

easyMF: A Web Platform for Matrix Factorization-based Biological Discovery from Large-scale Transcriptome Data

3 Wenlong Ma^{1,†}, Siyuan Chen^{1,2,†}, Jingjing Zhai^{1,2}, Yuhong Qi^{1,2}, Shang Xie^{1,2}, Minggui
4 Song¹, Chuang Ma^{1,2,*}

5

6 *¹State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics,*
7 *College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100,*
8 *China*

⁹ *Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of*
¹⁰ *Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi,*
¹¹ *Yangling 712100, China*

12

[†]These authors contributed equally to this article.

*Author for correspondence: Chuang Ma (chuangma2006@gmail.com;
cma@nwafu.edu.cn)

16

17 **Running title: Ma W et al /Matrix factorization-based transcriptome analysis**

18

19 Word counts: 8702

20 References: 66

21 Figures: 5

22 Supplementary tables: 9

23 Supplementary figures: 6

24 Counts of letters in the article title: 98

25 **Keywords:** 6

26 Words in Abstract: 162

27

28

29

30 **Abstract**

31 With the development of high-throughput experimental technologies, large-scale RNA
32 sequencing (RNA-Seq) data have been and continue to be produced, but have led to
33 challenges in extracting relevant biological knowledge hidden in the produced
34 high-dimensional gene expression matrices. Here, we present easyMF, a user-friendly
35 web platform that aims to facilitate biological discovery from large-scale
36 transcriptome data through matrix factorization (MF). The easyMF platform enables
37 users with little bioinformatics experience to streamline transcriptome analysis from
38 raw reads to gene expression and to decompose expression matrix from thousands of
39 genes to a handful of metagenes. easyMF also offers a series of functional modules
40 for metagene-based exploratory analysis with an emphasis on functional gene
41 discovery. As a modular, containerized and open-source platform, easyMF can be
42 customized to satisfy users' specific demands and deployed as a web server for broad
43 applications. easyMF is freely available at <https://github.com/cma2015/easyMF>. We
44 demonstrated the application of easyMF with four case studies using 940 RNA
45 sequencing datasets from maize (*Zea mays* L.).

46

47 Keywords: Galaxy, Integrative analysis, Matrix factorization, Metagene,
48 Transcriptome, RNA Sequencing

49

50

51

52

53

54

55

56

57

58

59

60 **Introduction**

61 High-throughput sequencing of RNA (RNA-Seq) is being used in almost all biology
62 and related research laboratories, and has become a key research tool for profiling
63 genome-wide gene expression in various species. The constant improvement of
64 RNA-Seq technologies coupled with sharp decreases in sequencing costs and data
65 generation timelines now enables investigators to perform sequencing-based
66 projects for hundreds of thousands of samples from different cells, tissues, organs,
67 experimental conditions, individuals and species (Cardoso-Moreira et al., 2019;
68 Nelms and Walbot, 2019; One Thousand Plant Transcriptomes, 2019; Sarropoulos et
69 al., 2019; Shulse et al., 2018; Qiu et al., 2020). The large-scale transcriptome
70 sequencing, however, results in considerable challenges for data analysis, as the
71 outputs are naturally represented as high-dimensional gene expression matrices (genes
72 in rows and samples in columns), from which it is difficult to extract new information
73 through traditional gene expression analysis approaches like differential expression
74 analysis and correlation-based statistical analysis.

75

76 Machine learning is a branch of artificial intelligence that enables computer
77 algorithms to learn hidden knowledge from Big Data in biology and other sciences
78 (Ma et al., 2014; Mooney and Pejaver, 2018; Cuocolo et al., 2019). Matrix
79 factorization (MF; also known as matrix decomposition) is a class of unsupervised
80 machine learning techniques that can decompose high-dimensional data into
81 low-dimensional structures, while preserving as much information as possible from
82 the original data (Koren et al., 2009) . With the development of a variety of computer
83 algorithms, such as principal component analysis (PCA) (Abdi and Williams, 2010),
84 independent component analysis (ICA) (Hyvarinen and Oja, 2000), and non-negative
85 matrix factorization (NMF) (Lee and Seung, 2000), MF is regarded as well suited for
86 large-scale transcriptome data analysis (Stein-O'Brien et al., 2018). MF reduces the
87 gene expression matrix from thousands of genes to a handful of metagenes, each of
88 which can represent a weighted combination of the individual genes. MF can also
89 decompose the gene expression matrix into a product of two low-dimensional

