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Abstract: Humans vary in their susceptibility to infectious disease, partly due to variation in the
immune response following infection. Here, we used single-cell RNA-sequencing to quantify
genetic contributions to this variation in peripheral blood mononuclear cells, focusing specifically
on the transcriptional response to influenza infection. We find that monocytes are the most
responsive to influenza infection, but that all cell types mount a conserved interferon response,
which is stronger in individuals with increased European ancestry. By comparing European
American and African American individuals, we show that genetic ancestry effects on expression
are common, influencing 29% of genes, but highly cell type-specific. Further, we demonstrate that
much of this population-associated expression variation is explained by cis expression
quantitative trait loci, which are enriched for signatures of recent positive selection. Our findings
establish common cis-regulatory variants—including those that are differentiated by genetic

ancestry—as important determinants of the antiviral immune response.

Keywords: Genetic ancestry, single-cell RNA-sequencing, immune responses, influenza

infection, natural selection, expression quantitative trait loci (eQTL)
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Introduction

Pathogenic viruses constitute one of the strongest sources of selective pressure in human
evolutionary history (Barreiro et al., 2009; Enard and Petrov, 2018; Enard et al., 2016; Fumagalli
et al.,, 2011; Siddle and Quintana-Murci, 2014). Prior to the modern era, however, global
pandemics on the scale of the 1918 Spanish influenza or the ongoing SARS-CoV-2 pandemic
were probably rare. Due to the restricted potential for long-distance (especially intercontinental)
exchange, earlier viral epidemics are thought to have been strongly stratified by geography (Enard
and Petrov, 2020). Consequently, although most human genetic variation is shared between
populations, differences in viral-mediated selection pressures may have driven divergence in the
frequencies of polymorphisms that mediate the viral host response (either because of differences
in the viruses that caused epidemic outbreaks or heterogeneity in the timing of epidemic events
between populations). If so, the pattern of past epidemic outbreaks may have contributed to
variation in viral susceptibility observed within and among modern-day human populations—
perhaps interacting with or compounding known health disparities that contribute to substantially
higher rates of influenza and COVID-19 hospitalization in Black versus non-Hispanic white
Americans (e.g., the Centers for Disease Control and Prevention (CDC) estimates a 79% higher
rate of influenza-related hospitalizations for Black versus white Americans: (CDC, 2020)).

Genetics is thought to play an important role in explaining population variation in
susceptibility to influenza and other viral pathogens (Albright et al., 2008; Kenney et al., 2017).
Supporting this view, a study exploring the impact of regulatory genetic variation on gene
expression levels (i.e. expression quantitative trait loci [eQTL] studies) following influenza A virus
(IAV) infection of human dendritic cells revealed 121 genetic variants that are significantly
associated with the immune response to IAV, including one cis-acting variant associated with the
interferon regulatory factor 7 gene (IRF7) that also acts as a trans-regulator responsible for
genetic effects on a hub of IRF7-induced antiviral genes (Lee et al., 2014). Variation in the gene

expression response to IAV in vitro is also correlated with genetic ancestry in monocytes derived
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from individuals of African and European descent (Quach et al., 2016).

A major limitation of studies to date, however, is their focus on a single, isolated immune
cell type. This approach is blind to genetic effects that act in a cell type-specific manner. Further,
it fails to capture critical interactions between the array of immune cell types needed to mount an
efficient response to a viral infection. To address these limitations, here, we combine single-cell
RNA-sequencing with in vitro infection assays of peripheral blood mononuclear cells (PBMCs)
with pathogenic influenza A virus. We identify both shared and cell type-specific responses to 1AV
that are detectable only when gene expression estimates are resolved into individual cell types.
We then investigate the degree to which the transcriptional response to IAV is structured by
European versus African genetic ancestry and dissect likely genetic contributions to these
differences. Finally, we investigate whether variants that are associated with ancestry-related
differences are likely to have evolved in response to past selection pressure. Our results show
that cis-regulatory genetic variation contributes to phenotypic differences in the immune response
of modern humans to IAV, including both within and between-population variation. Further, some
of these variants—especially those linked to autoimmune risk—carry signatures of recent positive
selection, particularly in Europeans, suggesting that at least some present-day autoimmune risk

loci were adaptive and conferred a functional benefit during our evolutionary history.

Single-cell profiling of the transcriptional response to influenza infection

We exposed peripheral blood mononuclear cells (PBMCs) sampled from a diverse panel
of humans to either a mock treatment (negative control) or to the pandemic H1N1 Cal/04/09
influenza A virus (IAV) strain (multiplicity of infection [MOI] 0.5) (n = 180 samples, comprised of
paired mock-exposed and IAV-infected samples from each of 90 individuals). Following 6 hours
of exposure, we performed single-cell RNA-sequencing on all samples (Fig. 1A). In total, we
captured 255,731 single-cell transcriptomes across all individuals and conditions (n = 235,161

high-quality cells retained after filtering, Table S1). In addition, we collected low-pass whole-
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88  genome sequencing for the same individuals (n = 89), which we used to estimate the proportion
89  of African and European admixture for each individual. Self-identified African American (AA, n =
90  45)individuals had a modest, although highly variable, percentage of European ancestry (mean
91 = 11%, range = 0 — 43%), while self-identified European American (EA, n = 44) individuals
92  displayed more limited levels of African ancestry (mean = 1%, range = 0 — 23%) (Fig. S1A, Table
93  S1). UMAP clustering revealed eight distinct immune cell types (Fig. 1B), with five major cell
94  clusters corresponding to the five main cell types found in PBMCs, including CD4" T cells, CD8"
95 T cells, B cells, natural killer (NK) cells, and monocytes.
96 We first investigated the overall signature of IAV infection on our samples by collapsing
97  the single-cell gene expression values for each of the five main clusters and for all cells together
98  (i.e. “PBMCs”, including the major and minor clusters) into pseudobulk estimates per sample.
99  Principal component analysis (PCA) on the PBMC pseudobulk expression data revealed a strong
100  signature of the IAV infection effect, such that mock- and IAV-infected samples strongly separate
101 on PC1, which explains 43% of the variance in the dataset (Fig. S1B, paired t-test, p < 1x107').
102 Across the five main clusters and the total PBMC pool, monocytes were by far the most
103 responsive to IAV infection (n = 3,999 differentially expressed (DE) genes [38.4% of those tested]
104  with log2 fold-change > 0.5, FDR < 0.05). All other cell types displayed weaker infection effects
105  (12.4 - 19.7% DE genes) (Fig. 1C, Table S2). In support of a major role for monocytes in the IAV
106  response, gene set enrichment analysis (GSEA) revealed that genes that were more responsive
107  in monocytes compared to all other cell types were strongly enriched for genes involved in viral
108  transcription and monocyte-associated biological pathways, such as monocyte chemotaxis (FDR
109 =4.6x10™) (Fig. 1D, Table S3). Moreover, monocytes exhibited the highest levels of intracellular
110 1AV transcripts (i.e., influenza-derived transcripts generated and processed by infected host cells;
111 > 3-fold increase compared to all other cell types, t-test, all p-values < 1x107° for monocytes

112 compared to all other cell types) (Fig. 1E). This observation shows that monocytes are either the
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113 cell type most susceptible to viral entry, the most permissible to intracellular replication of the
114  virus, or both.

115 We then explored the extent to which the infection response was concordant or discordant
116 across the five major PBMC cell types. Overall, we found a strong correlation between the
117  response to IAV infection across cell types (Pearson’s r range 0.65 — 0.95 across pairwise cell
118  type comparisons, Fig. S1C). However, we also observed many genes for which the response to
119 infection was discordant between cell types. For example, among differentially-expressed genes
120  shared by monocytes and NK cells (n = 822), 138 genes (16.8%, Fig. S1D) responded to IAV
121  infection in the opposite direction (Fig. 1F). To further dissect cell type-specific versus shared
122  responses, we generated a per-gene specificity score based on the coefficient of variation of the
123 log2 fold-change response across cell types for each gene that was significantly differentially-
124  expressed in at least one cell type (high values indicate highly cell type-specific responses to 1AV,
125 low values indicate shared responses to IAV) (Table S4). Genes with highly cell type-specific
126  patterns of response were enriched for roles in translational initiation, co-translational protein
127  targeting to membrane, and viral gene expression (FDR < 1x107for all terms, Fig. 1G, left, Table
128  S4). In contrast, genes with low specificity scores were enriched for pathways related to type |
129 interferon (IFN) signaling (FDR < 1x107"°) and response to type | IFN (FDR = 7.1x10™) (Fig. 1G,
130  right, Table S4). Thus, induction of IFN-related genes appears to be a fundamental component of
131  the antiviral response that is shared across immune cell types (Fig. 1H, top). One notable
132 exception to this observation is the gene IFNG, which encodes the type Il IFN cytokine IFN-y.
133 IFN-y is a crucial mediator of antiviral immunity (Kang et al., 2018), but shows an expression
134  pattern that is almost exclusive to NKT cells in the IAV-infected condition (Fig. 1H, bottom).
135  Collectively, our results underscore the importance of considering the immune responses of single
136  cell types independently. Not only does this approach reveal distinct, cell type-specific responses
137 to viral infection, but also highlights responses that would be undetectable or potentially

138  misleading in more heterogeneous immune cell populations (e.g. PBMCs).
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139

140  Genetic ancestry is associated with the transcriptional immune response to IAV

141 We next identified genes for which gene expression levels are correlated with quantitative
142 estimates of genetic ancestry in either the mock condition, the I1AV-infected condition, or both
143  (after controlling for age, batch, and other technical covariates). To increase power and improve
144  our effect size estimates for these “population differentially-expressed” (popDE) genes, we
145 implemented a multivariate adaptive shrinkage method (mash) (Urbut et al.,, 2019), which
146  leverages the correlation structure of genetic ancestry effect sizes across cell types (see Methods
147  for details in the statistical models used). Across conditions and cell types, we identified 1,949
148  popDE genes (local false sign rate (Ifsr) < 0.10), ranging from 830 in NK cells to 1,235 genes in
149  CD4" T cells (Fig. 2A, Table S5). Within each cell type, most popDE genes were shared between
150  mock and IAV-infected conditions (52.9% in monocytes — 77.4% in CD8" T cells). In contrast,
151 across cell types, we found that genetic ancestry effects on gene expression were highly cell type-
152 specific, such that the majority of popDE genes were identified in only one or two cell types (52.2%
153  inmock, 51.4% in IAV-infected) (Fig. 2B). For example, CXCL8, which encodes IL-8, an important
154  mediator of the inflammatory response (Bickel, 1993), is more highly expressed with increasing
155  African ancestry following IAV infection only in monocytes (Ifsr = 0.051 in monocytes and Ifsr >
156  0.25 in all other cell types) (Fig. 2C, top). There are, however, a minority of genes that exhibit
157  shared genetic ancestry effects across all five cell types (17.8% in mock, 24.7% in IAV-infected).
158  One such gene is IL32, which encodes a cytokine that induces other proinflammatory cytokines
159  to activate the NF-kB pathway (Ca and Sh, 2006; Yan et al., 2018). /IL32 is more highly expressed
160  with increasing African ancestry in all cell types following infection (Isfr < 8.8x10®) (Fig. 2C,
161  bottom).

