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45  Abstract

46 Human skeletal stem cells (SSCs) have been discovered in fetal and adult bones.
47  However, the spatiotemporal ontogeny of human SSCs during embryogenesis has
48  been elusive. Here we map the transcriptional landscape of human embryonic
49  skeletogenesis at single-cell resolution to address this fundamental question. We
50 found remarkable heterogeneity within human limb bud mesenchyme and epithelium,
51 as well as the earliest osteo-chondrogenic progenitors. Importantly, embryonic SSCs
52  (eSSCs) were found in the perichondrium of human long bones, which self-renew and
53 generate osteochondral lineage cells, but not adipocytes or hematopoietic stroma.
54 eSSCs are marked by the adhesion molecule CADM1 and highly enrich FOXP1/2
55  transcriptional network. Interestingly, neural crest-derived cells with similar phenotypic
56  markers and transcriptional network were also found in the sagittal suture of human
57  embryonic calvaria. Taken together, this study revealed the cellular heterogeneity and
58 lineage hierarchy during human embryonic skeletogenesis, and identified distinct
59  skeletal stem/progenitor cells that orchestrate endochondral and intramembranous
60  ossification.

61

62  Introduction

63 Multipotent and self-renewing skeletal stem cells (SSCs) were discovered in the
64  growth plate of early postnatal mice by phenotypic profiling and lineage tracing studies’:
65 2. SSCs were also found within PTHrP* chondrocytes in the resting zone of mouse

66  postnatal growth plate®, as well as in the periosteum of postnatal long bones and
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67 calvaria (also known as periosteal stem cells, PSCs)*. Importantly, SSCs were recently
68 identified in the growth plate of 17-week-old human long bones, suggesting that they
69  are evolutionarily conserved in human fetus®. Similar to bone marrow stromal cells
70  (BMSCs) that maintain the adult skeleton®°, mouse and human SSCs from the growth
71  plate give rise to chondrocytes, osteoblasts and hematopoietic stroma upon in vivo
72 transplantation® 5. However, they do not differentiate into adipocytes, highlighting the
73 functional differences among SSCs at distinct developmental stages and anatomical
74 sites’® . Whereas lineage tracing studies in mice revealed multiple waves of
75  osteoprogenitors during skeletal development'>'4, the embryonic origin of human
76 ~ SSCs during skeletogenesis remains unknown. Discovery of an evolutionarily
77  conserved embryonic SSC population will not only clarify the spatiotemporal ontogeny
78  of SSCs, but also shed light on novel cell therapies that promote skeletal regeneration.
79 In vertebrates, the earliest progenitors of appendicular skeleton are formed within
80  limb buds™ '6. Limb patterning along the anterior-posterior (AP) axis is regulated by
81  sonic hedgehog (SHH) signals from the zone of polarizing activity (ZPA)"7, while the
82  proximal-distal (PD) axis patterning is mainly regulated by FGF signals from the apical
83 ectodermal ridge (AER)'® 9. The distal mesenchymal cells underlying AER are
84  undifferentiated and highly proliferative when receiving the FGF and WNT signals?®: 21,
85  which form the progress zone that elongates the limb buds. The core mesenchyme
86  outside progress zone express SOX9 to specify the osteo-chondrogenic lineage and
87  generate cartilage template. Although different mesenchymal progenitors have been

88 identified in mouse and chick limb buds?? 23, the cellular heterogeneity and lineage
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89  hierarchy within human limb buds remain unknown.
90 After chondrogenic differentiation of limb bud mesenchymal progenitors, long bones
91 are generated by endochondral ossification?. Blood vessels invade the center of
92 cartilage template with perichondrial osteoprogenitors to form the primary ossification
93 center (POC)'> ' where osteoblasts, vascular endothelial cells, pericytes and
94  hematopoietic cells populate to form the bone marrow?%2°. In contrast to long bones,
95 calvarial bones are generated by intramembranous ossification, which involves cranial
96 mesenchyme condensation and direct mineralization on top of the cartilage anlagen3’-
97 3. Whereas long bones are derived from lateral plate mesoderm, calvarial bones are
98  derived from both neural crest and paraxial mesoderm that generate different parts of
99  the calvarium®* 3. Interestingly, although mouse long bone SSCs and calvarial PSCs
100 are distinct stem cell populations that mediate endochondral and intramembranous
101  ossification, respectively, they share similar phenotypic markers (Lineage
102  CD51*"°%Thy1-6C3-CD200*CD105°)" 4. Whether the embryonic long bones and
103  calvaria contain skeletal stem/progenitor cells that share similar molecular features
104  remain to be explored.
105 Single-cell RNA-sequencing (scRNA-seq) is a powerful tool in dissecting the cellular
106  composition and lineage hierarchy within heterogeneous or rare cell populations®6-3.
107 In the musculoskeletal system, a high-throughput scRNA-seq study during mouse
108  embryonic development reported the transcriptional landscapes of AER, limb bud
109  mesenchyme and skeletal muscle before POC formation®®. Recent scRNA-seq studies

110  in adult mouse bone marrow also revealed the cellular heterogeneity of BMSCs,
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111  endothelial cells and osteo-chondrogenic lineage cells under homeostatic and stress
112 conditions*%-42, scRNA-seq profiling during axolotl limb regeneration identified
113 convergence of connective tissue cells back to multipotent skeletal progenitors that
114  formed a limb bud-like blastema structure*®. In contrast, scRNA-seq studies in the
115  human skeletal system are still lacking, especially during embryonic development.
116 In this study, we generated the first comprehensive human embryonic
117  skeletogenesis cell atlas by scRNA-seq. By systematically examining the cellular
118  heterogeneity and lineage hierarchies within multiple skeletal sites, we identified
119  distinct skeletal stem/progenitor cells in human embryonic long bone and calvarium.
120

121  Results

122  Integrated analyses of single-cell transcriptomes during limb bud and long

123 bone development

124 To test whether SSCs exist during embryogenesis, we analyzed human limb buds
125  at 5 weeks post conception (5 WPC), as well as human limb long bones at 8 weeks
126 post conception (8 WPC). Hematoxylin and eosin staining showed condensed
127 mesenchyme within limb buds, and the nascent bone marrow cavity (POC) in the
128  center of long bones (Fig. 1a). To map the single-cell transcriptomes, upper and lower
129  limb buds (5 WPC, n=3, Supplementary information, Fig. S1a), as well as forelimb and
130  hindlimb long bones (8 WPC, n=3, Supplementary information, Fig. S1a) were
131  dissected and subjected to enzymatic digestions. Dissociated cells were then sorted

132 by flow cytometry to obtain live single cells for 3’ scRNA-seq on a 10X Genomics
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133  platform (Fig. 1b). After quality control and doublet exclusion, we obtained 19,890
134  single cells in 5 WPC limb buds and 15,680 single cells in 8 WPC long bones
135  (Supplementary information, Fig. S1a). On average, we detected 2,841 genes (10,212
136 unique molecular identities, UMI) per cell with less than 2.4% mitochondrial genes
137  Supplementary information, Fig. S1a). Normal karyotype was inferred by calculating
138  copy number variation (CNV) scores on 100 randomly sampled cells for each embryo
139  (Supplementary information, Fig. S1b)*. We performed canonical correlation analysis
140  (CCA) to normalize variance and correct batch effects among different samples*®.
141  Integrated analysis of the limb bud and long bone samples revealed 16 subsets (Fig.
142 1c and Supplementary information, Fig. S1c). The robustness of cell clustering was
143  validated by calculating silhouette values (Supplementary information, Fig. S1d)*, and
144 by random sampling and re-clustering analysis (Supplementary information, Fig. S1e).
145 We found three PRRX1* mesenchymal subsets that mainly existin 5 WPC limb buds
146 (clusters 1-3), which differentially expressed PDGFRA, reflecting mesenchymal
147  progenitors at different maturation stages (Fig. 1c-e)?2. Notably, cluster 4 is a
148  mesenchymal subset that equally distributed between limb bud and long bone samples,
149  which expressed PRRX1, low level of SOX9 and the highest level of PDGFRA,
150  reminiscent of osteo-chondrogenic progenitors (OCPs) that give rise to long bones (Fig.
151  1c-e)*?. EPCAM* epithelial cells (clusters 14 and 15)*” and GYPA* erythrocytes (cluster
152 13)*8 were mainly detected in limb buds, while SIX1* myoprogenitors (cluster 9)*°,
153  CDHS5* endothelial cells (cluster 11)%° and CD68* macrophages (cluster 12)%' were

154  found in both samples (Fig. 1c-e). In contrast, RUNX2* osteoprogenitors (cluster 5)%2,
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155  OSR2*NOV* perichondrial mesenchymal stromal cells (PMSCs, cluster 6)% %4, SOX9*
156  chondroblasts and chondrocytes (clusters 7 and 8)%°, MYOG* myocytes (cluster 10)°,
157  as well as SOX10* Schwann cells (cluster 16)°” were mainly detected in long bones
158  (Fig. 1c-e and Supplementary information, Table S1).

