
635 10.1038/ncomms13720.
- 636 5. Cancel JC, Crozat K, Dalod M, Mattiuz R. Are Conventional Type 1 Dendritic Cells
637 Critical for Protective Antitumor Immunity and How? *Front Immunol* **2019**;10:9 doi
638 10.3389/fimmu.2019.00009.
- 639 6. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells
640 in cancer immunology and immunotherapy. *Nat Rev Immunol* **2020**;20(1):7-24 doi
641 10.1038/s41577-019-0210-z.
- 642 7. Sichien D, Scott CL, Martens L, Vanderkerken M, Van Gassen S, Plantinga M, *et al.*
643 IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated
644 Conventional and Plasmacytoid Dendritic Cells, Respectively. *Immunity*
645 **2016**;45(3):626-40 doi 10.1016/j.jimmuni.2016.08.013.
- 646 8. Bosteels C, Neyt K, Vanheerswynghels M, van Helden MJ, Sichien D, Debeuf N, *et al.*
647 Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate
648 Immunity to Respiratory Virus Infection. *Immunity* **2020**;52(6):1039-56 e9 doi
649 10.1016/j.jimmuni.2020.04.005.
- 650 9. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, *et al.*
651 Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell
652 immunity. *Science* **2008**;322(5904):1097-100 doi 10.1126/science.1164206.
- 653 10. Lee W, Kim HS, Hwang SS, Lee GR. The transcription factor Batf3 inhibits the
654 differentiation of regulatory T cells in the periphery. *Exp Mol Med* **2017**;49(11):e393
655 doi 10.1038/emm.2017.157.
- 656 11. Ataide MA, Komander K, Knopper K, Peters AE, Wu H, Eickhoff S, *et al.* BATF3
657 programs CD8(+) T cell memory. *Nat Immunol* **2020**;21(11):1397-407 doi
658 10.1038/s41590-020-0786-2.
- 659 12. Qiu Z, Khairallah C, Romanov G, Sheridan BS. Cutting Edge: Batf3 Expression by CD8
660 T Cells Critically Regulates the Development of Memory Populations. *J Immunol*
661 **2020**;205(4):901-6 doi 10.4049/jimmunol.2000228.
- 662 13. Mattiuz R, Wohr C, Ghilas S, Ambrosini M, Alexandre YO, Sanchez C, *et al.* Novel
663 Cre-Expressing Mouse Strains Permitting to Selectively Track and Edit Type 1
664 Conventional Dendritic Cells Facilitate Disentangling Their Complexity in vivo. *Front*
665 *Immunol* **2018**;9:2805 doi 10.3389/fimmu.2018.02805.
- 666 14. Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD, *et al.* cDC1 prime and are
667 licensed by CD4(+) T cells to induce anti-tumour immunity. *Nature*
668 **2020**;584(7822):624-9 doi 10.1038/s41586-020-2611-3.
- 669 15. Balan S, Radford KJ, Bhardwaj N. Unexplored horizons of cDC1 in immunity and
670 tolerance. *Adv Immunol* **2020**;148:49-91 doi 10.1016/bs.ai.2020.10.002.

671 16. Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrero M, Sammicheli S,
672 *et al.* NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment
673 Promoting Cancer Immune Control. *Cell* **2018**;172(5):1022-37 e14 doi
674 10.1016/j.cell.2018.01.004.

675 17. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, *et al.* The XC
676 chemokine receptor 1 is a conserved selective marker of mammalian cells homologous
677 to mouse CD8alpha⁺ dendritic cells. *J Exp Med* **2010**;207(6):1283-92 doi
678 10.1084/jem.20100223.

679 18. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, *et*
680 *al.* Type I interferon is selectively required by dendritic cells for immune rejection of
681 tumors. *J Exp Med* **2011**;208(10):1989-2003 doi 10.1084/jem.20101158.

682 19. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, *et al.* Host type I
683 IFN signals are required for antitumor CD8⁺ T cell responses through CD8{alpha}⁺
684 dendritic cells. *J Exp Med* **2011**;208(10):2005-16 doi 10.1084/jem.20101159.

685 20. Tomasello E, Pollet E, Vu Manh TP, Uze G, Dalod M. Harnessing Mechanistic
686 Knowledge on Beneficial Versus deleterious IFN-I Effects to Design Innovative
687 Immunotherapies Targeting Cytokine Activity to Specific Cell Types. *Front Immunol*
688 **2014**;5:526 doi 10.3389/fimmu.2014.00526.

689 21. Martin ML, Wall EM, Sandwith E, Girardin A, Milne K, Watson PH, *et al.* Density of
690 tumour stroma is correlated to outcome after adoptive transfer of CD4⁺ and CD8⁺ T
691 cells in a murine mammary carcinoma model. *Breast Cancer Res Treat*
692 **2010**;121(3):753-63 doi 10.1007/s10549-009-0559-y.

