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16  Abstract

17 Following the advent of industrial-scale antibiotics production in the 1940s, antimicrobial resistance
18 (AMR) has been on the rise and now poses a major global health threat. Because AMR can be
19  exchanged between humans, livestock and wildlife, evaluating the potential of wild animals to act as
20  AMR reservoirs is essential. We used shotgun metagenomics sequencing of dental calculus, the
21  calcified form of the oral microbial biofilm, to determine the abundance and repertoire of AMR genes
22 in the oral microbiome of Swedish brown bears from museum specimens collected over the last 200
23 vyears. Our temporal metagenomics approach allowed us to establish a baseline of natural AMR in the
24 pre-antibiotics era and to quantify a significant increase in total AMR load and diversity of AMR genes
25  that is correlated with human antibiotics use. We also demonstrated that Swedish public health
26  policies were effective in limiting AMR spillover into wildlife.
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Introduction

Since the discovery and use of penicillin to treat bacterial infections in the 1930s and 1940s, the
hopes and promises of new antibiotics have been curbed by the rapid rise of resistance to each new
class of drugs (Landecker 2016). This trend has been exacerbated by the misuse and overuse of
antibiotics in both the human healthcare and agriculture sectors (Levy and Marshall 2004; Landers et
al. 2012). Antimicrobial resistance (AMR) now poses a serious global public health threat in terms of
mortality, morbidity and economic burden (Naylor et al. 2018; Thorpe et al. 2018). In Europe alone,
resistant bacterial infections account for approximately 33,000 deaths and 875,000 disability-
adjusted life-years per year (Cassini et al. 2019). Globally, 10 millions of death per year are predicted
from resistant infections by 2050 (O’Neill (chair) 2014).

The challenges of combating AMR are partly due to the wide diversity of antibiotic resistance genes
(ARGs) that are present in (putatively pathogenic) microorganisms. Some ARGs confer resistance to a
broad range of antibiotics, such as the various families of multidrug efflux pumps. Others target a
specific class of antibiotics, such as the beta-lactamases, which inactivate beta-lactam antibiotics like
penicillin (Alekshun and Levy 2007). In addition, ARGs are readily shared between different bacterial
taxa within complex microbial communities via horizontal gene transfer primarily of mobile
elements, such as plasmids (Thomas and Nielsen 2005). Thus, microbial communities, including those
residing within human or animal hosts (host microbiomes), can harbour a diverse repertoire of ARGs
that can be transmitted between commensals and putative pathogens (Salyers et al. 2004; Arnold et
al. 2016). Exposure to antibiotics subjects the host microbiome to strong selective pressure that
favours resistant microorganisms and reduces or eliminates susceptible strains, consequently leading

to the perturbation of the entire microbial community (Francino 2016).

It is becoming increasingly clear that wild and domestic animals are reservoirs for potential human
pathogens, including resistant bacteria (Jones et al. 2008). The One Health approach recognises the
co-dependence of human health, animal health and the health of ecosystems and the environment
as a whole (Gibbs 2014). In the context of AMR, the spillover of antibiotics and resistant bacteria
from human use into the environment can re-enter human populations from environmental and
wildlife reservoirs. Antibiotics and resistant bacteria from human production and use in both clinical
and agricultural settings can leak into the environment through waste production (Miller et al. 2009;
Pruden et al. 2012; He et al. 2016; Zhu et al. 2017). Wildlife can then come into contact with both
antibiotics and resistant bacteria by means of contaminated soil, water and food sources (Mariano et
al. 2009). Resistant bacteria can also be transmitted between wild animals and humans directly (e.g.

during hunting, trapping, treatment at wildlife rehabilitation centres) (Jijon et al. 2007; Zottola et al.
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2013; Mo et al. 2018) and between wild and domesticated animals through direct contact and
exposure to waste products (e.g. rodents and flies residing on livestock farms) (Leatherbarrow et al.
2007; Kozak et al. 2009; Literak et al. 2009; Luque et al. 2009; Guenther et al. 2010; Dolejska et al.
2011; Navarro-Gonzalez et al. 2012; Carlson et al. 2015; Nhung et al. 2015). While several studies
have provided evidence for the exchange of ARGs between humans, livestock and wildlife
(Leatherbarrow et al. 2007; Literak et al. 2009; Dolejska et al. 2011; Subbiah et al. 2020), the impact
of human usage of antibiotics on the environment in general and wildlife populations in particular

remains little explored (Goulas et al. 2020).

One of the difficulties in quantifying the impact of human antibiotic usage on the environment is the
fact that AMR is ubiquitous in nature. Some bacteria and fungi naturally produce antibiotics (Martin
and Liras 1989) and AMR has thus evolved as protection against both self-generated antibiotics
(Tahlan et al. 2007) and those produced by competing species (Hibbing et al. 2010). Some genes that
convey AMR have been co-opted for their general detoxifying function. For instance, the multidrug
efflux pumps eject both antibiotics and other toxic compounds from the bacterial cell, such as heavy
metals, detergents and host-derived molecules like bile salts (Poole 2005). ARGs have been found
across the globe, including in the most pristine environments free from human activities (Miller et al.
2009; Bhullar et al. 2012; Nesme et al. 2014; Goethem et al. 2018). It is therefore difficult in many
cases to establish a natural, human-unaffected AMR baseline and to distinguish between human-

associated and natural sources of AMR (Allen et al. 2010; Vittecoq et al. 2016).

Time can serve as a substitute for space in the study of AMR. Collections of bacteria isolates from the
‘pre-antibiotic era’ in the early 20th century have shown resistance to modern antibiotics (Smith
1967; Hughes and Datta 1983; Fusté et al. 2012). Recent advances in the field of ancient DNA have
also allowed for the characterisation of ARGs from time periods that pre-date human antibiotics
production, which reflect the natural AMR potential of a given environment. Diverse ARGs have been
reported from culture-based and metagenomic studies of permafrost cores ranging from thousands
to tens of thousands of years in age (Dcosta et al. 2011; Perron et al. 2015; Filippova et al. 2019;
Okubo et al. 2019). ARGs have also been detected in host-associated microbiomes from specimens
collected from before the industrial-scale production of antibiotics, in particular from dental calculus
samples. Dental calculus is the calcified form of the dental plague microbial biofilm that forms on
mammalian teeth (Jin and Yip 2002). It is built up periodically throughout an individual’s life and
preserves DNA and proteins from the oral microbiome within a calcified matrix, protected from
invasion from external microorganisms following the host’s death (Adler et al. 2013; Warinner et al.

2014). Metagenomic sequencing of dental calculus samples has detected ARGs in medieval humans
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100 (Warinner et al. 2014) and 19-20th century wild animals (Brealey et al. 2020), as well as 15th century
101 human paleo-faeces (Rifkin et al. 2020). With appropriate sampling, it is therefore possible to use
102  dental calculus as a source of host-associated microbiomes that could reflect the history of AMR
103  through time.

104

105 Here, we studied the progression of AMR through time in host-associated microbiomes of wild
106 brown bears (Ursus arctos) in Sweden by characterising the abundance and repertoire of ARGs from
107 bear dental calculus. We have previously shown that metagenomic sequences from dental calculus
108  are arich source of information on the oral microbial community of brown bears, including potential
109 pathogens and ARGs (Brealey et al. 2020). As wide-ranging omnivores and scavengers, brown bears
110 have a diverse diet and are exposed to a variety of potential sources of AMR from both prey species
111 and the environment (Dahle et al. 1998; Elfstrom et al. 2014; Vittecoq et al. 2016). While they are
112 generally solitary and prefer remote areas, Swedish brown bears do approach human settlements,
113 predate on livestock and occasionally consume crops (Dahle et al. 1998; Dahle and Swenson 2003;
114  Elfstrém et al. 2014). Direct human contact can also occur, primarily with hunters and their hunting
115  dogs (hunting either bears or their prey species, e.g. moose), as well as less frequent or indirect
116  contact with humans and pets through recreational hiking, berry-picking and forestry work (Stgen et
117  al. 2018). We used dental calculus from museum-preserved Swedish brown bear specimens that
118  span the last 200 years and thus partly predate the industrial-scale production of antibiotics that
119  started in Sweden in the 1950s (Wickman 1969). The temporal sampling allowed us to determine the
120  baseline ARGs of the naive brown bear oral microbiome from before the 1950s and to quantify
121 changes in prevalence and diversity of ARGs in the following decades.