159 Pearson correlation analysis clearly distinguished the skeletogenic and non-
160  skeletogenic subsets (Supplementary information, Fig. S1f). Pseudotime analysis by
161  RNA velocity® showed a differentiation continuum from limb bud mesenchymal
162  progenitors to OCPs, followed by cell fate specification into osteogenic and
163  chondrogenic lineages (Fig. 1f). Partition-based graph abstraction (PAGA) analysis®®
164  showed a pivotal role of OCPs in linking limb bud mesenchymal progenitors (PRRX1%)
165 to PMSC/chondroblasts/chondrocytes (SOX9*) and osteoprogenitors (RUNX2*) in
166  embryonic long bones (Fig. 1g). Next, we focused on this OCP lineage and separately
167  analyzed the limb bud and long bone samples to trace back the origin of SSCs.

168

169 Delineating mesenchymal lineage specification during limb bud development
170 We were able to identify 10 subsets in 5 WPC human limb buds (Fig. 2a).
171 Hierarchical analysis within the 4 mesenchymal subsets showed that Mes1 (cluster 1)
172 clustered with Mes2 (cluster 2), while Mes3 (cluster 3) and OCP (cluster 4) clustered
173 together (Fig. 2b). Of the two epithelial subsets, only cluster 9 highly expressed AER
174  marker FGF8 (Fig. 1d), consistent with previous study in mouse embryos (Fig. 2b)3°.
175  Surprisingly, PAGA analysis found a strong correlation between Mes2 and epithelial

176  subsets (Fig. 2c), raising the possibility that Mes2 might correspond to progress zone
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177  mesenchyme that lies underneath the limb bud epithelium' €0, Consistent with this
178  hypothesis, cell cycle analysis showed that Mes2 was more proliferative as compared
179  to other mesenchymal subsets, with more cells in G2/M phase (Fig. 2d). Gene ontology
180  (GO) analysis showed that Mes2 enriched genes regulating metabolic processes,
181  while Mes3 and OCP enriched genes involved in embryonic skeletal development and
182  ossification (Fig. 2e).

183 During limb bud outgrowth, HOX gene expressions switch from 3’ to 5’ topologically
184  associating domains along the PD axis®'. We found that Mes3 preferentially expressed
185 3’ HOX genes such as HOX2-6, while Mes1 and Mes2 preferentially expressed 5" HOX
186  genes such as HOX9-11, suggesting that they represented proximal (Mes3) and distal
187 (Mes1 and Mes2) mesenchymal cells, respectively (Fig. 2f). In contrast, OCP
188  expressed both 3’ and 5 HOX genes, reminiscent of the core mesenchyme that gives
189 rise to skeletal tissues (Fig. 2f). Consistent with this, when we aligned the
190 mesenchymal subsets along PD and AP axes using known marker genes such as
191  MEIS2, IRX3, HOXD13 and SHH (Fig. 2g), Mes3 and OCP were positioned at the
192  proximal end, while Mes1 and Mes2 were positioned at the distal end (Fig. 2g). Of note,
193  the distal most localization of Mes2 was in line with the progress zone. Consistent with
194  previous studies®? 63, gene set variation analysis (GSVA) showed that the proximal and
195 core mesenchyme enriched genes related to retinoic acid and PDGF signaling, while
196  the distal mesenchyme enriched genes related to Hedgehog, FGF, TGFB and Notch
197  signaling (Fig. 2h). To explore the gene regulatory networks (regulons) that determine

198 cell fate specification in the mesenchymal subsets, we applied single-cell regulatory
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199  network inference and clustering (SCENIC) method to score the activity of regulons by
200  an AUCell algorithm (AUC score), which reflects the co-expression of transcription
201  factors (TFs) and their downstream target genes in each individual cell®*. Hierarchical
202  clustering of the AUC scores again distinguished proximal/core and distal
203  mesenchymal subsets (Fig. 2i). MSX1 and PITX1 regulons were enriched in Mes1 and
204  Mes2%5 %6 while PBX1 and SOX9 regulons were enriched in Mes3 and OCP?% 67,
205 Interestingly, we also identified several OCP-specific regulons such as ZMIZ1, NR2C2
206 and KDMA4A, suggesting novel chondrogenic regulators within the limb bud
207  mesenchyme (Fig. 2i and Supplementary information, Table S2).

208 To explore evolutionarily conserved and species-specific features during limb bud
209  development, we analyzed a recently published scRNA-seq dataset of mouse hindlimb
210  buds at similar embryonic stage (E11.5) (Supplementary information, Fig. S2a).
211  SciBet is a recently developed algorithm that predicts cell identity by training
212 multinomial model with given dataset®. By training SciBet with our human dataset, we
213 found that most human subsets were conserved in mouse except that Mes2 and
214  epithelium (non-AER) subsets were not predicted in mouse limb buds (Supplementary
215 information, Fig. S2b and Table S1). The lack of a highly proliferative Mes2 subset
216  implied advanced maturation of E11.5 mouse limb buds (Supplementary information,
217  Fig. S2a)’°. Consistent with this, mouse OCP subset highly expressed SOX9
218  (Supplementary information, Fig. S2c), suggesting early chondrogenic differentiation.
219 A much lower proportion of mouse AER was found within limb bud epithelium (6%) as
220  compared to human AER (69%, Supplementary information, Fig. S2d), which could

10
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221  possibly explain why mouse limbs are much shorter than human limbs.

222 Taken together, these data revealed the cellular heterogeneity and species-specific
223  features of human limb bud mesenchyme and epithelium. Since osteogenesis is not
224 initiated in 5 WPC human limb buds, we went on to analyze the 8 WPC human long
225  bones in search of embryonic SSCs.

226

227  Delineating osteochondral lineage specification during long bone development
228 We analyzed the long bone dataset from 8 WPC human embryos (Supplementary
229 information, Fig. S3a) and divided the osteochondral lineage cells (OCLCs) into 7
230 subsets (Fig. 3a). In addition to previously identified osteoprogenitor, PMSC,
231  chondroblast and chondrocyte subsets (Fig. 3a, clusters 4-7), long bone OCPs (Fig.
232 1c) were subdivided into 3 subsets (clusters 1-3). Cluster 1 highly expressed CXCL12
233  and PDGFRA (Supplementary information, Fig. S3b and Table S1), which are markers
234  of BMSCs? 7', Cluster 2 highly expressed TWIST2 that functions as an inhibitor of
235  osteoblastic differentiation’?, reminiscent of OCPs that were derived from limb bud
236  mesenchyme. Cluster 3 highly expressed GAS2, PTN and localized in the center of all
237  OCLC subsets (Fig. 3a, Supplementary information, Fig. S3a,b and Table S1). GO
238  analysis showed significant enrichment of genes related to organ and appendage
239  morphogenesis in clusters 1-3 (Fig. 3b). Interestingly, genes related to stem cell
240  proliferation were enriched in cluster 3 (Fig. 3b), suggesting it might contain embryonic
241  SSCs (eSSCs).

242 To test this hypothesis in silico, pseudotime analysis by RNA velocity was performed

11
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243  to explore the lineage relationships among OCLC subsets (Fig. 3c). We observed
244  strong directional streams from eSSC toward osteoprogenitor,
245  chondroblast/chondrocyte and PMSC subsets (Fig. 3c). Interestingly, OCP was
246 upstream of both eSSC and BMSC, which formed two differentiation trajectories to
247  generate the skeleton and bone marrow stroma, respectively (Fig. 3c). Diffusion map
248  analysis of OCP, eSSC, chondroblast/chondrocyte and osteoprogenitor subsets
249  simulated two differentiation trajectories featuring chondrogenesis and osteogenesis
250  (Fig. 3d). Consistent with the RNA velocity analysis, eSSC was located at the
251  branching point of osteogenesis and chondrogenesis (Fig. 3d). We set OCP as the
252  root to identify temporally expressed genes over pseudotime, and found that genes
253  highly expressed in OCPs (eg. PITX1, HOXA10, CRABP1, CD24) and eSSCs (eg.
254  GAS1/2, SOX4 and SFRP2) were gradually down-regulated, while genes that highly
255 expressed in chondrocytes (eg. CNMD, EPYC, COL9A2, COL11A2) and
256  osteoprogenitors (eg. DLX5, CDH11, OGN and COL1A1/2) were up-regulated upon
257  terminal differentiation (Fig. 3e). SCENIC analysis showed that eSSCs highly enriched
258  regulons such as FOXP1 and FOXP2 (Fig. 3f and Supplementary information, Table
259  S2). The FOXP1 regulon seemed to be more specific to eSSCs, as the FOXP2 regulon
260  was also enriched in OCPs and osteoprogenitors (Fig. 3g). Nevertheless, FOXP1/2
261  did share a significant amount of target genes in eSSCs (Fig. 3h).

262 We also analyzed a published scRNA-seq dataset of mouse hindlimb long bones at
263  similar embryonic stage (E15.5) (Supplementary information, Fig. S3c,d)®. SciBet
264  analysis found that human eSSC was evolutionarily conserved in mouse long bones

12
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265  (Supplementary information, Fig. S3e). Interestingly, FOXP1/2/4 regulons were highly
266  enriched in mouse eSSCs (Supplementary information, Fig. S3f,g and Table S2),
267  suggesting a fundamental role of FOXP family TFs in regulating eSSC specification.
268  Taken together, we identified an eSSC subset among OCPs that could potentially
269  regulate long bone development and POC formation.

