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 1 

Abstract: Humans vary in their susceptibility to infectious disease, partly due to variation in the 21 

immune response following infection. Here, we used single-cell RNA-sequencing to quantify 22 

genetic contributions to this variation in peripheral blood mononuclear cells, focusing specifically 23 

on the transcriptional response to influenza infection. We find that monocytes are the most 24 

responsive to influenza infection, but that all cell types mount a conserved interferon response, 25 

which is stronger in individuals with increased European ancestry. By comparing European 26 

American and African American individuals, we show that genetic ancestry effects on expression 27 

are common, influencing 29% of genes, but highly cell type-specific. Further, we demonstrate that 28 

much of this population-associated expression variation is explained by cis expression 29 

quantitative trait loci, which are enriched for signatures of recent positive selection. Our findings 30 

establish common cis-regulatory variants—including those that are differentiated by genetic 31 

ancestry—as important determinants of the antiviral immune response. 32 

 33 

Keywords: Genetic ancestry, single-cell RNA-sequencing, immune responses, influenza 34 

infection, natural selection, expression quantitative trait loci (eQTL)  35 
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 2 

Introduction 36 

Pathogenic viruses constitute one of the strongest sources of selective pressure in human 37 

evolutionary history (Barreiro et al., 2009; Enard and Petrov, 2018; Enard et al., 2016; Fumagalli 38 

et al., 2011; Siddle and Quintana-Murci, 2014). Prior to the modern era, however, global 39 

pandemics on the scale of the 1918 Spanish influenza or the ongoing SARS-CoV-2 pandemic 40 

were probably rare. Due to the restricted potential for long-distance (especially intercontinental) 41 

exchange, earlier viral epidemics are thought to have been strongly stratified by geography (Enard 42 

and Petrov, 2020). Consequently, although most human genetic variation is shared between 43 

populations, differences in viral-mediated selection pressures may have driven divergence in the 44 

frequencies of polymorphisms that mediate the viral host response (either because of differences 45 

in the viruses that caused epidemic outbreaks or heterogeneity in the timing of epidemic events 46 

between populations). If so, the pattern of past epidemic outbreaks may have contributed to 47 

variation in viral susceptibility observed within and among modern-day human populations—48 

perhaps interacting with or compounding known health disparities that contribute to substantially 49 

higher rates of influenza and COVID-19 hospitalization in Black versus non-Hispanic white 50 

Americans (e.g., the Centers for Disease Control and Prevention (CDC) estimates a 79% higher 51 

rate of influenza-related hospitalizations for Black versus white Americans: (CDC, 2020)).  52 

Genetics is thought to play an important role in explaining population variation in 53 

susceptibility to influenza and other viral pathogens (Albright et al., 2008; Kenney et al., 2017). 54 

Supporting this view, a study exploring the impact of regulatory genetic variation on gene 55 

expression levels (i.e. expression quantitative trait loci [eQTL] studies) following influenza A virus 56 

(IAV) infection of human dendritic cells revealed 121 genetic variants that are significantly 57 

associated with the immune response to IAV, including one cis-acting variant associated with the 58 

interferon regulatory factor 7 gene (IRF7) that also acts as a trans-regulator responsible for 59 

genetic effects on a hub of IRF7-induced antiviral genes (Lee et al., 2014). Variation in the gene 60 

expression response to IAV in vitro is also correlated with genetic ancestry in monocytes derived 61 
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from individuals of African and European descent (Quach et al., 2016). 62 

A major limitation of studies to date, however, is their focus on a single, isolated immune 63 

cell type. This approach is blind to genetic effects that act in a cell type-specific manner. Further, 64 

it fails to capture critical interactions between the array of immune cell types needed to mount an 65 

efficient response to a viral infection. To address these limitations, here, we combine single-cell 66 

RNA-sequencing with in vitro infection assays of peripheral blood mononuclear cells (PBMCs) 67 

with pathogenic influenza A virus. We identify both shared and cell type-specific responses to IAV 68 

that are detectable only when gene expression estimates are resolved into individual cell types. 69 

We then investigate the degree to which the transcriptional response to IAV is structured by 70 

European versus African genetic ancestry and dissect likely genetic contributions to these 71 

differences. Finally, we investigate whether variants that are associated with ancestry-related 72 

differences are likely to have evolved in response to past selection pressure. Our results show 73 

that cis-regulatory genetic variation contributes to phenotypic differences in the immune response 74 

of modern humans to IAV, including both within and between-population variation. Further, some 75 

of these variants—especially those linked to autoimmune risk—carry signatures of recent positive 76 

selection, particularly in Europeans, suggesting that at least some present-day autoimmune risk 77 

loci were adaptive and conferred a functional benefit during our evolutionary history.  78 

 79 

Single-cell profiling of the transcriptional response to influenza infection  80 

We exposed peripheral blood mononuclear cells (PBMCs) sampled from a diverse panel 81 

of humans to either a mock treatment (negative control) or to the pandemic H1N1 Cal/04/09 82 

influenza A virus (IAV) strain (multiplicity of infection [MOI] 0.5) (n = 180 samples, comprised of 83 

paired mock-exposed and IAV-infected samples from each of 90 individuals). Following 6 hours 84 

of exposure, we performed single-cell RNA-sequencing on all samples (Fig. 1A). In total, we 85 

captured 255,731 single-cell transcriptomes across all individuals and conditions (n = 235,161 86 

high-quality cells retained after filtering, Table S1). In addition, we collected low-pass whole-87 
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genome sequencing for the same individuals (n = 89), which we used to estimate the proportion 88 

of African and European admixture for each individual. Self-identified African American (AA, n = 89 

45) individuals had a modest, although highly variable, percentage of European ancestry (mean 90 

= 11%, range = 0 – 43%), while self-identified European American (EA, n = 44) individuals 91 

displayed more limited levels of African ancestry (mean = 1%, range = 0 – 23%) (Fig. S1A, Table 92 

S1). UMAP clustering revealed eight distinct immune cell types (Fig. 1B), with five major cell 93 

clusters corresponding to the five main cell types found in PBMCs, including CD4+ T cells, CD8+ 94 

T cells, B cells, natural killer (NK) cells, and monocytes.  95 

We first investigated the overall signature of IAV infection on our samples by collapsing 96 

the single-cell gene expression values for each of the five main clusters and for all cells together 97 

(i.e. “PBMCs”, including the major and minor clusters) into pseudobulk estimates per sample. 98 

Principal component analysis (PCA) on the PBMC pseudobulk expression data revealed a strong 99 

signature of the IAV infection effect, such that mock- and IAV-infected samples strongly separate 100 

on PC1, which explains 43% of the variance in the dataset (Fig. S1B, paired t-test, p < 1x10-10). 101 

Across the five main clusters and the total PBMC pool, monocytes were by far the most 102 

responsive to IAV infection (n = 3,999 differentially expressed (DE) genes [38.4% of those tested] 103 

with log2 fold-change > 0.5, FDR < 0.05). All other cell types displayed weaker infection effects 104 

(12.4 – 19.7% DE genes) (Fig. 1C, Table S2). In support of a major role for monocytes in the IAV 105 

response, gene set enrichment analysis (GSEA) revealed that genes that were more responsive 106 

in monocytes compared to all other cell types were strongly enriched for genes involved in viral 107 

transcription and monocyte-associated biological pathways, such as monocyte chemotaxis (FDR 108 

= 4.6x10-4) (Fig. 1D, Table S3). Moreover, monocytes exhibited the highest levels of intracellular 109 

IAV transcripts (i.e., influenza-derived transcripts generated and processed by infected host cells; 110 

> 3-fold increase compared to all other cell types, t-test, all p-values < 1x10-10 for monocytes 111 

compared to all other cell types) (Fig. 1E). This observation shows that monocytes are either the 112 
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cell type most susceptible to viral entry, the most permissible to intracellular replication of the 113 

virus, or both. 114 

We then explored the extent to which the infection response was concordant or discordant 115 

across the five major PBMC cell types. Overall, we found a strong correlation between the 116 

response to IAV infection across cell types (Pearson’s r range 0.65 – 0.95 across pairwise cell 117 

type comparisons, Fig. S1C). However, we also observed many genes for which the response to 118 

infection was discordant between cell types. For example, among differentially-expressed genes 119 

shared by monocytes and NK cells (n = 822), 138 genes (16.8%, Fig. S1D) responded to IAV 120 

infection in the opposite direction (Fig. 1F). To further dissect cell type-specific versus shared 121 

responses, we generated a per-gene specificity score based on the coefficient of variation of the 122 

log2 fold-change response across cell types for each gene that was significantly differentially-123 

expressed in at least one cell type (high values indicate highly cell type-specific responses to IAV, 124 

low values indicate shared responses to IAV) (Table S4). Genes with highly cell type-specific 125 

patterns of response were enriched for roles in translational initiation, co-translational protein 126 

targeting to membrane, and viral gene expression (FDR < 1x10-10 for all terms, Fig. 1G, left, Table 127 

S4). In contrast, genes with low specificity scores were enriched for pathways related to type I 128 

interferon (IFN) signaling (FDR < 1x10-10) and response to type I IFN (FDR = 7.1x10-4) (Fig. 1G, 129 

right, Table S4). Thus, induction of IFN-related genes appears to be a fundamental component of 130 

the antiviral response that is shared across immune cell types (Fig. 1H, top). One notable 131 

exception to this observation is the gene IFNG, which encodes the type II IFN cytokine IFN-γ. 132 

IFN-γ is a crucial mediator of antiviral immunity (Kang et al., 2018), but shows an expression 133 

pattern that is almost exclusive to NKT cells in the IAV-infected condition (Fig. 1H, bottom). 134 

Collectively, our results underscore the importance of considering the immune responses of single 135 

cell types independently. Not only does this approach reveal distinct, cell type-specific responses 136 

to viral infection, but also highlights responses that would be undetectable or potentially 137 

misleading in more heterogeneous immune cell populations (e.g. PBMCs). 138 
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 139 

Genetic ancestry is associated with the transcriptional immune response to IAV 140 

We next identified genes for which gene expression levels are correlated with quantitative 141 

estimates of genetic ancestry in either the mock condition, the IAV-infected condition, or both 142 

(after controlling for age, batch, and other technical covariates). To increase power and improve 143 

our effect size estimates for these “population differentially-expressed” (popDE) genes, we 144 

implemented a multivariate adaptive shrinkage method (mash) (Urbut et al., 2019), which 145 

leverages the correlation structure of genetic ancestry effect sizes across cell types (see Methods 146 

for details in the statistical models used).  Across conditions and cell types, we identified 1,949 147 

popDE genes (local false sign rate (lfsr) < 0.10), ranging from 830 in NK cells to 1,235 genes in 148 

CD4+ T cells (Fig. 2A, Table S5). Within each cell type, most popDE genes were shared between 149 

mock and IAV-infected conditions (52.9% in monocytes – 77.4% in CD8+ T cells). In contrast, 150 

across cell types, we found that genetic ancestry effects on gene expression were highly cell type-151 

specific, such that the majority of popDE genes were identified in only one or two cell types (52.2% 152 

in mock, 51.4% in IAV-infected) (Fig. 2B). For example, CXCL8, which encodes IL-8, an important 153 

mediator of the inflammatory response (Bickel, 1993), is more highly expressed with increasing 154 