122

123 Sweden has a well-documented history of antibiotic use and control in both humans and domestic
124 animals. While industrial-scale production of antibiotics started in the mid-1940s in the US
125 (Landecker 2016), antibiotics were not commercially produced in Sweden until after 1947 (Wickman
126 1969). Antibiotic production and usage increased in Sweden in the 1950s and 1960s, including the
127  use of antibiotics at lose doses in livestock to improve their growth and feed efficiency (antibiotic
128  growth promoters) (Wickman 1969; Begemann et al. 2018). Antibiotic usage reached its peak in the
129 1970s and 1980s, when increased concerns about mounting antibiotic resistance resulted in
130  voluntary decreases in agricultural use (Edqvist and Pedersen 2001). In 1986, Sweden banned the use
131 of antibiotic growth promoters in agriculture (Wierup 2001). In 1995, the Swedish strategic program
132 against antibiotic resistance (Strama) was founded in response to a rapid increase in penicillin
133 resistance, particularly among young children (Ekdahl et al. 1998; Folkhdlsomyndigheten 2014). Since

134  then, Sweden has implemented a number of long-term measures to promote the rational use of
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135  antibiotics, regulate the sales of antibiotics for humans and animals and continuously monitor AMR
136  (Folkhdlsomyndigheten 2014). Consequently, sales of antibiotics for both outpatient care and
137  veterinary use have generally decreased (Folkhdlsomyndigheten and SVA 2019). As of 2018, overall
138 AMR in humans and animals in Sweden is low from an international perspective
139  (Folkhdlsomyndigheten and SVA 2019). We therefore used our dental calculus samples to investigate
140 the effect of both antibiotic overuse in the 1970s and 1980s and subsequent antibiotic control
141  strategies implemented by Swedish public health authorities in the 1990s on ARG abundance and
142 diversity in Swedish brown bears. We hypothesised that increased human use of antibiotics led to
143 increased prevalence and diversity of ARGs in wildlife microbiomes. We further predicted that
144 proximity to human habitation increased exposure to human waste products and thus resulted in
145 higher AMR load in individuals with home ranges in more densily populated areas.

146

147

148  Results

149  Sample processing and authentication

150 We sequenced 82 dental calculus samples collected from healthy teeth of Swedish brown bear
151  specimens from across central and northern Sweden dating between 1842 and 2016 (Figure 1). After
152  quality control and read processing (including filtering of host-derived reads, see Methods), each
153  calculus sample contained on average 16 million reads (range 34 reads to 186 million reads).
154  Following microbial taxonomic assignment with Kraken2 (Wood and Salzberg 2014) and species-level
155 abundance estimation with Bracken (Lu et al. 2017), three calculus samples were excluded due to
156  low microbial read content (see Methods).

157

158  While endogenous microbial DNA is generally well-preserved in mammalian dental calculus, samples
159  can be contaminated by environmental DNA from museum storage and laboratory processing (Key et
160 al. 2017; Mann et al. 2018). Thus, to control for background museum and laboratory contamination,
161  we sequenced two swabs taken from the museum storage facility (see Methods), 29 extraction blank
162 samples and 8 library preparation blank samples. Microbial source analysis with the Bayesian
163  classification tool SourceTracker (Knights et al. 2011) demonstrated that the majority of the calculus
164  samples included microbial taxa also found in human dental plaque and calculus microbial
165 communities, whereas blanks and swabs were generally more similar to human skin and soil
166 environments (Supplementary Figure S1). In an ordination of the microbial taxa abundances,
167 extraction and library preparation blanks formed a tight cluster, whereas the more variable bear
168  calculus samples tended to be separated by the proportion of oral microbiome taxa (human plaque +

169  calculus SourceTracker estimates; Supplementary Figure S2 and Supplementary Table S1). We
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therefore excluded 22 bear calculus samples with < 5% of the microbiome community similar to the

human oral microbiome, retaining 57 samples for further analyses.

Time period
® pre 1951 (locality unknown)
€ pre 1951
¢ 1951-1970
¢ 1971-1985
¢ 1986-2000
© post 2000

Human Footprint Index
0
Hl 50

0 100 200 km A
[

Figure 1. Sampling locations of Swedish brown bear museum specimens included in this study (n=57

following filtering and processing steps, see Methods). Specimens are coloured by the time period in
which they were collected. Samples are plotted according to their GPS coordinates, locality location
information as obtained from museum records (most specimens collected before 1995) or arbitrary
coordinates within their counties, when only this level of geographic information was available
(seven samples from pre-1951, shown by circles). The underlying terrain of Sweden is shaded by the
2009 Human Footprint Index (increased human activities/populations corresponds to darker shaded
areas). The map of Sweden was obtained from Lantmateriet

(https://www.lantmateriet.se/sv/Kartor-och-geografisk-

information/geodataprodukter/produktlista/oversiktskartan) and the Human Footprint Index data

from NASA Socioeconomic Data and Applications Center (https://doi.org/10.7927/H46T0JQ4).
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187 To minimise the possibility that modern environmental resistant bacteria may confound our
188  estimates of AMR in the endogenous bear oral microbiome, we restricted our analysis to the subset
189  of bacteria that are known to colonise human and pet oral cavities and are thus unlikely to result
190 from environmental contamination (Supplementary Table S2). All blank samples had less than 250
191 reads assigned to oral bacteria, whereas the two swabs had read counts that were generally an order
192 of magnitude lower than the 57 retained bear dental calculus samples (mean swabs = 44,162, mean
193 samples = 1,135,500, Supplementary Figure S3). We then blasted the oral bacteria reads against the
194  Comprehensive Antibiotic Resistance Database (CARD) (Jia et al. 2017). The top match for each read
195 was assigned to its respective gene family under the Antibiotic Resistance Ontology (ARO). On
196 average, 96 reads per bear sample were assigned a match in CARD (median: 48 reads, range: 0 —
197  497), whereas no oral bacteria reads from the blanks or swabs had a match in CARD.

198

199 Total AMR load reflects antibiotics usage in Sweden

200 To determine how AMR prevalence has changed over time in brown bear oral microbial
201  communities, we binned the bear samples into 5 time periods based on historical antibiotic usage in
202  Sweden: those collected before 1951 (the pre-antibiotic era), those collected between 1951-1970
203  and 1971-1985 (reflecting increasing usage), those collected between 1985-2000 (when control
204  measures were first implemented) and those collected after 2000 (post control measures).

205

206 We detected ARGs in samples collected in the pre-antibiotic era (Figure 2), in line with the
207  expectation that AMR is a natural function of microbial communities independent of contribution
208  from human use. Total AMR load (total number of reads with a match in CARD divided by the total
209  number of oral bacteria reads in a sample) increased from the 1950s through 1990s with increasing
210 use of antibiotics, before decreasing after the implementation of control measures in the 2000s
211 (Figure 2). Both the increase in the decades before 2000 and the decrease post 2000 were
212 statistically significant (generalised linear model with a quasibinomial distribution, Table 1). Among
213 possible confounding variables, only median length of the oral bacteria DNA fragments was
214  significantly correlated with total AMR load (Spearman correlation rho = 0.457, p = 0.00035;
215 Supplementary Figure S4, Supplementary Table S3), suggesting that ARGs are more likely to be
216 detected in samples with longer DNA fragments. However, the significant relationship between time
217  period and total AMR load remained after controlling for median DNA fragment length (Table 1).
218 Thus, we detected a strong temporal correspondence between total AMR load in bear dental
219  calculus and human use of antibiotics.

220
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Figure 2. Total AMR load in bear calculus samples changes through time. Total AMR load was
calculated as the number of reads mapping to CARD divided by the total number of oral bacterial
reads in a sample. Each symbol within a given time period represents a unique brown bear dental

calculus sample.

Table 1. Results from generalised linear models of changes in total AMR load across time period, with
and without controlling for median DNA fragment length. Time period was coded as an ordered

factor with five levels, thus results are provided for each polynomial (linear through to quartic).