162 To identify the functional pathways most closely associated with genetic ancestry, we

163  performed enrichment analysis on the popDE effects using the Molecular Signatures Database
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164  hallmark gene sets (Liberzon et al., 2015) (Fig. 2D, Table S6). In monocytes, we identified
165  significant enrichment for multiple immune pathways prior to infection, including the IFN-a
166  response (FDR = 1.9x107), IFN-y response (FDR = 5.4x10™*), TNFa signaling via NF-xB (FDR =
167  6.1x10™), IL-2/STATS5 signaling (FDR = 2.1x107%), and inflammatory response (FDR = 0.012) (Fig.
168  2D). In all cases, these enrichments were identified for genes that were more highly expressed at
169  baseline (i.e., in the mock treatment condition) in individuals with a greater proportion of African
170  ancestry. Intriguingly, in IAV-infected cells, this pattern shifts: post-infection, we observed
171  enrichment of type | and Il IFN pathways (IFN-a response FDR = 0.014, IFN-y response FDR =
172 0.040in monocytes) (Fig. 2D) in genes more highly expressed with increasing European ancestry,
173  as opposed to African ancestry. To better characterize this shift, we constructed a per-individual,
174  per-condition score of interferon signaling activity (termed IFN score) by calculating the average
175  mean-centered expression of genes belonging to the hallmark IFN-a and IFN-y gene sets
176  (Liberzon et al., 2015). This simple summary statistic revealed that increased European ancestry
177  strongly correlates with increased IFN score, but only in the IAV condition (mean Pearson’s r
178  across cell types = -0.26, Fisher's meta-p = 2.9x10°in the IAV condition, Fisher's meta-p = 0.746
179  in the mock condition) (Fig. 2E).

180 These findings suggest that, for some immune pathways (particularly interferon signaling
181  pathways), genetic ancestry may also predict the magnitude of the response to IAV infection. To
182  explicitly test this possibility, we identified significant interactions between treatment condition
183  (mock versus IAV) and genetic ancestry levels. After mash estimation of interaction effect sizes
184  across cell types, we identified 609 genes for which ancestry was associated with the response
185  to infection (i.e., “population differentially-responsive” [popDR] genes, Ifsr < 0.10). PopDR genes
186  were found for all five cell types (number of popDR genes range = 84 — 334), but were most
187  common in monocytes (n popDR genes = 334) (Fig. 2F); a core set of 27 popDR genes were also
188  shared across cell types (Fig. S2A, Table S7). In agreement with our previous results, we found

189  that increased European genetic ancestry predicts a stronger type I/l IFN response (measured
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190 as the difference in IFN score between the IAV-infected and mock conditions per individual)
191  across cell types (mean Pearson’s r across cell types = -0.23, Fisher's meta-p = 6.x10°) (Fig.
192  S2B). This observation cannot be explained by differences in baseline levels of IAV-specific
193  serum IgG antibodies (Figure S2C, S2D). Type I/l IFN response magnitude also correlated with
194  the level of IAV transcripts measured in PBMCs, such that the stronger the IFN response, the
195  higher the measured IAV transcripts (adj. R* = 0.553, p = 2.8x10™"") (Fig. 2G), a relationship
196  primarily driven by monocytes (Fig. S2E). Accordingly, in line with their stronger type I/l IFN
197  response, individuals with increased European ancestry proportion displayed increased levels of
198 1AV transcript expression compared to individuals with higher levels of African ancestry
199  (Pearson’sr=-0.32, p = 0.002, Fig. S2F), an observation that is replicated when monocytes are
200 infected with 1AV in isolation (O’Neill et al., 2020). These results point to the possibility that
201  ancestry-associated variation in susceptibility to intracellular infection and/or differences in the
202  ability to restrict viral replication may explain ancestry-associated differences in the type I/ll IFN
203 response.

204

205 Cis-regulatory genetic variation explains ancestry-associated differences in gene
206  regulation

207 To assess the contribution of genetic variation to genetic ancestry-associated differences
208 in the transcriptional response to IAV infection, we integrated genome-wide expression profiles
209  with genotyping data to map expression quantitative trait loci (eQTL) in both the mock and IAV-
210  infected samples. We focused specifically on cis-eQTL, which we defined as SNPs located either
211 within or flanking (£100 kilobases, kb) each gene of interest. We identified 2,234 genes that were
212 associated with at least one cis-eQTL (Ifsr < 0.10, hereafter referred to as eGenes) across all cell
213 types and conditions tested (Fig. 3A, Table S8). Although many variants exert similar effects
214  across cell types and infection conditions (45%, Fig. S3A), 13 - 24% of the eGenes identified

215  within each cell type were only detected in one condition even after probing patterns of shared
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216  effects using mash (Urbut et al., 2019). Our results thus highlight the importance of gene—
217  environment interactions in influencing transcriptional regulation in the immune system (Barreiro
218 et al., 2012; Fairfax et al., 2014; Lee et al., 2014; Nédélec et al., 2016; Quach et al., 2016). Of
219  note, we identified a set of 29 eGenes (Fig. S3A) that, across all cell types, were only detected in
220  the IAV-infected condition, including the key IFN-inducible genes OAS1, IFI44L, IFIT1, IRF1, and
221  ISG15. In OAS1, the top cis SNP across cell types (rs10774671) is an 1AV-specific response
222 eQTL (Fig. 3B, top: mock-infected Ifsr = 0.81, bottom: IAV-infected Ifsr = 1.5x107? in CD4" T cells)
223 thatlies within a Neanderthal-derived haplotype (Sams et al., 2016) and that has been associated
224 with higher OAS1 enzymatic activity (Bonnevie-Nielsen et al., 2005) and susceptibility to different
225 viruses from the Flaviviridae family (El Awady et al., 2011; Kwon et al., 2013; Lim et al., 2009).

226 We next tested whether eGenes were also likely to be differentially-expressed by genetic
227  ancestry. Across all cell types and conditions, eGenes (Ifsr < 0.10) were 3.2 to 6.5-fold more likely
228  to be classified as popDE (Ifsr < 0.10) than expected by chance (Fig. 3C). This enrichment
229  suggests that ancestry-associated differences in gene expression are likely to have a substantial
230  genetic component, perhaps due to divergence in allele frequencies at the causal eQTL. To
231  formally evaluate this contribution, we calculated the correlation between 1) the estimated genetic
232 ancestry effect from our popDE analysis, and 2) the predicted genetic ancestry effect based only
233 on the effect size of the top eQTL per eGene and the genotype for this SNP among individuals of
234  European and African ancestry (restricted to those popDE genes that were also eGenes in at
235 least one cell type, n = 835 genes; see Methods for details). We found a striking correlation (Fig.
236  3D), such that genotype information on the eQTL alone explained an average of 52.5% (mock)
237  and 53.6% (IAV-infected) of the variance in genetic ancestry effect sizes across cell types (Fig.
238  S3B). These results indicate that, among popDE genes with an eQTL, on average, over 50% of

239  the population differences are explained by cis-regulatory variation.

240
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241  Polygenic selection has shaped genetic ancestry-associated differences in ribosomal
242 protein gene expression

243 We next sought to evaluate if the intersection set of popDE genes and eGenes clustered
244 into specific biological pathways. We identified a strong enrichment for Gene Ontology (GO) terms
245 related to transcriptional and translational processes, including “ribosomal small subunit
246  biogenesis” and “viral transcription” (FDR < 3x10™"® in mock-infected and IAV-infected) (Fig. 3E),
247  as well as more canonical immune-related pathways, such as myeloid/leukocyte activation and
248  degranulation (Table S9). The observed gene expression divergence between populations in
249  genes linked to similar biological functions could be explained by two hypotheses: 1) genes
250  associated with such biological processes have evolved under relaxed evolutionary constraint,
251 allowing them to accumulate cis-regulatory variants that have randomly diverged in allele
252  frequencies via neutral genetic drift, or 2) cis-variants regulating these genes have undergone
253  non-neutral shifts in allele frequencies, resulting in the accumulation of alleles that systematically
254  influence the behavior of enriched pathways in a directional manner — a pattern consistent with
255  polygenic selection.

256 To test for polygenic selection, for each of the enriched pathways, we calculated the
257  median ancestry-associated differential expression effect (i.e., the estimated difference in gene
258  expression between European- and African-ancestry individuals) across all popDE genes
259  contained in a given pathway (limited to those with an eQTL). Under neutrality, we expect the
260  direction of the ancestry-associated effects to be randomly distributed (i.e., some genes will be
261  more highly expressed in European-ancestry individuals whereas others will be more highly
262  expressed in African-ancestry individuals). In contrast, under polygenic selection, we expect to
263  find a directional effect, such that most genes for a given pathway show higher expression in one
264  ancestry group versus the other. Interestingly, most of the GO terms for ribosomal protein-related
265  pathways (e.g. ribosomal biogenesis, viral transcription, etc.) show median population-associated

266  differences in gene expression levels that are consistently higher in individuals with increased

10
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267  European ancestry across cell types, in both IAV-infected cells (Fig. 3F, 3G) and mock-exposed
268  cells (Fig. S4A). Importantly, these differences are attenuated when regressing out the effects of
269  the associated top cis-eQTLs for the genes (Fig. 3F, 3G), suggesting that such differences are
270  driven by the cumulative effect of regulatory variants impacting the expression of ribosomal
271  protein (RP) genes. Strikingly, we found a strong correlation between the average expression of
272 RP eGenes and IAV transcript expression in both CD8" T cells (Pearson’s r = 0.32, p = 0.002)
273 and monocytes (Pearson’s r = 0.58, p < 1x10™'°, Fig. 3H). Together, these data raise the possibility
274  that viral infection-induced selection pressures have shaped ribosomal biology phenotypes in
275  human populations, with potential implications for viral control mechanisms.

276

277  Natural selection and susceptibility to autoimmune disease

278 Past selection imposed by pathogen exposure has been speculated to contribute to
279  present-day susceptibility to autoimmune and chronic inflammatory diseases (Brinkworth and
280 Barreiro, 2014; Sanz et al., 2018). However, it remains unclear whether natural selection has also
281  contributed to genetic ancestry-associated differences in vulnerability to these diseases. To
282  address this question, we performed colocalization analysis between the union set of eQTLs
283  detected across all cell types and conditions and 14 publicly available genome-wide association
284  study (GWAS) hits for 11 autoimmune diseases (Table S10). Colocalized eQTLs are expected to
285  be strongly enriched for causal drivers of variation in disease susceptibility across individuals.
286  Across all autoimmune diseases, we colocalized eQTL in our study with a total of 95 GWAS
287  variants (Fig. 4A, Table S10).