African ancestry following IAV infection only in monocytes (lfsr = 0.051 in monocytes and lfsr > 155 

0.25 in all other cell types) (Fig. 2C, top). There are, however, a minority of genes that exhibit 156 

shared genetic ancestry effects across all five cell types (17.8% in mock, 24.7% in IAV-infected). 157 

One such gene is IL32, which encodes a cytokine that induces other proinflammatory cytokines 158 

to activate the NF-κB pathway (Ca and Sh, 2006; Yan et al., 2018). IL32 is more highly expressed 159 

with increasing African ancestry in all cell types following infection (lsfr < 8.8x10-6) (Fig. 2C, 160 

bottom).  161 

To identify the functional pathways most closely associated with genetic ancestry, we 162 

performed enrichment analysis on the popDE effects using the Molecular Signatures Database 163 
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hallmark gene sets (Liberzon et al., 2015) (Fig. 2D, Table S6). In monocytes, we identified 164 

significant enrichment for multiple immune pathways prior to infection, including the IFN-α 165 

response (FDR = 1.9x10-3), IFN-γ response (FDR = 5.4x10-4), TNFα signaling via NF-κB (FDR = 166 

6.1x10-4), IL-2/STAT5 signaling (FDR = 2.1x10-3), and inflammatory response (FDR = 0.012) (Fig. 167 

2D). In all cases, these enrichments were identified for genes that were more highly expressed at 168 

baseline (i.e., in the mock treatment condition) in individuals with a greater proportion of African 169 

ancestry. Intriguingly, in IAV-infected cells, this pattern shifts: post-infection, we observed 170 

enrichment of type I and II IFN pathways (IFN-α response FDR = 0.014, IFN-γ response FDR = 171 

0.040 in monocytes) (Fig. 2D) in genes more highly expressed with increasing European ancestry, 172 

as opposed to African ancestry. To better characterize this shift, we constructed a per-individual, 173 

per-condition score of interferon signaling activity (termed IFN score) by calculating the average 174 

mean-centered expression of genes belonging to the hallmark IFN-α and IFN-γ gene sets 175 

(Liberzon et al., 2015). This simple summary statistic revealed that increased European ancestry 176 

strongly correlates with increased IFN score, but only in the IAV condition (mean Pearson’s r 177 

across cell types = -0.26, Fisher’s meta-p = 2.9x10-6 in the IAV condition, Fisher’s meta-p = 0.746 178 

in the mock condition) (Fig. 2E).  179 

These findings suggest that, for some immune pathways (particularly interferon signaling 180 

pathways), genetic ancestry may also predict the magnitude of the response to IAV infection. To 181 

explicitly test this possibility, we identified significant interactions between treatment condition 182 

(mock versus IAV) and genetic ancestry levels. After mash estimation of interaction effect sizes 183 

across cell types, we identified 609 genes for which ancestry was associated with the response 184 

to infection (i.e., “population differentially-responsive” [popDR] genes, lfsr < 0.10). PopDR genes 185 

were found for all five cell types (number of popDR genes range = 84 – 334), but were most 186 

common in monocytes (n popDR genes = 334) (Fig. 2F); a core set of 27 popDR genes were also 187 

shared across cell types (Fig. S2A, Table S7). In agreement with our previous results, we found 188 

that increased European genetic ancestry predicts a stronger type I/II IFN response (measured 189 
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 8 

as the difference in IFN score between the IAV-infected and mock conditions per individual) 190 

across cell types (mean Pearson’s r across cell types =  -0.23, Fisher’s meta-p = 6.x10-5) (Fig. 191 

S2B). This observation cannot be explained by differences in baseline levels of IAV-specific 192 

serum IgG antibodies (Figure S2C, S2D). Type I/II IFN response magnitude also correlated with 193 

the level of IAV transcripts measured in PBMCs, such that the stronger the IFN response, the 194 

higher the measured IAV transcripts (adj. R2 = 0.553, p = 2.8x10-17) (Fig. 2G), a relationship 195 

primarily driven by monocytes (Fig. S2E). Accordingly, in line with their stronger type I/II IFN 196 

response, individuals with increased European ancestry proportion displayed increased levels of 197 

IAV transcript expression compared to individuals with higher levels of African ancestry 198 

(Pearson’s r = -0.32, p = 0.002, Fig. S2F), an observation that is replicated when monocytes are 199 

infected with IAV in isolation (O’Neill et al., 2020). These results point to the possibility that 200 

ancestry-associated variation in susceptibility to intracellular infection and/or differences in the 201 

ability to restrict viral replication may explain ancestry-associated differences in the type I/II IFN 202 

response. 203 

 204 

Cis-regulatory genetic variation explains ancestry-associated differences in gene 205 

regulation  206 

To assess the contribution of genetic variation to genetic ancestry-associated differences 207 

in the transcriptional response to IAV infection, we integrated genome-wide expression profiles 208 

with genotyping data to map expression quantitative trait loci (eQTL) in both the mock and IAV-209 

infected samples. We focused specifically on cis-eQTL, which we defined as SNPs located either 210 

within or flanking (±100 kilobases, kb) each gene of interest. We identified 2,234 genes that were 211 

associated with at least one cis-eQTL (lfsr < 0.10, hereafter referred to as eGenes) across all cell 212 

types and conditions tested (Fig. 3A, Table S8). Although many variants exert similar effects 213 

across cell types and infection conditions (45%, Fig. S3A), 13 - 24% of the eGenes identified 214 

within each cell type were only detected in one condition even after probing patterns of shared 215 
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effects using mash (Urbut et al., 2019). Our results thus highlight the importance of gene–216 

environment interactions in influencing transcriptional regulation in the immune system (Barreiro 217 

et al., 2012; Fairfax et al., 2014; Lee et al., 2014; Nédélec et al., 2016; Quach et al., 2016). Of 218 

note, we identified a set of 29 eGenes (Fig. S3A) that, across all cell types, were only detected in 219 

the IAV-infected condition, including the key IFN-inducible genes OAS1, IFI44L, IFIT1, IRF1, and 220 

ISG15. In OAS1, the top cis SNP across cell types (rs10774671) is an IAV-specific response 221 

eQTL (Fig. 3B, top: mock-infected lfsr = 0.81, bottom: IAV-infected lfsr = 1.5x10-12 in CD4+ T cells) 222 

that lies within a Neanderthal-derived haplotype (Sams et al., 2016) and that has been associated 223 

with higher OAS1 enzymatic activity (Bonnevie-Nielsen et al., 2005) and susceptibility to different 224 

viruses from the Flaviviridae family (El Awady et al., 2011; Kwon et al., 2013; Lim et al., 2009). 225 

We next tested whether eGenes were also likely to be differentially-expressed by genetic 226 

ancestry. Across all cell types and conditions, eGenes (lfsr < 0.10) were 3.2 to 6.5-fold more likely 227 

to be classified as popDE (lfsr < 0.10) than expected by chance (Fig. 3C). This enrichment 228 

suggests that ancestry-associated differences in gene expression are likely to have a substantial 229 

genetic component, perhaps due to divergence in allele frequencies at the causal eQTL. To 230 

formally evaluate this contribution, we calculated the correlation between 1) the estimated genetic 231 

ancestry effect from our popDE analysis, and 2) the predicted genetic ancestry effect based only 232 

on the effect size of the top eQTL per eGene and the genotype for this SNP among individuals of 233 

European and African ancestry (restricted to those popDE genes that were also eGenes in at 234 

least one cell type, n = 835 genes; see Methods for details). We found a striking correlation (Fig. 235 

3D), such that genotype information on the eQTL alone explained an average of 52.5% (mock) 236 

and 53.6% (IAV-infected) of the variance in genetic ancestry effect sizes across cell types (Fig. 237 

S3B). These results indicate that, among popDE genes with an eQTL, on average, over 50% of 238 

the population differences are explained by cis-regulatory variation.  239 

 240 
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Polygenic selection has shaped genetic ancestry-associated differences in ribosomal 241 

protein gene expression 242 

We next sought to evaluate if the intersection set of popDE genes and eGenes clustered 243 

into specific biological pathways. We identified a strong enrichment for Gene Ontology (GO) terms 244 

related to transcriptional and translational processes, including “ribosomal small subunit 245 

biogenesis” and “viral transcription” (FDR < 3x10-10 in mock-infected and IAV-infected) (Fig. 3E), 246 

as well as more canonical immune-related pathways, such as myeloid/leukocyte activation and 247 

degranulation (Table S9). The observed gene expression divergence between populations in 248 

genes linked to similar biological functions could be explained by two hypotheses: 1) genes 249 

associated with such biological processes have evolved under relaxed evolutionary constraint, 250 

allowing them to accumulate cis-regulatory variants that have randomly diverged in allele 251 

frequencies via neutral genetic drift, or 2) cis-variants regulating these genes have undergone 252 

non-neutral shifts in allele frequencies, resulting in the accumulation of alleles that systematically 253 

influence the behavior of enriched pathways in a directional manner – a pattern consistent with 254 

polygenic selection.  255 

To test for polygenic selection, for each of the enriched pathways, we calculated the 256 

median ancestry-associated differential expression effect (i.e., the estimated difference in gene 257 

expression between European- and African-ancestry individuals) across all popDE genes 258 

contained in a given pathway (limited to those with an eQTL). Under neutrality, we expect the 259 

direction of the ancestry-associated effects to be randomly distributed (i.e., some genes will be 260 

more highly expressed in European-ancestry individuals whereas others will be more highly 261 

expressed in African-ancestry individuals). In contrast, under polygenic selection, we expect to 262 

find a directional effect, such that most genes for a given pathway show higher expression in one 263 

ancestry group versus the other. Interestingly, most of the GO terms for ribosomal protein-related 264 

pathways (e.g. ribosomal biogenesis, viral transcription, etc.) show median population-associated 265 

differences in gene expression levels that are consistently higher in individuals with increased 266 
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European ancestry across cell types, in both IAV-infected cells (Fig. 3F, 3G) and mock-exposed 267 

cells (Fig. S4A). Importantly, these differences are attenuated when regressing out the effects of 268 

the associated top cis-eQTLs for the genes (Fig. 3F, 3G), suggesting that such differences are 269 

driven by the cumulative effect of regulatory variants impacting the expression of ribosomal 270 

protein (RP) genes. Strikingly, we found a strong correlation between the average expression of 271 

RP eGenes and IAV transcript expression in both CD8+ T cells (Pearson’s r = 0.32, p = 0.002) 272 

and monocytes (Pearson’s r = 0.58, p < 1x10-10, Fig. 3H). Together, these data raise the possibility 273 

that viral infection-induced selection pressures have shaped ribosomal biology phenotypes in 274 

human populations, with potential implications for viral control mechanisms. 275 

 276 

Natural selection and susceptibility to autoimmune disease 277 

Past selection imposed by pathogen exposure has been speculated to contribute to  278 

present-day susceptibility to autoimmune and chronic inflammatory diseases (Brinkworth and 279 

Barreiro, 2014; Sanz et al., 2018). However, it remains unclear whether natural selection has also 280 

contributed to genetic ancestry-associated differences in vulnerability to these diseases. To 281 

address this question, we performed colocalization analysis between the union set of eQTLs 282 

detected across all cell types and conditions and 14 publicly available genome-wide association 283 

study (GWAS) hits for 11 autoimmune diseases (Table S10). Colocalized eQTLs are expected to 284 

be strongly enriched for causal drivers of variation in disease susceptibility across individuals. 285 