270

271  ldentification of CADM1 as a phenotypic marker of eSSC

272 To prospectively isolate eSSCs for functional validation ex vivo, we first screened for
273  cell surface markers that were differentially expressed among long bone OCLC
274  subsets. Interestingly, we found the cell adhesion molecule CADM1 to be preferentially
275  expressed in eSSCs (Fig. 4a). SCENIC analysis showed that FOXP1/2 binding motifs
276  were highly enriched in the predicted cis-regulatory elements of CADM1 among all co-
277  expressed target genes (Fig. 3h), suggesting that it could be used as a legitimate
278  phenotypic marker of eSSCs. Since CADM1 was also expressed in Schwann cells (Fig.
279  4a), we sought to further enrich eSSCs by combining with previously reported SSC
280 and BMSC markers (Fig. 4a)" 5 ', and found that PDPN was differentially expressed
281 in eSSCs (PDPN*) and Schwann cells (PDPN-) (Fig. 4a). Immunostaining of CADM1
282 and PDPN on 8 WPC human long bone sections showed that PDPN*CADM1* cells
283  mainly localize in the perichondrium surrounding POC and articular surface (Fig. 4b
284 and Supplementary information, Fig. S4b), indicating their ability to generate
285  chondrocytes and PMSCs. A few PDPN*CADM1* cells were also found inside POC
286  (Fig. 4b), reminiscent of osteoprogenitors that invade the cartilage template'?.

13
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287 In silico transcript-averaged cell scoring (TACS) analysis revealed that the purity
288  of eSSCs could be further enriched by PDGFRAY-PDPN*CADM?1* cells among OCLC
289  subsets (Supplementary information, Fig. S4a). In contrast, THY71 (CD90), NGFR
290 (CD271), MCAM (CD146) or NT5E (CD73) were hardly detected in eSSCs (Fig. 4a
291 and Supplementary information, Fig. S4a). Next, we sorted PDGFRA°“-PDPN-,
292 PDGFRAP"-PDPN*CADM1- and PDGFRA°“-PDPN*CADM1* cells from 8 WPC
293  human long bones by flow cytometry (Fig. 4c), and performed colony-forming unit-
294  fibroblast (CFU-F) and mesenchymal sphere cultures to assess their colony- and
295  sphere-forming efficiencies ex vivo. As compared to PDGFRA"°Y-PDPN- cells,
296 PDGFRAP"-PDPN*CADM1- cells showed significantly increased colony-forming
297  efficiency with colonies of larger size (Fig. 4d,e). Remarkably, PDGFRA"*%-
298 PDPN*CADM1* cells showed an even higher colony-forming efficiency with
299  significantly more colonies of larger size as compared to PDGFRA"“-PDPN- and
300 PDGFRAP“-PDPN*CADM1- cells (Fig. 4d,e). Mesenchymal sphere formation analysis
301 showed similar results (Supplementary information, Fig. S4c,d), suggesting that
302  eSSCs highly enrich clonogenic activity.

303

304 eSSCs self-renew and undergo osteo-chondrogenic differentiation

305 To test the self-renewal and differentiation potentials of eSSCs, we sorted
306 PDGFRAP"-PDPN*CADM1* cells to perform serial CFU-F colony formation assay, as
307 well as trilineage differentiation (adipogenic, osteogenic and chondrogenic) both in
308 vitro and in vivo. Single CFU-F colonies formed by flow cytometrically sorted
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309 PDGFRA°“-PDPN*CADM1* cells were clonally expanded and serially passaged,
310  which could generate secondary and tertiary colonies that maintain eSSC
311  immunophenotypes (Fig. 5a and Supplementary information, Fig. S5a). Next, we
312  performed in vitro trilineage differentiation of nonclonal and clonal cultures (cells were
313  clonally expanded from single CFU-F colonies) of PDGFRAY-PDPN*CADM1* cells,
314  and found that they underwent osteogenic and chondrogenic differentiation, but not
315 adipogenic differentiation (Fig. 5b, and Supplementary information, Fig. S5b,c). The
316  differentiation efficiency was quantified by gPCR analysis of adipogenic (ADIPOQ and
317 PPARG), osteogenic (RUNX2 and SP7) and chondrogenic (SOX9 and COL2AT1)
318  marker genes (Fig. 5¢c and Supplementary information, Fig. S5d).

319 To test the differentiation potential of eSSCs in vivo, we performed renal
320 subcapsular transplantation of cultured PDGFRA°PY-PDPN*CADM1* cells in
321  immunodeficient mice. Eight weeks after transplantation, the subcapsular grafts were
322  harvested and sectioned. Movat pentachrome staining and immunofluorescent
323  staining of collagen | and Il revealed osteo-chondrogenic differentiation of eSSCs (Fig.
324  5d). We did not observe bone marrow formation in the subcapsular grafts, suggesting
325 that eSSCs are functionally distinct from growth plate SSCs that could organize a
326  hematopoietic microenvironment®. Taken together, these data suggested that CADM1
327 is an important phenotypic marker of eSSCs, and that PDGFRA¥-PDPN*CADM1*
328  cells enriched self-renewing eSSCs that generate the osteochondral lineages during
329  long bone development.

330
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331 Delineating osteogenic lineage specification during calvaria development

332 To test whether similar skeletal stem/progenitor cells exist in embryonic calvarium,
333  we performed scRNA-seq in 8 WPC human calvaria (n=2, Supplementary information,
334  Fig. S6a). Analysis of 7,287 CD235A- 7AAD- (live non-erythrocytes) single cells
335 revealed 12 distinct subsets (Fig. 6a), which included: 1) NGFR* cranial neural crest
336 (NC) cells (cluster 1) that highly expressed NES7#; 2) Two GJA1* subsets including
337  vascular leptomeningeal cells (cluster 2, VLMCs) that highly expressed SLC6A13 and
338 PTGDS™, and migratory NC (mig_NC) cells that expressed higher level of BMP4
339  (cluster 3)7677; 3) Neural crest-derived cells (cluster 4, NCDC) that highly expressed
340 BMP4 and FOXC28; 4) RUNX2* osteoprogenitors (cluster 5) that highly expressed
341  osteogenic factors DLX5 and CLEC11A7%.80; 5) Two OSR2* PMSC subsets (clusters 6
342  and 7) that highly expressed POSTN, 6) SOX9* chondrocytes that highly expressed
343  COL9AZ (cluster 8); 7) PDGFRB* pericytes that highly expressed MCAM and ACTAZ2,
344  8) MYF5* myoblasts; 9) CDH5* endothelial cells and 10) CD68* macrophages (Fig.
345  6a,b, Supplementary information, Table S1).

346 As compared to 8 WPC long bones, higher proportion of osteoprogenitors and
347  PMSCs but much lower proportion of chondrocytes were detected in 8 WPC calvarial
348  bones (Supplementary information, Fig. S6b), highlighting the fundamental differences
349  between endochondral and intramembranous ossification'. Spearman correlation
350  analysis showed that calvarial chondrocyte and osteoprogenitor subsets were more
351  corelated with their long bone counterparts (Fig. 6¢), while the PMSC2 subset seemed

352  to be closely related to OCP and BMSC subsets in long bones (Fig. 6¢). Integrated
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353  analysis of all subsets at the pseudo-bulk level showed similar results (Supplementary
354 information, Fig. S6¢). Although no calvarial subset highly resembled long bone eSSC
355  atthe transcriptome level, we did notice that NCDC shared similar phenotypic markers
356 as long bone eSSC (PDGFRA°“-PDPN*CADM1*) (Fig. 6d). Immunostaining on 8
357  WPC human calvarial sections showed PDPN*CADM1* cells in the outer layer of
358  sagittal suture (Supplementary information, Fig. S6d), reminiscent of PSCs in adult
359  mouse calvarium®.

360 To predict the functional role of NCDC during calvarial bone development, we
361 performed pseudotime analysis within osteogenic subsets by Slingshot®!, which
362 revealed two distinct differentiation trajectories (Fig. 6e). Specifically, the FOXC1* NC
363 lineage cells and TWIST2* mesodermal lineage cells converge to generate DLX5*
364  osteoprogenitors (Fig. 6e), where NCDC seemed to play a pivotal role in the transition
365  from migratory NC cells to osteoprogenitors (Fig. 6e). Gene expression analysis
366  showed that NC lineage cells down-regulated neural genes such as NGFR, NES and
367 CLDN118 to generate NCDCs and osteoprogenitors (Fig. 6f). In contrast, mesodermal
368 lineage cells down-regulated WNT signaling genes such as WNT2 and WNT2B, as
369 well as TFs like MEOX2, OSR1 and OSR2 to generate osteoprogenitors (Fig. 6f).
370  Calvarial osteoprogenitors highly expressed COL1A1, PRRX2 and CLEC11A, a
371  recently identified osteogenic factor that promotes the maintenance of adult skeleton®:
372 8. GSVA analysis showed that EPH-EPHRIN, WNT-LPR6 and RAC1 activation
373  pathways were enriched in NCDCs (Supplementary information, Fig. S6e). Similar to
374 long bone eSSC, SCENIC analysis showed that FOXP1/2 regulons were highly
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375 enriched in NCDC (Fig. 6g,h, Supplementary information, Fig. S6g and Table S2),
376  although little FOXP1/2 target genes were shared by these two subsets (Fig. 3h and
377  Supplementary information, Fig. S6f). In addition, the FOXP4 regulon was also
378 enriched in NCDC and formed an integrated transcriptional network with FOXP1/2,
379  suggesting a fundamental role of FOXP family TFs in NCDC specification. Taken
380 together, these data revealed two distinct routes of osteogenic differentiation in calvaria,
381 and identified NCDC as a potential skeletal stem/progenitor cell subset that mediates
382 intramembranous ossification during calvarial development.

