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1. Abstract

Understanding the relationships between biological events is paramount to unravel
pathophysiological mechanisms. These relationships can be modeled with Transfer Functions
(TFs), with no need of a priori hypotheses as to the shape of the transfer function. Here we
present Iliski, a software dedicated to TFs computation between two signals. It includes
different pre-treatment routines and TF computation processes: deconvolution, deterministic
and non-deterministic optimization algorithms that are adapted to disparate datasets. We
apply lliski to data on neurovascular coupling, an ensemble of biological events that link
neuronal activity to local changes of blood flow, highlighting the software benefits and caveats
in the computation and evaluation of TFs. We also propose a workflow that will help users to
choose the best computation according to the dataset. Iliski is available under the open-source
license CC BY 4.0 on GitLab (https://gitlab.com/AliK_A/iliski) and can be used on the most
common operating systems, either within the MATLAB environment, or as a standalone

application.
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2. Introduction

Modelling and understanding of the relationship between complex and intermingled biological
signals is often difficult, particularly when the drivers of the signals are unknown. The problem
of the relationship between two time series can be address using deconvolution, which
provides Transfer Functions (TFs) representative of the system processing on the input signal
to generate the output signall. Extracting the transfer function of a neuron or neurons is widely
used in neurobiological studies?-?, and is widely used to solve general problems in signal
analysis, such as predicting the output of complex electrical circuitsl® or other industrial
systems for which a proper model is very complex due to multiple processes working in
parallelll. In brain imaging based on blood flow dynamics, transfer functions are classically
used to lump the multitude of cellular and molecular processes linking neural activation to
changes in blood flow. This coupling between neural activity and hemodynamics is known as
neurovascular coupling (NVC)12. While there are many successful phenomenological models of
NV(C313-17) most physiology-based models of neurovascular coupling®* focus on a single
mechanism. As NVC is mediated through multiple processes, a more integrated approach is
necessary. NVC has often been assessed with deconvolution®22, either in the frequency domain
or with matrix-based approaches, like Toeplitz matrices?3. While these approaches allow the
unbiased extraction of the TF, these deconvolution methods suffer from sensitivity to noise,
affecting the quality of the computed TFs. Reducing the noise (or bandwidth) of the signals
improves the estimate of the TF. Alternatively, one can opt for optimization of known functions
or a kernel of functions?. The first option may lead to information loss, e.g. in cases where the
noise is not well characterized. Sophisticated smoothing methods partially prevent this loss,
like Savitzky-Golay filter, or noise modelling as proposed by Seghouane and colleagues24. The
second option relies on parametric functions to find the TF best linking the input to the output

signals. The transfer function for neural activity to hemodynamic signals has been canonically
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modeled using a gamma-distribution function3.14-16, While making assumptions as to the shape
of the TF has some drawbacks, it is robust in the face of noise and generates parametric
representations of intrinsically smooth TFs. These approaches still can suffer from
under/overfitting and the search for the minimum of the cost function for ill-posed problems
may represent a challenging exercise. A valuable help comes from non-deterministic
optimizations like simulated annealing or genetic algorithms, which despite their

computational expense have potential advantages in extracting TFs from time series.

Recently, our group has been extensively involved in TF computation of neurovascular
coupling in a study based on multi-modal recordings, namely two-photon microscopy and
ultra-fast functional ultrasound?s. For the required task, we comprehensively tested many
deconvolution and optimization algorithms to choose the best-suited approach. We noticed
that there is no standard software package providing all these different TF extraction tools, nor
a program where all these approaches are available in a comfortable signal pre-treatment and
[/0 workflow. Here, we present lliski ([ilifki], meaning “relationship” in Turkish), a software
which contains all the functionalities that we previously used (Aydin et al.) and which, being

open source, can be further improved by the users.

