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1.  Abstract 11 

Understanding the relationships between biological events is paramount to unravel 12 

pathophysiological mechanisms. These relationships can be modeled with Transfer Functions 13 

(TFs), with no need of a priori hypotheses as to the shape of the transfer function. Here we 14 

present Iliski, a software dedicated to TFs computation between two signals. It includes 15 

different pre-treatment routines and TF computation processes: deconvolution, deterministic 16 

and non-deterministic optimization algorithms that are adapted to disparate datasets. We 17 

apply Iliski to data on neurovascular coupling, an ensemble of biological events that link 18 

neuronal activity to local changes of blood flow, highlighting the software benefits and caveats 19 

in the computation and evaluation of TFs. We also propose a workflow that will help users to 20 

choose the best computation according to the dataset. Iliski is available under the open-source 21 

license CC BY 4.0 on GitLab (https://gitlab.com/AliK_A/iliski) and can be used on the most 22 

common operating systems, either within the MATLAB environment, or as a standalone 23 

application. 24 

 25 
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2.  Introduction 26 

Modelling and understanding of the relationship between complex and intermingled biological 27 

signals is often difficult, particularly when the drivers of the signals are unknown. The problem 28 

of the relationship between two time series can be address using deconvolution, which 29 

provides Transfer Functions (TFs) representative of the system processing on the input signal 30 

to generate the output signal1. Extracting the transfer function of a neuron or neurons is widely 31 

used in neurobiological studies2–9, and is widely used to solve general problems in signal 32 

analysis, such as predicting the output of complex electrical circuits10 or other industrial 33 

systems for which a proper model is very complex due to multiple processes working in 34 

parallel11. In brain imaging based on blood flow dynamics, transfer functions are classically 35 

used to lump the multitude of cellular and molecular processes linking neural activation to 36 

changes in blood flow.  This coupling between neural activity and hemodynamics is known as 37 

neurovascular coupling (NVC)12. While there are many successful phenomenological models of 38 

NVC3,13–17, most physiology-based models of neurovascular coupling18–21 focus on a single 39 

mechanism. As NVC is mediated through multiple processes, a more integrated approach is 40 

necessary. NVC has often been assessed with deconvolution8,22, either in the frequency domain 41 

or with matrix-based approaches, like Toeplitz matrices23. While these approaches allow the 42 

unbiased extraction of the TF, these deconvolution methods suffer from sensitivity to noise, 43 

affecting the quality of the computed TFs. Reducing the noise (or bandwidth) of the signals 44 

improves the estimate of the TF. Alternatively, one can opt for optimization of known functions 45 

or a kernel of functions7,9. The first option may lead to information loss, e.g. in cases where the 46 

noise is not well characterized. Sophisticated smoothing methods partially prevent this loss, 47 

like Savitzky-Golay filter, or noise modelling as proposed by Seghouane and colleagues24. The 48 

second option relies on parametric functions to find the TF best linking the input to the output 49 

signals.  The transfer function for neural activity to hemodynamic signals has been canonically 50 
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modeled using a gamma-distribution function3,14–16.  While making assumptions as to the shape 51 

of the TF has some drawbacks, it is robust in the face of noise and generates parametric 52 

representations of intrinsically smooth TFs. These approaches still can suffer from 53 

under/overfitting and the search for the minimum of the cost function for ill-posed problems 54 

may represent a challenging exercise. A valuable help comes from non-deterministic 55 

optimizations like simulated annealing or genetic algorithms, which despite their 56 

computational expense have potential advantages in extracting TFs from time series. 57 

 Recently, our group has been extensively involved in TF computation of neurovascular 58 

coupling in a study based on multi-modal recordings, namely two-photon microscopy and 59 

ultra-fast functional ultrasound25. For the required task, we comprehensively tested many 60 

deconvolution and optimization algorithms to choose the best-suited approach. We noticed 61 

that there is no standard software package providing all these different TF extraction tools, nor 62 

a program where all these approaches are available in a comfortable signal pre-treatment and 63 

I/O workflow. Here, we present Iliski ([ɪlɪʃkɪ], meaning “relationship” in Turkish), a software 64 

which contains all the functionalities that we previously used (Aydin et al.) and which, being 65 

open source, can be further improved by the users. 66 

 67 

3.  Design and Implementation 68 

Iliski can compute TFs between an input and an output time series, regardless of their nature. 69 