383

384 Discussion

385 Whereas skeletogenesis has been extensively studied in model organisms such as
386 mouse, chick and axolotl?® 43 68 8 hyman studies largely remain at the
387  histomorphological level. In 2018, Ferguson et al. interrogated 17 WPC human fetal
388  musculoskeletal subsets by bulk RNA-seq and compared chondrocyte features among
389 4 developmental stages®. Recently, a human skeletal muscle atlas was reported
390 during embryonic, fetal and postnatal development®. Here, we provide the first
391 transcriptional landscape of human embryonic skeletogenesis at single-cell resolution
392 and shed light on novel skeletal stem/progenitor cells orchestrating lineage
393  specifications during endochondral and intramembranous ossification. Together with
394  the previous studies, we are now approaching a better understanding of the ontogeny
395  of human musculoskeletal system.

396 Human SSCs were originally found in fetal long bones, which could be prospectively
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397 isolated by a combination of phenotypic markers (LinnPDPN*CD146- CD73*CD164*)°.
398  To test whether human SSCs exist during embryonic development, we mapped the
399  single-cell transcriptomes in 5 WPC human limb buds and 8 WPC embryonic long
400 bones and found an OCP subset that tightly links limb bud mesenchyme to
401  endochondral ossification (Fig. 1f,g). Unlike mouse limb bud mesenchymal progenitors
402  (Sox9Pdgfra) and OCPs (Sox9*Pdgfra")?2, human OCPs are SOX9"°*PDGFRA" (Fig.
403  1d), suggesting that they are less differentiated than mouse OCPs. We then focused
404  on OCPs in both limb buds and long bones in order to identify skeletal stem/progenitor
405  cells during human embryonic limb development.

406 Although the patterning mechanisms during limb bud development have been well-
407  studied and simulated by different models'® 1719, the heterogeneity of human limb buds
408 has been elusive. We identified 4 mesenchymal and 2 epithelial subsets in 5 WPC
409  human limb buds. By analyzing Hox gene expression and well-known marker genes,
410  we were able to align the 4 mesenchymal subsets along PD and AP axes (Fig. 2f,g).
411  Importantly, we identified a highly proliferative Mes2 subset at the distal most
412  mesenchyme, implicating immature mesenchymal progenitors underlying AER?": 65,
413 We also identified an OCP subset with chondrogenic potential in the core mesenchyme.
414  As compared to human limb buds, the E11.5 mouse limb buds lacked an equivalent
415 Mes2 subset, showed early chondrogenic differentiation of OCP, and contained fewer
416  proportion of AER cells (Supplementary information, Fig. S2). Together, these data
417  suggested greater potential of human limb bud outgrowth that could possibly contribute
418  to longer limb bones. Whether the novel regulons identified in human limb bud OCP
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419  (eg.ZMIZ1, NR2C2 and KDM4A) critically control chondrogenic differentiation remains
420  to be validated by functional studies.

421 The OCPs in 8 WPC human long bones could be subdivided into 3 subsets, namely,
422  OCP, BMSC and eSSC. The long bone OCP subset could be derived from limb bud
423  OCPs, which generate BMSCs and eSSCs to form the bone marrow stroma and
424 appendicular skeleton, respectively (Fig. 3c). Similar to human SSCs®, eSSCs were
425  predicted to generate chondroblasts/chondrocytes, osteoprogenitors and PMSCs in 8
426 WPC long bones (Fig. 3c). Interestingly, PAGA analysis of integrated samples revealed
427  a critical role of PMSC in mediating chondrogenic differentiation (Fig. 1g), which was
428  not reflected by RNA velocity analysis in long bones (Fig. 3c). This discrepancy could
429  be explained by the fact that RNA velocity analysis is more suitable for predicting
430  differentiation trajectories in full-length sequencing dataset®’. Since PMSC expressed
431  higher level of SOX9 as compared to eSSC (Supplementary information, Fig. S3b), we
432  tend to believe that PMSC also contributes to chondrogenic differentiation. Importantly,
433  an equivalent eSSC subset was also found in E15.5 mouse embryonic long bones
434  (Supplementary information, Fig. S3), suggesting its evolutionary conservation. The
435  fact that both human and mouse eSSCs enriched FOXP1/2 regulons was quite
436  intriguing (Fig. 3i), since mouse Foxp1/2/4 have been previously shown to regulate
437  endochondral ossification by promoting chondrocyte proliferation and inhibiting
438  osteoblast differentiation®. They do so by interacting with Runx2 to repress its
439  transcriptional activity®, which could possibly explain how eSSCs are maintained in an
440  undifferentiated state. Notably, much more FOXP2 target genes were found in human
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441  long bones as compared to mouse (human: 97, mouse: 12), consistent with a recent
442  discovery that skeletal FOXP2 contributes to the acquisition of important human traits
443  such as language and bipedalism®. More functional studies are needed to fully
444  address the molecular mechanisms by which FOXP1/2 regulate human eSSC self-
445  renewal and differentiation.

446 CADM1 was previously identified as an osteoblastic adhesion molecule and a
447  diagnostic marker for osteosarcoma®. Here we found that PDPN*CADM1* cells
448  enriched eSSCs in 8 WPC human long bones, which mainly localize in the
449  perichondrium surrounding POC and articular surface (Supplementary information, Fig.
450  S4b). Interestingly, the perichondrial localization of eSSC was consistent with the
451  expression pattern of Foxp1/2/4 in E13.5 mouse perichondrium®. A few
452 PDPN*CADM1* cells were also found inside the developing POC, which might
453  represent invading osteoprogenitors derived from eSSCs'2. Similar to human SSCs,
454  eSSCs exhibit high clonogenic capacity, which self-renew and undergo osteochondral
455 but not adipogenic differentiation in vitro and in vivo®. Notably, eSSCs do not form bone
456  marrow upon renal subcapsular transplantation, suggesting that skeletogenic and
457  hematopoietic functions might be segregated between eSSCs and BMSCs (Fig. 3c).
458  However, whether the BMSC subset could support hematopoiesis in 8 WPC human
459  embryo is still elusive, since fetal liver is the primary hematopoietic site at this
460  embryonic stage®'. Another possibility could be that cultured eSSCs lose their ability
461  to support hematopoiesis®* 9. We were not able to transplant uncultured eSSCs due
462  to limited number of cells we could obtain in 8 WPC human long bones. Future
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463  optimization of the transplantation protocol is needed to further dissect the in vivo
464  functions of human and mouse eSSCs. Furthermore, genetic lineage tracing studies
465  would help elucidating the relationship among eSSCs, growth plate SSCs and long
466  bone PSCs in mouse models.

467 In contrast to endochondral ossification in long bones, intramembranous ossification
468 is the primary way by which calvaria develop®'. We found 7 osteogenic subsets in 8
469  WPC calvaria and predicted two distinct sources of osteoprogenitors: 1) from cranial
470  NC lineage cells and 2) from mesodermal lineage cells®*. Interestingly, we identified a
471  NCDC subset in calvaria that shared similar phenotypic markers as long bone eSSC
472  (Fig. 6d), which represented a transitional state between migratory NC cells and
473  osteoprogenitors. The fact that FOXP1/2 regulons were highly enriched in both long
474  bone eSSCs and calvarial NCDCs suggested a fundamental role of FOXP1/2 in both
475  endochondral and intramembranous ossification. Consistent with this, mouse Foxp1/2
476  were detected in skeletal progenitors during craniofacial bone development®. Unlike
477  long bone eSSCs, NCDCs do not seem to generate chondrocytes (Fig. 6a and
478  Supplementary information, Fig. S6¢), which was characteristic of intramembranous
479  ossification. Future studies are needed to test whether NCDCs are evolutionarily
480  conserved in mouse embryonic calvarium, and to prospectively isolate NCDCs for
481  functional analysis of their stem cell activities. Furthermore, the relationships between
482  embryonic NCDCs and calvarial PSCs in postnatal mice could be addressed by
483  genetic lineage tracing studies*.

484 Given that the skeleton repairs in a way that largely recapitulates embryonic
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485  development, the skeletogenic mechanisms we uncovered here might help developing
486  novel cell therapies to promote bone and cartilage regeneration, which could ultimately
487  lead to treatments of skeletal disorders such as non-union fracture, osteoporosis and
488  craniofacial defects.

489

490  Materials and Methods

491  Human embryonic sample collection.

492  Healthy human embryonic samples were obtained with elective medical termination of
493  pregnancy in the Academy of Military Medical Sciences (the Fifth Medical Center of
494  the PLA General Hospital). All human studies were conducted in accordance with the
495  official ethical guidelines and protocols approved by the Ethics Committee of the
496  Affiliated Hospital of Academy of Military Medical Sciences (ky-2017-3-5). The written
497  informed consent was obtained from all participants before sample collection. Days
498  post fertilization (dpf) of embryos were determined according to the measurement of
499  crown-rump length (CRL) and number of somite pairs, and staged into 5 and 8 weeks
500 post conception (WPC)%. The gender of embryos used for scRNA-seq was identified
501  based on the expression of XIST (female) and RPS4Y1 (male)?”. Sample information
502  was summarized in Supplementary information, Fig. S1a and 6a. The morphology of
503 the embryonic limb bud and long bone was assessed by Hematoxylin-Eosin Staining
504  Kit (Fig. 1a).