288 To analyze a broader array of immune-related colocalization signals, we combined our
289  data with colocalization results for bulk eQTLs in 18 immune cell types from 3 large immune eQTL
290  studies (DICE (n = 91) (Schmiedel et al.,, 2018), DGN (n = 922) (Battle et al., 2014), and
291  BLUEPRINT (n =197) (Chen et al., 2016)) for the same 14 autoimmune GWAS (Mu et al., 2020).

292  This approach allowed us to identify 1,030 colocalized GWAS hits across the 11 traits (mapping
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293  to 536 eGenes, Table S10). We then asked if these putative causal variants were enriched for
294  signatures of natural selection in the 1000 Genomes Project CEU and YRI populations, using
295 either the integrated haplotype score (iHS, a within-population measure of recent positive
296  selection based on haplotype homozygosity (Voight et al., 2006)) or extreme values of population
297  differentiation (Fsr). Far more colocalized loci display high |iHS| scores (values > 95" percentile
298  of the genome-wide distribution) in the CEU population than expected by chance (p = 0.008, Fig.
299  4B), while no significant enrichment was detected in YRI. Our results thus suggest that natural
300 selection has acted on these cis-regulatory autoimmune risk variants, particularly in Europeans,
301  with the caveat that the vast majority of GWAS studies to date have focused exclusively on
302 individuals of European ancestry (Bustamante et al., 2011), preventing us from detecting
303  signatures of selection among GWAS loci unique to African-ancestry individuals. Moreover, we
304 observed that colocalized genes are more likely to be differentially-expressed between
305  populations than expected by chance (35.8% are classified as popDE, p = 0.007) (Fig. 4C),
306 pointing to a potential genetic contribution for the differences in the incidence of autoimmune and
307 inflammatory disorders reported between African and European-ancestry individuals (Brinkworth
308 and Barreiro, 2014).

309 Within our set of colocalized eGene-SNP pairs, 48 eGenes carried a signature of recent
310  positive selection in either the CEU or YRI populations (JiHS| or Fsr > 95" percentile of the
311 genome-wide distribution) (Fig. 4D). Many of these genes involve crucial immune-related
312  functions. For example, the Crohn’s disease-susceptibility risk variant rs2284553 colocalized with
313 IFNGR2, the gene encoding the beta chain of the IFN-y receptor, in naive CD8" T cells (Fig. S5A).
314  This variant is found at much higher frequency in the CEU population (MAF = 0.38) than the YRI
315  population (MAF = 0.05) and shows a signature of recent positive selection in the CEU (iHS =
316 2.22). Another variant detected in the allergic disease GWAS, rs5743618, maps to a non-
317 synonymous SNP located in TLR1 that is also an eQTL for the nearby gene TLR6 (Fig. S5B).

318  This variant compromises NF-kB signaling and activation to produce an attenuated inflammatory

12
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319 response (Barreiro et al., 2009) and is a known trans-regulatory hotspot (Piasecka et al., 2018;
320  Quach et al., 2016). Notably, it is found at low frequency in the YRI population (derived allele
321  frequency (DAF) = 0.04) but is found at elevated frequency in the CEU population (DAF = 0.67)
322 (Sanz et al., 2018). This difference in allele frequency alone explains the positive correlation
323  between African genetic ancestry and the transcriptional response to immune stimulation with
324 antigens that signal through TLR1 (Nédélec et al., 2016; Quach et al., 2016; Sanz et al., 2018).
325

326 Discussion

327 Together, our results provide the most detailed characterization to date of the genetic
328 determinants that shape inter-individual and genetic ancestry-associated differences in the
329  response to viral infection across the five most common immune cell types found in PBMCs. We
330 identified thousands of genes for which expression levels are correlated with genetic ancestry
331  across different immune cell types, but found that the majority of these cases (52.2% in mock,
332 51.4% in IAV-infected) are restricted to only one or two cell types. These results are likely
333  explained by a combination of cell type-specific genetic effects and environmental factors that
334  correlate with genetic ancestry but that only act on certain cell types. For example, chronic stress
335 has been shown to causally alter immune gene regulation, yet its effects are mainly limited to
336 helper T cells and NK cells (Snyder-Mackler et al., 2016). Although our findings corroborate
337  previous reports of elevated inflammatory pathway activity with increasing African ancestry, at
338 least at baseline (25, 26), they also reveal a novel pattern: increased activity of type I/ll IFN
339 pathways following influenza infection associated with increased European ancestry. This
340 observation has potential clinical implications, as interferons are the main defensive cytokines
341 released during the early phase of acute influenza infection as well as most other viral infections.
342  However, when chronically elevated, interferons can increase susceptibility to the uncontrolled
343 inflammation typical of severe cases of influenza and now COVID-19 (Vabret et al., 2020). More

344  studies are now needed to define whether ancestry-associated variation in the interferon
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345 response to viral infection in vivo is associated with differential viral clearance, disease severity,
346  and disease outcome.

347 Many of the genetic ancestry-associated differences in immune regulation we observe are
348 driven by allele frequency differences at cis-regulatory variants. Among popDE genes in which
349  we identify at least one cis-eQTL across cell types and conditions, we estimate that, on average,
350 cis-eQTLs explain approximately 53% of the variance in the observed ancestry-associated
351 differences. This is likely an underestimate, given that it assumes that each gene has only a single
352 c¢is-eQTL, when in fact many genes have been shown to have two or more independent cis-eQTL
353  (Lappalainen et al., 2013). Further, we are underpowered to detect trans associations, and we do
354  not consider non-SNP regulatory variants (e.g., indels and copy number variation), which also
355 influence gene expression variation in humans (Gymrek et al., 2016). In addition, we provide
356 evidence for ancestry-associated directional shifts in molecular traits (i.e., gene expression
357 phenotypes related to specific biological pathways) that are under cis-regulatory genetic control,
358  highlighting the potential role of polygenic selection in the history of these phenotypes.

359 The signature of selection at ribosomal protein (RP) genes (RPL, RPS) is of particular
360 interest, as RPs facilitate translation initiation of viral transcripts (Haque and Mir, 2010; Huang et
361 al., 2012) and directly interact with viral mMRNA and proteins to enable viral protein synthesis (Li,
362  2019). These proteins also play essential roles in ribosomal biogenesis (Fromont-Racine et al.,
363  2003), a process that influences viral reproduction and cell-intrinsic immune responses following
364  human cytomegalovirus infection (Bianco and Mohr, 2019), and that also affects innate immune
365 signaling pathways to modulate the IFN-y-mediated inflammatory response (Vyas et al., 2009)
366 and NF-kB target gene expression (Wan et al., 2011). Further, a subset of ribosomes, known as
367 immunoribosomes, has been hypothesized to preferentially synthesize antigenically-relevant
368  cellular and viral peptides for immunosurveillance by the MHC class | system, resulting in a tight
369 link between translation and antigen presentation that may allow immune cells to more quickly

370 recognize and eliminate infected cells (Wei and Yewdell, 2019; Yewdell, 2007). Together, these
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371  observations support the argument that RPs are important mediators of the host immune
372  response to virus, and raise the possibility that polygenic selection on ribosomal pathways has
373  contributed to present-day variation in viral control within and between human populations.

374 Finally, our results provide evidence that recent, local positive selection has acted on
375  putatively causal regulatory risk variants associated with common autoimmune diseases in
376  GWAS, strengthening the link between pathogen-mediated selection and susceptibility to
377 autoimmune disorders (Brinkworth and Barreiro, 2014; Nielsen et al., 2017; Quach and Quintana-
378  Murci, 2017). The connection between infectious diseases and chronic inflammatory disorders is
379  further supported by reports that some pathogens are contributing, and possibly causal, factors
380 tothe development of certain chronic inflammatory and autoimmune diseases (e.g., Epstein—Barr
381 virus and systemic lupus erythematosus, rheumatoid arthritis, and multiple
382 sclerosis; Mycobacterium avium and Crohn’s disease; Yersinia enterocolica and inflammatory
383 bowel disease) (Abubakar et al., 2008; Feller et al., 2007; James et al., 2001; Ramos-Casals et
384 al., 2005; Saebo et al., 2005; Yamazaki et al., 2005). Our findings shed light on human
385  evolutionary history and lend key empirical support to arguments that link historical pathogen-

386  mediated selection to present-day susceptibility to autoimmune and inflammatory diseases.
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Fig. 1. Shared and cell type-specific transcriptional responses to IAV infection. (A) Study design
schematic. PBMCs from 90 individuals were exposed to mock-conditioned media or IAV
Cal/04/09 in vitro for 6 hours, followed by single-cell RNA sequencing and DNA collection for DNA
sequencing. (B) UMAP of 235,161 high-quality single-cell transcriptomes from both mock- and
IAV-infected cells across all individuals. (C) Numbers and proportions of genes that show
differential expression (logFC > 0.5, FDR < 0.05) between mock- and |IAV-infected conditions
across the five major PBMC cell types. (D) Monocyte-specific GO pathways that show significant
upregulation (enrichment score > 0, FDR < 0.10) following infection. Genes in the “monocyte

chemotaxis” term are significantly more upregulated after IAV infection in monocytes compared
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412  to the other cell types (plotted means for each individual across genes in the IAV condition minus
413 the mock condition, t-test, all p-values < 1x10™"® when comparing monocytes against each other
414  cell type). (E) Distribution of IAV transcript expression across cell types, with monocytes showing
415 a3 - 6-fold higher number of IAV transcripts compared to any other cell type (t-test, all p-values
416 < 1x10™'° when comparing monocytes against each other cell type). (F) Correlation between 1AV
417  infection effect sizes (log2 fold-change values) in monocytes (x-axis) and NK cells (y-axis) among
418  DE genes in both monocytes and NK cells (n = 822). Line shows the best-fit slope and intercept
419  from a linear model. Highlighted genes (pink) display discordant responses following AV
420 infection. (G) Example pathways enriched among genes with high (right, viral gene expression
421  FDR = < 1x107°) and low (left, response to type | interferon FDR = 7.1x10™) specificity scores,
422  where all genes are rank-ordered by specificity score on the x-axis (highest to lowest). (H) UMI
423  counts (y-axis) per cell (x-axis) in the IAV-infected condition for example genes that show
424  ubiquitous expression across cell types (MX1, top) and highly cell type-specific expression