Model Estimate Standard t value p value

error
Total AMR load ~ Time Period
(Intercept) -9.3909 0.06215 -151.102 < 2e-16 ok
Time Period — linear 0.44724 0.14296 3.128 0.00288 o
Time Period — quadratic -0.31484  0.14514 -2.169 0.03466 *
Time Period — cubic -0.12491  0.12856 -0.972 0.33574
Time Period — quartic 0.29954 0.13864 2.161 0.03535 *

Residual deviance: 903.44 on 52 degrees of freedom
Total AMR load ~ Time Period + Median DNA Fragment Length

(Intercept) -11.3071  0.453542  -24.931 <2e-16 Ak
Time Period — linear 0.285282 0.129431  2.204 0.03205 *
Time Period — quadratic -0.34806  0.124342  -2.799 0.00721 *x
Time Period — cubic -0.12705 0.110147  -1.153 0.25411

Time Period — quartic 0.263258 0.119101 2.210 0.03159 *
Median DNA Fragment Length 0.024953 0.005806  4.298 7.77E-05 Ak

Residual deviance: 660.21 on 51 degrees of freedom
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231 ARG diversity increases over time

232 Next, we characterised and quantified ARG families in bear samples at different time periods to test
233 if exposure to an increasing variety of antibiotics has had an impact on the diversity of ARGs present
234  in wildlife host-associated microbiomes. The overall diversity of ARG families increased from 1986
235  onwards (Figure 3a), as reflected by the detection of novel rare ARGs in the latest two time periods
236  (Figure 3b). This observation was not explained by differences in sample sizes (Figure 3a) or amount
237 of data available (number of sequencing reads mapping to ARG families, Supplementary Figure S5)
238 across time periods. Among these rare ARG families detected after 1985, we found multiple enzymes
239  that are commonly encoded on plasmids and other mobile genetic elements. These included
240 aminoglycoside modifying enzymes (ANT, APH, AAC; see Supplementary Table S4 for details) that
241 target aminoglycosides like streptomycin, and beta-lactamases (OXA) that target beta-lactams like
242 penicillin (Alekshun and Levy 2007). It is noteworthy that the detection of beta-lactamases
243 temporally coinsides with the increase in use of narrow spectrum penicillins, which doubled in

244  Sweden in the early 2000s (The Center for Disease Dynamics Economics & Policy 2018).
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247  Figure 3. Diversity of ARG families changes over time. (a) Boxplots of the number of unique ARG
248  families detected in each time period after subsampling to eight samples per time period (the lowest
249 sample size available for time period 1951-1970) with 1000 independent repeats to control for
250  differences in sample sizes between time periods. (b) Heatmap of log-transformed ARG family loads
251 (proportion of oral bacteria reads mapping to each ARG family) in samples pooled by time period.
252 ARG families that were not detected in a given time period are coloured grey. ARG families are
253 annotated by their main mechanism of resistance recorded in CARD. ARG family abbreviations are

254  described in Supplementary Table S4.
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255 ARG families that were consistently detected in all time periods, including in the pre-antibiotic era,
256  included multidrug efflux pumps, the ribosome-binding ABC-F family and ARGs conveying AMR
257  through alterations in antibiotic targets, such as mutations in antibiotic binding sites or modification
258  of cell wall components (Figure 3b). Multidrug efflux pumps, like the detected resistance-nodulation-
259  cell division (RND) and ATP-binding cassette (ABC) efflux pumps, have a broad range of substrates,
260 including multiple classes of antibiotics, solvents and toxic compounds (Poole 2005) and have many
261 functions involved in bacterial colonisation and survival in the host environment (Jerse et al. 2003;
262 Warner et al. 2008). ABC-F ribosomal protection proteins are closely related to ABC efflux pumps but
263  show no efflux function. ABC-F proteins are common to all domains of life and bind to the ribosome,
264 triggering the release of a wide range of antibiotics targeting the ribosome, thus rescuing inhibition
265 of translation (Sharkey et al. 2016). The remaining commonly detected ARG families (rpoB, parY, ileS
266  and pgpB) are usually encoded on the chromosome and confer resistance against specific antibiotic
267 classes, such as rifamycin-resistant beta-unit of RNA polymerase (rpoB), aminocoumarin-resistant
268  topoisomerase IV (parY) and mupirocin-resistant isoleucyl-tRNA synthetase (ileS). Lipid A
269  phosphatase (pgpB) modifies an important component of the Gram-negative bacterial cell wall (lipid
270  Aiinlipopolysaccharides), thus reducing susceptibility to peptide antibiotics like polymyxin B (Coats et
271  al. 2009). Previous metagenomic studies of host-associated samples from the pre-antibiotics era
272 have also detected multidrug efflux pumps, resistant rpoB and resistant DNA topoisomerase
273 (Warinner et al. 2014; Rifkin et al. 2020). It is therefore unsurprising that these ARG families were
274  detected in our pre-antibiotic era brown bear samples and adds further support to other studies
275 finding that some classes of ARGs are ‘ancient’ (Dcosta et al. 2011).

276

277  Changes in ARG abundances over time reflect changes in bacteria abundance

278  We observed changes through time in the abundance of the most frequent ARG families. Here, we
279  focused on families that were detected throughout the study period. Total abundance of ABC-F
280 proteins and resistant rpoB reflected the pattern of total AMR load, with an increase from 1951 to
281 2000 and a decrease post 2000 (Supplementary Table S5, Figure 4a-b). In contrast, RND efflux pump
282 consistently increased over time to the present (Figure 4c). The other four most abundant ARG
283  families (resistant ileS, ABC efflux pump, lipid A phosphatase and resistant parY) showed varied
284  abundance trajectories over time. However, resistant ileS and lipid A phosphatase increased in load
285 in the last two time periods, whereas parY showed higher abundance from 1950 to 2000, supporting

286  the general pattern (Supplementary Table S5, Supplementary Figure S6).
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Figure 4. Changes in load of three of the most abundant ARG families in bear calculus are associated

with changes in abundance of oral bacteria genera. (a-c) Proportion of oral bacteria reads mapping to

(a) ABC-F (ATP-binding cassette) ribosomal protection protein, (b) antibiotic resistant rpoB (RNA

polymerase beta subunit) and (c) RND (resistance-nodulation-cell division) antibiotic efflux pump

across the study time periods. (d-f) Proportion of oral bacteria reads assigned by Bracken to

Actinomyces is correlated with ABC-F (d) and antibiotic resistant rpoB (e) load, whereas proportion of

reads assigned to Neisseria is correlated with RND efflux pump load (f). (g-h) Abundance of

Actinomyces (g) and Neisseria (h) across the study time periods.
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296  Changes in ABC-F and rpoB loads over time were correlated with changes in the abundance of the
297  genus Actinomyces (Figure 4d-e,g) (ABC-F: similarity score = 0.443, g value = 0.0028; rpoB: similarity
298  score = 0.401, g value = 0.0065). Actinomyces species are commonly found in the oral cavity,
299  particularly as early colonisers of the tooth surface in the first steps of dental plagque formation, and
300 thus some species are associated with dental caries infections in humans (K6nénen and Wade 2015).
301 However, not much is known about AMR potential of oral Actinomyces strains, since the genus rarely
302  causes disease in humans and is usually susceptible to beta-lactams (Konénen and Wade 2015). RND
303 abundance was strongly correlated with the abundance of the genus Neisseria (Figure 4f,h) (similarity
304  score = 0.545, g value < 0.001). Neisseria is also known to colonise the oral cavity of mammals (Dent
305 1982; Dewhirst et al. 2012; Heydecke et al. 2013; Dewhirst et al. 2015) and has a well-characterised
306 RND system (mtrCDE) which exports a wide variety of antibiotics, biocides and detergents (Chitsaz et
307 al. 2019). Resistant ileS abundance was correlated with changes in the abundance of the genera
308 Parvimonas and Gemella (Parvimonas: similarity score = 0.548, g value < 0.001; Gemella: similarity
309 score = 0.363, g value = 0.0069), which both tended to show increased abundance in the last two
310 time periods (Supplementary Figure S7).