505

506 Mice.
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507 NOG (NOD.Cg-Prkdcsedli2rgimSus/JicCrl) immunodeficient mice (Beijing Vital River
508 Laboratory Animal Technology Co., Ltd.) were used as recipients for renal subcapsular
509 transplantation of human eSSCs. All procedures and protocols were approved by the
510  Ethics Committee of the Academy of Military Medical Sciences (the Fifth Medical
511  Center of the PLA General Hospital).

512

513 Preparation of single-cell suspensions from human limb buds and long bones.
514  Human embryonic limb buds were isolated and transferred to IMDM medium (Gibco)
515  containing 10% fetal bovine serum (FBS) (HyClone) on ice. The tissues were washed
516  with phosphate-buffered saline (PBS) and transferred to pre-warmed digestion
517  medium containing 0.1 g/mL Collagenase | (Sigma) and 0.1 g/mL Collagenase Il
518  (Sigma). After vigorous shaking, the samples were incubated at 37 °C for 30 min with
519 gentle shaking every 5 mins. Digestion was terminated by adding IMDM medium
520 containing 10% FBS. After centrifugation at 350 g for 6 min, collected cells were
521  resuspended in FACS sorting buffer (1 x PBS with 1% BSA) for subsequent staining.
522  For long bone specimens, forelimbs and hindlimbs were dissected to obtain humeri,
523 ulnae, radii, femurs, tibiae and fibulae. For calvarial bone specimens, frontal bones,
524  parietal bones and occipital bones were dissected. After cutting by scissors, the long
525 bones or calvarial bones were enzymatically digested as described above. The
526  digested tissues were filtrated with 40 ym strainer to remove cartilage or bone chips,
527  after which cells were centrifugated and resuspended in FACS sorting buffer. The
528  viability of cells was 80-90% by trypan blue staining (0.4%) and 70-80% by 7-AAD
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529  staining.

530

531  Flow cytometry.

532  The following antibodies were used: CD45-APC-Cy7 (BD, 557833, 1:50), CD31-Biotin
533  (eBioscience, 13-0319-82, 1:50), Steptavidin-APC-eFlour780 (eBioscience, 47-4317-
534 82, 1:100), CD235a-APC-Cy7 (Biolegend, 349116, 1:50), CD140a-BB515 (BD,
535 564594, 1:50), PDPN-APC (eBioscience, 17-9381-41, 1:50) and CADM1-PE (MBL,
536  CMO004-5, 1:50). Cells were stained in sorting buffer (PBS+1% BSA) for 30 min at 4 °C,
537  washed once and resuspended in sorting buffer with 7-AAD (eBioscience, 00-6993-50,
538  1:50) as live cell dye. Flow cytometry was performed on BD FACS Aria Il. Pre-gating
539  was first done for live cells based on 7-AAD staining. Gating strategies were based on
540  Fluorescence Minus One (FMO) controls. FlowJo v10 software was used for analyzing
541  the flow cytometry data.

542

543  CFU-F culture and mesenchymal sphere assay.

544  For CFU-F cultures, sorted cells were seeded in 6-well plate (4-5 x 103 cells/well)
545  containing culture medium (a-MEM supplemented with 10% FBS, 1%
546  Penicillin/Streptomycin solution and 1 ng/mL bFGF) and incubated at 37 °C with 5%
547  COs.. Half of the medium was changed every 3-4 days. At day 10, cells were fixed and
548  stained with crystal violet staining solution. Adherent colonies with more than 50 cells
549  were quantified. Serial CFU-F colony formation was performed by seeding sorted cells
550 in culture medium at clonal density, and serially passaged to generate the secondary
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551  and tertiary colonies. For mesenchymal sphere assay, 4-5 x 10° sorted cells were
552  plated in a 6-well ultra-low adherent dish with culture medium and left undisturbed for
553 a week®. Half of the medium was changed every week, and the spheres were
554  quantified at day 10.

555

556  Adipogenic, osteogenic and chondrogenic differentiation assays.

557  For nonclonal adipogenic and osteogenic differentiation, sorted cells were cultured for
558 10 days and replated at a density of 2.0 x 10%/cm?. Adipogenic differentiation was
559  performed in DMEM (Gibco) supplemented with 10% FBS, 1% Penicillin/Streptomycin,
560 0.5 yM isobutylmethylxanthine (Sigma), 60 uM indomethacin (Sigma, 17378), 5 pg/mi
561 insulin (Sigma) and 1 yM dexamethasone (Sigma, D2915) for 1 week (medium was
562 changed every 3 days), and quantified by oil red O staining (Sigma) and gPCR.
563  Osteogenic differentiation was performed in osteogenic medium (Cyagen, GUXMX-
564  90021) for 3 weeks (medium was changed every 3 days) and quantified by alizarin red
565  staining (Sigma) and qPCR. The osteogenic differentiation medium contained a-MEM
566  supplemented with 10% fetal bovine serum, 1% Penicillin/Streptomycin, 1% glutamine,
567 50 pg /ml L-ascorbate acid, 10 mM B-glycerophosphate and 100 nM dexamethasone.
568  For nonclonal chondrogenic differentiation, 2.5 x 10° cultured cells were centrifugated
569 at 1,100 rpm in 15 ml polypropylene conical tubes to form pellets and cultured in
570  chondrogenic medium for 3-4 weeks (medium was changed every 3 days). The
571  chondrogenic medium contained high glucose DMEM (Corning) supplemented with 10
572  ng/ml TGFB3 (Peprotech), 100 nM dexamethasone (Sigma), 50 pg/ml ascorbic acid-

26


https://doi.org/10.1101/2020.12.22.423948
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.423948; this version posted December 22, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

573  2-phosphate (Sigma), 1 mM sodium pyruvate (Gibco), 40 pg/ml proline (Sigma) and
574  1X ITS cell culture supplement (Cyagen) containing 6.25 pg/ml bovine insulin, 6.25
575  ug/ml transferrin, 6.25 pg/ml selenous acid, 5.33 pg/ml linoleic acid and 1.25 mg/mi
576  BSA. Chondrogenic differentiation was quantified by cryosection of the cell pellets
577  followed by toluidine blue staining and qPCR. For clonal trilineage differentiation, single
578  cells were flow cytometrically sorted into 96-well plates to form single CFU-F colonies.
579  Clonally expanded cells were split into three parts and allowed to differentiate in
580  osteogenic, adipogenic and chondrogenic mediums as described above. Clonal
581  chondrogenic differentiation was also validated by alcian blue and safranin O staining.
582

583  RNA extraction and quantitative real-time PCR (qPCR).

584  Total RNA was extracted from cells using Trizol reagent (Invitrogen) according to the
585  manufacturer’s instructions. cDNA was prepared using Transgene reverse
586  transcription kit (Transgene). qPCR reactions were prepared using SYBR Green
587  Master Mix (Applied Biosystem) and run on a 7500 Real-Time PCR Systems (Applied
588  Biosystems). A list of the primers used was provided in Supplementary information,
589 Table S5. Human GADPH was used as loading control and the relative mRNA
590 abundance was calculated using a comparative CT method.

591

592 Renal subcapsular transplantation.

593 The eSSCs were sorted by flow cytometry and cultured for 7-10 days as previously
594  described®. Briefly, 5 x10° cells were resuspended in 5 ul of Matrigel (BD) on ice and
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595  then aspirated into a micropipette (Drummond Scientific, 5-000-2010). A small incision
596  was made near the kidney pole to separate the capsule from the renal parenchyma.
597  Matrigel with cells were injected into the kidney pocket. Eight weeks after
598 transplantation, grafts were dissected and fixed in 4% paraformaldehyde at 4 °C for 12
599  h, decalcified in 10% EDTA at room temperature for 3 days and then dehydrated in 30%
600  sucrose at 4 °C overnight. Grafts were then cryosectioned at 10 um and stained by
601  Movat Pentachrome Staining Kit (ScyTek, MPS-1) to demonstrate bone and cartilage
602 differentiation. Immunostaining of collagen | and Il were also performed on adjacent
603  sections (see below).

604

605 Immunofluorescent staining.

606  Slides containing renal subcapsular graft cryosections were blocked (10% horse
607  serum and 0.1% Triton-X100 in PBS) at room temperature for 1h and stained with anti-
608  collagen | (Abcam, ab34710, 1:500) and anti-collagen Il (Abcam, ab185430, 1:500)
609  antibodies at 4 °C overnight. After washing in PBS (3 x 10 minutes), anti-Rabbit Alexa
610  Fluor 555 (Invitrogen, A31572, 1:500) and anti-Mouse Alexa Fluor 647 (Invitrogen,
611  A31571, 1:500) secondary antibodies were incubated for 1h at room temperature. After
612  washing in PBS (3 x 10 minutes), slides were mounted with ProLong™ Gold Antifade
613  Mountant with DAPI (Invitrogen, P36931). For long bone cryosection staining, the
614  following antibodies were used: anti-PDPN (eBioscience, 17-9381-41, 1:50), anti-
615 CADM1 (abcam, ab3910, 1:100), anti-Rabbit Alexa Fluor 555 (Invitrogen,
616  A31572,1:500) and anti-Rat Alexa Fluor 647 (Invitrogen, A21472, 1:500). Images were
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617 acquired with Olympus fluorescence inverted microscope (IX73) and analyzed by
618  Imaged software.