425  patterns (IFNG, bottom).
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427  Fig. 2. Genetic ancestry influences the immune response to IAV infection. (A) Number of
428  significant mock-specific, shared, and IAV-specific popDE genes (Ifsr < 0.10) across cell types.
429  (B) Cell type sharing of significant popDE effects (1 = popDE effect is detected in only a single
430 cell type, 5 = popDE effect is detected across all cell types). (C) Examples of cell type-specific
431  (CXCL8, monocytes Ifsr = 0.051, Ifsr > 0.25 in all other cell types) and shared (/IL32, Isfr < 8.8x10"
432 %in all cell types) popDE genes (AA in yellow, EA in green) in the IAV-infected condition. (D) GO
433  enrichments for popDE effects across cell types in the mock-infected (black circles) and the IAV-
434  infected (red circles) conditions. A positive enrichment score (ES) corresponds to an enrichment
435 in genes with higher expression in individuals with increased African ancestry, while a negative
436  ES corresponds to an enrichment in genes with higher expression in individuals with increased

*

437  European ancestry. * represents pathways with FDR < 0.10. (E) Correlation between the
438  proportion of African genetic ancestry (x-axis) and IFN score (y-axis) in the mock-infected (dotted

439 lines, mean Pearson’s r across cell types = -0.0045, Fisher's meta-p = 0.746) and the IAV-
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infected condition (solid lines, mean Pearson’s r across cell types = -0.26, Fisher's meta-p =
2.9x10®). (F) Number of significant popDR genes (Ifsr < 0.10) across cell types. (G) IAV transcript
levels (x-axis) predict the IFN score response (difference in IFN score between the IAV-infected
and mock-infected conditions, y-axis) in PBMCs (adj R?> = 0.553, p = 2.8x10™""), and most
individual cell types (Fig. S2C). In (E) and (G), lines show the best-fit slope and intercept from a

linear model.
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Fig. 3. Cis-regulatory variation drives differences in the antiviral response, both at the individual

and population levels. (A) Number of significant mock-specific, shared, and IAV-specific eGenes

(Ifsr < 0.10) across cell types. (B) Example of a condition-specific response eQTL (rs10774671 in

OAS1)in CD4" T cells (top: mock-infected, Ifsr = 0.809, bottom: IAV-infected, Ifsr = 1.5x107?). (C)

Enrichment of significant eGenes (Ifsr < 0.10) among significant popDE genes (Ifsr < 0.10)

identified in each cell type and condition (x-axis: log2 fold enrichment with a 95% confidence

interval; “m” = mock). (D) Correlation of the cis-predicted population differences in expression (x-
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454  axis) versus the observed population differences in expression (y-axis) among popDE genes with
455  an eQTL in CD4" T cells (top, adj R? = 0.57, p = 2.42x10™*®) and monocytes (bottom, adj R* =
456  0.51, p = 2.48x10™). (E) Significant (FDR < 0.01) ClueGO enrichments for the popDE genes that
457 are also eGenes across all cell types in the IAV-infected condition. (F) Median observed
458  population differences among genes in (E) for selected terms using a model estimating the
459  observed genetic ancestry effects (left) and a model estimating this effect with the effect of the
460  top cis-SNP regressed for all genes contained in the term (right). (G) Example term showing the
461  effect of cis SNP regression. European-ancestry individuals display higher expression (median
462  observed pop. difference < 0, colored point +/- SE) for the genes belonging to the “viral
463  transcription” term in the observed data. Following cis-SNP regression (grey point +/- SE), this
464  difference is attenuated. (H) Correlation between IAV transcript levels and the mean logCPM
465 among ribosomal protein (RP) eGenes per individual in the IAV condition minus the mock
466  condition for CD8'T cells (Pearson’s r = 0.25, p = 0.019) and monocytes (Pearson’s r = 0.47, p =

467  3x107°). In (D) and (H), line shows the best-fit slope and intercept from a linear model.
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469  Fig. 4. Recent positive selection has acted on cis-regulatory variants implicated in autoimmune
470  disease risk. (A) Number of shared and condition-specific colocalization hits identified across cell
471  types (x-axis) in the 11 autoimmune traits tested (y-axis). (B) Proportion of independent,
472 colocalized lead GWAS loci that have |[iHS| values > 95" percentile of the genome-wide
473  distribution among SNPs with > 5% MAF (CEU: green triangle, p = 0.008, YRI: yellow triangle, p
474  =0.283) compared to random expectation when sampling the same number of SNPs 1,000 times
475  from all variants with a MAF > 5% in an LD-matched and MAF-matched manner (density

476  distributions) among all autoimmune traits. (C) Proportion of genes with a colocalization signal
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that are popDE (pink triangle, p = 0.007) compared to random expectation when sampling the
same total number of genes 1,000 times from all genes tested (density distribution) among all
autoimmune traits. (D) Fst and |iHS]| values among the colocalized hits shown in A as well as
those identified in the harmonized bulk eQTL data. Fst values are plotted on the x-axis, while
[iHS| values are plotted on the y-axis (top: CEU, bottom: YRI). Dotted lines show the 95™
percentile of the genome-wide distribution for the respective selection statistic (Fst = 0.398, |[IHS]
CEU = 1.92, |iHS| YRI = 1.95). eGenes with a selection statistic > 95" percentile are represented
by a colored point, and colors represent the autoimmune trait for which a colocalization signal is
detected (here, the multiple inflammatory bowel disease, ulcerative colitis, and Crohn’s disease

GWAS have been collapsed into a single label).
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487 Methods

488 Peripheral blood mononuclear cell (PBMC) collections

489 All samples were obtained from BiolVT. A signed, written consent was obtained from each
490 participant. Blood was collected from 90 male donors between the ages of 21 — 69 who identified
491  as either African-American (AA) (n = 45) or European-American (EA) (n = 45) from the same
492  collection site in Miami, Florida (United States) utilizing a standard protocol with a sodium heparin
493  anticoagulant. Briefly, PBMCs were extracted from whole blood using a density gradient, washed
494  with HBSS, reconstituted in CryoStor CS10 to a concentration of 10 million (M) cells/ml, and
495  subsequently cryopreserved. Between 6 — 10M cells per individual were frozen per vial. We
496  decided to only focus on males to avoid the potentially confounding effects of sex-specific
497  transcriptional differences in the response to infection. Only individuals self-reported as currently
498  healthy were included in the study. All individuals had detectable levels of IAV-specific serum IgG
499  antibodies, but no differences in antibody titers were identified between European and African-
500 ancestry individuals (Figure S2C, S2D).

501

502 Generation of influenza A virus

503 Influenza A virus California/04/2009 (Cal/04/09) virus was rescued in 293T cells by
504  plasmid-based transfection with IAV Cal/04/09 in the pDZ vector using methods previously
505 described (Fodor et al., 1999; Hai et al., 2010; Hoffmann et al., 2000). 24 hours following
506 transfection, 7.5x10° MDCK cells were added to the culture in Opti-MEM containing TPCK trypsin
507 (1 ug/mL). For the following two days, 500 uL of Opti-MEM containing TPCK trypsin (2 png/mL)
508 was added to the culture. One day later, the supernatant was harvested, centrifuged to remove
509  cellular debris, and stored at -80°C. Cal/04/09 was amplified on MDCK cells to generate a stock.
510  Uninfected MDCK cells were cultured for 48 — 72 hours and supernatant was harvested to
511  generate the control, mock-conditioned media. Stocks were plaqued on MDCK cells. Cells were

512 infected in infection media (PBS with 10% Ca/Mg, 1% penicillin/streptomycin, 5% BSA) at 37°C

25


https://doi.org/10.1101/2020.12.21.423830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423830; this version posted December 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

513  for 1 hour. Infection media was replaced with an agar overlay (2X MEM, 1 ug/mL TPCK trypsin,
514 1% DEAE-dextran, 5% NaCos, 2% oxoid agar), and cells were cultured at 37°C for 40 hours then
515  fixed with 4% formaldehyde. Blocking and immunostaining were done for 1 hour at 25°C in 5%
516  milk. Primary stain was mouse anti-Cal/04/09 (1:5000), secondary stain was peroxidase sheep
517  anti-mouse-HRP (1:5000) (45001275, GE Healthcare). TrueBlue Peroxidase Substrate (50-647-
518 28, Kirkegard & Perry Laboratories) was used as directed for detection of virus plaques.

519

520 In vitro infection experiments and sample collections

521 PBMCs were unfrozen approximately 14 hours prior to infection and cultured overnight in
522 RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, and 10 ug/ml
523  gentamycin. Infection experiments were performed over 15 batches, where each experimental
524  batch was semi-balanced for self-identified ancestry label to avoid introducing a batch effect
525  confounded with genetic ancestry. The morning of the experiment, 1M PBMCs were plated at a
526 concentration of 1M/ml for each condition, and exposed to either mock-conditioned media
527  (negative control) or Cal/04/09 IAV at an MOI of 0.5. After 30 minutes of exposure, the control
528 media or virus was washed from PBMC cultures, cells were replated, and cells were then
529 incubated for 6 hours at 37°C in 5% CO, and 20% O,. Following the 6 hour incubation, cells were
530  collected, washed, and prepared for single-cell capture using the 10X workflow. Immediately prior
531 to the capture, cells from samples were combined into two pools (6 samples per pool) each
532 balanced for infection status (mock-infected and IAV-infected) and genetic ancestry (Table S1).
533  Multiplexed cell pools were used as input for the single-cell captures, and for each cell pool,
534 10,000 cells were targeted for collection using the Chromium Single Cell 3° Reagent (v2
535  chemistry) kit (10X Genomics). Post Gel Bead-in-Emulsion (GEM) generation, the reverse
536  transcription (RT) reaction was performed in a thermal cycler as described (53°C for 45 min, 85°C

537  for 5 min), and post-RT products were stored at -20°C until downstream processing (no longer

26


https://doi.org/10.1101/2020.12.21.423830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423830; this version posted December 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

538 than 4 days post-RT reaction). For DNA processing, 1M PBMCs were collected, and DNA was
539  extracted using the DNeasy Blood and Tissue Kit (Qiagen) following the “Cultured cells” protocol.
540

541 Single-cell library preparation and RNA-sequencing

542 Post-RT reaction cleanup, cDNA amplification, and sequencing library preparation were
543  performed as described in the Single Cell 3’ Reagent Kits v2 User Guide (10X Genomics). Briefly,
544  cDNA was cleaned with DynaBeads MyOne SILANE beads (ThermoFisher Scientific) and
545 amplified in a thermal cycler using the following program: 98°C for 3 min, 11 cycles x 98°C for 15
546 s, 67°C for 20 s, 72°C for 1 min, and 72°C 1 min. After cleanup with the SPRIselect reagent kit
547  (Beckman Coulter), the libraries were constructed by performing the following steps:
548 fragmentation, end-repair, A-tailing, SPRIselect cleanup, adaptor ligation, SPRIselect cleanup,
549 sample index PCR (98°C for 45 s, 14 cycles x 98°C for 20 s, 54°C for 30 s, 72°C for 20 s, and
550  72°C 1 min), and SPRIselect size selection. Batches of four experiments (corresponding to eight
551  multiplexed single-cell captures) were processed at a time. Prior to sequencing, all multiplexed
552  single-cell libraries (n = 30) were quantified using the KAPA Library Quantification Kit for lllumina
553  Platforms (Roche) and pooled in an equimolar ratio. Libraries were sequenced 100 base pair
554  paired-end (R1: 30 cycles, I1: 10 cycles, R2: 85 cycles) on an lllumina NovaSeq to an average
555  depth of 45,612 mean reads per cell across all batches (average median genes detected per cell
556  across batches = 689).