311

312 Despite the detected changes in specific oral bacteria genera and the associated ARGs as described
313  above, we did not observe changes through time in the overall oral bacteria community at the
314  species-level (Supplementary Figure S8). Community composition was not associated with time
315 period or total AMR load (Supplementary Table S1).

316

317 Total AMR load is not associated with proximity to humans or geography

318  We hypothesised that bears collected from locations close to human habitations would have higher
319 total AMR loads, as they might be more exposed to spillover of antibiotics or human-associated
320 resistant bacteria. Fifty bear specimens had reliable location information (Figure 1), whereas the
321 remaining seven had only the municipality or county recorded. We used historical records from
322  Swedish parishes to estimate the human population density for the location of each brown bear
323 sample (averaging across a county for the seven samples with imprecise locality information).
324 Historical land use and human impact data were not available for the majority of sample localities.
325 We instead used the 2009 Human Footprint Index (Figure 1), which combines data on human
326 population density, land use, infrastructure and transport networks into a single measure, to
327 estimate the magnitude of human impact in a 12.5 kilometre radius around the reported location of
328  each of the 50 bears with known locations.

329

12


https://doi.org/10.1101/2020.12.22.423960
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.423960; this version posted December 22, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

330 In contrast to our expectations, we found no association between total AMR load and historical
331 human population density or modern Human Footprint Index (Supplementary Figure S9), nor with
332  geographic regions, including municipality and county location (Supplementary Table S6). No
333  association between geographic location and total AMR load was observed for any given time period
334  (Supplementary Figure S10, Supplementary Table S6), suggesting a global change in total AMR
335  through time and space in Sweden.

336

337  Discussion

338  AMR in wildlife host-associated microbiomes mimics human antibiotics use and production

339 Human production and use of antibiotics has been increasing since the 1940s (Landecker 2016). This
340 trajectory has been followed by increases in AMR in human populations (Levy and Marshall 2004). It
341 may therefore be expected that AMR has also increased in the environment and in domestic and wild
342 animal populations as a result of spillover from human sources (Allen et al. 2010). Furthermore,
343  development and mass use of new antibiotic classes may have diversified selective pressure on the
344  naturally occurring AMR and led to a greater diversity of ARGs in more recent times. Here, we
345  explicitly used temporal metagenomics of host-associated microbiomes to follow the progression of
346 AMR in wild animals. This approach is best suited for studying changes in AMR and ARG diversity
347  over historical time periods, as it minimises the difficulty in distinguishing between naive and human-
348  induced AMR. In accordance with expectations of spillover from human use, we found that the total
349  AMR load and diversity of ARGs in the brown bear dental calculus microbiome closely follows the
350  historically affirmed use of antibiotics in Sweden. More specifically, we detected increased total AMR
351 load from the 1950s to 2000 and greater ARG diversity particularly since 1985, compared to the pre-
352 industrial AMR background (before the 1950s).

353

354  Few other studies have investigated the temporal changes in AMR throughout the history of human
355  antibiotics use. Increasing levels of AMR have been detected in archived soil samples from the 1940s
356  to the mid-2000s (Knapp et al. 2010). Collections of human-associated bacteria isolated prior to 1955
357  have been found to have low levels of AMR (Smith 1967; Hughes and Datta 1983), although other
358 studies utilising such collections have found similar AMR profiles in both pre-1950s and modern
359  strains (Fusté et al. 2012). In wildlife, changes in AMR levels have only been investigated over the last
360 20 years, where AMR was found to increase from 2004 to 2010 in bacteria isolated from stranded
361 marine mammals (Wallace et al. 2013). Our study thus represents the first systematic quantification
362 of AMR in wild animals over the course of the last 200 years.

363
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364  While the spillover of human-produced antibiotics and resistant bacteria into natural systems has
365 been well documented, our results suggest that this process may be reversible. Sweden was one of
366  the first countries to impose legislation to control the use of antibiotics in agriculture in 1985 and
367  today has a strong antibiotic stewardship program with thorough monitoring of resistance in human
368 and animal infections and screens of healthy livestock (Folkhdlsomyndigheten 2014). We observed a
369  corresponding decrease in total AMR load in the microbiome of brown bears since the 2000s,
370 compared to earlier time periods. Our observation is mirrored by results from screening of healthy
371 farm animals in Sweden for resistance in Escherichia coli and Staphylococcus aureus isolates, which
372 show low and generally stable or decreasing resistance over the Ilast ten vyears
373 (Folkhadlsomyndigheten and SVA 2019). There is some evidence that restricting antibiotic use in food
374 animals reduces the presence of resistant bacteria in both the animals themselves and human
375 populations in close proximity (Tang et al. 2017). However, how such restrictions affect the
376 surrounding ecosystems and associated wildlife is currently unclear (Goulas et al. 2020).

377

378 It is interesting to consider the time lag between the introduction of antibiotic control strategies and
379  an observable reduction in AMR in the environment. It took 10-15 years from the start of antibiotic
380 regulation policies in Sweden in 1985 to see a significant decrease in the AMR levels in the oral
381 microbiome of wild brown bears. The presented pattern should however be interpreted with
382  caution. Wild animal species with different ecology, ranging patterns and affinity to human-modified
383  environments may show important variations of the observed trend. Nevertheless, our study
384  suggests that human actions, both negative and positive, have a direct impact on the environment,
385 including wild animals, and provide hope that the increasing threat from multidrug-resistant bacteria
386  can be turned back following suitable and large-scale policy changes.

387

388 Widespread AMR contamination of natural environments

389  While total AMR load in brown bears reflected Sweden’s general antibiotic usage, factors related to
390 bear proximity to human activities, such as historical human population density and the 2009 Human
391 Footprint Index, were not associated with AMR load in bear dental calculus. We did not detect any
392 other geographic signal in the data, e.g. related to sample collection coordinates or collection region
393 (municipality/county). This may appear surprising in the face of many studies reporting an
394  association between environmental AMR abundance and proximity to humans or human
395  settlements. For example, a study of AMR in Antarctic seawater found increased AMR levels at sites
396 closer to human habitation (Miller et al. 2009). Multiple studies have shown that wild rodents

397  residing close to livestock have higher AMR levels compared to wild rodents in natural areas (Kozak
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398 et al. 2009; Guenther et al. 2010; Grall et al. 2015; Nhung et al. 2015). Associations between AMR
399 and proximity to humans have also been found in large wild mammals, such as foxes, wild boars,
400 deer and tapirs (Skurnik et al. 2006; Cristobal-Azkarate et al. 2014; Mo et al. 2018). However, our
401 brown bear specimens were generally collected from regions with low historical human population
402  densities (mean bears home range = 4.1 people per km? versus average across Sweden in year 2000 =
403 21.6 people per km?; see Methods) and low Human Footprint indices (Supplementary Figure S9). We
404  therefore may not have observed a strong impact of human proximity on AMR levels because our
405 samples were collected from very similar, little-affected regions.

406

407  There is some evidence that AMR contamination can be more widespread than the immediate
408 proximity of source sites. AMR from a likely anthropogenic source has been detected in pristine
409  environments that are expected to be free from human activities, for example, in High Arctic soils
410 and wild birds (Sjélund et al. 2008; McCann et al. 2019). Migratory birds have been suggested as one
411 means for the dissemination of human-associated AMR to remote locations (Arnold et al. 2016).
412  Water and wind-blown soil particles are also likely important substrates for AMR transmission,
413 possibly allowing for dissemination across wide distances (Allen et al. 2010; Taylor et al. 2011). For
414  example, river water and estuarine sediments have been shown to contain AMR, particularly from
415 locations downstream of wastewater treatment plants, livestock farms and other anthropogenic
416 constructions (Mariano et al. 2009; Pruden et al. 2012; He et al. 2016; Zhu et al. 2017; Khan et al.
417  2019). Furthermore, AMR has been shown to persist in environments even in the absence of
418  selective pressure from antibiotics. Fitness costs for maintaining AMR can be extremely variable and
419  the strength of selection for AMR can remain constant across a large range of antibiotic
420  concentrations, which may facilitate the maintenance of AMR in environmental reservoirs (Vogwill
421  and Maclean 2015; Murray et al. 2018). Our results in brown bears support the idea of widespread
422 environmental contamination with human-made antibiotics and/or resistant bacteria. Presence of
423  antibiotics in the environment will result in increased AMR selective pressures on host-associated
424  microbial communities in wildlife species, while resistant bacteria could be directly integrated into
425  these communities.