3. Design and Implementation

[liski can compute TFs between an input and an output time series, regardless of their nature.
The originality of Iliski resides in its multiple options to process and analyze input signals. Iliski
provides users with efficient pre-treatment and several deconvolution or optimization
algorithms, through a clear graphic interface. It is meant to be easy-to-use for anyone, even with

basic digital signal processing skills.
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[liski can be used either as a suite of functions or through a Graphical User Interface (Fig 1A).
Functions are grouped according to the analysis workflow to keep the interface simple. Fig 1B

shows the general purpose of Iliski.

3.1. Data loading and pre-treatment

We propose two input files format: either plain text files or HDF5 data, the latter being an open-
source file format with advanced database features. As experimental acquisitions are prone to
multiple component noise, we provided, as an option to the analysis workflow, smoothing
(Savitzky-Golay method) and median filter functions, to exclude outliers. The input and output
signals are interpolated to a chosen time interval (A4t). Both signals can be cut between two
given time points to study continuous recordings while computing TFs on chunks of signal (Fig

10).

3.2. TF computation options

Two main types of TF computation are proposed: deconvolution or function optimization. The
former is straightforward, either Toeplitz or Fourier deconvolution, and does not require any
specific settings. The latter is the optimization of a parametric function, which requires further
settings depending on the chosen algorithm. Beside the proposed fitting functions, the users
can input their own function in the graphical interface or add it to the default ones by modifying
a text file (the procedure is described in the Iliski Manual). Optimization of parameters can be
done with various Matlab algorithms, each coming with pros and cons (see Results section) (Fig

1C, middle).
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3.3. Evaluation of the TF accuracy

A TF is evaluated comparing its prediction - the convolution of the input signal and the TF - to
the expected output. Two metrics are used in Iliski: the Pearson coefficient (corrcoef function,
Matlab, Fig 1C, right) and the residual sum of squares. The former was chosen to have a metric
solely focusing on the dynamic, allowing for inter-subject comparisons, while the latter
evaluates the overall fit, considering the amplitude of the prediction. The cost function of all the
optimization algorithms tested in this article is the residual sum of squares (hereinafter

referred to as "residuals").

3.4. Post-computation

The results structure is arranged to be as informative as possible while avoiding useless
repetition of data. Iliski allows for loading previously computed results structures to check
them again. After TF computation, results structure can be saved either as XLS file, readable by
any Excel-like software, or as a MAT-file (MATLAB formatted binary file format), but it is also

available in Matlab workspace to be exported in various data formats by the user.

3.7. Implementation

Iliski is accessible both as a GUI and as a set of functions to be used in scripts. It has been
developed using Matlab R2018a, with the following dependencies: Optimization Toolbox,

Signal Processing Toolbox and Global Optimization Toolbox.

Common user errors are thoroughly prevented by various messages and fail safes. In parallel,
all errors are treated and saved in a LOG file, to allow for efficient bug-fixing by any developer.
We purposely kept just a few parameters to modify through the GUI, with the goal of providing

an easy-to-use tool to people not used to these functions. In most cases, Matlab default
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parameters of each deconvolution/optimization function worked well with our data, and we
believe that it can be extended to many biological datasets. However, a user skilled with Matlab

and optimization algorithms can easily modify the parameters of each function used.

3.8. Animal Research

This study uses already published data of animal experimentation (Aydin et al.). All animal
care and experimentations were performed in accordance with the INSERM Animal Care and

Use Committee guidelines (protocol numbers CEEA34.SC.122.12 and CEEA34.SC.123.12).

4. Results

Here we present the use of Iliski to find the best mathematical representation of neurovascular
coupling, an ensemble of cellular mechanisms that links brain activation to local increases of
blood flow. Neural activity is reported by GCaMP6f2¢, a calcium-sensitive protein expressed in
specific neurons. Blood flow is quantified by measuring red blood cells velocity changes in

capillaries?’.