557

558 Low-pass DNA sequencing and VCF processing

559 Out of the 90 individuals in the cohort, 89 were successfully genotyped using DNBseq
560 low-pass whole-genome sequencing (BGI) at 4x coverage. Variants were called across
561 individuals using the human reference genome (GRCh37), yielding a merged VCF, and the
562  ImputeSeq low-pass imputation pipeline (Gencove) was used to perform VCF imputation. The

563  imputed merged VCF was lifted over to GRCh38 with CrossMap (v0.3.9) (Zhao et al., 2014) using
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564  the GRCh37 to GRCh38 Ensembl chain file downloaded at
565  ftp://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/ and the GRCh38 FASTA file from
566  ftp://ftp.ensembl.org/pub/release-92/fasta/lhomo_sapiens/dna/. For each individual, low-quality
567 variants were filtered by only retaining those with a maximum genotype probability (GP in
568  FORMAT field) > 0.90 using QCTOOL (v2.0.7, https://www.well.ox.ac.uk/~gav/qctool_v2/). If the
569 max(GP) for a variant was < 0.90, the variant call was automatically set to missing. Only
570  autosomal, biallelic SNPs were kept for downstream analysis using the SelectVariants function (-
571  -select-type-to-include SNP) from GATK (v3.7).

572

573 Estimation of genome-wide admixture levels

574 Prior to estimation of genome-wide admixture proportions, samples were merged with
575  CEU (n =99, Utah Residents [CEPH] with Northern and Western European Ancestry) and YRI (n
576 =108, Yoruba in Ibadan, Nigeria) samples from the 1000 Genomes Project (1000GP) Phase 3
577  dataset (Auton et al., 2015) (downloaded from
578  ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/ GRCh38_positions/). The
579  proportion of European and African genetic ancestry for each individual included in the study was
580 estimated using the supervised clustering algorithm in ADMIXTURE (v1.3.0) (Alexander and
581  Lange, 2011). A total of 13,518,147 unlinked SNPs (r* between all pairs < 0.1) were used for
582  genetic ancestry assignments, assuming k = 2 ancestral clusters. These estimated quantitative
583  genetic ancestry proportions were used to assess differences in immune responses between
584  populations.

585

586 Mapping, demultiplexing, and initial cell filtering

587 FASTQ files from each multiplexed capture library were mapped to a custom reference
588  containing GRCh38 and the Cal/04/09 |IAV reference genome (downloaded from NCBI, created

589  using cellranger mkref) using the cellranger (v3.0.2) (10X Genomics) count function. souporcell
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590  (v2.0, Singularity v3.4.0) (Heaton et al.,, 2020) in --skip_remap mode (-k 6) was used to
591 demultiplex cells into samples based on genotypes from a common variants file (1000GP samples
592  filtered to SNPs with >= 2% allele frequency in the population, downloaded from
593  https://github.com/wheaton5/souporcell). Briefly, souporcell clusters cells based on cell allele
594  counts in common variants, assigning all cells with similar allele counts to a single cluster
595  corresponding to one individual, while also estimating singlet/doublet/negative status for that cell.
596  For each batch, hierarchical clustering of the true genotypes known for each individual (obtained
597  from low-pass whole-genome-sequencing) and the cluster genotypes estimated from souporcell
598  was used to assign individual IDs to souporcell cell clusters. All 89 individuals were successfully
599  assigned to a single cluster.

600 After demultiplexing cells into samples, Seurat (v3.1.5, R v3.6.3) (Stuart et al., 2019) was
601  used to perform quality control filtering of cells. In total, we captured 255,731 cells prior to filtering
602  (range of cells recovered per capture: min. = 5534, max. = 10805). Cells were considered “high-
603  quality” and retained for downstream analysis if they had: 1) a “singlet” status called by souporcell,
604  2) between 200 — 2500 genes detected (nFeature_RNA), and 3) a mitochondrial reads
605  percentage < 10%, leaving 236,993 cells (n = 19,248 genes).

606

607 Clustering, cell type assignment, and UMAP analysis

608 We performed two versions of clustering analysis and cell type assignment: 1) in which
609 IAV genes were kept in the raw count matrix (used as input for pseudobulk calculations), and 2)
610 in which IAV genes were subset out of the raw count matrix (for visualization of the UMAP in Fig.
611 1B). All other steps of the clustering workflow (implemented in Seurat v3.1.5) remained the same.
612  Pseudobulk expression estimates (see below) between clustering versions for cell type-matched
613  clusters were extremely similar (adj R?> > 0.999 for comparisons between versions). For both
614  clustering iterations, we split the cells by infection status (mock or IAV) and ran SCTransform to

615 normalize and scale the UMI counts within condition. In this step, we simultaneously regressed
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616  out variables corresponding to experiment batch and percent mitochondrial reads per cell. The
617 data was then integrated on infection status using the SelectintegrationFeatures,
618  PrepSCTlIntegration, FindIntegrationAnchors, and IntegrateData workflow. Following integration,
619  dimensionality reduction was performed via UMAP (RunUMAP function, dims = 1:30) and PCA
620  (RunPCA function, npcs = 30). A Shared Nearest Neighbor (SNN) Graph was constructed using
621 the FindNeighbors function (dims = 1:20, all other parameters set to default), and clusters were
622  subsequently called using the FindClusters algorithm (resolution = 0.5, all other parameters set
623  to default).

624 Clusters were annotated based on the expression of canonical immune cell marker genes
625 (CD4" T: CD3D*, CD3E*, CD8A™; CD8" T: CD3D", CD8A"; NK cells: CD3D", NKG7*, GNLY";
626  monocytes: CD14", LYZ"; B: MS4A1"; granulocytes: PRSS57"; dendritic cells (DCs): HLA-DRA",
627 HLA-DRB1*, CCR7", CST3", CD83"). A small group of cells, which were identified as B cells,
628  clustered with CD4" T cells in the UMAP (Fig. 1B), and we investigated this further to see whether
629  this subset represented a distinct, rare cell type. Further analysis revealed that these cells express
630 markers typical of NKT cells, including CD3D, NKG7, IL2, TNF, and IFNG, and thus, these cells
631  were manually annotated as NKT cells. In the UMAP constructed from input data containing 1AV
632  genes, we excluded 1,832 cells for which we could not confidently assign a cell type, as they

633  clustered on the basis of high IAV transcript expression, leaving us with 235,161 cells across all

634 individuals and conditions for downstream analysis (n CD4" T cells = 138,801, CD8" T cells

635 32,446, monocytes = 27,020, B cells = 22,877, NK cells = 13,220, DCs = 374, granulocytes
636 301, NKT cells = 122).
637

638 Calculation of pseudobulk estimates

639 Cluster-specific pseudobulk estimates were used to summarize single-cell expression
640  values into bulk-like expression estimates within samples (where, here, a sample is an individual,

641 infection-condition pair, n = 180). This was performed for all five major cell types (CD4" T cells,
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642 CD8" T cells, B cells, monocytes, NK cells) and PBMCs, where all high-quality cells from all cell
643  types identified (n = 235,161) were treated as a single aggregate cluster. Within each cluster for
644  each sample, raw UMI counts were summed across all cells assigned to that sample for each
645  gene using the sparse_Sums function in textTinyR (v1.1.3), yielding an n x m expression matrix,
646  where n is the number of samples included in the study (n = 180) and m is the number of genes
647  detected in the single-cell analysis (m = 19,248) for each of the 6 clusters.

648

649 Calculation of capture-corrected expression for downstream modeling

650 From this point forward, pseudobulk estimates were treated as de facto bulk expression
651  data for each cell type considered. As such, calculations of residuals and downstream modeling
652  of infection and genetic ancestry effects (see below) were performed for each cluster
653  independently. For each cell type, lowly-expressed genes were filtered using cell-type specific
654  cutoffs (removed genes with a median logCPM < 1.5 in CD4" T cells, monocytes, and PBMCs, <
655 2.5in B cells and CD8" T cells, and < 4.0 in NK cells), leaving the following number of genes per
656 cell type: CD4" T cells = 9,291, CD8" T cells = 9,960, B cells = 9,335, monocytes = 10,424, NK
657 cells =7,109, and PBMCs = 10,430.

658 After removing lowly-expressed genes, normalization factors to scale the raw library sizes
659  were calculated using calcNormFactors in edgeR (v 3.26.8) (Robinson et al., 2010). The voom
660  function in limma (v3.40.6) (Ritchie et al., 2015) was used to apply these size factors, estimate
661 the mean-variance relationship, and convert raw pseudocounts to logCPM values. A model
662  evaluating the technical effect of capture (~ 0 + capture, where capture corresponds to a factor
663  variable representing the 30 experimental capture batches) on gene expression was fit using the
664 ImFit and eBayes functions, and model residuals were obtained using the residuals.MArrayLM
665  function in limma. The average capture effect was then computed by taking the mean of the
666  capture coefficients across all 30 capture batches per gene, and this average capture effect was

667 added back to the residuals across samples to generate the capture-corrected expression
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668 estimates. The inverse variance weights calculated by voom were obtained and included in the
669  respective ImFit call for all downstream models unless otherwise noted.

670 While performing quality control checks on our data, we noticed that the density
671  distributions of the capture-corrected expression estimates were bimodal for some samples in
672  certain cell types. We estimated this bimodality proportion in each cell type for each sample by: i)
673  estimating the local minimum of the density distribution, ii) subsetting the x-axis on a restricted
674  range that was specific to each cell type, iii) using the x value where y equals the estimated local
675 minimum as the bimodal threshold, and iv) calculating the proportion of genes less than this
676  threshold. Assigned bimodality proportions were manually checked and corrected to an
677  approximate value if they were obviously over- or under-estimated. The bimodality proportion is
678  negatively correlated with cell counts per sample in most cell types and was most pronounced in
679 the CD8" T cells, monocytes, and NK cells (i.e. the cell types with the fewest number of cells
680  collected per sample). To remove any potentially confounding effects associated with this artifact,
681  the appropriate cell-type specific bimodality proportion vector across samples was included as a
682  quantitative technical covariate in all of our downstream models.