426

427 Wildlife as a reservoir for AMR

428 In this study we focused on host-associated microorganisms, thus targeting ARGs in bacteria that can
429 reside in a mammalian host and are likely more relevant when considering wildlife reservoirs of AMR
430 of potential importance to humans. Resistant bacteria can be transmitted through direct or indirect
431 contact between humans, wildlife and domestic animals via a number of vectors. For example, flies

432 have been identified as a possible vector for transmission of resistant bacteria between humans,
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433  domestic animals and environmental samples in both equestrian centres and pig farms (Literak et al.
434  2009; Dolejska et al. 2011). Wild birds have also been identified as a mechanism of transferring
435 resistant bacteria to livestock, including by physical movement of contaminated material (Luque et
436  al. 2009; Carlson et al. 2015). Less evidence exists for potential exchange of AMR between
437 mammalian wildlife, livestock and humans. However, in Tanzania, AMR prevalence was found to be
438 similarly distributed across humans, domestic animals, wildlife and the environment, likely driven by
439  general transmission of bacteria (Subbiah et al. 2020). In Europe, similar AMR profiles and higher
440 levels of pathogenic bacteria have been found in wild mammals co-habiting with cattle
441 (Leatherbarrow et al. 2007; Navarro-Gonzalez et al. 2012). It is thus becoming clear that wildlife and
442 its role as a potential AMR reservoir should be considered in the global dynamics of AMR and
443 multidrug resistant bacteria.

444

445 Omnivorous species have been shown to harbor greater loads of resistant bacteria, likely as a result
446  of their dietary habits and general greater proximity to human settlements (reviewed in (Vittecoq et
447  al. 2016)). Consistently, wild boar, red fox and hedgehog appear to be reservoirs for AMR (Literak et
448 al. 2010; Botti et al. 2013; Radhouani et al. 2013; Zottola et al. 2013; Dias et al. 2015; Bengtsson et al.
449 2017; Mo et al. 2018). In this study, we focused on another omnivore, the Scandinavian brown bear,
450 as a proxy for wildlife exposure to human-made antibiotics. However, in contrast to the above
451  species, bears are solitary with little direct interaction with humans or livestock. Historically, the
452 Swedish bear population has been small, as it was hunted almost to extinction in the 1930s, before
453  the population increased again following implementation of conservation measures (Swenson et al.
454  1995). Thus, the historical and modern Swedish brown bears represent a low-density wildlife
455 population without a particular affinity to human settlements. We therefore interpret the temporal
456  changes of AMR levels in the brown bear samples as most likely reflecting the changing widespread
457  contamination of the environment with ARGs capable of persisting in mammalian hosts.

458

459  Dental calculus as a tool for historical AMR research

460 Using dental calculus from museum specimens, we were able to ‘travel back in time’ to the pre-
461 antibiotics era and quantify temporal changes in AMR load and ARG diversity. As a calcified microbial
462 biofilm, dental calculus is superbly suited for studies of metagenomes from the past. Only few other
463 host-associated microbiomes persist through time, such as coprolites — fossilised faeces that
464 preserve a component of the gut microbiome. However, compared to dental calculus, coprolites are
465 more prone to post-mortem bacterial contamination, have lower DNA preservation and are less
466 abundant in museum and archaeological collections (Warinner et al. 2015).

467
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468 Despite the great potential of historical microbiomes, one major limitation of metagenomic analyses
469  of historical dental calculus is the possibility of modern contamination. We followed rigorous ancient
470 DNA procedures and limited our study of AMR to oral bacteria, to reduce the possibility of including
471 modern contaminants. However, our classification of ‘oral bacteria’ was primarily based on
472 knowledge of the oral microbial community of humans and pets (Chen et al. 2010; Dewhirst et al.
473 2012; Dewhirst et al. 2015; Mann et al. 2018) and thus excluded any bacteria which could be specific
474 to the oral cavity of bears (i.e. not carried by humans). As with any metagenomic study from non-
475 model organisms that relies on taxonomic classification using reference databases, a detailed
476 characterisation of the oral microbial community of living brown bears would be a valuable resource
477  and greatly improve our inferences. The degraded nature and low quantity of DNA recovered from
478 historical samples like dental calculus can potentially impact ARG identification. However, we
479 accounted for both DNA fragment length and sequencing depth in our analyses and neither were
480 found to drive the temporal patterns in AMR levels.

481

482  One important next step in the study of AMR from dental calculus is the functional validation and
483  characterisation of the detected ARGs. Isolation of bacteria in culture is not possible from historical
484 dental calculus, as the biofilm undergoes periodic mineralisation. However, functional
485  characterisation of detected ARGs could be possible with screening methods that have been
486  successfully applied in both modern and ancient metagenomic studies of AMR (Dcosta et al. 2011;
487  Tsukayama et al. 2018). Historical wildlife microbiomes could also represent an unexplored source of
488  biologically active substances, including novel antibiotics, that could be identified from metagenomes
489  using a strategy targeting biosynthetic gene clusters (Sugimoto et al. 2019). Taken together, the field
490 of ancient metagenomics can broaden our understanding of global environmental trends, including
491  those resulting from human actions, help us evaluate the effectiveness of environmental policies and
492 provide a means to uncover potentially novel active substances that can be recovered from ancient
493  microbial communities.

494

495 Materials and Methods

496  Specimens and sample collection

497 Dental calculus was collected from Swedish brown bear (Ursus arctos) specimens from the Swedish
498 Natural History Museum (Stockholm, Sweden). Skulls were macroscopically examined for dental
499 calculus deposits and evidence of oral diseases, such as caries, inflammation and tooth loss. Calculus
500 was removed from the surfaces of teeth without macroscopic signs of oral disease (n=82) with
501  disposable sterile scalpel blades and deposited in sterile microcentrifuge tubes. For most individuals,

502  calculus deposits from multiple teeth were pooled. However, 3 individuals were sampled twice and
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503 processed as separate samples, of which 5 samples were excluded due to low oral microbial content.
504 To monitor museum environmental contamination, we used a sterilised cosmetic swab to rub an
505 interior corner of one bear specimen drawer for 5 seconds, before depositing the swab tip in a sterile
506  microcentrifuge tube. To characterise microbial communities that colonise the external surface of
507 museum specimens but are not oral in origin, we repeated the procedure with a new swab on a bear
508  specimen skull, swabbing the cranial surface away from the jaw to avoid potential carryover of
509 endogenous oral microorganisms.

510

511  Specimen collection year and location information was obtained from museum records
512 (Supplementary Table S7). For three specimens, year of collection was unknown, however we were
513 able to assign them to the ‘pre 1951’ category based on museum records and information about the
514  collector who donated the specimen. Specimen location information included county (or historical
515 province), municipality, locality description and coordinates. Coordinates were available for the
516  majority of specimens collected after 1995 and were provided in either the RUBIN (RUtin for
517 Biolologiska INventeringar) or Swedish Grid (RT-90) system. They were converted to standard World
518 Geodetic System 84 (WGS84) coordinates using an online converter

519  (http://ormbunkar.se/koordinater/, accessed 10-10-2019). Specimens without location coordinates

520  were assigned WGS84 coordinates by searching for the locality described in the museum record on

521  Google Maps (https://www.google.com/maps, accessed 10-10-2019). Due to changing administrative

522 boundaries over time, we then converted museum records of county/province and municipality to
523  the modern county and municipality based on sample coordinates. Seven specimens had unknown
524  localities (beyond their county of origin) and were excluded from the geography and human impact
525 analyses. However, for visualisation (Figure 1 and Supplementary Figure S10), they were given
526  arbitrary coordinates within their known county.