Across all autoimmune diseases, we colocalized eQTL in our study with a total of 95 GWAS 286 

variants (Fig. 4A, Table S10).  287 

To analyze a broader array of immune-related colocalization signals, we combined our 288 

data with colocalization results for bulk eQTLs in 18 immune cell types from 3 large immune eQTL 289 

studies (DICE (n = 91) (Schmiedel et al., 2018), DGN (n = 922) (Battle et al., 2014), and 290 

BLUEPRINT (n = 197) (Chen et al., 2016)) for the same 14 autoimmune GWAS (Mu et al., 2020). 291 

This approach allowed us to identify 1,030 colocalized GWAS hits across the 11 traits (mapping 292 
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to 536 eGenes, Table S10). We then asked if these putative causal variants were enriched for 293 

signatures of natural selection in the 1000 Genomes Project CEU and YRI populations, using 294 

either the integrated haplotype score (iHS, a within-population measure of recent positive 295 

selection based on haplotype homozygosity (Voight et al., 2006)) or extreme values of population 296 

differentiation (FST). Far more colocalized loci display high |iHS| scores (values > 95th percentile 297 

of the genome-wide distribution) in the CEU population than expected by chance (p = 0.008, Fig. 298 

4B), while no significant enrichment was detected in YRI. Our results thus suggest that natural 299 

selection has acted on these cis-regulatory autoimmune risk variants, particularly in Europeans, 300 

with the caveat that the vast majority of GWAS studies to date have focused exclusively on 301 

individuals of European ancestry (Bustamante et al., 2011), preventing us from detecting 302 

signatures of selection among GWAS loci unique to African-ancestry individuals. Moreover, we 303 

observed that colocalized genes are more likely to be differentially-expressed between 304 

populations than expected by chance (35.8% are classified as popDE, p = 0.007) (Fig. 4C), 305 

pointing to a potential genetic contribution for the differences in the incidence of autoimmune and 306 

inflammatory disorders reported between African and European-ancestry individuals (Brinkworth 307 

and Barreiro, 2014).  308 

Within our set of colocalized eGene-SNP pairs, 48 eGenes carried a signature of recent 309 

positive selection in either the CEU or YRI populations (|iHS| or FST > 95th percentile of the 310 

genome-wide distribution) (Fig. 4D). Many of these genes involve crucial immune-related 311 

functions. For example, the Crohn’s disease-susceptibility risk variant rs2284553 colocalized with 312 

IFNGR2, the gene encoding the beta chain of the IFN-γ receptor, in naïve CD8+ T cells (Fig. S5A). 313 

This variant is found at much higher frequency in the CEU population (MAF = 0.38) than the YRI 314 

population (MAF = 0.05) and shows a signature of recent positive selection in the CEU (iHS = 315 

2.22). Another variant detected in the allergic disease GWAS, rs5743618, maps to a non-316 

synonymous SNP located in TLR1 that is also an eQTL for the nearby gene TLR6 (Fig. S5B). 317 

This variant compromises NF-κB signaling and activation to produce an attenuated inflammatory 318 
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response (Barreiro et al., 2009) and is a known trans-regulatory hotspot (Piasecka et al., 2018; 319 

Quach et al., 2016). Notably, it is found at low frequency in the YRI population (derived allele 320 

frequency (DAF) = 0.04) but is found at elevated frequency in the CEU population (DAF = 0.67) 321 

(Sanz et al., 2018). This difference in allele frequency alone explains the positive correlation 322 

between African genetic ancestry and the transcriptional response to immune stimulation with 323 

antigens that signal through TLR1 (Nédélec et al., 2016; Quach et al., 2016; Sanz et al., 2018).  324 

 325 

Discussion  326 

 Together, our results provide the most detailed characterization to date of the genetic 327 

determinants that shape inter-individual and genetic ancestry-associated differences in the 328 

response to viral infection across the five most common immune cell types found in PBMCs. We 329 

identified thousands of genes for which expression levels are correlated with genetic ancestry 330 

across different immune cell types, but found that the majority of these cases (52.2% in mock, 331 

51.4% in IAV-infected) are restricted to only one or two cell types. These results are likely 332 

explained by a combination of cell type-specific genetic effects and environmental factors that 333 

correlate with genetic ancestry but that only act on certain cell types. For example, chronic stress 334 

has been shown to causally alter immune gene regulation, yet its effects are mainly limited to 335 

helper T cells and NK cells (Snyder-Mackler et al., 2016). Although our findings corroborate 336 

previous reports of elevated inflammatory pathway activity with increasing African ancestry, at 337 

least at baseline (25, 26), they also reveal a novel pattern: increased activity of type I/II IFN 338 

pathways following influenza infection associated with increased European ancestry. This 339 

observation has potential clinical implications, as interferons are the main defensive cytokines 340 

released during the early phase of acute influenza infection as well as most other viral infections. 341 

However, when chronically elevated, interferons can increase susceptibility to the uncontrolled 342 

inflammation typical of severe cases of influenza and now COVID-19 (Vabret et al., 2020). More 343 

studies are now needed to define whether ancestry-associated variation in the interferon 344 
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response to viral infection in vivo is associated with differential viral clearance, disease severity, 345 

and disease outcome.   346 

Many of the genetic ancestry-associated differences in immune regulation we observe are 347 

driven by allele frequency differences at cis-regulatory variants. Among popDE genes in which 348 

we identify at least one cis-eQTL across cell types and conditions, we estimate that, on average, 349 

cis-eQTLs explain approximately 53% of the variance in the observed ancestry-associated 350 

differences. This is likely an underestimate, given that it assumes that each gene has only a single 351 

cis-eQTL, when in fact many genes have been shown to have two or more independent cis-eQTL 352 

(Lappalainen et al., 2013). Further, we are underpowered to detect trans associations, and we do 353 

not consider non-SNP regulatory variants (e.g., indels and copy number variation), which also 354 

influence gene expression variation in humans (Gymrek et al., 2016). In addition, we provide 355 

evidence for ancestry-associated directional shifts in molecular traits (i.e., gene expression 356 

phenotypes related to specific biological pathways) that are under cis-regulatory genetic control, 357 

highlighting the potential role of polygenic selection in the history of these phenotypes.  358 

The signature of selection at ribosomal protein (RP) genes (RPL, RPS) is of particular 359 

interest, as RPs facilitate translation initiation of viral transcripts (Haque and Mir, 2010; Huang et 360 

al., 2012) and directly interact with viral mRNA and proteins to enable viral protein synthesis (Li, 361 

2019). These proteins also play essential roles in ribosomal biogenesis (Fromont-Racine et al., 362 

2003), a process that influences viral reproduction and cell-intrinsic immune responses following 363 

human cytomegalovirus infection (Bianco and Mohr, 2019), and that also affects innate immune 364 

signaling pathways to modulate the IFN-γ-mediated inflammatory response (Vyas et al., 2009) 365 

and NF-κB target gene expression (Wan et al., 2011). Further, a subset of ribosomes, known as 366 

immunoribosomes, has been hypothesized to preferentially synthesize antigenically-relevant 367 

cellular and viral peptides for immunosurveillance by the MHC class I system, resulting in a tight 368 

link between translation and antigen presentation that may allow immune cells to more quickly 369 

recognize and eliminate infected cells (Wei and Yewdell, 2019; Yewdell, 2007). Together, these 370 
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observations support the argument that RPs are important mediators of the host immune 371 

response to virus, and raise the possibility that polygenic selection on ribosomal pathways has 372 

contributed to present-day variation in viral control within and between human populations.  373 

Finally, our results provide evidence that recent, local positive selection has acted on 374 

putatively causal regulatory risk variants associated with common autoimmune diseases in 375 

GWAS, strengthening the link between pathogen-mediated selection and susceptibility to 376 

autoimmune disorders (Brinkworth and Barreiro, 2014; Nielsen et al., 2017; Quach and Quintana-377 

Murci, 2017). The connection between infectious diseases and chronic inflammatory disorders is 378 

further supported by reports that some pathogens are contributing, and possibly causal, factors 379 

to the development of certain chronic inflammatory and autoimmune diseases (e.g., Epstein–Barr 380 

virus and  systemic lupus erythematosus, rheumatoid arthritis, and multiple 381 

sclerosis; Mycobacterium avium and Crohn’s disease; Yersinia enterocolica and inflammatory 382 

bowel disease) (Abubakar et al., 2008; Feller et al., 2007; James et al., 2001; Ramos-Casals et 383 

al., 2005; Saebo et al., 2005; Yamazaki et al., 2005).  Our findings shed light on human 384 

evolutionary history and lend key empirical support to arguments that link historical pathogen-385 

mediated selection to present-day susceptibility to autoimmune and inflammatory diseases.    386 
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Fig. 1. Shared and cell type-specific transcriptional responses to IAV infection. (A) Study design 403 

schematic. PBMCs from 90 individuals were exposed to mock-conditioned media or IAV 404 

Cal/04/09 in vitro for 6 hours, followed by single-cell RNA sequencing and DNA collection for DNA 405 

sequencing. (B) UMAP of 235,161 high-quality single-cell transcriptomes from both mock- and 406 

IAV-infected cells across all individuals. (C) Numbers and proportions of genes that show 407 

differential expression (logFC > 0.5, FDR < 0.05) between mock- and IAV-infected conditions 408 

across the five major PBMC cell types. (D) Monocyte-specific GO pathways that show significant 409 

upregulation (enrichment score > 0, FDR < 0.10) following infection. Genes in the “monocyte 410 

chemotaxis” term are significantly more upregulated after IAV infection in monocytes compared 411 
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to the other cell types (plotted means for each individual across genes in the IAV condition minus 412 

the mock condition, t-test, all p-values < 1x10-10 when comparing monocytes against each other 413 

cell type). (E) Distribution of IAV transcript expression across cell types, with monocytes showing 414 

a 3 – 6-fold higher number of IAV transcripts compared to any other cell type (t-test, all p-values 415 

< 1x10-10 when comparing monocytes against each other cell type). (F) Correlation between IAV 416 

infection effect sizes (log2 fold-change values) in monocytes (x-axis) and NK cells (y-axis) among 417 

DE genes in both monocytes and NK cells (n = 822). Line shows the best-fit slope and intercept 418 

from a linear model. Highlighted genes (pink) display discordant responses following IAV 419 

infection. (G) Example pathways enriched among genes with high (right, viral gene expression 420 

FDR = < 1x10-10) and low (left, response to type I interferon FDR = 7.1x10-4) specificity scores, 421 

where all genes are rank-ordered by specificity score on the x-axis (highest to lowest). (H) UMI 422 

counts (y-axis) per cell (x-axis) in the IAV-infected condition for example genes that show 423 

ubiquitous expression across cell types (MX1, top) and highly cell type-specific expression 424 

patterns (IFNG, bottom).  425 
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426 

Fig. 2. Genetic ancestry influences the immune response to IAV infection. (A) Number of 427 

significant mock-specific, shared, and IAV-specific popDE genes (lfsr < 0.10) across cell types. 428 

(B) Cell type sharing of significant popDE effects (1 = popDE effect is detected in only a single 429 

cell type, 5 = popDE effect is detected across all cell types). (C) Examples of cell type-specific 430 