683

684 Modeling global infection effects

685 To obtain estimates of the global infection effects, capture-corrected expression levels of
686  samples corresponding to the same individual were compared in a paired design, in which
687 individuals were introduced as additional covariates into the following differential infection effect

688  model that was run per cell type:

Bolisi) + Bpg(i)- pB™ () + B._(i)- age() + €M°%(i)) if Condition = mock

age

M,: EGij) ~
089 FEOD S g B+ Boal) PB™ () + B,4e() - age() + £4V(i) if Condition = IAV

690 Here, E(i)) represents the capture-corrected expression estimate of gene i for individual j and

691  B,(ij) represents the intercept corresponding to gene / and individual j (i.e. the expectation of
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692  gene s expression level in the mock-infected sample for individual j). When evaluated, this model

693  gives the global estimate of the IAV infection effect per gene, B, (i), approximated using the

694  within-individual variation in gene expression across conditions. Further, pBCdt

represents the
695  bimodal proportion estimated per sample for the respective cell type being modeled (where cdt
696  represents either the mock or IAV), with ,BpB being the corresponding effect on gene expression,

697 and age represents the mean-centered, scaled (mean = 0, sd = 1) age in years per individual,

cat

698  with B, _being the impact of age on expression. Finally, €“ represents the residuals for each

age
699  respective condition (mock or IAV) for each gene j, individual j pair. Of note, when modeling the
700 expression estimates in PBMCs, two additional covariates were added to the model,
701  corresponding to the first two principal components of a PCA performed on an n x m cell type
702  proportion matrix (where n = number of samples = 180, m = number of cell types = 10, with the
703  matrix populated by the cell type proportions for each sample [calculated by the number of cells
704  per cell type cluster for a sample divided by the total number of cells assigned to that sample]) to
705  account for the majority of the variance introduced by underlying cell type composition (PC1
706  percent variance explained (PVE) = 53.8%, PC2 PVE = 23.2%, total = 77.0%).

707 These models were fit using the ImFit and eBayes functions in limma (Ritchie et al., 2015),
708  and the estimates of the global infection effect 8, (i) (i.e. the differential expression effects due
709  to IAV infection) were extracted across all genes along with their corresponding p-values. We
710  controlled for false discovery rates (FDR) using an approach analogous to that of Storey and
711 Tibshirani (Nédélec et al., 2016; Storey and Tibshirani, 2003), which makes no explicit
712 assumptions regarding the distribution of the null model but instead derives it empirically. To
713  obtain a null, we performed 10 permutations, where infection status label (mock/IAV) was
714  permuted within individual. We consider genes significantly differentially-expressed upon infection
715 ifthey have a B,,,, |logFC| > 0.5 and an FDR < 0.05.

716
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717 Calculation of IFN score

718  To construct the IFN score metric, we summarized the expression patterns of genes involved in
719  the type I/l IFN response as a whole, where, within condition, we i) subset on genes belonging
720  to the hallmark IFN gamma and alpha response pathways, ii) mean-centered and scaled the
721  expression values for each gene across individuals, and iii) computed the average scaled
722  expression across genes per individual.

723

724 Modeling genetic ancestry effects and integration with mashr

725 Prior to modeling genetic ancestry effects, capture-corrected expression estimates were
726  quantile-normalized within condition using qgnorm in R. The following nested linear model was
727  used to identify genes for which expression levels are correlated with the proportion of African
728  ancestry across individuals within condition (i.e. popDE genes):

Boli) + Bas™ (i) AAG) + B,g(i) - BT () + Bgo(i)- age()) + (i) if Condition = mock

age

729 Mot EGD ~ Bofi) * By () + BV () AAG) + Bg() pBV() + B,yo) age() + €4(i)) if Condition = 1AV
730 Here, E(i,j) represents the capture-corrected expression estimate of gene i for individual j, B,(i) is
731  the global intercept accounting for the expected expression of gene i in a 100% European-
732 ancestry mock-infected individual, ,B'Af:"c’{(i) and BTAV(I) indicate the effects of African admixture
733  (mean-centered, scaled African ancestry proportion, AA(j)) on gene i within each condition, and

734 B,,(i) represents the intrinsic infection effect of IAV infection. All other terms in the model are

735  analogous to that described in M. Again, the model was fit using limma, and the estimates BZ’XCk(i)

736 and BfAv(i) of the genetic ancestry effects were extracted across all genes, along with their

737  corresponding p-values. Each of these estimates represents the genetic ancestry-related
738  differential expression effects within each condition.
739 Genes for which the response to IAV infection is correlated with the proportion of African

740  ancestry (i.e. popDR genes) were detected using the following model:
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Bo(i) + Byg() -pB™%(j) + Bage(i) - age(i) + £mock(j ) if Condition = mock
741 Ma: E(if) ~ - , AV . i i AV . i i AV o o "
Bo(id) + Biay(i) + Bpy (1) AAG) + Bog(i) PB™ () + B,ge(i)- age(j) + €7 (i,j) if Condition = IAV

742  This model is similar to M, (differential effect of IAV infection), in that it allows us to obtain
743 estimates based on within-individual variability, with the difference that the 1AV infection effect is

744  no longer built in a genetic ancestry-independent manner as in model M;, since it is now

745 dependent on genetic ancestry as follows: B,,,, + ,BTAV(i)-AA. In this context, BTAV denotes the

746  genetic ancestry-infection interaction effect induced by IAV infection, which represents variation
747  in the response to infection that is correlated with the proportion of African ancestry.

748 To assess sharing of genetic ancestry effects across cell types and to increase our power
749  to detect these effects, we applied Multivariate Adaptive Shrinkage in R (mashr v0.2.28) (Urbut
750 et al., 2019) to the outputs of our popDE and popDR cell type-by-cell type models. mashr was
751  applied independently to both the popDE and popDR priors, so all following methods were
752  performed twice, once for the popDE effects and then again for the popDR effects. Effect size
753  priors were obtained directly from limma and merged into matrices including all effect sizes across
754  cell types, only keeping those genes detected in all cell types (i.e. n x m matrices, where for
755  popDE effects: n = 6,847 genes, m = 10 conditions [mock- and |AV-infected popDE effects for
756  each of the 5 main cell types], and for popDR effects: n = 6,847 genes, m = 5 conditions [popDR
757  effects for each of the 5 main cell types]). Standard errors of the effect size priors were calculated
758  per gene by multiplying the square root of the posterior variance (s2.post) of each gene by the
759  unscaled standard deviation for the effect size of interest for that gene (stdev.unscaled) estimated
760 by limma, and these values were similarly formatted into matrices as described above. To account
761 for correlations among measurements across conditions in our data, we used the
762  estimate_null_correlation_simple function implemented in mashr to specify a correlation matrix
763  prior to fitting the mash model. We included both the canonical covariance matrices provided by
764  default in mashr and data-driven covariance matrices (defined as the top 5 PCs from a PCA

765  performed on the significant (Ifsr < 0.05) signals detected in the condition-by-condition model
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766  results) learned from our data in the mash model fit. For both popDE and popDR effects, the mash
767 model was fit to all tests using the mash function. Posterior summaries of the effect sizes,
768 standard deviations, and measures of significance were extracted. We used the estimated local
769  false sign rate (Ifsr) to assess significance of our posterior popDE and popDR effects and
770  considered genes significantly population differentially-expressed or differentially-responsive if
771  the Ifsr of the posterior mean was < 0.10.

772

773 eQTL mapping and integration with mashr

774 eQTL mapping was performed independently in each cell type against the sets of genes
775  retained after lowly-expressed gene filtering (n genes: CD4" T cells = 9,291, CD8" T cells = 9,960,
776 B cells = 9,335, monocytes = 10,424, NK cells = 7,109, PBMCs = 10,430). A linear regression
777  model was used to examine associations between SNP genotypes and expression levels, in
778  which expression levels were regressed against genotype. Input expression matrices were
779  quantile-normalized within condition prior to running the association. Mock-exposed and IAV-
780 infected eQTL were mapped separately across all cell types. All regressions were performed
781 using the R package MatrixEQTL (v2.3) (Shabalin, 2012). Only SNPs with a minor allele
782  frequency > 5% across all individuals were tested, and SNPs with > 10% of missing data or
783  deviating from Hardy-Weinberg equilibrium at p < 10™ were excluded (--maf 0.05 --geno 0.10 --
784  hwe 0.00001 PLINK v1.9 filters, www.cog-genomics.org/plink/1.9/) (Chang et al., 2015). In total,
785 6,305,923 SNPs passed our quality-control filters. Local associations (i.e. putative cis-eQTL) were
786  tested against all SNPs located within the gene body or 100kb upstream and downstream of the
787  transcription start site (TSS) and transcription end site (TES) for each gene tested. We recorded
788  the minimum p-value (i.e. the strongest association) observed for each gene, which we used as
789  statistical evidence for the presence of at least one eQTL for that gene. To estimate an FDR, we
790 permuted the genotype data ten times, re-performed the linear regressions, and recorded the

791  minimum p-values for the gene for each permutation. These sets of minimum p-values were used
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792  as an empirical null distribution and FDRs were calculated using the method described in the
793  section “Modeling global infection effects”.

794 Power to detect cis-eQTL can be increased by accounting for unmeasured surrogate
795  confounders. To identify these confounders, we first performed PCA on a correlation matrix based
796 on gene expression for mock and IAV-infected samples. Subsequently, up to 20 principal
797  components (PCs) were regressed out prior to performing the association analysis for each gene.
798 A specific number of PCs to regress in each condition and cell type, corresponding to the number
799  of PCs that empirically led to the detection of the largest number of eQTL in each condition, was
800 then chosen from these results. The exact number of PCs regressed in each of the analyses can
801 be found in Table S11. Of note, while PC corrections increase our power to detect eQTL, they do
802  not affect the underlying structure of the expression data.

803 Mapping was performed combining both EA and AA individuals to increase power. To
804  avoid spurious associations resulting from population structure, the first two eigenvectors
805  obtained from a PCA on the genotype data using SNPRelate (v1.20.1, gdsfmt v1.22.0) (Zheng et
806 al., 2012) were included in the Matrix eQTL model as well. Other covariates included in the linear
807  model were the following: the condition and cell type-specific bimodal proportion and age (mean-
808  centered, scaled), with two additional covariates included when mapping eQTL using the PBMC
809  expression data, corresponding to the first 2 PCs from the cell type composition PCA described
810  in “Modeling global infection effects”.