The originality of Iliski resides in its multiple options to process and analyze input signals. Iliski 70 

provides users with efficient pre-treatment and several deconvolution or optimization 71 

algorithms, through a clear graphic interface. It is meant to be easy-to-use for anyone, even with 72 

basic digital signal processing skills. 73 
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Iliski can be used either as a suite of functions or through a Graphical User Interface (Fig 1A). 74 

Functions are grouped according to the analysis workflow to keep the interface simple. Fig 1B 75 

shows the general purpose of Iliski.  76 

 77 

3.1.  Data loading and pre-treatment 78 

We propose two input files format: either plain text files or HDF5 data, the latter being an open-79 

source file format with advanced database features. As experimental acquisitions are prone to 80 

multiple component noise, we provided, as an option to the analysis workflow, smoothing 81 

(Savitzky-Golay method) and median filter functions, to exclude outliers. The input and output 82 

signals are interpolated to a chosen time interval (𝛥𝑡). Both signals can be cut between two 83 

given time points to study continuous recordings while computing TFs on chunks of signal (Fig 84 

1C). 85 

 86 

3.2.  TF computation options 87 

Two main types of TF computation are proposed: deconvolution or function optimization. The 88 

former is straightforward, either Toeplitz or Fourier deconvolution, and does not require any 89 

specific settings. The latter is the optimization of a parametric function, which requires further 90 

settings depending on the chosen algorithm. Beside the proposed fitting functions, the users 91 

can input their own function in the graphical interface or add it to the default ones by modifying 92 

a text file (the procedure is described in the Iliski Manual). Optimization of parameters can be 93 

done with various Matlab algorithms, each coming with pros and cons (see Results section) (Fig 94 

1C, middle). 95 

 96 
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3.3.  Evaluation of the TF accuracy 97 

A TF is evaluated comparing its prediction – the convolution of the input signal and the TF - to 98 

the expected output. Two metrics are used in Iliski: the Pearson coefficient (corrcoef function, 99 

Matlab, Fig 1C, right) and the residual sum of squares. The former was chosen to have a metric 100 

solely focusing on the dynamic, allowing for inter-subject comparisons, while the latter 101 

evaluates the overall fit, considering the amplitude of the prediction. The cost function of all the 102 

optimization algorithms tested in this article is the residual sum of squares (hereinafter 103 

referred to as "residuals").  104 

 105 

3.4.  Post-computation 106 

The results structure is arranged to be as informative as possible while avoiding useless 107 

repetition of data. Iliski allows for loading previously computed results structures to check 108 

them again. After TF computation, results structure can be saved either as XLS file, readable by 109 

any Excel-like software, or as a MAT-file (MATLAB formatted binary file format), but it is also 110 

available in Matlab workspace to be exported in various data formats by the user. 111 

3.7.  Implementation 112 

Iliski is accessible both as a GUI and as a set of functions to be used in scripts. It has been 113 

developed using Matlab R2018a, with the following dependencies: Optimization Toolbox, 114 

Signal Processing Toolbox and Global Optimization Toolbox. 115 

Common user errors are thoroughly prevented by various messages and fail safes.  In parallel, 116 

all errors are treated and saved in a LOG file, to allow for efficient bug-fixing by any developer. 117 

We purposely kept just a few parameters to modify through the GUI, with the goal of providing 118 

an easy-to-use tool to people not used to these functions. In most cases, Matlab default 119 
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parameters of each deconvolution/optimization function worked well with our data, and we 120 

believe that it can be extended to many biological datasets. However, a user skilled with Matlab 121 

and optimization algorithms can easily modify the parameters of each function used.  122 

3.8. Animal Research 123 

This study uses already published data of animal experimentation (Aydin et al.). All animal 124 

care and experimentations were performed in accordance with the INSERM Animal Care and 125 

Use Committee guidelines (protocol numbers CEEA34.SC.122.12 and CEEA34.SC.123.12). 126 