527

528  Sample processing and DNA extraction

529  All laboratory protocols were performed in a dedicated ancient DNA laboratory following stringent
530 procedures to minimise contamination (Key et al. 2017). Samples were randomised to control for
531 batch effects and extracted in batches of 16, including two blank negative controls per batch that
532 were taken forward to library preparation. Surface decontamination of dental calculus samples,
533 ranging in weight from < 5 mg and up to 20 mg, consisted of UV light exposure (10 min at 254 nm)
534  followed by a wash in 500 pul of 0.5M ethylenediaminetetraacetate (EDTA) for 1 minute (Brealey et al.
535 2020). After centrifugation at 18,000 x g for 1 min, the pellet was taken forward for DNA extraction

536 following a silica-based method (Dabney et al. 2013) that was previously successfully applied to non-
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537  human dental calculus (Brealey et al. 2020). We eluted purified DNA in 45 ul of EB buffer (10 mM tris-
538 hydrochloride (pH 8.0) (Qiagen, The Netherlands) supplemented with 0.05% (v/v) Tween-20.

539

540  Library preparation and sequencing

541  We used a double-indexing double-barcoding approach (Rohland et al. 2015; van der Valk et al. 2019)
542  during double-stranded lllumina library preparation (Meyer and Kircher 2010) to guard against index
543 hopping and to retain certainty about sample of origin. We ligated adapters containing inline 7 bp
544 barcodes (Supplementary Table S7) to both ends of the blunt-ended DNA and quantified the
545 incomplete libraries using a real-time PCR assay (primer sequences in Supplementary Table S8) to
546  estimate the number of indexing PCR cycles needed for sequencing (Supplementary Table S7). All
547 extraction and library blanks were consistently lower in DNA content than the majority of samples, as
548 measured by real-time PCR (Supplementary Table S7). Samples with adapter-ligated library
549 concentrations similar to the blanks were excluded. Libraries were double-indexed with unique P5
550 and P7 indices so that each sample had a unique barcode-index combination (Supplementary Table
551  S7). The first batch of indexing PCR reactions (22 samples and blanks) was performed with 18 ul of
552  adapter-ligated library, 1 pl PfuTurbo Cx hotstart polymerase (2.5 U/ul, Agilent Technologies, CA), 5 ul
553 10X PfuTurbo Cyreaction buffer, 0.5 pul dNTP mix (25 mM) and 1 ul of each indexing primer (10 uM) in
554 50 ul reactions. Following optimisation, the remaining indexing batches were performed with 3.2 pl
555 10X PfuTurbo C,reaction buffer and the addition of 0.09 pl 20 mg/ml BSA (Thermo Fisher Scientific,
556  CA). For all batches, the PCR cycling conditions were: 2 min at 95°C, 8 or 10 cycles (primer sequences
557  in Supplementary Table S8) of 30 sec at 95°C, 30 sec at 59°C and 1 min at 72°C, and a final step of 10
558  min at 72°C. Following purification with MinElute, the indexed libraries were quantified using a real-
559  time PCR assay (primer sequences in Supplementary Table S8). We pooled 1.5 pl of each indexed
560 library (including blanks and swabs) and performed size selection for fragments approximately 100-
561 500 bp in length with AMPure XP beads (Beckman Coulter, IN). The final pooled library was
562  quantified with a Qubit High Sensitivity fluorometer and the fragment length distribution evaluated
563  with the 2200 TapeStation system. The pooled library was sequenced by ScilifeLab Uppsala on 2
564 Illumina NovaSeq S2 flowcells using paired-end 100 bp read length v1 sequencing chemistry together
565 with additional samples that were not part of this project.

566

567 Data processing

568 Sequenced reads were demultiplexed and assigned to each sample with an in-house python script
569 based on the unique combination of barcodes and indices, discarding reads with wrong barcode
570  combinations that could be the result of index hopping (van der Valk et al. 2019). Paired-end reads

571  that overlapped by at least 11 bp were merged, adapters and low quality terminal bases (phred
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572 scores < 30) were removed and the trimmed, merged reads were filtered to remove reads with a
573 length < 30 bp with AdapterRemoval v2.2.2 (Schubert et al. 2016). Barcode sequences were removed
574  from the 5’ and 3’ ends of merged reads with an in-house python script. All reads for each sample
575 (i.e. across the four lanes from the two Illumina NovaSeq flowcells) were concatenated into a single
576  file per sample. Reads with mean base quality < 30 were filtered out with PrinSeq-Lite v0.20.4
577  (Schmieder and Edwards 2011). Duplicate reads were removed by randomly keeping one read among
578 those reads having an identical sequence using an in-house python script. To remove any erroneous
579 reads from the Illumina sequencing control phage PhiX, reads were mapped to PhiX (accession:
580 GCA _000819615.1) with bwa mem v0.7.17 (Li and Durbin 2009; Li 2013) and the unmapped reads
581 retained with SAMTools v1.9 (Li et al. 2009) and BEDTools v2.27.1 (Quinlan and Hall 2010). To
582 remove reads originating from the host organism and from human contamination, we mapped reads
583  to a combined reference consisting of the human genome (Schneider et al. 2017) (RefSeq accession:
584  GCF_000001405.38) and the grizzly bear genome (Taylor et al. 2018) (U. arctos horribilis,
585  GCF_003584765.1) with bwa mem. The unmapped reads were retained with SAMTools and BEDTools
586  for downstream analyses.

587

588  Microbial source identification

589  The unmapped reads were assigned taxonomy using the k-mer based classifier Kraken2 v2.0.8 (Wood
590 and Salzberg 2014) with the standard Kraken2 database (all archaea, bacteria, viruses and the human
591 genome in RefSeq; built 2019-05-01) and default parameters. We used Kraken-biom

592 (github.com/smdabdoub/kraken-biom) to extract the summarised number of reads assigned at the

593  genus and species levels. These assignments were used with SourceTracker v1.0 (Knights et al. 2011)
594 in R, to estimate the potential contribution of source microbiomes to our samples. Source
595  sequencing reads were processed through the same pipeline as sample reads, and included soil
596  (Johnston et al. 2016), human skin (Oh et al. 2014), human gut (Huttenhower et al. 2012; Lloyd-price
597 et al. 2018), human supragingival plaque (Huttenhower et al. 2012; Lloyd-price et al. 2018), human
598 medieval dental calculus (Mann et al. 2018) and laboratory reagent (Salter et al. 2014) microbiomes
599 (Supplementary Table S9). Within SourceTracker, sample rarefaction was set to the source with the
600 lowest summed sequencing depth (-r 20809).

601

602 Oral bacteria identification

603 We used Bracken v2.0 (Lu et al. 2017) to estimate taxa abundances from the Kraken read
604  assignments at the species level (- S) using a read length of 65 bp (-r 65), a k-mer length of 35 bp (-k
605 35) and without an abundance threshold (-t 0). The data were further processed in RStudio v1.3.959
606  (RStudio Team 2020) using R v4.0.2 (R Core Team 2020). We excluded bear calculus samples with low
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607 microbial taxa abundances (summed Bracken abundance < 12,390, corresponding to the summed
608 Bracken abundance of the most deeply sequenced extraction blank). To reduce false-positive
609  taxonomic assignments, we filtered out taxa present at < 0.05% relative abundance (Bracken
610 abundance divided by sum of Bracken abundance in a sample) (Velsko et al. 2018). We also excluded
611  calculus samples with low proportions of taxa showing similarity to human oral microbiomes (< 5% of
612  a sample attributed to human calculus and plaque), as estimated by SourceTracker, to remove
613 potentially strongly contaminated samples. Since we were interested in endogenous AMR of the
614 host-associated oral microbiome and environmental microorganisms may contain ARGs, we subset
615 the dataset to a list of oral bacteria (Supplementary Table S2). To this end, we used previously
616  defined criteria (Brealey et al. 2020) and classifications from (Mann et al. 2018), taxa present in the
617 Human Oral Microbiome Database (Chen et al. 2010) and those identified in dog and cat oral
618 microbiota studies (Dewhirst et al. 2012; Dewhirst et al. 2015). Bracken relative abundances of oral
619  taxa were then summarised to the genus level for some downstream analyses.