Several deconvolution and function optimization algorithms are provided. Choosing the
algorithm(s) and settings to compute a TF that gives faithful and robust predictions is not
always a straightforward task. It must be done according to the data features. Here we use some
data from our published study on neurovascular coupling?> to point out how TFs change with
different algorithms and settings, and we show the critical points in the usage of non-
deterministic methods. Finally, we propose a step-by-step guide to optimize the best TF on

practical situations.

4.1. Choosing the best TF computation approach

Figure 2 shows TF computation with different settings over the same couple of signals:

neuronal (Ca%*) and vascular (red blood cells velocity) activations recorded in a mouse upon
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odor application. Our example data display unavoidable and complex noise coming from many
sources: the biological system, the optical setup, the electronics, etc. Deconvolution with
Fourier or Toeplitz approaches predicts the vascular responses very well for a given data set.
However, the high-frequency noise is amplified by deconvolution24 and transmitted to the TF,
the predictions are not robust across data sets and the actual dynamics of neurovascular
coupling is completely hidden in the TF noise (Fig 2). In this example, we show what we regard
as a typical case of overfitting. The TF is capturing the high frequency noise of the system
because it does not have any previous expectations for the shape of the relationship between
the input and the output signals. This contrasts to the optimization of a parametric function
approach which, although it imposes constraints on the shape of the TF, gives meaningful
neurovascular relationship and does not need noise clearing. In blood flow-based
neuroimaging, the standard function used to represent neurovascular coupling is composed of
one or two I" functions, depending on the nature of the signals, i.e purely vascular or based on

oxygen level2s,
Below is the one I'-driven function we used with our data.

(t — ps)pl_l X pé)l X e_pZX(t_p3)
I'(p1)

Where p1,., p+ are the parameters to optimize and H is the Heaviside function to include a time-

TF(t) = H(t —p3) X ps X

shift parameter (p3) which, in some cases, significantly improved the prediction and is a known
biological phenomenon to consider??. Its four parameters are not all independent from one
another, e.g. p;, p, and p, all impact the TF amplitude. This inter-dependency between the
parameters brings an ill-posed optimization problem with multiple local minima of the cost

function, the sum of the residual squares, in the 4D space of the parameters.

A derivative-free optimization method (provided by Matlab and used previously®) is provided

by the fminsearch function in Matlab. This approach on our data produced a TF with more than
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one underivable point that is not representative of the smooth dynamic of neurovascular

coupling.

Another common option is provided by Quasi-Newton optimization algorithms: for this
approach too, we tested an unconstrained built-in method (fminunc function, Matlab). This
prediction is, overall, as good as with fminsearch (Fig 2, Pearson coefficients, fminunc vs.
fminsearch: 0.95 vs. 0.96), but the onset phase is not properly fit. Moreover, although not
evident from the plot, the optimized time shift was negative (-120 ms), implying that the onset

of the vascular response precedes the neuronal activation.

All the optimization methods tested above are deterministic, meaning that repeating them with
the same initial parameters will bring the same result. The pitfall of these methods when
applied to ill-posed problem is that optimization process will get attracted to the nearest local
minimum, regardless of the many other deeper minima, which may be far away in the
parameters space. In other words, deterministic algorithms are sensitive to the initial

parameters set before starting the optimization.

Non-deterministic algorithms exist to overcome the local minimum issue, adding some level of
randomness in the optimization process, and for this purpose Iliski uses the Simulated
Annealing algorithm. Each optimization run can yield a different result, reaching possibly a
different cost function’s minimum each time. We define as ‘run’ a single application of the
optimization with a given set of initial values, and ‘iteration’ the ensemble of runs sharing the
same initial values. By running the algorithm multiple times, one can choose the result with the
lowest residual, while avoiding TFs which shape are biologically not acceptable. In Aydin et al.
(2020), we described a workflow of runs and iterations to get to biologically consistent TFs (see
Supplementary Figure 1). To speed up computation, we imposed bonds over the parameters.