619

620  Single-cell RNA-sequencing.

621  Samples from different stages were harvested and live cells were sorted based on 7-
622  AAD staining (90-95% viability after sorting). Cells were resuspended at 1 x 103 cells/ml
623  and loaded on Chromium Controller to obtain single cells (10X Genomics). For scRNA-
624  seq libraries construction, Chromium Single cell 3’ Library and Gel Bead Kit V2 (10X
625  Genomics, PN120237) was used to generate single cell gel beads in emulsion (GEM).
626  The captured cells were lysed, and the released RNA were reverse-transcribed with
627  primers containing poly-T, barcode, unique molecular Identifiers (UMIs) and read 1
628  primer sequence in GEMs. Barcoded cDNA was purified and amplified by PCR. The
629  adaptor ligation reaction was performed to add sample index and read 2 primer
630  sequence. After quality control, the libraries were sequenced on lllumina Hiseq X Ten
631  platform in 150 bp pair-ended manner (Berry Genomics Corporation, Beijing, China).

632

633  Processing of scRNA-seq data.

634  Sequencing data from 10X Genomics were processed with CellRanger (version 3.0.1)
635 for demultiplexing, barcode processing and single-cell 3’ gene counting. Human
636 genome reference (GRCh38) was used for sequence alignment. Only confidently
637 mapped, non-PCR duplicates with valid barcodes and UMIs were used to generate the
638  gene-barcode matrix. For quality control, only cells with more than 1, 000 genes and
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639 less than 10% of mitochondrial gene were retained for downstream analysis. Cell
640 doublets were removed using Scrublet software implemented in python'

641 (https://github.com/AllonKleinLab/scrublet). Briefly, we computed doublet score for

642  each cell by applying Scrublet function to each 10X dataset. Then we estimated the
643  number of expected doublets (N) with multiplet rates (based on the number of cells
644  recovered) provided by 10X Genomics guideline. Top N of cells ranked by doublet
645  scores were determined as doublets (Supplementary information, Fig. S1a and S6a).
646  To correct batch effects among different samples, we applied canonical correlation
647  analysis (CCA) method implemented in Seurat for dataset integration*®. The union of
648  the top 2,000 genes with the highest dispersion for each dataset was taken to identify
649  anchors using the FindintegrationAnchors function and calculate 30 dimensionalities.
650 We then applied IntegrateData function to generate integrated expression matrix,
651  which was used for dimensionality reduction and clustering subsequently. To exclude
652  karyotype abnormalities in human embryos, we applied CNV estimation for single cells
653  in 10X datasets from a previous study**. Briefly, we downloaded the expression matrix
654  of non-malignant cells (T cells) and malignant cells as reference cells for the estimation
655 of CNVs. We sampled 100 cells for each 10X dataset and combined them with
656  reference cells to calculate initial CNVs and final CNVs. The CNV correlation score of
657  each single-cell was computed and visualized by heatmap (Supplementary information,
658  Fig. S1b).

659

660 Dimensionality reduction and clustering.
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661  To reduce the variation in cell proliferation status that might interfere with single cell
662  analysis, we used the previously reported G1/S and G2/M phase-specific genes to
663  compute scores of S phase and G2M phase, as well as estimate cell-cycle status™’.
664  We scaled the integrated data with regressing the S.Score and G2M.Score, and
665  calculated the top 30 principal components (PCs). For dimensionality reduction, we
666  performed Uniform Manifold Approximation and Projection (UMAP) on whole datasets,
667  and used Diffusion map and PCA to visualize the subset of datasets (Supplementary
668 information, Table S3). t-Distributed Stochastic Neighbor Embedding (t-SNE) was
669  applied to visualize the relationships between cell clusters at pseudo-bulk level. For
670  clustering, improved graph-based clustering of the integrated dataset was performed
671  using louvain algorithm after constructing the Shared Nearest Neighbor (SNN) graph.
672  The resolution parameters were set to 0.2 (Supplementary information, Table S3). To
673  ensure the robustness of clustering, we randomly subsampled 1,000 cells from each
674  dataset, and re-processed as previous steps and parameters. The newly identified
675  clusters showed an average assignment of 80% to clusters identified in the whole
676  dataset.

677

678 Species comparative analysis.

679 For comparative analysis between human and mouse datasets, the expression data
680  matrix of mouse E11.5 and E15.5 from GSE142425 were collected®®. To ensure the
681  comparability, the stage correspondences were identified'%? and the mouse datasets
682  were processed by the same steps as human datasets, including dimension reduction
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683  and clustering. SciBet R package (version 1.0)%° was used to compare cell subsets
684 identified in limb buds and long bones. We used the expression matrix of human cells
685 as reference dataset and calculated the mean expression values of marker genes
686  across cells with identical cell types. Multinomial models were then built and the query
687  mouse dataset were re-annotated. Sankey plot with ggalluvial R package was applied
688  to visualize the matching degree of predicted mouse cell type to the human reference.
689

690  Differential expression analysis.

691  Non-parametric Wilcoxon rank sum test was performed to find DEGs among individual
692  clusters. DEGs were filtered by fold change of more than 2 and cell fraction of more
693  than 20%. DEGs with P value adjusted by benjamini-hochberg less than 0.01 were
694  considered to be significant (Supplementary information, Table S1).

695

696  Single-cell regulatory network analysis.

697  The analysis of single-cell gene regulatory network was performed using the SCENIC
698 package®. A standard pipeline implemented in R can be found in

699  https://github.com/aertslab/SCENIC. The expression matrix was loaded onto GENIE3

700  for building the initial co-expression gene regulatory networks (GRN). The regulon data

701  was then analyzed using the RcisTarget package to create TF motifs using hg19-tss-

702  centered-10kb (for human) and mm9-tss-centered-10kb (for mouse) database. The

703  regulon activity scores were calculated with Area Under the Curve (AUC) by the AUCell

704  package. Significant regulons enriched in different clusters were calculated by two-
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sided unpaired t test implemented in Limma R package (version 3.38.3)
(Supplementary information, Table S2). The mean regulon activity scores for each
cluster were calculated and visualized by heatmap. Predicted target genes of regulon
were ranked by Genie3Weight value and filtered by normalized enrichment score (NES)
of binding motifs (greater than 3). The transcriptional network of TF and predicted
target genes was visualized by Cytoscape (version 3.6). Edges indicated the

Genie3Weights and Node size indicated the number of motifs.

Reconstructing single cell trajectory.

Single cell trajectory was analyzed by R package Slingshot (version 1.0.0), which infers
trajectory by fitting principal curves based on given cell embeddings®’. After specifying
the start or end cluster of the trajectory, cells were projected onto the curve to assign
their developmental pseudotime. Specifically, we computed the diffusion map
embeddings of OCPs, eSSCs, osteoprogenitors and two subsets of chondrocytes to
infer osteo-chondrogenic trajectory. The diffusion components 1 and 3 were used as
the input to Slingshot (Fig. 3d), and OCP was set as start cluster. For calvarial
osteogenesis trajectory, we re-computed the UMAP embedding of NCs, mig_NCs,
NCDCs, osteoprogenitors and two subsets of PMSCs, and used UMAP component 1
and 2 as the input to Slingshot. The osteoprogenitor subset was set as end cluster (Fig.
6e). To investigate temporally expressed genes changing in a continuous manner over
pseudotime, GAM function implemented in gam R package was used to find pattern
genes along the trajectories. For identification of major patterns, top 200 genes with
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727  the most significant time-dependent model fit were retained, and expressions of these
728  genes were smoothed over 20 adjacent cells. To quantify the connectivity of clusters
729  within single-cell graph, the partition-based graph abstraction (PAGA) method
730  implemented in Scanpy (version 1.4.3)'% was used to generate the abstracted graph.
731

732  RNA velocity.

733 RNA velocity®® was used for pseudo-time analysis in the integrated dataset of limb
734 buds and long bones (Fig. 1f), as well as OCLC subsets (Fig. 3c). The spliced and un-
735  spliced reads were quantified by the velocyto (version 0.17.11) python package with
736  human genome reference. The output loom file was analyzed for velocities of each
737  gene following the pipeline of scvelo python package (version 0.1.25)'%4. Count matrix
738  were filtered by top 2,000 highly variable genes and first- and second-order moments
739  were computed for each cell with nearest neighbor set to 30.

740

741  Transcript-averaged cell scoring (TACS).

742  We adopted TACS as previously described to evaluate cell distribution along selected
743 query genes’3. For each cell, average expression of the top 100 correlated genes was
744  set as the expression score of the query gene. Stat_density2d function implemented
745  in ggplot2 package was used for visualization. Threshold for partitioning was set to
746  zero.

747

748  Gene functional annotation analysis.
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749  Gene ontology (GO) enrichment analysis was performed for DEGs using
750  clusterProfiler package'®. The significant DEGs were used as input to compareCluster
751  function and ontology was set to the BP (biological process). The P values of enriched
752 GO terms were adjusted by Benjamini-Hochberg method and terms were filtered by
753  setting pvalueCutoff to 0.05. Simplify function was performed to remove redundancy
754  of the enriched GO terms.