811 Our ability to detect eQTL was highly dependent on the number of cells identified in each
812  cell type cluster (correlation between the total number of cells recovered per cell type across all
813  individuals/conditions versus the number of significant eQTL (FDR < 0.10) detected: adj R? =
814  0.983, p = 1x10®). To gain power to detect cis-eQTL effects using sharing information across cell
815  types, we again implemented mashr (Urbut et al., 2019). Out of necessity of the method, we only
816  considered shared genes that were tested across all cell types (n = 6,573). For each of these

817 genes, we chose a single, top cis-SNP, defined as the SNP with the lowest FDR across all cell
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818  types (n = 5) and conditions (n = 2), to input into mashr, yielding a total of 6,573 gene-SNP pairs.
819  We extracted the prior effect sizes (betas) and computed the standard errors (SEs) of these betas
820  (defined as the beta divided by the t-statistic) from the Matrix eQTL outputs for each gene-SNP
821  pair across cell types and conditions. We defined a set of “strong” tests (i.e. the 6,573 top gene-
822 SNP associations) as well as a set of random tests, including both null and non-null tests, which
823  we obtained from randomly sampling 200,000 rows of a matrix containing all gene-SNP pairs
824  tested by Matrix eQTL merged across conditions. Our mashr workflow was as follows: i) the
825  correlation structure among the null tests was learned using the random test subset, ii) the data-
826  driven covariance matrices were learned using the strong test subset, iii) the mash model was fit
827 to the random test subset using canonical and data-driven covariance matrices, with two
828  additional “infection” covariance matrices (i.e. one matrix capturing shared effects in only the
829  mock-exposed samples and another matrix capturing shared effects in only the IAV-infected
830 samples), and iv) the posterior summaries were computed for the strong test subset. We used
831 the estimated local false sign rate (Ifsr) to assess significance of our posterior eQTL effects and
832  considered a gene-SNP pair to have a significant eQTL effect if the Ifsr of the posterior mean was
833 < 0.10, which we defined as an eGene.

834

835 Identification of condition-specific popDE genes and eGenes

836 Within each cell type, we considered either popDE genes or eGenes as condition-specific
837  (i.e. only showing an effect in either the mock or IAV infection condition) if they had an Ifsr < 0.10
838 in only one condition. Here, we assume that the risk of identifying a true effect in both mock and
839  IAV-infected cells (i.e. a shared popDE gene/eGene) as falsely condition-specific due to lack of
840  power is low, specifically because we employed the multivariate adaptive shrinkage framework,
841  which draws information across conditions to make better-informed posterior estimates about the
842  sharing of effects, so we do not expect to see many posterior effects called as “condition-specific”

843 when, in fact, they are not.
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844

845 Enrichment of eGenes within popDE genes

846 We tested for an enrichment of eGenes among the genes identified as popDE genes
847  within each cell type and condition. For each cell type, condition pair, we created two vectors: i)
848 a popDE gene vector, where significant popDE genes (Ifsr < 0.1) were coded as a 1 and non-
849  significant popDE genes were coded as a 0, and ii) an eGene vector, where significant eGenes
850  (Ifsr < 0.10) were coded as a 1 and non-significant eGenes were coded as a 0. The logistic
851  regression was performed on the popDE gene and eGene vectors using glm in R, where the
852  eGene vector was used as the predictor variable and the popDE gene vector was used as the
853  response variable (popDE[0,1] ~ eGene[0,1]). The odds ratios output by glm were converted to
854  log2 fold enrichments with a 95% confidence interval (plotted along the x-axis in Fig. 3C).

855

856 Calculation of predicted and observed population differences in expression

857 We estimated the predicted cis-genetic population differences in gene expression using a
858 method in which we first computed the predicted expression of each gene considering only the
859  posterior effect size of the top cis SNP for that gene and an individual’s genotype dosage (a vector
860 of 0, 1, or 2), where, for gene J, individual j:

861 predicted expression; = eQTL effect size; * genotypej

862  We then modeled these predicted expression values using a model analogous to that of M,
863  (model evaluating the popDE effects, “Modeling genetic ancestry effects and integration with
864  mashr”) to obtain the predicted genetic ancestry effects (plotted on the x-axis for genetically-
865  driven popDE genes in Fig. 3D). The observed population differences in expression were taken
866  directly from the post-mash beta estimates of M, (plotted on the y-axis for genetically-driven
867  popDE genes in Fig. 3D).

868

39


https://doi.org/10.1101/2020.12.21.423830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423830; this version posted December 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

869 Modeling the effect of cis-regression on the observed population differences in expression

870 To assess the impact of cis-regression on population-associated expression differences,
871 we used two models evaluating the effect of continuous genetic ancestry (African ancestry
872  proportion) on gene expression: i) a model analogous to M, (model evaluating the popDE effects,
873  “Modeling genetic ancestry effects and integration with mashr”), and ii) a model in which, for each
874  gene, the top cis SNP for that gene was regressed by including the genotype dosage for that SNP
875  across individuals as a covariate in the model. The models were fit using limma and mashr was
876  applied (as described in the section “Modeling genetic ancestry effects and integration with
877  mashr”) to the prior effect sizes and standard errors derived from both models. The mashr
878  posterior summaries were used to directly obtain the observed population differences in
879  expression for each gene.

880 For each significantly enriched GO term (FDR < 0.01) identified in Fig. 3E (see
881  “Enrichment analyses” section below), we calculated summaries of the observed population
882  difference in expression among the genes that belong to each term that are also popDE genes
883  with evidence of an eQTL in at least one cell type. To do this, for each cell type for each term, we
884  collected the observed population differences among these term-specific genetically-driven
885  popDE genes and calculated the median and standard error (SE) for these values (plotted on the
886  x-axis in Fig. 3G). This was performed for both the observed (“real”’) model outputs (model i) as
887  well as the cis-regressed model outputs (model ii). For each cell type, we obtained a p-value for
888  the real effects using a permutation method. To obtain a null distribution, we performed 1,000
889  permutations where, for each iteration, we: 1) sampled the same number of observed term-
890  specific, genetically-driven popDE genes for that cell type from a background set of all genetically-
891  driven popDE for that cell type, 2) obtained the population differences in expression among these
892 genes, and 3) calculated the median for these null values. We then computed a one-sided,
893  empirical p-value, where we considered the number of instances more extreme in the median null

894  difference compared to the median observed difference in the real data given the sign of this
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895 difference (i.e. if the observed difference in the real data was < 0, we counted the number of
896 observations in the null distribution equal to or less than the observed value, and if the observed
897 difference in the real data was > 0, we counted the number of observations in the null distribution
898  equalto or greater than the observed value), where p = number of instances more extreme divided
899 by the number of permutations (n = 1000). Similarly, we obtained a p-value for the cis-regressed
900 effects using the same method, except for that in steps 2 and 3, we considered the cis-regressed
901 population differences as opposed to those seen in the real data. Notably, to calculate the
902 directional p-value for the cis-regressed case, we used the magnitude of the median cis-regressed
903  population difference but still considered the sign of the median observed population difference.

904

905 Colocalization analysis

906 Specifically for the colocalization analysis, eQTL were remapped in each cell type with
907  Matrix eQTL (Shabalin, 2012) using a 1 megabase (Mb) cis-window, with all other modeling
908 parameters kept constant, to broaden our search space and increase our probability of detecting
909 colocalized variants. We assessed colocalization between our identified eQTLs in each cell type,
910  condition pair and 14 publicly-available GWAS summary statistics for 11 autoimmune diseases
911  (Table S10) as previously described (Mu et al., 2020) with a few modifications. Briefly, for each
912  trait, we identified the lead GWAS SNPs with p-values below 1x107° and defined a “locus” as a
913  1Mb window centered around the lead GWAS SNP. Of note, the HLA region (chr6: 25Mb-35Mb)
914  was removed from the analysis. eGenes were defined as those with an Ifsr < 0.10 from the mashr
915  posteriors. The coloc.signals function from the coloc (v4.0.4) package in R was used to evaluate
916 colocalization with default priors (Giambartolomei et al., 2014; Wallace, 2020). A colocalization
917 test was only performed if the most significant SNP of an eGene fell within a GWAS locus. We
918 defined colocalization as (PP3+PP4) > 0.5 and PP4/(PP3+PP4) > 0.8, where PP3 corresponds

919 to the posterior probability of having two independent signals (one for the eQTL and one for the

41


https://doi.org/10.1101/2020.12.21.423830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423830; this version posted December 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

920 GWAS) and PP4 corresponds to the posterior probability of colocalization between the eQTL and
921  GWAS signals.

922 To expand the number of colocalized genes considered for downstream analyses, we also
923  downloaded colocalization results between harmonized bulk eQTLs in 18 immune cell types from
924 3 studies (DICE, DGN, and BLUEPRINT) and the same 14 autoimmune GWAS. To obtain a list
925  of unique colocalized eGene-locus pairs, we merged colocalization results from all 18 immune
926  cell types for each GWAS and only kept the colocalization test with the largest PP4 value for each
927  eGene at each GWAS locus.

928

929 Calculation of selection statistics

930 iHS and Fst values were calculated using the 1000GP Phase 3 dataset (Auton et al., 2015)
931 in the GRCh37/hg19 build (downloaded from
932  ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/).

933 iHS

934 Prior to calculation, the 1000GP Phase 3 data was filtered to exclude INDELs and CNVs.
935  Ancestral alleles were retrieved from the 6 primates EPO pipeline (version €59) (Herrero et al.,
936 2016), and filtered 1000GP VCF files were converted to change the reference allele to the
937 ancestral allele using bcftools (v1.9) (Li, 2011) with the fixref plugin. The program hapbin (v.1.3.0)
938 (Maclean et al., 2015) was then used to calculate iHS values for the CEU and YRI populations
939 using population-specific genetic maps constructed on the 1000GP OMNI dataset
940  (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rate
941 s). All downstream analyses used the standardized iHS values reported from hapbin.

942 Fst

943 Prior to calculation, the 1000GP Phase 3 data was filtered to keep only biallelic SNPs. Fgsr
944  statistics were computed between the CEU and YRI populations using the vcftools (v0.1)

945  (Danecek et al., 2011) flag --weir-fst-pop, where the 1000GP CEU samples were defined as
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946  population 1 and the YRI samples were defined as population 2. This method is analogous to that
947  described in Weir and Cockerham’s 1984 paper (Weir and Cockerham, 1984).
948

949 Enrichment of colocalized hits with popDE genes and iHS statistics

950 With popDE genes

951 We tested for an enrichment of popDE genes among genes with a colocalization signal
952  across the 14 autoimmune traits included in the colocalization analysis in aggregate. Considering
953  all colocalized signals, we collected a list of the unique genes associated with colocalization hits,
954  corresponding to the eGenes driving the eQTL signature. Among these genes, we calculated the
955  proportion that are also identified as popDE genes (here, a gene is considered popDE if itis called
956 as significantly (Ifsr < 0.10) popDE in at least one cell type and condition) and consider this our
957  “observed proportion”. To obtain a null distribution, we performed 1,000 permutations where, for
958 each iteration, we: i) sampled the same number of unique genes associated with colocalization
959  hits from a list of all genes tested for the eQTL analysis that were shared across cell types (n =
960  6205), and i) calculated the proportion of these genes that are also popDE (our “null percentage”).
961  We calculated a p-value by evaluating the number of permutations in which the null percentage
962  was greater than or equal to the observed percentage divided by the number of total permutations
963  (n=1,000).