4.  Results 127 

Here we present the use of Iliski to find the best mathematical representation of neurovascular 128 

coupling, an ensemble of cellular mechanisms that links brain activation to local increases of 129 

blood flow. Neural activity is reported by GCaMP6f26, a calcium-sensitive protein expressed in 130 

specific neurons. Blood flow is quantified by measuring red blood cells velocity changes in 131 

capillaries27.  132 

Several deconvolution and function optimization algorithms are provided. Choosing the 133 

algorithm(s) and settings to compute a TF that gives faithful and robust predictions is not 134 

always a straightforward task. It must be done according to the data features. Here we use some 135 

data from our published study on neurovascular coupling25 to point out how TFs change with 136 

different algorithms and settings, and we show the critical points in the usage of non-137 

deterministic methods. Finally, we propose a step-by-step guide to optimize the best TF on 138 

practical situations. 139 

4.1.  Choosing the best TF computation approach 140 

Figure 2 shows TF computation with different settings over the same couple of signals: 141 

neuronal (Ca2+) and vascular (red blood cells velocity) activations recorded in a mouse upon 142 
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odor application. Our example data display unavoidable and complex noise coming from many 143 

sources: the biological system, the optical setup, the electronics, etc. Deconvolution with 144 

Fourier or Toeplitz approaches predicts the vascular responses very well for a given data set. 145 

However, the high-frequency noise is amplified by deconvolution24 and transmitted to the TF, 146 

the predictions are not robust across data sets and the actual dynamics of neurovascular 147 

coupling is completely hidden in the TF noise (Fig 2). In this example, we show what we regard 148 

as a typical case of overfitting. The TF is capturing the high frequency noise of the system 149 

because it does not have any previous expectations for the shape of the relationship between 150 

the input and the output signals. This contrasts to the optimization of a parametric function 151 

approach which, although it imposes constraints on the shape of the TF, gives meaningful 152 

neurovascular relationship and does not need noise clearing. In blood flow-based 153 

neuroimaging, the standard function used to represent neurovascular coupling is composed of 154 

one or two 𝛤 functions, depending on the nature of the signals, i.e purely vascular or based on 155 

oxygen level28.  156 

Below is the one 𝛤-driven function we used with our data.  157 

𝑇𝐹(𝑡) = 𝐻(𝑡 − 𝑝3) × 𝑝4 ×
(𝑡 − 𝑝3)

𝑝1−1 × 𝑝2
𝑝1 × 𝑒−𝑝2×(𝑡−𝑝3)

Γ(𝑝1)
 158 

Where p1 ,.., p4 are the parameters to optimize and H is the Heaviside function to include a time-159 

shift parameter (p3) which, in some cases, significantly improved the prediction and is a known 160 

biological phenomenon to consider29. Its four parameters are not all independent from one 161 

another, e.g. 𝑝1, 𝑝2 and 𝑝4 all impact the TF amplitude. This inter-dependency between the 162 

parameters brings an ill-posed optimization problem with multiple local minima of the cost 163 

function, the sum of the residual squares, in the 4D space of the parameters.  164 

A derivative-free optimization method (provided by Matlab and used previously6) is provided 165 

by the fminsearch function in Matlab. This approach on our data produced a TF with more than 166 
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one underivable point that is not representative of the smooth dynamic of neurovascular 167 

coupling.  168 

Another common option is provided by Quasi-Newton optimization algorithms: for this 169 

approach too, we tested an unconstrained built-in method (fminunc function, Matlab). This 170 

prediction is, overall, as good as with fminsearch (Fig 2, Pearson coefficients, fminunc vs. 171 

fminsearch: 0.95 vs. 0.96), but the onset phase is not properly fit. Moreover, although not 172 

evident from the plot, the optimized time shift was negative (-120 ms), implying that the onset 173 

of the vascular response precedes the neuronal activation.  174 

All the optimization methods tested above are deterministic, meaning that repeating them with 175 

the same initial parameters will bring the same result. The pitfall of these methods when 176 

applied to ill-posed problem is that optimization process will get attracted to the nearest local 177 

minimum, regardless of the many other deeper minima, which may be far away in the 178 

parameters space. In other words, deterministic algorithms are sensitive to the initial 179 

parameters set before starting the optimization.   180 

Non-deterministic algorithms exist to overcome the local minimum issue, adding some level of 181 

randomness in the optimization process, and for this purpose Iliski uses the Simulated 182 

Annealing algorithm. Each optimization run can yield a different result, reaching possibly a 183 

different cost function’s minimum each time. We define as ‘run’ a single application of the 184 

optimization with a given set of initial values, and ‘iteration’ the ensemble of runs sharing the 185 

same initial values.  By running the algorithm multiple times, one can choose the result with the 186 

lowest residual, while avoiding TFs which shape are biologically not acceptable. In Aydin et al. 187 

(2020), we described a workflow of runs and iterations to get to biologically consistent TFs (see 188 