755

756  Gene set analysis.

757  GSVA was performed using the GSVA R package (version 1.30.0)'%6. We selected
758 gene sets of curated signaling pathways from the MSigDB Database (v7.0,

759  https://www.gsea-msigdb.org) to identify pathways enriched in different limb

760  mesenchymal subsets. The gene-by-cell matrix was converted to gene-set-by-cell
761  matrix and GSVA scores were computed for gene sets with a minimum of 5 detected
762  genes. Significant pathways enriched in different clusters were calculated by two-sided
763  unpaired t test implemented in Limma R package (version 3.38.3).

764

765  Surface markers and TFs.

766  Surface marker and transcription factor lists were downloaded from the in silico human
767  surfaceome (http://wlab.ethz.ch/surfaceome/)'07 and HumanTFDB3.0

768  (http://bicinfo.life.hust.edu.cn/HumanTFDB/) database websites (Supplementary

769  information, Table S4).

770
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771  Statistics and reproducibility.

772  Values in dot plots were presented as mean + SEM. Statistical analyses were
773 performed using R and SPSS. The statistical significance of differences was
774  determined using one-way ANOVA with for multiple comparisons. Wilcoxon signed
775 rank test was used to determine the statistical significance of differences for gene
776  expression (222CY) analyses (Fig. 4e, 5¢ and Supplementary information, Fig. S4d,
777  S5d). For single-cell RNA sequencing, three biological replicates for limb bud at 5 WPC
778  andlong bone at 8 WPC, and two biological replicates for calvaria at 8 WPC. Clustering
779  for single-cell data were confirmed using subsampling and re-clustering and similar
780  results were obtained as described above. FACS assays were performed at three
781  independent samples for sorting strategies (Fig. 4c). H&E staining and immunostaining
782  were performed at two independent samples (Fig. 1a, 4b and Supplementary
783  information, Fig. S6d). Clonal and Nonclonal differentiation experiments, gqPCR assays,
784  renal subcapsular transplantation were performed at three independent samples (Fig.
785  5a,b,c,d and Supplementary information, Fig. S5b-d).

786

787  Data availability

788  The accession number for the human scRNA-seq data reported in this paper is GEO:
789  GSE143753. All other relevant data are available from the corresponding authors upon
790 request. The accession number for the count matrices of mouse datasets used in this
791  paperis GSE142425%,

792
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1041  Figure legends

1042  Fig. 1. Integrated analysis of human limb buds and embryonic long bones.
1043  a, Representative stereoscope images (left) and H&E images (right) of 5 WPC

1044  human limb bud and 8 WPC human long bone. Scale bars: 100 ym.

1045 b, Sampling workflow and experimental scheme. Human embryonic cells from 5
1046  WPC limb buds and 8 WPC long bones were sorted and subjected to droplet-based

1047  scRNA-seq.
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¢, Distribution of 35,570 cells from limb buds and long bones. 16 subsets were
visualized by uniform manifold approximation and projection (UMAP).

d, Dot plots showing the expression of curated feature genes in 16 subsets. Dot size
represented the proportion of cells expressing specific gene in the indicated subset
and color bar represented the gene expression levels.

e, Proportion of cells from 5 WPC limb buds and 8 WPC long bones in each subset.
f, Developmental trajectory inferred by RNA velocity and visualized on the UMAP
projection.

g, Partition-based graph abstraction (PAGA) showing the connectivity among subsets
in (f). The mean expression of representative genes (Mesenchymal: PRRXT;
Chondrogenic: SOX9; Osteogenic: RUNX2) in each subset was showed in
abstracted graph. Line thickness indicated the strength of connectivity. Color bar

represents the gene expression levels.

Fig. 2. Characterization of human limb bud mesenchyme and epithelium

a, UAMP visualization of the 10 subsets in 5 WPC limb buds.

b, Hierarchical clustering of the mesenchymal and epithelial subsets using top 50
principal components (PCs).

¢, The inferred relationships among the mesenchymal and epithelial subsets in PAGA
layout.

d, Stacked bar charts showing the cell cycle distributions in the mesenchymal
subsets.
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e, Enriched GO terms of differentially expressed genes (DEGSs) in the mesenchymal
subsets.

f, Heatmap showing expression of curated HOX genes scaled across the
mesenchymal subsets. Hox genes were clustered into two branches based on
hierarchical clustering of the rows, as indicated in green and purple.

g, Visualization of the mesenchymal subsets (left) with UMAP plots showing the
expression of curated PD and AP marker genes (right; Proximal: MEIS2; Distal:
HOXD13; Anterior: IRX3; Posterior: SHH).

h, GSVA analysis of pathway enrichment in the proximal and core mesenchyme
(Mes3/OCP) and distal mesenchyme (Mes1/2). T values for each pathway were
shown (two-sided unpaired limma-moderated t test).

i, Heatmap showing the area under the curve (AUC) score of regulons enriched in
the mesenchymal subsets. Z-score (row scaling) was computed. Hierarchical
clustering on rows and columns indicated regulon patterns and correlation between
cell subsets, respectively. AUC of representative regulons were shown by UMAP

plots.

Fig. 3. Characterization of the osteochondral lineage in human long bones
identified embryonic SSCs

a, UMAP visualization of 7 OCLC subsets in 8 WPC human long bones.

b, Enriched GO terms of differentially expressed genes (DEGs) among the 7 OCLC
subsets.
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¢, Developmental trajectory of 7 OCLC subsets inferred by RNA velocity and
visualized on the UMAP projection.

d, UMAP visualization of the osteogenic and chondrogenic trajectories simulated by
Slingshot across OCP, eSSC, osteoprogenitor, chondroblast and chondrocyte
subsets. The corresponding diffusion pseudotime was indicated in the upper right
frame.

e, Heatmap of gene expressions (smoothed over 20 adjacent cells) in OCP, eSSC,
osteoprogenitor, chondroblast and chondrocyte subsets ordered by pseudotime of
osteogenesis and chondrogenesis in (d). Top 200 genes were selected according to
the P values of GVM test and representative genes were shown. Shared genes in the
two trajectories were indicated in dashed box.

f, Heatmap showing the AUC score of regulons enriched in human OCLC subsets. Z-
score (column scaling) was calculated. Representative regulons were shown on the
top. The number of predicted target genes for each regulon was shown in the
parenthesis.

d, AUC of FOXP1 and FOXP2 regulons were shown by UMAP plots.

h, The FOXP1 and FOXP2 regulon networks in OCLC subsets. Line thickness
indicated the level of GENIE3 weights. Dot size indicated the number of enriched TF

motifs.

Fig. 4. Identification of CADM1 as a phenotypic marker of eSSCs
a, Dot plots showing the expression of differentially expressed cell surface genes
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(left) and candidate SSC markers (right) in 8 WPC human long bone subsets.
Asterisks indicated positive markers that were used to enrich eSSCs.

b, Immunofluorescent images of PDPN*CADM1* cells in 8 WPC human long bones.
Overviews of PDPN*CADM1* cells (arrows) in the articular (upper left) and POC
(bottom left) regions were shown on the left. PDPN*CADM1* cells were found in the
inner layer of perichondrium in articular regions (i) and surrounding POC (ii). A few
PDPN*CADM1* cells were also found inside POC (iii). Arrow heads indicated
enlarged PDPN*CADM1* cells. Merged and single-channel images of DAPI (blue),
CADM1 (red) and PDPN (green) were shown. Scale bars: 200 um.

¢, Flow cytometry gating strategies for sorting different populations in 8 WPC long
bones.

d, Representative crystal violet staining of CFU-F colonies generated by the sorted
populations as indicated in (c¢). Magnified images of the boxed areas were shown on
the right. Scale bars: 25 ym.

e, Quantifications of the number (top) and mean diameter (bottom) of the CFU-F
colonies. The statistical significance of differences was determined using one-way
ANOVA with multiple comparison tests (LSD). * P < 0.05; ** P < 0.01; *** P < 0.001.

Error bars indicated SEM.

Fig. 5. Functional characterizations of eSSCs in vitro and in vivo
a, Flow cytometry plots showing the maintenance of phenotypic eSSCs after serially
passaging clonally expanded PDGFRA*"-PDPN*CADM1* cells.
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b, Representative oil red O (top), alizarin red (middle) and toluidine blue (bottom)
staining after adipogenic, osteogenic and chondrogenic differentiation of clonally
expanded eSSCs (PDGFRA*-PDPN*CADM1*). Magnified images of the boxed
areas were shown on the right. Scale bars: 200 pm.

¢, gPCR analyses of adipogenic, osteogenic and chondrogenic marker genes in
clonally expanded eSSCs before and after trilineage differentiation in vitro. The
statistical significance of differences was determined using Wilcoxon signed rank
test. * P <0.05; ** P < 0.01. Error bars indicated SEM.

d, Renal subcapsular transplantation. The work flow for functional characterization of
eSSC in vivo (top). Subcapsular xenografts were dissected and sectioned 8 weeks
after transplantation of culture expanded eSSCs into immunodeficient mice. Bright
field (middle), Movat pentachrome staining (bottom left, cartilage: blue, bone and
fibrous tissue: yellow) and immunofluorescent staining images (bottom right, DAPI:

blue, collagen I: red, collagen Il: green) were shown. Scale bars: 50 ym.

Fig. 6. Characterization of the osteogenic lineages in human embryonic
calvaria identified neural crest-derived skeletal progenitors

a, UMAP visualization of 12 subsets in 8 WPC calvarial bones. Inset illustrated the
position of calvarial bone.

b, Violin plots showing the expression of feature genes for each subset.