620

621  Antimicrobial resistance profiling

622  AMR profiling was performed as previously described (Brealey et al. 2020). Oral taxa reads were
623 blasted against the Comprehensive Antibiotic Resistance Database (CARD) v3.0.1 (modified 2019-02-
624  19) (Jia et al. 2017), a curated collection of resistance determinant sequences, with blast v2.0.9+
625 (Altschul et al. 1990; Madden et al. 2009) using default parameters. Using RStudio, the DNA and
626 Protein accession numbers associated with each CARD sequence were mapped to their respective
627  Antibiotic Resistance Ontology (ARO) accession number and used to obtain the AMR gene family
628 (ARG family) and resistance mechanism of each sequence. The best hit for a read was identified
629  based on highest bit score. Where multiple hits had the same bit score, we compared the ARO terms
630 and in all cases, the hits shared the same ARO information (ARG family and resistance mechanism).
631  We therefore randomly chose one hit to carry forward. Total AMR load was calculated as the sum of
632  all reads with hits in a sample, normalised by the number of sequenced oral bacteria reads. ARG
633  family abundance was calculated as the sum of reads assigned to each ARG family in a sample
634 normalised by the number of sequenced oral bacteria reads in that sample. We used the R package
635  vegan (Oksanen et al. 2018), function ‘specnumber’, to calculate ARG diversity per sample as the
636 number of ARG families in a sample with at least one sequencing read. To obtain ARG family
637 abundance across a time period, we calculated the sum of reads with a best hit for each ARG family
638 in a time period (i.e. combined across samples) normalised by the number of extracted oral reads in
639 all samples in that time period. Similarly, ARG diversity per time period was calculated as the number
640  of ARG families in a time period with at least one sequencing read (i.e. combined across samples).

641
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642 Geographic and human impact data

643 Historical human population data was based on publicly available Swedish church parish (férsamling
644 or socken in Swedish) records. Parishes were both religious and territorial units until 1995, and
645 recorded parish population numbers, among other details. The 50 specimens with known localities
646  were plotted in QGIS v3.14.15 (QGIS.org 2020) with a vector of Swedish parish boundaries as they
647  were in the 1976-1995 Swedish property register, downloaded from Lantmateriet, the Swedish

648  mapping, cadastral and land registration authority (ftp://download-

649 opendata.lantmateriet.se/SockenStad/Sverige/Sweref 99 TM/Geopackage/snst riks Sweref 99 T

650 M gpkg.zip, accessed 27-05-2020). The area of each parish was calculated using the ‘Add Geometry
651 Attributes’ tool in QGIS. The corresponding parish for each sample was determined using the tool
652 ‘Join Attributes by Location’ (Geometric predicate: 'intersects', 'within'; Join type: take attributes of
653  the feature with the largest overlap (one-to-one)). Publicly available historical human population
654  data was downloaded using the FOLKNET search tool
655  (http://rystad.ddb.umu.se:8080/FolkNet/index.jsp, accessed 08-06-2020). The FOLKNET database

656  contains the human population from each town and parish, collected every 10 years from 1810 to
657  1990.

658

659  Secular municipality divisions came into effect between 1971 and 1995 and the Swedish Tax Agency
660  took over the population register in 1991. Therefore, modern human population data (for samples
661  collected between 1995 and 2016) was based on publicly available population statistics of Swedish
662  towns from Statistics Sweden (SCB). ArcView GIS shape files for human population in 2000, 2010 and

663 2015 were downloaded (https://www.scb.se/vara-tjanster/oppna-data/oppna-geodata/tatorter/ and

664  https://www.scb.se/vara-tjanster/oppna-data/oppna-geodata/smaorter/, accessed 09-06-2020). In

665  QGIS, the two shape file vectors were merged for each reference year (‘Merge vector layers’) and
666  cleaned-up (‘Check validity & Fix geometries’). Each merged vector contained the polygon
667  boundaries and area of each town with its human population on 31st of December of the reference
668  year. Because historical parish boundaries tended to be larger than modern town boundaries, we
669 chose to map the modern towns to the historical parish boundaries using the ‘Join Attributes by
670 Location’ tool. Thus, data from multiple towns within a parish boundary were combined. The
671 historical parishes and corresponding modern town names, populations and areas were exported
672 into RStudio and summed across historical parish for each reference year.

673

674 In RStudio, specimens were assigned to their closest reference year (available for each decade, e.g. a
675  specimen collected in 1984 was assigned to the reference year 1980, while a specimen collected in

676 1985 was assigned to 1990), except for samples collected after 2014, which were assigned to the
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677 2015 reference year. For samples collected before 1995, human population was assigned as the
678 FOLKNET historical population for the parish during the closest reference year, whereas samples
679  collected from 1995 were assigned human population values based on the information from SCB.
680 Human population density (population per square kilometre) was then calculated using the area of
681  each parish. For Supplementary Figure S9, human population density for all of Sweden and for each
682  county in the year 2000 was downloaded from SCB
683  (https://www.statistikdatabasen.sch.se/pxweb/en/ssd/START BE BE0101 BE0101C/BefArealTat
684 hetKon/, accessed 14-12-2020).

685

686 Human activities data were not consistently available for historical time periods. We therefore used
687  the Last of the Wild Project (version 3) 2009 Human Footprint, 2018 Release, which is a global map of
688  the cumulative human pressure on the terrestrial environment in 2009, using eight variables (built-
689 up environments, population density, electric power infrastructure, crop lands, pasture lands, roads,
690 railways and navigable waterways) at a spatial resolution of approximately 1 km (Venter et al. 2016).
691 The GeoTiff raster file for 2009 was downloaded from the NASA Socioeconomic Data and

692  Applications Center (https://doi.org/10.7927/H46T0JQ4, accessed 04-06-2020) and imported into

693  QGIS with the 50 specimens with assignhed coordinates (visualised in Figure 1). A 500 km? buffer zone,
694  corresponding to a 12.5 km radius, was calculated around each sample, corresponding to an
695  approximate average of the home range size of adult brown bears in Sweden (100-1000 km?,
696  depending on sex and reproductive status) (Dahle and Swenson 2003). The average Human Footprint
697 Index was calculated within each sample buffer zone (the ‘Zonal statistics’ tool) and exported into
698 RStudio. For Supplementary Figure S9, the average Human Footprint Index was also calculated across
699  all of Sweden.

700

701  Statistical analysis

702  All statistical analyses were performed in RStudio. Specimen time period was treated as a five-level
703 ordered factor for all relevant analysis. For ordination, Bracken abundance counts for all filtered taxa
704  were normalised by the centre-log ratio (CLR) transformation, using a pseudocount of 1 added to all
705 taxa in all samples to resolve the problem of zero values. Euclidean distance matrices were calculated
706  with the vegan (Oksanen et al. 2018) function vegdist. Non-metric multidimensional scaling (NMDS)
707  was performed on the distance matrices with the vegan function metaMDS, with k = 3 for all taxa
708  (Supplementary Figure S2) and k = 2 for oral bacteria (Supplementary Figure S8). NMDS was also
709 performed for oral bacteria on a Jaccard distance matrix calculated from binary presence/absence
710  data with k = 2 (Supplementary Figure S8). PERMANOVA was performed on distance matrices using

711  the vegan function adonis with 1000 permutations (Supplementary Table S1). To evaluate changes in
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712  abundance (total AMR load and ARG family abundance) over the time periods, generalised linear
713 models (GMLs) were built with a quasibinomial distribution and a logit link function and total oral
714  read count as weights. To determine which potential confounding factors were associated with total
715  AMR load, continuous explanatory variables (e.g. median length of oral reads) were evaluated with a
716  Spearman correlation test, while categorical variables (e.g. extraction batch) were evaluated with a
717 Kruskal rank sum test (Supplementary Table S3). Significant variables were included as confounding
718  factors in the generalised linear models.

719

720 ARG family diversity was calculated across samples pooled by time period, as the number of unique
721 ARG families detected in that time period, using the vegan function specnumber. To control for
722 different numbers of samples between time periods, we subsampled each time period to 8 samples
723 (the lowest number of samples in any time period) without replacement, using the R base function
724 sample, before calculating ARG family diversity. This process was repeated 1000 times to generate a
725  distribution of ARG family diversity values for each time period (Figure 3a). To control for differences
726  in sequencing depth between time periods, we also subsampled each time period to 500 AMR-
727  positive reads (the lowest number of pooled AMR-positive reads in a time period was 553),
728  independent of sample ID, and calculated ARG family diversity 1000 times, as above (Supplementary
729 Figure S5).