(CXCL8, monocytes lfsr = 0.051, lfsr > 0.25 in all other cell types) and shared (IL32, lsfr < 8.8x10-431 

6 in all cell types) popDE genes (AA in yellow, EA in green) in the IAV-infected condition. (D) GO 432 

enrichments for popDE effects across cell types in the mock-infected (black circles) and the IAV-433 

infected (red circles) conditions. A positive enrichment score (ES) corresponds to an enrichment 434 

in genes with higher expression in individuals with increased African ancestry, while a negative 435 

ES corresponds to an enrichment in genes with higher expression in individuals with increased 436 

European ancestry. * represents pathways with FDR < 0.10. (E) Correlation between the 437 

proportion of African genetic ancestry (x-axis) and IFN score (y-axis) in the mock-infected (dotted 438 

lines, mean Pearson’s r across cell types =  -0.0045, Fisher’s meta-p = 0.746) and the IAV-439 
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infected condition (solid lines, mean Pearson’s r across cell types = -0.26, Fisher’s meta-p = 440 

2.9x10-6). (F) Number of significant popDR genes (lfsr < 0.10) across cell types. (G) IAV transcript 441 

levels (x-axis) predict the IFN score response (difference in IFN score between the IAV-infected 442 

and mock-infected conditions, y-axis) in PBMCs (adj R2 = 0.553, p = 2.8x10-17), and most 443 

individual cell types (Fig. S2C). In (E) and (G), lines show the best-fit slope and intercept from a 444 

linear model.  445 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.21.423830doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

446 

Fig. 3. Cis-regulatory variation drives differences in the antiviral response, both at the individual 447 

and population levels. (A) Number of significant mock-specific, shared, and IAV-specific eGenes 448 

(lfsr < 0.10) across cell types. (B) Example of a condition-specific response eQTL (rs10774671 in 449 

OAS1) in CD4+ T cells (top: mock-infected, lfsr = 0.809, bottom: IAV-infected, lfsr = 1.5x10-12). (C) 450 

Enrichment of significant eGenes (lfsr < 0.10) among significant popDE genes (lfsr < 0.10) 451 

identified in each cell type and condition (x-axis: log2 fold enrichment with a 95% confidence 452 

interval; “m” = mock). (D) Correlation of the cis-predicted population differences in expression (x-453 
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axis) versus the observed population differences in expression (y-axis) among popDE genes with 454 

an eQTL in CD4+ T cells (top, adj R2 = 0.57, p = 2.42x10-93) and monocytes (bottom, adj R2 = 455 

0.51, p = 2.48x10-59). (E) Significant (FDR < 0.01) ClueGO enrichments for the popDE genes that 456 

are also eGenes across all cell types in the IAV-infected condition. (F) Median observed 457 

population differences among genes in (E) for selected terms using a model estimating the 458 

observed genetic ancestry effects (left) and a model estimating this effect with the effect of the 459 

top cis-SNP regressed for all genes contained in the term (right). (G) Example term showing the 460 

effect of cis SNP regression. European-ancestry individuals display higher expression (median 461 

observed pop. difference < 0, colored point +/- SE) for the genes belonging to the “viral 462 

transcription” term in the observed data. Following cis-SNP regression (grey point +/- SE), this 463 

difference is attenuated. (H) Correlation between IAV transcript levels and the mean logCPM 464 

among ribosomal protein (RP) eGenes per individual in the IAV condition minus the mock 465 

condition for CD8+T cells (Pearson’s r = 0.25, p = 0.019) and monocytes (Pearson’s r = 0.47, p = 466 

3x10-6). In (D) and (H), line shows the best-fit slope and intercept from a linear model.  467 
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468 

Fig. 4. Recent positive selection has acted on cis-regulatory variants implicated in autoimmune 469 

disease risk. (A) Number of shared and condition-specific colocalization hits identified across cell 470 

types (x-axis) in the 11 autoimmune traits tested (y-axis). (B) Proportion of independent, 471 

colocalized lead GWAS loci that have |iHS| values > 95th percentile of the genome-wide 472 

distribution among SNPs with > 5% MAF (CEU: green triangle, p = 0.008, YRI: yellow triangle, p 473 

= 0.283) compared to random expectation when sampling the same number of SNPs 1,000 times 474 

from all variants with a MAF > 5% in an LD-matched and MAF-matched manner (density 475 

distributions) among all autoimmune traits. (C) Proportion of genes with a colocalization signal 476 
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that are popDE (pink triangle, p = 0.007) compared to random expectation when sampling the 477 

same total number of genes 1,000 times from all genes tested (density distribution) among all 478 

autoimmune traits. (D) FST and |iHS| values among the colocalized hits shown in A as well as 479 

those identified in the harmonized bulk eQTL data. FST values are plotted on the x-axis, while 480 

|iHS| values are plotted on the y-axis (top: CEU, bottom: YRI). Dotted lines show the 95th 481 

percentile of the genome-wide distribution for the respective selection statistic (FST = 0.398, |iHS| 482 

CEU = 1.92, |iHS| YRI = 1.95). eGenes with a selection statistic > 95th percentile are represented 483 

by a colored point, and colors represent the autoimmune trait for which a colocalization signal is 484 

detected (here, the multiple inflammatory bowel disease, ulcerative colitis, and Crohn’s disease 485 

GWAS have been collapsed into a single label).  486 
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Methods 487 

Peripheral blood mononuclear cell (PBMC) collections 488 

All samples were obtained from BioIVT. A signed, written consent was obtained from each 489 

participant. Blood was collected from 90 male donors between the ages of 21 – 69 who identified 490 

as either African-American (AA) (n = 45) or European-American (EA) (n = 45) from the same 491 

collection site in Miami, Florida (United States) utilizing a standard protocol with a sodium heparin 492 

anticoagulant. Briefly, PBMCs were extracted from whole blood using a density gradient, washed 493 

with HBSS, reconstituted in CryoStor CS10 to a concentration of 10 million (M) cells/ml, and 494 

subsequently cryopreserved. Between 6 – 10M cells per individual were frozen per vial. We 495 

decided to only focus on males to avoid the potentially confounding effects of sex-specific 496 

transcriptional differences in the response to infection. Only individuals self-reported as currently 497 

healthy were included in the study. All individuals had detectable levels of IAV-specific serum IgG 498 

antibodies, but no differences in antibody titers were identified between European and African-499 

ancestry individuals (Figure S2C, S2D). 500 

 501 

Generation of influenza A virus  502 

Influenza A virus California/04/2009 (Cal/04/09) virus was rescued in 293T cells by 503 

plasmid-based transfection with IAV Cal/04/09 in the pDZ vector using methods previously 504 

described (Fodor et al., 1999; Hai et al., 2010; Hoffmann et al., 2000). 24 hours following 505 

transfection, 7.5x105 MDCK cells were added to the culture in Opti-MEM containing TPCK trypsin 506 

(1 µg/mL). For the following two days, 500 µL of Opti-MEM containing TPCK trypsin (2 µg/mL) 507 

was added to the culture. One day later, the supernatant was harvested, centrifuged to remove 508 

cellular debris, and stored at -80°C. Cal/04/09 was amplified on MDCK cells to generate a stock. 509 

Uninfected MDCK cells were cultured for 48 – 72 hours and supernatant was harvested to 510 

generate the control, mock-conditioned media. Stocks were plaqued on MDCK cells. Cells were 511 

infected in infection media (PBS with 10% Ca/Mg, 1% penicillin/streptomycin, 5% BSA) at 37°C 512 
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for 1 hour. Infection media was replaced with an agar overlay (2X MEM, 1 µg/mL TPCK trypsin, 513 

1% DEAE-dextran, 5% NaCo3, 2% oxoid agar), and cells were cultured at 37°C for 40 hours then 514 

fixed with 4% formaldehyde. Blocking and immunostaining were done for 1 hour at 25°C in 5% 515 

milk. Primary stain was mouse anti-Cal/04/09 (1:5000), secondary stain was peroxidase sheep 516 

anti-mouse-HRP (1:5000) (45001275, GE Healthcare). TrueBlue Peroxidase Substrate (50-647-517 

28, Kirkegard & Perry Laboratories) was used as directed for detection of virus plaques.  518 

 519 

In vitro infection experiments and sample collections 520 

PBMCs were unfrozen approximately 14 hours prior to infection and cultured overnight in 521 

RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, and 10 ug/ml 522 

gentamycin. Infection experiments were performed over 15 batches, where each experimental 523 

batch was semi-balanced for self-identified ancestry label to avoid introducing a batch effect 524 

confounded with genetic ancestry. The morning of the experiment, 1M PBMCs were plated at a 525 

concentration of 1M/ml for each condition, and exposed to either mock-conditioned media 526 

(negative control) or Cal/04/09 IAV at an MOI of 0.5. After 30 minutes of exposure, the control 527 

media or virus was washed from PBMC cultures, cells were replated, and cells were then 528 

incubated for 6 hours at 37°C in 5% CO2 and 20% O2. Following the 6 hour incubation, cells were 529 

collected, washed, and prepared for single-cell capture using the 10X workflow. Immediately prior 530 

to the capture, cells from samples were combined into two pools (6 samples per pool) each 531 

balanced for infection status (mock-infected and IAV-infected) and genetic ancestry (Table S1). 532 

Multiplexed cell pools were used as input for the single-cell captures, and for each cell pool, 533 

10,000 cells were targeted for collection using the Chromium Single Cell 3’ Reagent (v2 534 

chemistry) kit (10X Genomics). Post Gel Bead-in-Emulsion (GEM) generation, the reverse 535 

transcription (RT) reaction was performed in a thermal cycler as described (53°C for 45 min, 85°C 536 

for 5 min), and post-RT products were stored at -20°C until downstream processing (no longer 537 
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than 4 days post-RT reaction). For DNA processing, 1M PBMCs were collected, and DNA was 538 

extracted using the DNeasy Blood and Tissue Kit (Qiagen) following the “Cultured cells” protocol.  539 

 540 

Single-cell library preparation and RNA-sequencing 541 

Post-RT reaction cleanup, cDNA amplification, and sequencing library preparation were 542 

performed as described in the Single Cell 3’ Reagent Kits v2 User Guide (10X Genomics). Briefly, 543 

cDNA was cleaned with DynaBeads MyOne SILANE beads (ThermoFisher Scientific) and 544 

amplified in a thermal cycler using the following program: 98°C for 3 min, 11 cycles x 98°C for 15 545 

s, 67°C for 20 s, 72°C for 1 min, and 72°C 1 min. After cleanup with the SPRIselect reagent kit 546 

(Beckman Coulter), the libraries were constructed by performing the following steps: 547 

fragmentation, end-repair, A-tailing, SPRIselect cleanup, adaptor ligation, SPRIselect cleanup, 548 

sample index PCR (98°C for 45 s, 14 cycles x 98°C for 20 s, 54°C for 30 s, 72°C for 20 s, and 549 

72°C 1 min), and SPRIselect size selection. Batches of four experiments (corresponding to eight 550 

multiplexed single-cell captures) were processed at a time. Prior to sequencing, all multiplexed 551 

single-cell libraries (n = 30) were quantified using the KAPA Library Quantification Kit for Illumina 552 