Supplementary Figure 1). To speed up computation, we imposed bonds over the parameters. 189 

Note that such bonds can be set through the Iliski GUI for any constrainable algorithm. 190 
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Using our data, Simulated Annealing gave a smooth TF and a prediction as good as fminsearch 191 

for the onset phase of the vascular response. The data shown in Fig 2 is representative of the 192 

rest of the data. In fact, optimization of TFs using neural and vascular recordings from other 193 

mice, tested with the same odor stimulation, produced similar residual values of the cost 194 

function across the 3 optimization algorithms presented above (1-way ANOVA, F(2, 17) = 0.035, 195 

p = 0.97, Fig 3A). However, as in the example of Fig 2, deterministic algorithms are prone to 196 

biologically inconsistent TFs (Fig 3B). The non-deterministic, Simulated Annealing algorithm 197 

with subsequent iterations method allows to efficiently exclude these TFs and obtain the best 198 

trade-off between prediction performance and biological consistency at the cost of a longer 199 

computation time. Direct deconvolution is a good option when the goal is the prediction quality 200 

within the training database. Deterministic optimization algorithms are fast but yield to TFs 201 

that may have biologically inconsistent dynamics. Note that for all the computations we used a 202 

short 𝛥𝑡 (50 ms) for interpolation to preserve most of the information. 203 

 204 

4.2.  Evaluating the number of runs in a non-deterministic case 205 

As already mentioned, the Simulated Annealing algorithm requires several runs and iterations 206 

to obtain a good TF. In our experience, starting the optimization with a ‘bad’ TF - whose shape 207 

is different from what is expected for the processed dataset - helps to collect more local minima 208 

in a pool of optimization runs. For example, in our previous study25, we proposed iterations of 209 

50 runs and started with the initial values of the standard TF (one 𝛤 HRF) which, peaking at 5 210 

seconds, turned to be much slower than any of the optimized TFs. The sequence of 50-runs 211 

iterations stopped when, within an iteration, no clear improvement was found in the optimized 212 

TF25. On average, 2 iterations were sufficient to get a stable TF with Pearson coefficient above 213 

0.9. Here, we investigated if a higher number of runs is beneficial to the detection of the 214 

minimum of the cost function and if it prevents the need for further iterations. We compared 215 
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50 and 200 runs with single and double iterations, in cascade (Fig 4A). In a mouse dataset, we 216 

observed a non-significant trend towards more scattered TFs shapes for computation using 50 217 

runs versus 200 runs (1-way ANOVA, F(3, 16) = 2.086, p = 0.14, Fig 4B). Similarly, the quality 218 

of the TFs did not significantly improve with increasing runs (1-way ANOVA, F (3, 16) = 2.299, 219 

p = 0.12). As a result, TFs with fast dynamics (peaking within 1 and 2 sec), was a common 220 

feature independently of the adopted protocol (Fig 4C). In a dataset from another mouse (Fig 221 

4D,E), TFs with sparse time to peak values after 200 runs improved after a second iteration, 222 

with the same number of runs (2.3 ± 0.3 s VS 1.5 ± 0.1 s (mean ± SEM), two-tailed T-test, 223 

unpaired, p = 0.02 < 0.05). Note that this compression of TF dynamics was not accompanied by 224 

a significant improvement of the TF quality (residuals: 10.1 ± 2.1 vs. 6.9 ± 0.8 (mean ± SEM) for 225 

200 and 200 + 200 runs respectively, two-tailed T-test, unpaired, p = 0.19). To conclude, 226 

depending on the input/output signals, non-deterministic algorithms can produce TFs with 227 

different dynamics but close performances in the prediction.  228 

4.2.  Guide to choose the algorithm best fitting your needs 229 

We provide a decision diagram to choose the best approach to compute a TF based on the 230 

features of the user’s dataset (Fig 5). Nonetheless, we believe it is always a good choice to test 231 

different approaches before making the final choice.  232 

 233 

5.  Discussion 234 

Iliski provides a user friendly, interactive and rich in option software for quickly testing 235 

different methods and settings to compute TFs between biological events. In addition to its 236 

standard integrated functions, it also allows for user-defined functions of any number of 237 

parameters. Using data from the NVC field, we demonstrate how critical is the choice of the 238 

method for computing TFs and the caveats of some parameters such as the number of iterations 239 
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necessary to non-deterministic algorithms. Note that we did not report the influence of 240 

smoothing, interpolation, fitting and cost functions choice which are also known to affect the 241 

final result. The use of multimodal datasets, i.e. neuronal calcium signal, measurements of 242 

vascular responses at both the microscopic and mesoscopic scales enabled us to demonstrate 243 

that NVC is represented by a similar TF which is much faster than the classical HRF, a finding 244 

which is getting accepted in the field of brain imaging based on blood flow5,25,30,31. 245 