964 With iHS statistics

965 We then tested for an enrichment of variants with high iHS values (defined as those with
966  an |standardized iHS| > 95" percentile of the genome-wide distribution among our tested SNPs
967  for the population being considered) among colocalized SNPs for all of the autoimmune traits as
968  a group. For both the 95" percentile iHS calculations and our null distribution sampling approach
969 described below, we only considered SNPs that were tested for an eQTL association in Matrix
970  eQTL (i.e. those with a minor allele frequency > 0.05). The 95" percentile |standardized iHS|

971 cutoffs were as follows: CEU = 1.92 and YRI = 1.95. For each tested SNP, we obtained
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972  population-specific allele frequencies calculated from the 1000GP CEU or YRI individuals using
973  the vcftools (v0.1) (Danecek et al., 2011) --freq flag. These alleles frequencies were converted to
974  minor allele frequencies (MAFSs) (i.e. if the allele frequency for a SNP was > 0.5, we subtracted it
975  from 1), and SNPs were subsequently partitioned into 5% MAF bins (e.g. bin 1 = 0 — 5% MAF,
976  bin 2 =5 - 10% MAF, etc. with the rightmost interval closed).

977 Among the unique colocalized SNPs we identified across traits, we noticed that a subset
978  appeared to be in high linkage disequilibrium (LD) with one another, suggesting that these SNPs
979 likely did not represent independent colocalization signals. To account for this, we systemically
980 identified SNPs with squared inter-variant allele count correlations (r?) > 0.8 using PLINK (v1.9, -
981  -r2 --ld-window-r2 0.8) (Chang et al., 2015) among all the colocalized hits with multiple tag SNPs
982  for a single eGene. To obtain a list of independent colocalized SNPs, we included: 1) those
983 identified as unlinked loci, and 2) only the SNP with the highest |iHS| value among each set of
984  SNPs with an r? > 0.8. We then calculated the proportion of those with an |iHS| > 95" percentile
985 and considered this our “observed percentage”. To obtain a null distribution, we used a sampling
986 approach that mimicked both the MAF distribution and the underlying LD structure of our true
987 data. We performed 1,000 permutations, where, for each iteration, we treated the sampling for
988  the “independent” and “linked” SNPs separately. To create a null distribution for the “independent”
989  SNPs, we sampled the same number of independent SNPs observed in the real data from the set
990 of all tested SNPs in a MAF bin-matched manner, e.g. if there were 10 colocalized SNPs in MAF
991 bin 3 in the observed data, we sampled 10 SNPs from the set of tested SNPs in MAF bin 3. To
992  obtain a null distribution for the “linked” SNPs, we simulated the underlying LD structure of these
993  variants where, for each eGene in the observed data with multiple tag SNPs (i.e. those SNPs with
994  anr®> 0.8), we: i) counted the number of tag SNPs for that gene and obtained the corresponding
995  MAF bin for the SNP with the highest |[iHS| value, ii) randomly sampled a set of SNPs from
996 chromosome 1 with r? > 0.8 from the MAF bin identified in i), where the number of SNPs in the

997  set was equal to the number of tag SNPs in the observed data, and iii) picked the SNP with the
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998  highest |iHS| value among this SNP set. We then combined our simulated independent and linked
999  SNPs and calculated the proportion of those SNPs with an |iHS| > 95" percentile and considered
1000  this our “null percentage”. To calculate a p-value, we evaluated the number of permutations in
1001  which the null percentage was greater than or equal to the observed percentage divided by the
1002  number of total permutations (n = 1,000). All of the above analyses were performed twice, once
1003  with iHS values calculated within the CEU population and again with values within the YRI
1004  population.

1005

1006 Enrichment analyses

1007 Gene set enrichment analysis was performed using three independent methods, including
1008  fgsea (Korotkevich et al., 2019), GOrilla (Eden et al., 2009), and ClueGO (Bindea et al., 2009),
1009  depending on the type of data being evaluated. The enrichment program specifications and the
1010  data in which they were used to assess enrichments in are described below:

1011 The R package fgsea (v1.10.1) was used to perform gene set enrichment analysis for the
1012  global infection effects (Fig. 1D) using the C5 gene ontology (GO) biological processes gene sets
1013  and for the popDE effects (Fig. 2D) using the H hallmark gene sets (Subramanian et al., 2005).
1014 For the infection effects, t-statistics were obtained directly from the topTable function in limma,
1015  and for the popDE effects, t-statistics were calculated from the posterior mashr outputs, where
1016  the t-statistic = posterior effect size divided by the posterior standard error for each gene. The t-
1017  statistics were then ranked, and these pre-ranked t-statistics were used to perform the enrichment
1018  using fgsea (Korotkevich et al., 2019) with the following parameters: minSize = 15, maxSize =
1019 500, nperm = 100000. Enrichments scores (ES) and Benjamini-Hochberg adjusted p-values
1020  output by fgsea were collected for each condition and are reported in Fig. 1D and Fig. 2D for the
1021  infection effects and popDE effects, respectively.

1022 We also used fgsea to generate the barcode plots shown in Fig. 1G to visualize where the

1023 genes in the highlighted pathways are found in the ranked specificity score list among the set of
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1024  all infection differentially-expressed genes in at least one cell type. To obtain p-values for the
1025  ranked list of specificity scores, we used GOrilla (Eden et al., 2009). Notably, GOrilla relies on a
1026  statistical framework (the minimum hypergeometric score) that allows the calculation of exact p-
1027  values for observed enrichments in ranked lists of genes, taking into account multiple testing
1028  without needing to perform simulations, unlike fgsea. Because GOirilla only identifies GO terms
1029  that are significantly enriched at the top of the ranked gene list, we performed the enrichments in
1030  two ways, once with the list ranked from high to low specificity scores and again with the list
1031  ranked from low to high specificity scores. The Benjamini-Hochberg adjusted FDR g-values
1032 calculated by GOirilla for the “viral gene expression” and “response to type | interferon” terms are
1033 reported in Fig. 1G.

1034 We performed gene set enrichment analysis for our intersection set of popDE genes and
1035  eGenes (Fig. 3E) using the ClueGO (v2.5.7) (Bindea et al., 2009) Cytoscape (v3.7.1) (Shannon
1036 et al., 2003) module in functional analysis mode, where the target set of genes was the list of
1037  popDE eGenes in the mock or IAV condition and the background set was the list of genes tested
1038  across all cell types. Specifically, we tested for the enrichment of GO terms related to biological
1039  processes (ontology source: GO_BiologicalProcess-EBI-UniProt-GOA_04.09.2018_00h00)
1040  using the following parameters: visual style = Groups, default Network Specificity, no GO Term
1041 Fusion, min. GO Tree Interval level = 3, max. GO Tree Interval level = 8, min. number of genes =
1042 3, min. percentage of genes = 4.0, statistical test used = Enrichment/Depletion (two-sided
1043 hypergeometric test), p-value correction = Benjamini-Hochberg. For the graphical representation
1044  of the enrichment analysis, ClueGO clustering functionality was used (kappa threshold score for
1045  considering or rejecting term-to-term links set to 0.4). Only pathways with an FDR < 0.01 are

1046  reported.
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Fig. S1. Overview of samples and global infection effects. (A) Quantitative genetic ancestry

proportions partitioned into European (green) and African (yellow) components for each

individual. (B) PCA decomposition of the pseudobulk PBMC expression data in mock-exposed

(grey) and IAV-infected (red) samples. PC1 (percent variance explained = 43.02%) separates

samples by infection status. (C) Pairwise effect size correlations across cell types among genes
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1053  that are DE (logFC > 0.5, FDR < 0.05) upon IAV infection in either of the cell types being
1054  compared. (D) Pairwise comparisons of the percentage of DE genes in both cell types being

1055  compared that show discordant effect sizes.
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Fig. S2. Population-associated responses to IAV infection. (A) Sharing of significant popDR

genes (Ifsr < 0.10) across cell types. (B) Correlation between the proportion of African genetic

ancestry (x-axis) and IFN score response (y-axis) across individuals (mean Pearson’s r across
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1060  cell types = -0.23, Fisher's meta-p = 6x10°). (C) Correlation between the proportion of African
1061  genetic ancestry (x-axis) and baseline levels of IAV-specific serum IgG antibodies. We quantified
1062  anti-A/Cal/04/09 antibody titers using 4-fold serial dilutions for each individual’'s serum and a total
1063  of eight dilutions per sample. We then used the dilution and absorbances to generate an area
1064  under the curve (AUC; y-axis), which we used to summarize the levels of IAV (A/Cal/04/09)-
1065  specific serum IgG antibodies detected in each individual. (D) Correlation between IFN score
1066  response (x-axis) and baseline levels of IAV-specific serum IgG antibodies (“AUC” = area under
1067  the curve, y-axis). (E) Correlation between IAV transcript expression (x-axis) and the IFN
1068  response (y-axis) across individuals within each cell type. Higher IAV transcript expression is
1069  significantly associated with a stronger IFN response in CD4" T cells, CD8" T cells, monocytes,
1070  and NK cells (p < 0.05), with monocytes showing the strongest correlation (adj R?> = 0.212, p =
1071  3.1x10®). (F) African genetic ancestry is significantly negatively correlated with IAV transcript
1072 expression (Pearson’s r = -0.323, p = 0.002) in PBMCs. In (B), (C), (D), (E) and (F) lines show

1073 the best-fit slope and intercept from linear models for cell types shown.
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1075  Fig. S3. Cis-genetic effects regulate gene expression. (A) Sharing of significant eGenes (Ifsr <
1076 0.10) across cell types and treatment conditions. (B) Correlation of the cis-predicted population
1077  differences in expression (x-axis) versus the observed population differences in expression (y-
1078  axis) among popDE genes with an eQTL across all cell types in the mock-exposed condition (top)
1079  and IAV-infected condition (bottom). The black line shows the best-fit line from a linear model,

1080  and the blue line shows the identity (1:1) line.
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Fig. S5. Colocalization signals. (A) IFNGR2 colocalizes with rs2284553 in naive CD8" T cells in

the Crohn’s disease GWAS (de Lange et al.). (B) TLR6 colocalizes with rs5743618 in classical

monocytes in the allergic disease GWAS. For both (A) and (B), the plot on the left shows the

correlation between GWAS p-values (x-axis) and eQTL p-values (y-axis). Plots on the right show

the Manhattan plots for the GWAS signal (top) and the eQTL signal (bottom).
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1093  Table S11. Principal components (PCs) regressed in the eQTL analysis.

Regressed Regressed No. genes under | No. genes under 0.10
Cell type
PCs (mock) PCs (IAV) 0.10 FDR (mock) FDR (IAV)
CD4" T 1to 4 1t02 1377 1176
B 1106 1t03 152 196
NK 1t02 1t02 68 76
monocytes 1t0 10 1to7 265 251
CD8'T 1106 1to4 204 178
PBMC 1106 1t03 2095 1809
1094
1095
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