693 22. Alexandre YO, Ghilas S, Sanchez C, Le Bon A, Crozat K, Dalod M. XCR1⁺ dendritic
694 cells promote memory CD8⁺ T cell recall upon secondary infections with Listeria
695 monocytogenes or certain viruses. *J Exp Med* **2016**;213(1):75-92 doi
696 10.1084/jem.20142350.

697 23. Ghilas S, Ambrosini M, Cancel J-C, Massé M, Lelouard H, Dalod M, *et al.* NK cells
698 orchestrate splenic cDC1 migration to potentiate antiviral protective CD8⁺ T cell
699 responses. *bioRxiv* **2020**:2020.04.23.057463 doi 10.1101/2020.04.23.057463.

700 24. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, *et al.* Fc-
701 dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of
702 anti-CTLA-4 therapy against melanoma. *J Exp Med* **2013**;210(9):1695-710 doi
703 10.1084/jem.20130579.

704 25. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, *et al.*
705 Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P
706 receptor 1. *Nature* **2004**;427(6972):355-60 doi 10.1038/nature02284.

707 26. Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J, Lum J, *et al.*
708 Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage
709 priming at the common DC progenitor stage in the bone marrow. *Nat Immunol*
710 **2015**;16(7):718-28 doi 10.1038/ni.3200.

711 27. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, *et al.* Defining 'T cell
712 exhaustion'. *Nat Rev Immunol* **2019**;19(11):665-74 doi 10.1038/s41577-019-0221-9.

713 28. Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, *et al.* A Distinct
714 Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T
715 Cells. *Cell* **2016**;166(6):1500-11 e9 doi 10.1016/j.cell.2016.08.052.

716 29. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, *et al.* Superior
717 antigen cross-presentation and XCR1 expression define human CD11c⁺CD141⁺ cells
718 as homologues of mouse CD8⁺ dendritic cells. *J Exp Med* **2010**;207(6):1273-81 doi
719 10.1084/jem.20100348.

720 30. Cook SJ, Lee Q, Wong AC, Spann BC, Vincent JN, Wong JJ, *et al.* Differential
721 chemokine receptor expression and usage by pre-cDC1 and pre-cDC2. *Immunol Cell
722 Biol* **2018**;96(10):1131-9 doi 10.1111/imcb.12186.

723 31. Brewitz A, Eickhoff S, Dahling S, Quast T, Bedoui S, Kroczeck RA, *et al.* CD8(+) T
724 Cells Orchestrate pDC-XCR1(+) Dendritic Cell Spatial and Functional Cooperativity to
725 Optimize Priming. *Immunity* **2017**;46(2):205-19 doi 10.1016/j.jimmuni.2017.01.003.

726 32. Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE, Wolf DM, *et al.*
727 Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor
728 Antigen Trafficking and Priming of T Cell Immunity in Melanoma. *Cancer Cell*
729 **2016**;30(2):324-36 doi 10.1016/j.ccr.2016.06.003.

730 33. Spranger S, Dai D, Horton B, Gajewski TF. Tumor-Residing Batf3 Dendritic Cells Are
731 Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. *Cancer Cell*
732 **2017**;31(5):711-23 e4 doi 10.1016/j.ccr.2017.04.003.

733 34. de Mingo Pulido A, Gardner A, Hiebler S, Soliman H, Rugo HS, Krummel MF, *et al.*
734 TIM-3 Regulates CD103(+) Dendritic Cell Function and Response to Chemotherapy in
735 Breast Cancer. *Cancer Cell* **2018**;33(1):60-74 e6 doi 10.1016/j.ccr.2017.11.019.

736 35. Bergamaschi C, Pandit H, Nagy BA, Stellas D, Jensen SM, Bear J, *et al.* Heterodimeric
737 IL-15 delays tumor growth and promotes intratumoral CTL and dendritic cell
738 accumulation by a cytokine network involving XCL1, IFN-gamma, CXCL9 and
739 CXCL10. *J Immunother Cancer* **2020**;8(1) doi 10.1136/jitc-2020-000599.

740 36. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, *et al.*
741 Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting
742 cells critical for T cell immunity. *Cancer Cell* **2014**;26(5):638-52 doi
743 10.1016/j.ccr.2014.09.007.

744 37. Beavis PA, Henderson MA, Giuffrida L, Davenport AJ, Petley EV, House IG, *et al.*
745 Dual PD-1 and CTLA-4 Checkpoint Blockade Promotes Antitumor Immune Responses
746 through CD4(+)Foxp3(-) Cell-Mediated Modulation of CD103(+) Dendritic Cells.
747 *Cancer Immunol Res* **2018**;6(9):1069-81 doi 10.1158/2326-6066.CIR-18-0291.