Note that such bonds can be set through the Iliski GUI for any constrainable algorithm.
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Using our data, Simulated Annealing gave a smooth TF and a prediction as good as fminsearch
for the onset phase of the vascular response. The data shown in Fig 2 is representative of the
rest of the data. In fact, optimization of TFs using neural and vascular recordings from other
mice, tested with the same odor stimulation, produced similar residual values of the cost
function across the 3 optimization algorithms presented above (1-way ANOVA, F(2,17)=0.035,
p = 0.97, Fig 3A). However, as in the example of Fig 2, deterministic algorithms are prone to
biologically inconsistent TFs (Fig 3B). The non-deterministic, Simulated Annealing algorithm
with subsequent iterations method allows to efficiently exclude these TFs and obtain the best
trade-off between prediction performance and biological consistency at the cost of a longer
computation time. Direct deconvolution is a good option when the goal is the prediction quality
within the training database. Deterministic optimization algorithms are fast but yield to TFs
that may have biologically inconsistent dynamics. Note that for all the computations we used a

short At (50 ms) for interpolation to preserve most of the information.

4.2. Evaluating the number of runs in a non-deterministic case

As already mentioned, the Simulated Annealing algorithm requires several runs and iterations
to obtain a good TF. In our experience, starting the optimization with a ‘bad’ TF - whose shape
is different from what is expected for the processed dataset - helps to collect more local minima
in a pool of optimization runs. For example, in our previous study?25, we proposed iterations of
50 runs and started with the initial values of the standard TF (one I' HRF) which, peaking at 5
seconds, turned to be much slower than any of the optimized TFs. The sequence of 50-runs
iterations stopped when, within an iteration, no clear improvement was found in the optimized
TF25. On average, 2 iterations were sufficient to get a stable TF with Pearson coefficient above
0.9. Here, we investigated if a higher number of runs is beneficial to the detection of the
minimum of the cost function and if it prevents the need for further iterations. We compared

9
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50 and 200 runs with single and double iterations, in cascade (Fig 4A). In a mouse dataset, we
observed a non-significant trend towards more scattered TFs shapes for computation using 50
runs versus 200 runs (1-way ANOVA, F(3, 16) = 2.086, p = 0.14, Fig 4B). Similarly, the quality
of the TFs did not significantly improve with increasing runs (1-way ANOVA, F (3, 16) = 2.299,
p = 0.12). As a result, TFs with fast dynamics (peaking within 1 and 2 sec), was a common
feature independently of the adopted protocol (Fig 4C). In a dataset from another mouse (Fig
4D,E), TFs with sparse time to peak values after 200 runs improved after a second iteration,
with the same number of runs (2.3 £ 0.3 s VS 1.5 + 0.1 s (mean * SEM), two-tailed T-test,
unpaired, p = 0.02 < 0.05). Note that this compression of TF dynamics was not accompanied by
a significant improvement of the TF quality (residuals: 10.1 + 2.1 vs. 6.9 = 0.8 (mean = SEM) for
200 and 200 + 200 runs respectively, two-tailed T-test, unpaired, p = 0.19). To conclude,
depending on the input/output signals, non-deterministic algorithms can produce TFs with

different dynamics but close performances in the prediction.

4.2. Guide to choose the algorithm best fitting your needs

We provide a decision diagram to choose the best approach to compute a TF based on the
features of the user’s dataset (Fig 5). Nonetheless, we believe it is always a good choice to test

different approaches before making the final choice.

5. Discussion

Iliski provides a user friendly, interactive and rich in option software for quickly testing
different methods and settings to compute TFs between biological events. In addition to its
standard integrated functions, it also allows for user-defined functions of any number of
parameters. Using data from the NVC field, we demonstrate how critical is the choice of the
method for computing TFs and the caveats of some parameters such as the number of iterations

10
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necessary to non-deterministic algorithms. Note that we did not report the influence of
smoothing, interpolation, fitting and cost functions choice which are also known to affect the
final result. The use of multimodal datasets, i.e. neuronal calcium signal, measurements of
vascular responses at both the microscopic and mesoscopic scales enabled us to demonstrate
that NVC is represented by a similar TF which is much faster than the classical HRF, a finding

which is getting accepted in the field of brain imaging based on blood flow?>25:30.31,

6. Availability and Future Directions

lliski is open-source and freely available under the Creative Commons Attribution 4.0
International (CC BY 4.0) license. Iliski is maintained on GitLab, enabling user-friendly bug
report and community work to make the tool fit the users’ need. It can be found here:

https://gitlab.com/AliK A/iliski/.