730

731  To identify correlations between ARG family abundance and bacterial genus abundance, we used the
732 R package CCREPE (Compositionality Corrected by REnormalizaion and PErmutation,

733 https://github.com/biobakery/ccrepe), which aims to identify significant correlations between two

734  compositional datasets while accounting for multiple hypothesis testing. We compared the four most
735 highly abundant ARG families (ABC-F, ileS, RND and rpoB) with all oral bacterial genera, 20 bootstrap
736  and permutation iterations and a minimum non-zero sample (subject) number per ARG family/genus
737  of 20. For the measure of similarity (or correlation) between samples, we used CCREPE’s in-build
738  nc.score function, which calculates species-level co-variation and co-exclusion patterns based on an
739 extension of Diamond's checkerboard score to ordinal data. Significantly correlated ARG—genus pairs
740  were identified as those with a q value (p value adjusted for multiple hypotheses with the Benjamin-
741 Hochberg-Yekutieli procedure) < 0.05 and a positive correlation (i.e. nc.score > 0).

742

743 Data availability

744 Raw sequencing data can be found at the European Nucleotide Archive under the project accession

745 PRIEB42014 (sample-specific ENA accessions are provided in Supplementary Table S7). Sample
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746  metadata is provided in Supplementary Table S7. In-house python and R scripts used in data

747  processing and analysis are available on GitHub (https://github.com/jcbrealey/amr_bears).
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SUPPLEMENTARY MATERIAL

Supplementary Figures
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Supplementary Figure S1. SourceTracker analysis of microbial composition of bear dental calculus
samples, extraction and library preparation (LP) blank control samples and museum swabs (S).
Microbial taxonomy was assigned by Kraken2. SourceTracker was run prior to additional filtering on
samples or taxa. Dental calculus samples with < 5% oral microbial signature (human plaque + human

calculus sources) were excluded from further analysis (dashed line).
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Supplementary Figure S2. NMDS of CLR-normalised microbial taxa abundances in bear dental
calculus, museum swab, extraction blank and library preparation blank samples. NMDS was
performed with k = 3 on a Euclidean distance matrix. NMDS stress: 0.111. Samples are coloured by
the proportion of their microbiome composition corresponding to human oral microbiome, based on
SourceTracker results (summed human dental calculus and human dental plaque proportions). Bear
samples that were excluded due to low oral proportions (< 0.05) are indicated by squares instead of
circles. In a PERMANOVA of Euclidean distances (Supplementary Table S1), sample type (dental
calculus or various controls) accounted for 4.28% of the variation (F3112 = 1.69, p = 0.012) and oral
source proportion accounted for 0.83% (Fi,112 = 0.98, p = 0.405). However, when oral source
proportion was included in the PERMANOVA without sample type, it accounted for 1.88% of the
variation (Fy,116 = 2.23, p = 0.021).
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1115  Supplementary Figure S3. Number of reads assigned to oral bacteria taxonomy (Supplementary Table
1116  S2) identified in bear dental calculus samples, museum swabs and laboratory blanks. Number of
1117  reads is displayed on a log scale (y-axis).
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1121  Supplementary Figure S4. Total AMR load is correlated with median length of oral bacteria DNA
1122  fragments in each bear calculus sample. Sample colour and shape indicates sample collection time
1123 period. Spearman correlation rho and p are shown above the legend.
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Supplementary Figure S5. Boxplots of the number of unique ARG families detected in each time
period while controlling for differences in the amount of data available between time periods. All
ARG-positive reads from all samples in a time period were pooled, subsampled to 500 reads and the
number of unique ARG families calculated. This subsampling was independently repeated 1000 times

to generate the boxplots.
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Supplementary Figure S6. Proportion of oral bacteria reads mapping to four out of seven most
abundant ARG families in bear calculus samples across the study time periods (for the remaining
three see Figure 4). (a) antibiotic resistant ileS (isoleucyl-tRNA synthestase), (b) ABC (ATP-binding
cassette) antibiotic efflux pump, (c) lipid A phosphatase and (d) aminocoumarin resistant parY

(topoisomerase V).
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1142  Supplementary Figure S7. Changes in abundance of antibiotic resistant ileS (isoleucyl-tRNA
1143  synthestase) is driven by changes in abundance of Parvimonas (a,c) and Gemella (b,d). Abundance of
1144  ileS is correlated with Parvimonas (a) and Gemella (b) abundance. Changes in abundance of the
1145 bacterial genera Parvimonas (c) and Gemella (d) over time. ileS abundance was calculated as the
1146  proportion of oral bacteria reads mapping to the ileS family. Genus abundance was calculated as the
1147  proportion of oral bacteria reads assigned by Bracken to that genus.
1148
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Supplementary Figure S8. NMDS of CLR-normalised abundances (a,c) and presence/absence (b,d) of
oral bacteria in bear dental calculus samples. NMDS was performed with k = 2 on a Euclidean (a,c) or
Jaccard (b, d) distance matrix. NMDS stress for (a,b): 0.188 and for (b,d): 0.132. Samples are coloured
by sample collection time period (a-b) and total AMR load (c-d). Neither variable accounted for a
significant percentage of variation in a PERMANOVA of either distance matrix (Supplementary Table

s1).
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Supplementary Figure S9. Total AMR load compared to historical human population per km? (a) and
mean Human Footprint Index (b) within a 12.5 km radius (500 km?) around specimen collection
location. The majority of bear specimens were collected from low-density areas, compared to the
population density of Sweden as a whole in 2000 (dashed blue line in a) and from areas with low
Human Footprint Indices compared to the average across Sweden (dashed blue line in b). The upper
limit of the x axis in a is indicative of the most densely populated region in Sweden (Stockholm
county, 280 people per km? in 2000) and in b is indicative of the maximum Human Footprint Index in

Sweden (50).
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Supplementary Figure S10. Sample locations (longitude and latitude) divided by sample collection

time period and coloured by total AMR load. Seven samples from pre-1951 were missing locality

information (indicated by circles instead of diamonds) and are plotted using arbitrary coordinates

within their respective counties.
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1177  Supplementary Table legends (for tables, see Excel workbook)

1178

1179  Supplementary Table S1. PERMANOVA results of microbial community differences between i) all
1180 samples (including laboratory controls), using both oral and non-oral microbial CLR-normalised
1181  abundances and Euclidean distances; ii-iii) bear samples using oral microbial CLR-normalised
1182  abundances and Euclidean distances; and iv-v) bear samples using oral microbial detection
1183 (presence/absence) and Jaccard distances. In ii) and iv), an associated with time period was
1184 investigated, while in iii) and v), an association with total AMR load (the number of reads mapping to
1185 CARD divided by the total number of oral bacterial reads) was investigated.

1186

1187 Supplementary Table S2. Taxonomy and NCBI taxon IDs of bacteria classified as ‘oral’ for the AMR
1188 analyses.

1189

1190  Supplementary Table S3. Tests for associations between total AMR load and variables relating to
1191  sampling processing (e.g. processing batches, sequencing depth), specimen collection (e.g. time
1192 period, location) and specimen proximity to humans (e.g. historical human population density,
1193 Human Footprint Index). Categorical variables were assessed with a Kruskal-Wallis rank sum and
1194  continuous variables with a Spearman’s correlation test.

1195

1196  Supplementary Table S4. ARG family descriptions (abbreviation, name and resistance mechanism).
1197

1198  Supplementary Table S5. Results from generalised linear models of changes in the abundance of each
1199 of the seven most abundance ARG families (ABC-F, rpoB, RND, ileS, ABC, pgpB and parY) load across
1200 time period, controlling for median DNA fragment length.

1201

1202  Supplementary Table S6. Results from generalised linear models of the effect of geography
1203 (longitude and latitude), historical human population density and 2009 Human Footprint Index on
1204  the total AMR load, with and without controlling for time period and median DNA fragment length.
1205

1206 Supplementary Table S7. Sample metadata.

1207

1208 Supplementary Table S8. Sequencing adapter and real-time PCR assay primer sequences.

1209

1210  Supplementary Table S9. Samples used as sources for SourceTracker analysis.

1211
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