Platforms (Roche) and pooled in an equimolar ratio. Libraries were sequenced 100 base pair 553 

paired-end (R1: 30 cycles, I1: 10 cycles, R2: 85 cycles) on an Illumina NovaSeq to an average 554 

depth of 45,612 mean reads per cell across all batches (average median genes detected per cell 555 

across batches = 689). 556 

 557 

Low-pass DNA sequencing and VCF processing 558 

Out of the 90 individuals in the cohort, 89 were successfully genotyped using DNBseq 559 

low-pass whole-genome sequencing (BGI) at 4x coverage. Variants were called across 560 

individuals using the human reference genome (GRCh37), yielding a merged VCF, and the 561 

ImputeSeq low-pass imputation pipeline (Gencove) was used to perform VCF imputation. The 562 

imputed merged VCF was lifted over to GRCh38 with CrossMap (v0.3.9) (Zhao et al., 2014) using 563 
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the GRCh37 to GRCh38 Ensembl chain file downloaded at 564 

ftp://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/ and the GRCh38 FASTA file from 565 

ftp://ftp.ensembl.org/pub/release-92/fasta/homo_sapiens/dna/. For each individual,  low-quality 566 

variants were filtered by only retaining those with a maximum genotype probability (GP in 567 

FORMAT field) > 0.90 using QCTOOL (v2.0.7, https://www.well.ox.ac.uk/~gav/qctool_v2/). If the 568 

max(GP) for a variant was < 0.90, the variant call was automatically set to missing. Only 569 

autosomal, biallelic SNPs were kept for downstream analysis using the SelectVariants function (-570 

-select-type-to-include SNP) from GATK (v3.7).  571 

 572 

Estimation of genome-wide admixture levels 573 

Prior to estimation of genome-wide admixture proportions, samples were merged with 574 

CEU (n = 99, Utah Residents [CEPH] with Northern and Western European Ancestry) and YRI (n 575 

= 108, Yoruba in Ibadan, Nigeria) samples from the 1000 Genomes Project (1000GP) Phase 3 576 

dataset (Auton et al., 2015) (downloaded from 577 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/). The 578 

proportion of European and African genetic ancestry for each individual included in the study was 579 

estimated using the supervised clustering algorithm in ADMIXTURE (v1.3.0) (Alexander and 580 

Lange, 2011). A total of 13,518,147 unlinked SNPs (r2 between all pairs < 0.1) were used for 581 

genetic ancestry assignments, assuming k = 2 ancestral clusters. These estimated quantitative 582 

genetic ancestry proportions were used to assess differences in immune responses between 583 

populations.  584 

 585 

Mapping, demultiplexing, and initial cell filtering 586 

FASTQ files from each multiplexed capture library were mapped to a custom reference 587 

containing GRCh38 and the Cal/04/09 IAV reference genome (downloaded from NCBI, created 588 

using cellranger mkref) using the cellranger (v3.0.2) (10X Genomics) count function. souporcell 589 
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(v2.0, Singularity v3.4.0) (Heaton et al., 2020) in --skip_remap mode (-k 6) was used to 590 

demultiplex cells into samples based on genotypes from a common variants file (1000GP samples 591 

filtered to SNPs with >= 2% allele frequency in the population, downloaded from 592 

https://github.com/wheaton5/souporcell). Briefly, souporcell clusters cells based on cell allele 593 

counts in common variants, assigning all cells with similar allele counts to a single cluster 594 

corresponding to one individual, while also estimating singlet/doublet/negative status for that cell. 595 

For each batch, hierarchical clustering of the true genotypes known for each individual (obtained 596 

from low-pass whole-genome-sequencing) and the cluster genotypes estimated from souporcell 597 

was used to assign individual IDs to souporcell cell clusters. All 89 individuals were successfully 598 

assigned to a single cluster.  599 

After demultiplexing cells into samples, Seurat (v3.1.5, R v3.6.3) (Stuart et al., 2019) was 600 

used to perform quality control filtering of cells. In total, we captured 255,731 cells prior to filtering 601 

(range of cells recovered per capture: min. = 5534, max. = 10805). Cells were considered “high-602 

quality” and retained for downstream analysis if they had: 1) a “singlet” status called by souporcell, 603 

2) between 200 – 2500 genes detected (nFeature_RNA), and 3) a mitochondrial reads 604 

percentage < 10%, leaving 236,993 cells (n = 19,248 genes).  605 

 606 

Clustering, cell type assignment, and UMAP analysis 607 

We performed two versions of clustering analysis and cell type assignment: 1) in which 608 

IAV genes were kept in the raw count matrix (used as input for pseudobulk calculations), and 2) 609 

in which IAV genes were subset out of the raw count matrix (for visualization of the UMAP in Fig. 610 

1B). All other steps of the clustering workflow (implemented in Seurat v3.1.5) remained the same. 611 

Pseudobulk expression estimates (see below) between clustering versions for cell type-matched 612 

clusters were extremely similar (adj R2 > 0.999 for comparisons between versions). For both 613 

clustering iterations, we split the cells by infection status (mock or IAV) and ran SCTransform to 614 

normalize and scale the UMI counts within condition. In this step, we simultaneously regressed 615 
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out variables corresponding to experiment batch and percent mitochondrial reads per cell. The 616 

data was then integrated on infection status using the SelectIntegrationFeatures, 617 

PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData workflow. Following integration, 618 

dimensionality reduction was performed via UMAP (RunUMAP function, dims = 1:30) and PCA 619 

(RunPCA function, npcs = 30). A Shared Nearest Neighbor (SNN) Graph was constructed using 620 

the FindNeighbors function (dims = 1:20, all other parameters set to default), and clusters were 621 

subsequently called using the FindClusters algorithm (resolution = 0.5, all other parameters set 622 

to default).  623 

Clusters were annotated based on the expression of canonical immune cell marker genes 624 

(CD4+ T: CD3D+, CD3E+, CD8A–; CD8+ T: CD3D+, CD8A+; NK cells: CD3D–, NKG7+, GNLY+; 625 

monocytes: CD14+, LYZ+; B: MS4A1+; granulocytes: PRSS57+; dendritic cells (DCs): HLA-DRA+, 626 

HLA-DRB1+, CCR7+, CST3+, CD83+). A small group of cells, which were identified as B cells, 627 

clustered with CD4+ T cells in the UMAP (Fig. 1B), and we investigated this further to see whether 628 

this subset represented a distinct, rare cell type. Further analysis revealed that these cells express 629 

markers typical of NKT cells, including CD3D, NKG7, IL2, TNF, and IFNG, and thus, these cells 630 

were manually annotated as NKT cells. In the UMAP constructed from input data containing IAV 631 

genes, we excluded 1,832 cells for which we could not confidently assign a cell type, as they 632 

clustered on the basis of high IAV transcript expression, leaving us with 235,161 cells across all 633 

individuals and conditions for downstream analysis (n CD4+ T cells = 138,801, CD8+ T cells = 634 

32,446, monocytes = 27,020, B cells = 22,877, NK cells = 13,220, DCs = 374, granulocytes = 635 

301, NKT cells = 122). 636 

 637 

Calculation of pseudobulk estimates 638 

Cluster-specific pseudobulk estimates were used to summarize single-cell expression 639 

values into bulk-like expression estimates within samples (where, here, a sample is an individual, 640 

infection-condition pair, n = 180). This was performed for all five major cell types (CD4+ T cells, 641 
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CD8+ T cells, B cells, monocytes, NK cells) and PBMCs, where all high-quality cells from all cell 642 

types identified (n =  235,161) were treated as a single aggregate cluster. Within each cluster for 643 

each sample, raw UMI counts were summed across all cells assigned to that sample for each 644 

gene using the sparse_Sums function in textTinyR (v1.1.3), yielding an n x m expression matrix, 645 

where n is the number of samples included in the study (n = 180) and m is the number of genes 646 

detected in the single-cell analysis (m = 19,248) for each of the 6 clusters. 647 

 648 

Calculation of capture-corrected expression for downstream modeling 649 

From this point forward, pseudobulk estimates were treated as de facto bulk expression 650 

data for each cell type considered. As such, calculations of residuals and downstream modeling 651 

of infection and genetic ancestry effects (see below) were performed for each cluster 652 

independently. For each cell type, lowly-expressed genes were filtered using cell-type specific 653 

cutoffs (removed genes with a median logCPM < 1.5 in CD4+ T cells, monocytes, and PBMCs, < 654 

2.5 in B cells and CD8+ T cells, and < 4.0 in NK cells), leaving the following number of genes per 655 

cell type: CD4+ T cells = 9,291, CD8+ T cells = 9,960, B cells = 9,335, monocytes = 10,424, NK 656 

cells = 7,109, and PBMCs = 10,430. 657 

After removing lowly-expressed genes, normalization factors to scale the raw library sizes 658 

were calculated using calcNormFactors in edgeR (v 3.26.8) (Robinson et al., 2010). The voom 659 

function in limma (v3.40.6) (Ritchie et al., 2015) was used to apply these size factors, estimate 660 

the mean-variance relationship, and convert raw pseudocounts to logCPM values. A model 661 

evaluating the technical effect of capture (~ 0 + capture, where capture corresponds to a factor 662 

variable representing the 30 experimental capture batches) on gene expression was fit using the 663 

lmFit and eBayes functions, and model residuals were obtained using the residuals.MArrayLM 664 

function in limma. The average capture effect was then computed by taking the mean of the 665 

capture coefficients across all 30 capture batches per gene, and this average capture effect was 666 

added back to the residuals across samples to generate the capture-corrected expression 667 
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estimates. The inverse variance weights calculated by voom were obtained and included in the 668 

respective lmFit call for all downstream models unless otherwise noted.  669 

While performing quality control checks on our data, we noticed that the density 670 

distributions of the capture-corrected expression estimates were bimodal for some samples in 671 

certain cell types. We estimated this bimodality proportion in each cell type for each sample by: i) 672 

estimating the local minimum of the density distribution, ii) subsetting the x-axis on a restricted 673 

range that was specific to each cell type, iii) using the x value where y equals the estimated local 674 

minimum as the bimodal threshold, and iv) calculating the proportion of genes less than this 675 

threshold. Assigned bimodality proportions were manually checked and corrected to an 676 

approximate value if they were obviously over- or under-estimated. The bimodality proportion is 677 

negatively correlated with cell counts per sample in most cell types and was most pronounced in 678 

the CD8+ T cells, monocytes, and NK cells (i.e. the cell types with the fewest number of cells 679 

collected per sample). To remove any potentially confounding effects associated with this artifact, 680 

the appropriate cell-type specific bimodality proportion vector across samples was included as a 681 

quantitative technical covariate in all of our downstream models.  682 

 683 

Modeling global infection effects 684 

 To obtain estimates of the global infection effects, capture-corrected expression levels of 685 

samples corresponding to the same individual were compared in a paired design, in which 686 

individuals were introduced as additional covariates into the following differential infection effect 687 

model that was run per cell type: 688 

M1: E i,j  ~	
		β0(i,j) +	βpB(i)⋅	pBmock(j) +	βage(i)⋅	age(j) +		εmock(i,j) if Condition = mock

  β0(i,j) +	βIAV(i) +  βpB(i)⋅pBIAV(j) +	βage(i)⋅	age(j) +		εIAV(i,j) if Condition = IAV
 689 

Here, E i,j  represents the capture-corrected expression estimate of gene i for individual j and 690 