¢, Heatmap showing the transcriptome correlation between osteogenic subsets in
calvarial and OCLC subsets in long bone. Asterisks indicated subsets with correlation
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coefficients > 0.8.

d, Dot plots (left) and UMAP plots (right) showing the expression of eSSC marker
genes subsets of 8 WPC calvarial.

e, UMAP visualization of the two osteogenic trajectories simulated by Slingshot
across NC, mig_NC, NCDC, osteoprogenitor, PMSC1 and PMSC2 subsets (Upper
left). Expression UMAP plots of marker genes (NC: FOXC1; Mesoderm: TWIST2,
Osteoprogenitor: DLX5).

f, Heatmap of the gene expressions (smoothed over 20 adjacent cells) in subsets
ordered by pseudotime of osteogenesis as in (e). Top 200 genes were selected
according to the P values of GVM test and representative genes were shown. Shared
genes in two trajectories were indicated in dashed box.

g, Heatmap showing the AUC scores of regulons enriched in the osteogenic subsets.
Z-score (row scaling) was computed. Representative regulons were shown on the
right.

h, AUC of FOXP1/2/4 regulons were shown by UMAP plots.
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Stage Sample Dpf® Tissue Strategy Gender | Cell Number | Doublets | Cell Number (QC°) | Gene number | UMI number | Perc.mito?
Embryo 1 30 | Limb bud scRNA-seq Male 6,248 315 5,300 3,443 13,741 2.5%
5 WPC? Embryo 2 36 | Limb bud scRNA-seq Female 8,675 606 7,351 3,508 13,079 2.8%
Embryo 3 36 | Limb bud scRNA-seq Male 9,119 670 7,239 3,119 10,759 2.2%
Embryo 4 49 | Long bone scRNA-seq Female 4,786 185 4,375 2,253 7,159 1.5%
Embryo 5 55 | Long bone scRNA-seq Male 6,645 356 5,745 2,386 8,760 1.9%
Embryo 6 55 | Long bone scRNA-seq Female 6,431 334 5,560 1,955 6,247 2.3%
8WPC Embryo 7-9 55 | Long bone | Nonclonal culture Total 45,690 35,570
Embryo 10-11 55 | Long bone Clonal culture
Embryo 12 56 | Long bone Clonal culture
Embryo 13 56 | Long bone Transplant aWPC: weeks post conception; "Dpf: days post fertilization;
Embryo 14 56 | Long bone Transplant cQC_: quality control; “Pec.mito: percentage of mitochondrial genes
¢IF: immunofluorescence
Embryo 15 56 | Long bone Transplant
Embryo 16-17 | 36 Limb bud H&E staining
Embryo 18-19 | 56 | Long bone H&E, IF® staining
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Supplementary Figure 1. Sample information and data quality control

a, Table summary of human embryonic limb bud and long bone samples and detailed scRNA-seq
information. b, CNV scores inferred from transcriptomes of tumor cells, normal T cells (reference
cell type) and 100 randomly selected cells from the 6 embryos analyzed by scRNA-seq (test cells).
Red: amplifications; Blue: deletions. ¢, UMAP visualization of the 6 embryos analyzed by
scRNA-seq. These included 5 WPC limb buds (E1-3) and 8 WPC long bones (E4-6). d, Boxplot
showing the number of detected genes, log-transformed UMI counts, percentage of mitochondrial
genes and Silhouette coefficient for each subset. e, Assessment of the 15 clusters from 6,000
randomly subsampled cells (1000 cells from each embryo) to the 16 subsets annotated in Fig. 1c.
f, Pearson correlation analysis showing the relationship among the 16 subsets. Hierarchical clus-
tering according to Pearson correlation distinguished skeletogenic (clusters 1-8, 14, 15) and
non-skeletogenic subsets (clusters 9-13 and 16).
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Supplementary Figure 2. Characterization of E11.5 mouse hindlimb bud mesenchyme and
epithelium. a, UMAP visualization of 9 cell subsets in E11.5 mouse hindlimb bud dataset. Expres-
sion matrix was re-processed and cells were clustered according to the expression of homolo-
gous feature genes in human limb bud. b, Sankey diagram for assigning E11.5 mouse hindlimb
bud subsets to 5 WPC human limb bud datasets. ¢, Dot plots of mean expression of homologous
feature genes in E11.5 mouse hindlimb bud subsets. d, Violin plots (left) showing the gene
expression of EPCAM and FGF8 in human and mouse epithelial subsets. Pie charts (right) show-
ing the proportions of each epithelial subset.
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Supplementary Figure 3. Cross-species comparison between human and mouse embryonic
long bones during POC formation. a, UMAP plot of the 14 subsets in 8 WPC human long bones.
b, Dot plots showing the expression of human homologous feature genes in the 14 subsets
indicated in (a). ¢, UMAP plot of the 11 subsets in re-processed E15.5 mouse hindlimb dataset.
d, Dot plots showing the expression of mouse homologous feature genes in the 11 mouse hind-
limb subsets indicated in (c). e, Sankey diagram for assigning mouse E15.5 hindlimb datasets to
human 8 WPC long bone datasets. f, Heatmap showing the AUC scores of regulons enriched in
mouse OCLC subsets. Z-score (column scaling) was calculated. Representative regulons were
shown on the right. g, The Foxp1/2/4 regulon networks in mouse OCLC subsets. Lines thickness
indicated the level of GENIE3 weights. Dot size indicated the number of enriched TF motifs.
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Supplementary Figure 4. Further in silico and functional analyses of eSSCs. a, TACS plots
showing the distribution of each OCLC subset between indicated surface marker pairs. Contours
outlined regions of increasingly higher cell density. Cell frequencies were shown on the plots. b,
Representative immunofluorescent image of 8 WPC human femur section stained with DAPI
(blue), CADM1 (red) and PDPN (green). ¢, Representative images showing the mesenchymal
spheres formed by the 3 populations sorted as in Fig. 4c (left), with magnified views (right). Scale
bars: 25 um. d, Quantification of the number (top) and mean diameter (bottom) of mesenchymal
spheres. The statistical significance of differences was determined using one-way ANOVA with
multiple comparison tests (LSD). * P < 0.05; ** P < 0.01; *** P < 0.001. Error bars indicated SEM.
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Supplementary Figure 5. FMO controls and in vitro differentiation of eSSCs. a, Fluorescence-mi-
nus-one (FMO) controls for eSSC gating strategy in serial colony formation assay (Fig. 5a). b,
Representative alcian blue (top) and safranin O staining (bottom) after chondrogenic differentiation
of clonally expanded eSSCs (PDGFRA low/-PDPN+CADM1+). Magnified images of the boxed
areas were shown on the right. Scale bars: 100 um. ¢, Representative oil red O (top), alizarin red
(middle) and toluidine blue (bottom) staining after adipogenic, osteogenic and chondrogenic differ-
entiation of nonclonally expanded eSSCs (PDGFRAlow/-PDPN+CADM1+). Magnified images of
the boxed areas were shown on the right. Scale bars: 200 um. d, gPCR analyses of adipogenic,
osteogenic and chondrogenic marker genes in nonclonally expanded eSSCs before and after
trilineage differentiation in vitro. The statistical significance of differences was determined using
Wilcoxon signed rank test. * P < 0.05; ** P < 0.01. Error bars indicated SEM.
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Stage Sample Dpf2 Tissue Strategy Gender | Cell Number | Doublets | Cell Number (QC®) | Gene number | UMI number | Perc.mito®
Embryo 20 ) 3,786 338 2,932 3,126 14,860 2.7%
56 | Cavarial bone | scRNA-se Male
sWPC Embryo 21 g 6,476 116 4,355 4,330 17,899 6.5%
Embryo 22-23| 56 | Cavarial bone | IF® staining Total 10,262 7,287

aWPC: weeks post conception; "Dpf: days post fertilization; °QC: quality control; “Pec.mito: percentage of mitochondrial genes; ¢IF: immunofluorescence
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Supplementary Figure 6. Further characterizations of human embryonic calvaria. a, Table
summary of the 8 WPC human embryonic calvarial bone samples for scRNA-seq and immunos-
taining. b, Stacked bar charts comparing the distribution of 8 WPC long bone and calvarial
subsets. Dashed boxes indicated skeletal site-specific clusters. The three shared clusters
(osteoprogenitor, PMSC and chondrocyte) were highlighted by dash lines. ¢, t-distributed
stochastic neighbor embedding(t-SNE) projection of indicated subsets from long bones and
calvarial bones to compare the transcriptomic similarities at the pseudo-bulk level. d, Immunoflu-
orescent images of PDPN+CADM1+ cells in 8 WPC human calvarial bones. Overview of the
calvarial region surrounding sagittal suture was shown on the left. PDPN+CADM1+ cells
(arrows) were found in the outer layer of sagittal mesenchyme. Arrow heads indicated enlarged
PDPN+CADM1+ cells. Merged and single-channel images of DAPI (blue), CADM1 (red) and
PDPN (green) were shown. Scale bars: 200 ym. e, Heatmap showing pathways differentially
enriched in calvarial bone subsets by GSVA, colored by scaled mean of GSVA scores. f, The
FOXP1/2/4 regulon network in 8 WPC human calvarial bone subsets. Line thickness indicated
the level of GENIE3 weights. Dot size indicated the number of enriched TF-motif.
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