748 38. Greyer M, Whitney PG, Stock AT, Davey GM, Tebartz C, Bachem A, *et al.* T Cell Help
749 Amplifies Innate Signals in CD8(+) DCs for Optimal CD8(+) T Cell Priming. *Cell Rep*
750 **2016**;14(3):586-97 doi 10.1016/j.celrep.2015.12.058.

751 39. Mittal D, Vijayan D, Putz EM, Aguilera AR, Markey KA, Straube J, *et al.* Interleukin-
752 12 from CD103(+) Batf3-Dependent Dendritic Cells Required for NK-Cell Suppression
753 of Metastasis. *Cancer Immunol Res* **2017**;5(12):1098-108 doi 10.1158/2326-6066.CIR-
754 17-0341.

755 40. Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, *et al.*
756 Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by
757 suppressing IL-12 expression in intratumoral dendritic cells. *Cancer Cell*
758 **2014**;26(5):623-37 doi 10.1016/j.ccr.2014.09.006.

759 41. Cousens LP, Peterson R, Hsu S, Dorner A, Altman JD, Ahmed R, *et al.* Two roads
760 diverged: interferon alpha/beta- and interleukin 12-mediated pathways in promoting T
761 cell interferon gamma responses during viral infection. *J Exp Med* **1999**;189(8):1315-
762 28 doi 10.1084/jem.189.8.1315.

763 42. Thompson LJ, Kolumam GA, Thomas S, Murali-Krishna K. Innate inflammatory
764 signals induced by various pathogens differentially dictate the IFN-I dependence of
765 CD8 T cells for clonal expansion and memory formation. *J Immunol* **2006**;177(3):1746-
766 54 doi 10.4049/jimmunol.177.3.1746.

767 43. Lee SH, Carrero JA, Uppaluri R, White JM, Archambault JM, Lai KS, *et al.* Identifying
768 the initiating events of anti-Listeria responses using mice with conditional loss of IFN-

769 gamma receptor subunit 1 (IFNGR1). *J Immunol* **2013**;191(8):4223-34 doi
770 10.4049/jimmunol.1300910.

771 44. Deauvieau F, Ollion V, Doffin AC, Achard C, Fonteneau JF, Verrone E, *et al.* Human
772 natural killer cells promote cross-presentation of tumor cell-derived antigens by
773 dendritic cells. *Int J Cancer* **2015**;136(5):1085-94 doi 10.1002/ijc.29087.

774 45. Hubert M, Gobbini E, Couillault C, Manh TV, Doffin AC, Berthet J, *et al.* IFN-III is
775 selectively produced by cDC1 and predicts good clinical outcome in breast cancer. *Sci
776 Immunol* **2020**;5(46) doi 10.1126/sciimmunol.aav3942.

777 46. Bhardwaj N, Friedlander PA, Pavlick AC, Ernstoff MS, Gastman BR, Hanks BA, *et al.*
778 Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through
779 expansion of dendritic cell subsets. *Nature Cancer* **2020**;1(12):1204-17 doi
780 10.1038/s43018-020-00143-y.

781 47. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K. Type I interferons
782 act directly on CD8 T cells to allow clonal expansion and memory formation in response
783 to viral infection. *J Exp Med* **2005**;202(5):637-50 doi 10.1084/jem.20050821.

784 48. Havanar-Daughton C, Kolumam GA, Murali-Krishna K. Cutting Edge: The direct
785 action of type I IFN on CD4 T cells is critical for sustaining clonal expansion in response
786 to a viral but not a bacterial infection. *J Immunol* **2006**;176(6):3315-9 doi
787 10.4049/jimmunol.176.6.3315.

788 49. Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K, Hemmi H, *et al.* Robust
789 Anti-viral Immunity Requires Multiple Distinct T Cell-Dendritic Cell Interactions. *Cell*
790 **2015**;162(6):1322-37 doi 10.1016/j.cell.2015.08.004.

791 50. Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. Spatiotemporally
792 Distinct Interactions with Dendritic Cell Subsets Facilitates CD4+ and CD8+ T Cell
793 Activation to Localized Viral Infection. *Immunity* **2015**;43(3):554-65 doi
794 10.1016/j.jimmuni.2015.07.020.

795 51. Yamauchi T, Hoki T, Oba T, Attwood K, Cao X, Ito F. CD40 and CD80/86 signaling
796 in cDC1s mediate effective neoantigen vaccination and generation of antigen-specific
797 CX3CR1+ CD8+ T cells in mice. *bioRxiv* **2020**:2020.06.15.151787 doi
798 10.1101/2020.06.15.151787.

799 52. Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, *et al.* Successful
800 Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving
801 the Cytokines IFN-gamma and IL-12. *Immunity* **2018**;49(6):1148-61 e7 doi
802 10.1016/j.jimmuni.2018.09.024.

803