β0(i,j) represents the intercept corresponding to gene i and individual j (i.e. the expectation of 691 
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gene i’s expression level in the mock-infected sample for individual j). When evaluated, this model 692 

gives the global estimate of the IAV infection effect per gene, βIAV(i), approximated using the 693 

within-individual variation in gene expression across conditions. Further, pBcdt represents the 694 

bimodal proportion estimated per sample for the respective cell type being modeled (where cdt 695 

represents either the mock or IAV), with  βpB being the corresponding effect on gene expression, 696 

and age represents the mean-centered, scaled (mean = 0, sd = 1) age in years per individual, 697 

with βagebeing the impact of age on expression. Finally, εcdt represents the residuals for each 698 

respective condition (mock or IAV) for each gene i, individual j pair. Of note, when modeling the 699 

expression estimates in PBMCs, two additional covariates were added to the model, 700 

corresponding to the first two principal components of a PCA performed on an n x m cell type 701 

proportion matrix (where n = number of samples = 180, m = number of cell types = 10, with the 702 

matrix populated by the cell type proportions for each sample [calculated by the number of cells 703 

per cell type cluster for a sample divided by the total number of cells assigned to that sample]) to 704 

account for the majority of the variance introduced by underlying cell type composition (PC1 705 

percent variance explained (PVE) = 53.8%, PC2 PVE = 23.2%, total = 77.0%).  706 

These models were fit using the lmFit and eBayes functions in limma (Ritchie et al., 2015), 707 

and the estimates of the global infection effect βIAV(i) (i.e. the differential expression effects due 708 

to IAV infection) were extracted across all genes along with their corresponding p-values. We 709 

controlled for false discovery rates (FDR) using an approach analogous to that of Storey and 710 

Tibshirani (Nédélec et al., 2016; Storey and Tibshirani, 2003), which makes no explicit 711 

assumptions regarding the distribution of the null model but instead derives it empirically. To 712 

obtain a null, we performed 10 permutations, where infection status label (mock/IAV) was 713 

permuted within individual. We consider genes significantly differentially-expressed upon infection 714 

if they have a βIAV |logFC| > 0.5 and an FDR < 0.05.  715 

 716 
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Calculation of IFN score  717 

To construct the IFN score metric, we summarized the expression patterns of genes involved in 718 

the type I/II IFN response as a whole, where, within condition, we i) subset on genes belonging 719 

to the hallmark IFN gamma and alpha response pathways, ii) mean-centered and scaled the 720 

expression values for each gene across individuals, and iii) computed the average scaled 721 

expression across genes per individual. 722 

 723 

Modeling genetic ancestry effects and integration with mashr 724 

Prior to modeling genetic ancestry effects, capture-corrected expression estimates were 725 

quantile-normalized within condition using qqnorm in R. The following nested linear model was 726 

used to identify genes for which expression levels are correlated with the proportion of African 727 

ancestry across individuals within condition (i.e. popDE genes): 728 

M2: E i,j  ~	
		β0(i) + βAA

mock(i)⋅AA(j) + βpB(i)⋅pBmock(j) +	βage(i)⋅	age(j) +	εmock(i,j) if Condition = mock

  β0(i) + βIAV(i) +	βAA
IAV(i)⋅AA(j) +  βpB(i)⋅pBIAV(j) + βage(i)⋅	age(j) +		εIAV(i,j) if Condition = IAV

 729 

Here, E i,j  represents the capture-corrected expression estimate of gene i for individual j,  β0(i) is 730 

the global intercept accounting for the expected expression of gene i in a 100% European-731 

ancestry mock-infected individual,  βAA
mock(i) and βAA

IAV(i) indicate the effects of African admixture 732 

(mean-centered, scaled African ancestry proportion, AA(j)) on gene i within each condition, and 733 

βIAV(i) represents the intrinsic infection effect of IAV infection. All other terms in the model are 734 

analogous to that described in M1. Again, the model was fit using limma, and the estimates βAA
mock(i) 735 

and βAA
IAV(i) of the genetic ancestry effects were extracted across all genes, along with their 736 

corresponding p-values. Each of these estimates represents the genetic ancestry-related 737 

differential expression effects within each condition.  738 

Genes for which the response to IAV infection is correlated with the proportion of African 739 

ancestry (i.e. popDR genes) were detected using the following model:  740 
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M3: E i,j  ~	
		β0(i,j) + βpB(i)⋅pBmock(j) +	βage(i)⋅	age(j) +		εmock(i,j) if Condition = mock

  β0(i,j) + βIAV(i) +	βAA
IAV(i)⋅AA(j) +  βpB(i)⋅pBIAV(j) +	βage(i)⋅	age(j) +		εIAV(i,j) if Condition = IAV

 741 

This model is similar to M1 (differential effect of IAV infection), in that it allows us to obtain 742 

estimates based on within-individual variability, with the difference that the IAV infection effect is 743 

no longer built in a genetic ancestry-independent manner as in model M1, since it is now 744 

dependent on genetic ancestry as follows: βIAV + βAA
IAV(i)⋅AA. In this context, βAA

IAV denotes the 745 

genetic ancestry-infection interaction effect induced by IAV infection, which represents variation 746 

in the response to infection that is correlated with the proportion of African ancestry.  747 

To assess sharing of genetic ancestry effects across cell types and to increase our power 748 

to detect these effects, we applied Multivariate Adaptive Shrinkage in R (mashr v0.2.28) (Urbut 749 

et al., 2019) to the outputs of our popDE and popDR cell type-by-cell type models. mashr was 750 

applied independently to both the popDE and popDR priors, so all following methods were 751 

performed twice, once for the popDE effects and then again for the popDR effects. Effect size 752 

priors were obtained directly from limma and merged into matrices including all effect sizes across 753 

cell types, only keeping those genes detected in all cell types (i.e. n x m matrices, where for 754 

popDE effects: n = 6,847 genes, m = 10 conditions [mock- and IAV-infected popDE effects for 755 

each of the 5 main cell types], and for popDR effects: n = 6,847 genes, m = 5 conditions [popDR 756 

effects for each of the 5 main cell types]). Standard errors of the effect size priors were calculated 757 

per gene by multiplying the square root of the posterior variance (s2.post) of each gene by the 758 

unscaled standard deviation for the effect size of interest for that gene (stdev.unscaled) estimated 759 

by limma, and these values were similarly formatted into matrices as described above. To account 760 

for correlations among measurements across conditions in our data, we used the 761 

estimate_null_correlation_simple function implemented in mashr to specify a correlation matrix 762 

prior to fitting the mash model. We included both the canonical covariance matrices provided by 763 

default in mashr and data-driven covariance matrices (defined as the top 5 PCs from a PCA 764 

performed on the significant (lfsr < 0.05) signals detected in the condition-by-condition model 765 
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results) learned from our data in the mash model fit. For both popDE and popDR effects, the mash 766 

model was fit to all tests using the mash function. Posterior summaries of the effect sizes, 767 

standard deviations, and measures of significance were extracted. We used the estimated local 768 

false sign rate (lfsr) to assess significance of our posterior popDE and popDR effects and 769 

considered genes significantly population differentially-expressed or differentially-responsive if 770 

the lfsr of the posterior mean was < 0.10.  771 

 772 

eQTL mapping and integration with mashr 773 

eQTL mapping was performed independently in each cell type against the sets of genes 774 

retained after lowly-expressed gene filtering (n genes: CD4+ T cells = 9,291, CD8+ T cells = 9,960, 775 

B cells = 9,335, monocytes = 10,424, NK cells = 7,109, PBMCs = 10,430). A linear regression 776 

model was used to examine associations between SNP genotypes and expression levels, in 777 

which expression levels were regressed against genotype. Input expression matrices were 778 

quantile-normalized within condition prior to running the association. Mock-exposed and IAV-779 

infected eQTL were mapped separately across all cell types. All regressions were performed 780 

using the R package MatrixEQTL (v2.3) (Shabalin, 2012). Only SNPs with a minor allele 781 

frequency > 5% across all individuals were tested, and SNPs with > 10% of missing data or 782 

deviating from Hardy-Weinberg equilibrium at p < 10-5 were excluded (--maf 0.05 --geno 0.10 --783 

hwe 0.00001 PLINK v1.9 filters, www.cog-genomics.org/plink/1.9/) (Chang et al., 2015). In total, 784 

6,305,923 SNPs passed our quality-control filters. Local associations (i.e. putative cis-eQTL) were 785 

tested against all SNPs located within the gene body or 100kb upstream and downstream of the 786 

transcription start site (TSS) and transcription end site (TES) for each gene tested. We recorded 787 

the minimum p-value (i.e. the strongest association) observed for each gene, which we used as 788 

statistical evidence for the presence of at least one eQTL for that gene. To estimate an FDR, we 789 

permuted the genotype data ten times, re-performed the linear regressions, and recorded the 790 

minimum p-values for the gene for each permutation. These sets of minimum p-values were used 791 
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as an empirical null distribution and FDRs were calculated using the method described in the 792 

section “Modeling global infection effects”. 793 

Power to detect cis-eQTL can be increased by accounting for unmeasured surrogate 794 

confounders. To identify these confounders, we first performed PCA on a correlation matrix based 795 

on gene expression for mock and IAV-infected samples. Subsequently, up to 20 principal 796 

components (PCs) were regressed out prior to performing the association analysis for each gene. 797 

A specific number of PCs to regress in each condition and cell type, corresponding to the number 798 

of PCs that empirically led to the detection of the largest number of eQTL in each condition, was 799 

then chosen from these results. The exact number of PCs regressed in each of the analyses can 800 

be found in Table S11. Of note, while PC corrections increase our power to detect eQTL, they do 801 

not affect the underlying structure of the expression data.  802 

Mapping was performed combining both EA and AA individuals to increase power. To 803 

avoid spurious associations resulting from population structure, the first two eigenvectors 804 

obtained from a PCA on the genotype data using SNPRelate (v1.20.1, gdsfmt v1.22.0) (Zheng et 805 

al., 2012) were included in the Matrix eQTL model as well. Other covariates included in the linear 806 

model were the following: the condition and cell type-specific bimodal proportion and age (mean-807 

centered, scaled), with two additional covariates included when mapping eQTL using the PBMC 808 

expression data, corresponding to the first 2 PCs from the cell type composition PCA described 809 

in “Modeling global infection effects”.  810 

Our ability to detect eQTL was highly dependent on the number of cells identified in each 811 

cell type cluster (correlation between the total number of cells recovered per cell type across all 812 

individuals/conditions versus the number of significant eQTL (FDR < 0.10) detected: adj R2 = 813 

0.983, p = 1x10-8). To gain power to detect cis-eQTL effects using sharing information across cell 814 

types, we again implemented mashr (Urbut et al., 2019). Out of necessity of the method, we only 815 

considered shared genes that were tested across all cell types (n = 6,573). For each of these 816 

genes, we chose a single, top cis-SNP, defined as the SNP with the lowest FDR across all cell 817 
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types (n = 5) and conditions (n = 2), to input into mashr, yielding a total of 6,573 gene-SNP pairs. 818 

We extracted the prior effect sizes (betas) and computed the standard errors (SEs) of these betas 819 

(defined as the beta divided by the t-statistic) from the Matrix eQTL outputs for each gene-SNP 820 

pair across cell types and conditions. We defined a set of “strong” tests (i.e. the 6,573 top gene-821 