In the neurovascular imaging field, computing the hemodynamic response function is
paramount to interpreting vascular activation in terms of neural activation. In any other field,
computing TFs may be of help to go deeper in the interpretation of the results. For these
reasons, we think it is extremely helpful to have a data analysis tool which lets fast testing of

different algorithms with a user-friendly interface.

7. Supporting information

e GitLab repository: https://gitlab.com/AliK A/iliski/

e Example data: http://doi.org/10.5281/zenodo.3773863

e User Manual: https://gitlab.com /AliK A/iliski/-

/raw/master/Iliski User Manual.pdf?inline=false
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Fig 1. Overview of lliski.

(A) lliski has a clear interface with tabs bringing through the analysis steps. (B)
The usage of lliski are many; although it has been conceived for biological data,
there is no limitation to load any discretized signal, serving as a tool for fast
testing different approaches for TFs computation. (C) lliski workflow is modular
so that signal pre-processing is optional and functions to compute TFs can be
modified by the user preserving the I/O modules.
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Fig 2. Comparison of deconvolution and optimization algorithms on a batch of data.
Odor stimulation elicited a neuronal response in the Olfactory Bulb of a mouse, reported by a
calcium-dependent fluorescent signal (in blue, left panel), providing the input of TF computation.
Output is given by the vascular response, measured as the change in speed of red blood cells
flowing inside a capillary proximal to the recorded neuronal activation (in yellow, right panel). Both
experimental data have been resampled at 50ms and used to compute a set of TFs (in orange)
either with direct deconvolution approaches (Fourier or Toeplitz methods, middle-upper panel
TFs) or with 1-T" function optimization performed by 3 different algorithms (middle-lower panel TFs).
Complex TFs bring accurate prediction but amplify the noise of the data used to deconvolve them,
with a consequent loss of robustness on other datasets. Smoother TFs are less accurate on the
training dataset, but much robust when applied to test datasets.
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Fig 3. Prediction performance of different optimization
algorithms.

(A) 3 algorithms were compared in terms of the residuals of the cost
function of the optimized TF on 7 mice datasets (Derivative free
algorithm failed in optimizing a TF in a mouse). No significant
difference was found across the 3 methods. (B) However, simulated
annealing was the only approach to provide TFs consistent with the
nature of biological data (TF with no more than 1 non-derivable point),
while both the other deterministic methods run into inconsistent TFs in
roughly 60% of the cases.
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Fig 4. Influence of the number of runs and iterations on the TF shape and quality.

(A) Using the Simulated Annealing algorithm, we tested 4 protocols of 50 or 200 optimization runs, either done a single time or
repeated (5 TFs computed for each protocol). (B) Residuals of the cost function do not significantly differ across the protocols,
although the protocols with the highest number or runs show a trend of smaller residuals. (C) Similarly, there was no significant
difference for TFs time-to-peak values. (D, left) Same protocols comparison on a dataset from a different mouse revealed a sparse
dynamic of optimized TFs, even if the best TFs were selected on a pool of many TFs (200 runs). (D, right) A second iteration of
200 runs gave more homogeneous TFs dynamics. (E) Quantification of the dynamic heterogeneity was made by measuring the
time-to-peak which resulted in a scattered distribution for the 200 runs protocol, packed up repeating the same iteration a second
time.
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Fig 5. Decision tree to help choosing the most efficient method to compute a TF with lliski, based on
the data features.
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