6.  Availability and Future Directions 246 

Iliski is open-source and freely available under the Creative Commons Attribution 4.0 247 

International (CC BY 4.0) license. Iliski is maintained on GitLab, enabling user-friendly bug 248 

report and community work to make the tool fit the users’ need. It can be found here: 249 

https://gitlab.com/AliK_A/iliski/. 250 

In the neurovascular imaging field, computing the hemodynamic response function is 251 

paramount to interpreting vascular activation in terms of neural activation. In any other field, 252 

computing TFs may be of help to go deeper in the interpretation of the results. For these 253 

reasons, we think it is extremely helpful to have a data analysis tool which lets fast testing of 254 

different algorithms with a user-friendly interface. 255 

7.  Supporting information 256 

• GitLab repository: https://gitlab.com/AliK_A/iliski/ 257 

• Example data: http://doi.org/10.5281/zenodo.3773863 258 

• User Manual: https://gitlab.com/AliK_A/iliski/-259 

/raw/master/Iliski_User_Manual.pdf?inline=false  260 
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9.  Figures  274 

Fig 1. Overview of Iliski. 

(A) Iliski has a clear interface with tabs bringing through the analysis steps. (B) 
The usage of Iliski are many; although it has been conceived for biological data, 
there is no limitation to load any discretized signal, serving as a tool for fast 
testing different approaches for TFs computation. (C) Iliski workflow is modular 
so that signal pre-processing is optional and functions to compute TFs can be 
modified by the user preserving the I/O modules. 
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 276 

 277 

 

Fig 2. Comparison of deconvolution and optimization algorithms on a batch of data.  

Odor stimulation elicited a neuronal response in the Olfactory Bulb of a mouse, reported by a 
calcium-dependent fluorescent signal (in blue, left panel), providing the input of TF computation. 
Output is given by the vascular response, measured as the change in speed of red blood cells 
flowing inside a capillary proximal to the recorded neuronal activation (in yellow, right panel). Both 
experimental data have been resampled at 50ms and used to compute a set of TFs (in orange) 
either with direct deconvolution approaches (Fourier or Toeplitz methods, middle-upper panel 

TFs) or with 1- function optimization performed by 3 different algorithms (middle-lower panel TFs). 
Complex TFs bring accurate prediction but amplify the noise of the data used to deconvolve them, 
with a consequent loss of robustness on other datasets. Smoother TFs are less accurate on the 
training dataset, but much robust when applied to test datasets. 
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 282 

 

Fig 3. Prediction performance of different optimization 
algorithms. 

(A) 3 algorithms were compared in terms of the residuals of the cost 
function of the optimized TF on 7 mice datasets (Derivative free 
algorithm failed in optimizing a TF in a mouse). No significant 
difference was found across the 3 methods. (B) However, simulated 
annealing was the only approach to provide TFs consistent with the 
nature of biological data (TF with no more than 1 non-derivable point), 
while both the other deterministic methods run into inconsistent TFs in 
roughly 60% of the cases. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.21.423764doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423764
http://creativecommons.org/licenses/by/4.0/


 

 16 

  283 

 284 

 285 

Fig 4. Influence of the number of runs and iterations on the TF shape and quality. 

(A) Using the Simulated Annealing algorithm, we tested 4 protocols of 50 or 200 optimization runs, either done a single time or 
repeated (5 TFs computed for each protocol). (B) Residuals of the cost function do not significantly differ across the protocols, 
although the protocols with the highest number or runs show a trend of smaller residuals. (C) Similarly, there was no significant 
difference for TFs time-to-peak values. (D, left) Same protocols comparison on a dataset from a different mouse revealed a sparse 
dynamic of optimized TFs, even if the best TFs were selected on a pool of many TFs (200 runs). (D, right) A second iteration of 
200 runs gave more homogeneous TFs dynamics. (E) Quantification of the dynamic heterogeneity was made by measuring the 
time-to-peak which resulted in a scattered distribution for the 200 runs protocol, packed up repeating the same iteration a second 
time.  
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