SNP associations) as well as a set of random tests, including both null and non-null tests, which 822 

we obtained from randomly sampling 200,000 rows of a matrix containing all gene-SNP pairs 823 

tested by Matrix eQTL merged across conditions. Our mashr workflow was as follows: i) the 824 

correlation structure among the null tests was learned using the random test subset, ii) the data-825 

driven covariance matrices were learned using the strong test subset, iii) the mash model was fit 826 

to the random test subset using canonical and data-driven covariance matrices, with two 827 

additional “infection” covariance matrices (i.e. one matrix capturing shared effects in only the 828 

mock-exposed samples and another matrix capturing shared effects in only the IAV-infected 829 

samples), and iv) the posterior summaries were computed for the strong test subset. We used 830 

the estimated local false sign rate (lfsr) to assess significance of our posterior eQTL effects and 831 

considered a gene-SNP pair to have a significant eQTL effect if the lfsr of the posterior mean was 832 

< 0.10, which we defined as an eGene. 833 

 834 

Identification of condition-specific popDE genes and eGenes 835 

Within each cell type, we considered either popDE genes or eGenes as condition-specific 836 

(i.e. only showing an effect in either the mock or IAV infection condition) if they had an lfsr < 0.10 837 

in only one condition. Here, we assume that the risk of identifying a true effect in both mock and 838 

IAV-infected cells (i.e. a shared popDE gene/eGene) as falsely condition-specific due to lack of 839 

power is low, specifically because we employed the multivariate adaptive shrinkage framework, 840 

which draws information across conditions to make better-informed posterior estimates about the 841 

sharing of effects, so we do not expect to see many posterior effects called as “condition-specific” 842 

when, in fact, they are not.  843 
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 844 

Enrichment of eGenes within popDE genes  845 

We tested for an enrichment of eGenes among the genes identified as popDE genes 846 

within each cell type and condition. For each cell type, condition pair, we created two vectors: i) 847 

a popDE gene vector, where significant popDE genes (lfsr < 0.1) were coded as a 1 and non-848 

significant popDE genes were coded as a 0, and ii) an eGene vector, where significant eGenes 849 

(lfsr < 0.10) were coded as a 1 and non-significant eGenes were coded as a 0. The logistic 850 

regression was performed on the popDE gene and eGene vectors using glm in R, where the 851 

eGene vector was used as the predictor variable and the popDE gene vector was used as the 852 

response variable (popDE[0,1] ~ eGene[0,1]). The odds ratios output by glm were converted to 853 

log2 fold enrichments with a 95% confidence interval (plotted along the x-axis in Fig. 3C).  854 

 855 

Calculation of predicted and observed population differences in expression 856 

We estimated the predicted cis-genetic population differences in gene expression using a 857 

method in which we first computed the predicted expression of each gene considering only the 858 

posterior effect size of the top cis SNP for that gene and an individual’s genotype dosage (a vector 859 

of 0, 1, or 2), where, for gene i, individual j:  860 

predicted expressioni = eQTL effect sizei * genotypej 861 

We then modeled these predicted expression values using a model analogous to that of M2 862 

(model evaluating the popDE effects, “Modeling genetic ancestry effects and integration with 863 

mashr”) to obtain the predicted genetic ancestry effects (plotted on the x-axis for genetically-864 

driven popDE genes in Fig. 3D). The observed population differences in expression were taken 865 

directly from the post-mash beta estimates of M2 (plotted on the y-axis for genetically-driven 866 

popDE genes in Fig. 3D).  867 

 868 
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Modeling the effect of cis-regression on the observed population differences in expression  869 

To assess the impact of cis-regression on population-associated expression differences, 870 

we used two models evaluating the effect of continuous genetic ancestry (African ancestry 871 

proportion) on gene expression: i) a model analogous to M2 (model evaluating the popDE effects, 872 

“Modeling genetic ancestry effects and integration with mashr”), and ii) a model in which, for each 873 

gene, the top cis SNP for that gene was regressed by including the genotype dosage for that SNP 874 

across individuals as a covariate in the model. The models were fit using limma and mashr was 875 

applied (as described in the section “Modeling genetic ancestry effects and integration with 876 

mashr”) to the prior effect sizes and standard errors derived from both models. The mashr 877 

posterior summaries were used to directly obtain the observed population differences in 878 

expression for each gene.  879 

For each significantly enriched GO term (FDR < 0.01) identified in Fig. 3E (see 880 

“Enrichment analyses” section below), we calculated summaries of the observed population 881 

difference in expression among the genes that belong to each term that are also popDE genes 882 

with evidence of an eQTL in at least one cell type. To do this, for each cell type for each term, we 883 

collected the observed population differences among these term-specific genetically-driven 884 

popDE genes and calculated the median and standard error (SE) for these values (plotted on the 885 

x-axis in Fig. 3G). This was performed for both the observed (“real”) model outputs (model i) as 886 

well as the cis-regressed model outputs (model ii). For each cell type, we obtained a p-value for 887 

the real effects using a permutation method. To obtain a null distribution, we performed 1,000 888 

permutations where, for each iteration, we: 1) sampled the same number of observed term-889 

specific, genetically-driven popDE genes for that cell type from a background set of all genetically-890 

driven popDE for that cell type, 2) obtained the population differences in expression among these 891 

genes, and 3) calculated the median for these null values. We then computed a one-sided, 892 

empirical p-value, where we considered the number of instances more extreme in the median null 893 

difference compared to the median observed difference in the real data given the sign of this 894 
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difference (i.e. if the observed difference in the real data was < 0, we counted the number of 895 

observations in the null distribution equal to or less than the observed value, and if the observed 896 

difference in the real data was > 0, we counted the number of observations in the null distribution 897 

equal to or greater than the observed value), where p = number of instances more extreme divided 898 

by the number of permutations (n = 1000). Similarly, we obtained a p-value for the cis-regressed 899 

effects using the same method, except for that in steps 2 and 3, we considered the cis-regressed 900 

population differences as opposed to those seen in the real data. Notably, to calculate the 901 

directional p-value for the cis-regressed case, we used the magnitude of the median cis-regressed 902 

population difference but still considered the sign of the median observed population difference.  903 

 904 

Colocalization analysis 905 

Specifically for the colocalization analysis, eQTL were remapped in each cell type with 906 

Matrix eQTL (Shabalin, 2012) using a 1 megabase (Mb) cis-window, with all other modeling 907 

parameters kept constant, to broaden our search space and increase our probability of detecting 908 

colocalized variants. We assessed colocalization between our identified eQTLs in each cell type, 909 

condition pair and 14 publicly-available GWAS summary statistics for 11 autoimmune diseases 910 

(Table S10) as previously described (Mu et al., 2020) with a few modifications. Briefly, for each 911 

trait, we identified the lead GWAS SNPs with p-values below 1x10-5 and defined a “locus” as a 912 

1Mb window centered around the lead GWAS SNP. Of note, the HLA region (chr6: 25Mb-35Mb) 913 

was removed from the analysis. eGenes were defined as those with an lfsr < 0.10 from the mashr 914 

posteriors. The coloc.signals function from the coloc (v4.0.4) package in R was used to evaluate 915 

colocalization with default priors (Giambartolomei et al., 2014; Wallace, 2020). A colocalization 916 

test was only performed if the most significant SNP of an eGene fell within a GWAS locus. We 917 

defined colocalization as (PP3+PP4) > 0.5 and PP4/(PP3+PP4) > 0.8, where PP3 corresponds 918 

to the posterior probability of having two independent signals (one for the eQTL and one for the 919 
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GWAS) and PP4 corresponds to the posterior probability of colocalization between the eQTL and 920 

GWAS signals. 921 

To expand the number of colocalized genes considered for downstream analyses, we also 922 

downloaded colocalization results between harmonized bulk eQTLs in 18 immune cell types from 923 

3 studies (DICE, DGN, and BLUEPRINT) and the same 14 autoimmune GWAS. To obtain a list 924 

of unique colocalized eGene-locus pairs, we merged colocalization results from all 18 immune 925 

cell types for each GWAS and only kept the colocalization test with the largest PP4 value for each 926 

eGene at each GWAS locus. 927 

 928 

Calculation of selection statistics 929 

 iHS and FST values were calculated using the 1000GP Phase 3 dataset (Auton et al., 2015) 930 

in the GRCh37/hg19 build (downloaded from 931 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/).  932 

iHS  933 

Prior to calculation, the 1000GP Phase 3 data was filtered to exclude INDELs and CNVs. 934 

Ancestral alleles were retrieved from the 6 primates EPO pipeline (version e59) (Herrero et al., 935 

2016), and filtered 1000GP VCF files were converted to change the reference allele to the 936 

ancestral allele using bcftools (v1.9) (Li, 2011) with the fixref plugin. The program hapbin (v.1.3.0) 937 

(Maclean et al., 2015) was then used to calculate iHS values for the CEU and YRI populations 938 

using population-specific genetic maps constructed on the 1000GP OMNI dataset 939 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rate940 

s). All downstream analyses used the standardized iHS values reported from hapbin.  941 

FST 942 

Prior to calculation, the 1000GP Phase 3 data was filtered to keep only biallelic SNPs. FST 943 

statistics were computed between the CEU and YRI populations using the vcftools (v0.1) 944 

(Danecek et al., 2011) flag --weir-fst-pop, where the 1000GP CEU samples were defined as 945 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.21.423830doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423830
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

population 1 and the YRI samples were defined as population 2. This method is analogous to that 946 

described in Weir and Cockerham’s 1984 paper (Weir and Cockerham, 1984).  947 

 948 

Enrichment of colocalized hits with popDE genes and iHS statistics 949 

With popDE genes 950 

 We tested for an enrichment of popDE genes among genes with a colocalization signal 951 

across the 14 autoimmune traits included in the colocalization analysis in aggregate. Considering 952 

all colocalized signals, we collected a list of the unique genes associated with colocalization hits, 953 

corresponding to the eGenes driving the eQTL signature. Among these genes, we calculated the 954 

proportion that are also identified as popDE genes (here, a gene is considered popDE if it is called 955 

as significantly (lfsr < 0.10) popDE in at least one cell type and condition) and consider this our 956 

“observed proportion”. To obtain a null distribution, we performed 1,000 permutations where, for 957 

each iteration, we: i) sampled the same number of unique genes associated with colocalization 958 

hits from a list of all genes tested for the eQTL analysis that were shared across cell types (n = 959 

6205), and ii) calculated the proportion of these genes that are also popDE (our “null percentage”). 960 

We calculated a p-value by evaluating the number of permutations in which the null percentage 961 

was greater than or equal to the observed percentage divided by the number of total permutations 962 

(n = 1,000).  963 

With iHS statistics 964 

 We then tested for an enrichment of variants with high iHS values (defined as those with 965 

an |standardized iHS| > 95th percentile of the genome-wide distribution among our tested SNPs 966 

for the population being considered) among colocalized SNPs for all of the autoimmune traits as 967 

a group. For both the 95th percentile iHS calculations and our null distribution sampling approach 968 

described below, we only considered SNPs that were tested for an eQTL association in Matrix 969 

eQTL (i.e. those with a minor allele frequency > 0.05). The 95th percentile |standardized iHS| 970 

cutoffs were as follows: CEU = 1.92 and YRI = 1.95. For each tested SNP, we obtained 971 
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population-specific allele frequencies calculated from the 1000GP CEU or YRI individuals using 972 

the vcftools (v0.1) (Danecek et al., 2011) --freq flag. These alleles frequencies were converted to 973 

minor allele frequencies (MAFs) (i.e. if the allele frequency for a SNP was > 0.5, we subtracted it 974 

from 1), and SNPs were subsequently partitioned into 5% MAF bins (e.g. bin 1 = 0 – 5% MAF, 975 

bin 2 = 5 – 10% MAF, etc. with the rightmost interval closed).  976 

Among the unique colocalized SNPs we identified across traits, we noticed that a subset 977 

appeared to be in high linkage disequilibrium (LD) with one another, suggesting that these SNPs 978 

likely did not represent independent colocalization signals. To account for this, we systemically 979 

identified SNPs with squared inter-variant allele count correlations (r2) > 0.8 using PLINK (v1.9, -980 

-r2 --ld-window-r2 0.8) (Chang et al., 2015) among all the colocalized hits with multiple tag SNPs 981 

for a single eGene. To obtain a list of independent colocalized SNPs, we included: 1) those 982 

identified as unlinked loci, and 2) only the SNP with the highest |iHS| value among each set of 983 

SNPs with an r2 > 0.8. We then calculated the proportion of those with an |iHS| > 95th percentile 984 

and considered this our “observed percentage”. To obtain a null distribution, we used a sampling 985 

approach that mimicked both the MAF distribution and the underlying LD structure of our true 986 

data. We performed 1,000 permutations, where, for each iteration, we treated the sampling for 987 

the “independent” and “linked” SNPs separately. To create a null distribution for the “independent” 988 

SNPs, we sampled the same number of independent SNPs observed in the real data from the set 989 

of all tested SNPs in a MAF bin-matched manner, e.g. if there were 10 colocalized SNPs in MAF 990 

bin 3 in the observed data, we sampled 10 SNPs from the set of tested SNPs in MAF bin 3. To 991 

obtain a null distribution for the “linked” SNPs, we simulated the underlying LD structure of these 992 

variants where, for each eGene in the observed data with multiple tag SNPs (i.e. those SNPs with 993 

an r2 > 0.8), we: i) counted the number of tag SNPs for that gene and obtained the corresponding 994 

MAF bin for the SNP with the highest |iHS| value, ii) randomly sampled a set of SNPs from 995 

chromosome 1 with r2 > 0.8 from the MAF bin identified in i), where the number of SNPs in the 996 

set was equal to the number of tag SNPs in the observed data, and iii) picked the SNP with the 997 
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highest |iHS| value among this SNP set. We then combined our simulated independent and linked 998 

SNPs and calculated the proportion of those SNPs with an |iHS| > 95th percentile and considered 999 

this our “null percentage”. To calculate a p-value, we evaluated the number of permutations in 1000 

which the null percentage was greater than or equal to the observed percentage divided by the 1001 

number of total permutations (n = 1,000). All of the above analyses were performed twice, once 1002 

with iHS values calculated within the CEU population and again with values within the YRI 1003 

population.    1004 

 1005 

Enrichment analyses  1006 

Gene set enrichment analysis was performed using three independent methods, including 1007 

fgsea (Korotkevich et al., 2019), GOrilla (Eden et al., 2009), and ClueGO (Bindea et al., 2009), 1008 

depending on the type of data being evaluated. The enrichment program specifications and the 1009 

data in which they were used to assess enrichments in are described below:  1010 

The R package fgsea (v1.10.1) was used to perform gene set enrichment analysis for the 1011 

global infection effects (Fig. 1D) using the C5 gene ontology (GO) biological processes gene sets 1012 

and for the popDE effects (Fig. 2D) using the H hallmark gene sets (Subramanian et al., 2005). 1013 

For the infection effects, t-statistics were obtained directly from the topTable function in limma, 1014 

and for the popDE effects, t-statistics were calculated from the posterior mashr outputs, where 1015 

the t-statistic = posterior effect size divided by the posterior standard error for each gene. The t-1016 

statistics were then ranked, and these pre-ranked t-statistics were used to perform the enrichment 1017 

using fgsea (Korotkevich et al., 2019) with the following parameters: minSize = 15, maxSize = 1018 

500, nperm = 100000. Enrichments scores (ES) and Benjamini-Hochberg adjusted p-values 1019 

output by fgsea were collected for each condition and are reported in Fig. 1D and Fig. 2D for the 1020 

infection effects and popDE effects, respectively.  1021 

We also used fgsea to generate the barcode plots shown in Fig. 1G to visualize where the 1022 

genes in the highlighted pathways are found in the ranked specificity score list among the set of 1023 
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all infection differentially-expressed genes in at least one cell type. To obtain p-values for the 1024 

ranked list of specificity scores, we used GOrilla (Eden et al., 2009). Notably, GOrilla relies on a 1025 

statistical framework (the minimum hypergeometric score) that allows the calculation of exact p-1026 

values for observed enrichments in ranked lists of genes, taking into account multiple testing 1027 

without needing to perform simulations, unlike fgsea. Because GOrilla only identifies GO terms 1028 

that are significantly enriched at the top of the ranked gene list, we performed the enrichments in 1029 

two ways, once with the list ranked from high to low specificity scores and again with the list 1030 

ranked from low to high specificity scores. The Benjamini-Hochberg adjusted FDR q-values 1031 

calculated by GOrilla for the “viral gene expression” and “response to type I interferon” terms are 1032 

reported in Fig. 1G.  1033 

We performed gene set enrichment analysis for our intersection set of popDE genes and 1034 

eGenes (Fig. 3E) using the ClueGO (v2.5.7) (Bindea et al., 2009) Cytoscape (v3.7.1) (Shannon 1035 

et al., 2003) module in functional analysis mode, where the target set of genes was the list of 1036 

popDE eGenes in the mock or IAV condition and the background set was the list of genes tested 1037 

across all cell types.  Specifically, we tested for the enrichment of GO terms related to biological 1038 

processes (ontology source: GO_BiologicalProcess-EBI-UniProt-GOA_04.09.2018_00h00) 1039 

using the following parameters: visual style = Groups, default Network Specificity, no GO Term 1040 

Fusion, min. GO Tree Interval level = 3, max. GO Tree Interval level = 8, min. number of genes = 1041 

3, min. percentage of genes = 4.0, statistical test used = Enrichment/Depletion (two-sided 1042 

hypergeometric test), p-value correction = Benjamini-Hochberg. For the graphical representation 1043 

of the enrichment analysis, ClueGO clustering functionality was used (kappa threshold score for 1044 

considering or rejecting term-to-term links set to 0.4). Only pathways with an FDR < 0.01 are 1045 

reported.    1046 
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 1047 

Fig. S1. Overview of samples and global infection effects. (A) Quantitative genetic ancestry 1048 

proportions partitioned into European (green) and African (yellow) components for each 1049 

individual. (B) PCA decomposition of the pseudobulk PBMC expression data in mock-exposed 1050 

(grey) and IAV-infected (red) samples. PC1 (percent variance explained = 43.02%) separates 1051 

samples by infection status. (C) Pairwise effect size correlations across cell types among genes 1052 
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that are DE (logFC > 0.5, FDR < 0.05) upon IAV infection in either of the cell types being 1053 

compared. (D) Pairwise comparisons of the percentage of DE genes in both cell types being 1054 

compared that show discordant effect sizes.  1055 
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1056 

Fig. S2. Population-associated responses to IAV infection. (A) Sharing of significant popDR 1057 

genes (lfsr < 0.10) across cell types. (B) Correlation between the proportion of African genetic 1058 

ancestry (x-axis) and IFN score response (y-axis) across individuals (mean Pearson’s r across 1059 
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cell types =  -0.23, Fisher’s meta-p = 6x10-5). (C) Correlation between the proportion of African 1060 

genetic ancestry (x-axis) and baseline levels of IAV-specific serum IgG antibodies. We quantified 1061 

anti-A/Cal/04/09 antibody titers using 4-fold serial dilutions for each individual’s serum and a total 1062 

of eight dilutions per sample. We then used the dilution and absorbances to generate an area 1063 

under the curve (AUC; y-axis), which we used to summarize the levels of IAV (A/Cal/04/09)-1064 

specific serum IgG antibodies detected in each individual. (D) Correlation between IFN score 1065 

response (x-axis) and baseline levels of IAV-specific serum IgG antibodies (“AUC” = area under 1066 

the curve, y-axis). (E) Correlation between IAV transcript expression (x-axis) and the IFN 1067 

response (y-axis) across individuals within each cell type. Higher IAV transcript expression is 1068 

significantly associated with a stronger IFN response in CD4+ T cells, CD8+ T cells, monocytes, 1069 

and NK cells (p < 0.05), with monocytes showing the strongest correlation (adj R2 = 0.212, p = 1070 

3.1x10-6). (F) African genetic ancestry is significantly negatively correlated with IAV transcript 1071 

expression (Pearson’s r = -0.323, p = 0.002) in PBMCs. In (B), (C), (D), (E) and (F) lines show 1072 

the best-fit slope and intercept from linear models for cell types shown.   1073 
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1074 

Fig. S3. Cis-genetic effects regulate gene expression. (A) Sharing of significant eGenes (lfsr < 1075 

0.10) across cell types and treatment conditions. (B) Correlation of the cis-predicted population 1076 

differences in expression (x-axis) versus the observed population differences in expression (y-1077 

axis) among popDE genes with an eQTL across all cell types in the mock-exposed condition (top) 1078 

and IAV-infected condition (bottom). The black line shows the best-fit line from a linear model, 1079 

and the blue line shows the identity (1:1) line.   1080 
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 1081 

Fig. S4. Impact of cis-regression on population-associated expression differences. (A) Example 1082 

term showing the effect of cis-SNP regression. In the mock condition, EA individuals display 1083 

higher expression (median observed pop. difference < 0, colored point +/- SE) of the genes 1084 

belonging to the “viral transcription” term in the observed data. Cis-SNP regression (grey bars) 1085 

reduces this effect. Points represent the median value +/- SE.   1086 
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 1087 

Fig. S5. Colocalization signals. (A) IFNGR2 colocalizes with rs2284553 in naïve CD8+ T cells in 1088 

the Crohn’s disease GWAS (de Lange et al.). (B) TLR6 colocalizes with rs5743618 in classical 1089 

monocytes in the allergic disease GWAS. For both (A) and (B), the plot on the left shows the 1090 

correlation between GWAS p-values (x-axis) and eQTL p-values (y-axis). Plots on the right show 1091 

the Manhattan plots for the GWAS signal (top) and the eQTL signal (bottom).  1092 
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Table S11. Principal components (PCs) regressed in the eQTL analysis. 1093 

Cell type 
Regressed 

PCs (mock) 

Regressed 

PCs (IAV) 

No. genes under 

0.10 FDR (mock) 

No. genes under 0.10 

FDR (IAV) 

CD4+ T 1 to 4 1 to 2 1377 1176 

B 1 to 6 1 to 3 152 196 

NK 1 to 2 1 to 2 68 76 

monocytes 1 to 10 1 to 7 265 251 

CD8+ T 1 to 6 1 to 4 204 178 

PBMC 1 to 6 1 to 3 2095 1809 

 1094 

  1095 
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