90 matrices: the amplitude matrix (AM; genes in rows and metagenes in columns) and
91 the pattern matrix (PM; metagenes in rows and samples in columns), which have
92 served as the basis for a series of metagene-base applications, such as sample
93 clustering analysis, functional gene discovery, cell type identification, and so on
94 (Stein-O'Brien et al., 2018; Noor et al., 2019; Sompairac et al., 2019; Nguyen and
95 Wang, 2020). Several MF-based pipelines are available, but these tools were designed
96 for specific or limited functionalities (**Table S1**). Moreover, when developing tools
97 for high-throughput sequencing data, ensuring reliability, reproducibility, flexibility
98 and ease of use become a crucial desideratum. Accordingly, the absence of a reliable,
99 reproducible, all-in-one, and easy-to-use platform is to a great extent obstructing
100 MF-based transcriptome analyses for both computational and experimental biologists.

101

102 To address this limitation, we here present easyMF, a web platform that facilitates
103 MF-based knowledge discovery from large-scale transcriptome data. The easyMF
104 platform was equipped using the Big-Data-supported Galaxy system with
105 user-friendly graphic user interfaces, allowing researchers with little programming
106 experience to streamline transcriptome analysis from raw reads to gene expression,
107 and to carry out our MF, and metagene-based exploratory analysis. All analysis data,
108 such as inputs, parameters, intermediate results, and outputs, are permanently
109 recorded in the ‘History’ panel of easyMF, making complex MF-based transcriptomic
110 analysis reproducible and amenable to collaborative modes. In addition to the Galaxy
111 system, easyMF was also powered with the advanced Docker packaging technology,
112 making it easy to install and deployable in user-customized hardware under different
113 operating systems (i.e., Windows, Linux, and Macintosh). With these flexible,
114 interactive, reproducible, and easy-to-use features, we expect easyMF to serve as a
115 valuable tool with broad application potential. We provide examples of the application
116 of easyMF to 940 RNA sequencing datasets of maize (*Zea mays* L.) inbred line B73.

117

118 **Results**

119 **Overview of easyMF**

120 The easyMF platform comprises three functional modules, named Matrix Preparation,
121 Matrix Factorization, and Deep Mining (**Figure 1**). Matrix Preparation was designed
122 to prepare a high-quality gene expression matrix for downstream analysis. Matrix
123 Factorization can be used to decompose the gene expression matrix into an AM and
124 PM using three different computer algorithms, i.e., PCA, ICA, and NMF. Deep
125 Mining was designed to perform metagene-based statistical analysis for sample
126 clustering, signature gene identification, functional gene discovery, cell type detection,
127 and pathway activity inference. These functional modules were built with a
128 comprehensive set of functions (**Table S2**), which can be selected by users to
129 customize their own pipelines for satisfying specific needs.

130

131 The easyMF platform is typically started with an input of a gene expression matrix, in
132 which genes are in rows and samples are in columns. The gene expression matrix can
133 also be automatically generated from raw reads using a bioinformatics pipeline
134 (**Figure S1**), which was specially designed for users unfamiliar with RNA-Seq data
135 analysis. After specifying the accession numbers of RNA-Seq datasets from the
136 National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
137 (GEO) and/or Sequence Read Archive (SRA) databases, the customized pipeline can
138 be implemented for a series of RNA-Seq data analyses, including data retrieval,
139 format transferring, quality control, reads mapping, and gene expression
140 quantification. To improve the quality of the gene expression matrix, easyMF removes
141 batch effects from different experiments using the sva function (Leek et al., 2012),
142 filters genes expressed at low levels with user-specified criteria, and removes outlier
143 samples using a sample-based PCA approach (Fehrmann et al., 2015).

144

145 The easyMF platform subsequently decomposes the gene expression matrix into a
146 product of the AM and PM with three optional algorithms, namely PCA, ICA and
147 NMF, which calculate metagenes through orthogonal decomposition, independent
148 decomposition and dependent decomposition, respectively. The number of metagenes
149 can be specified by users, or chosen according to optimized parameters: the internal

150 consistency of Cronbach's α value for PCA (Fehrman et al., 2015) and the inflection
151 point of the rate of the mean residual decline for ICA and NMF (Gaujoux and Seoighe,
152 2010). For each metagene, genes with dominant patterns (defined as signature genes)
153 are identified using patternMarkers (Stein-O'Brien et al., 2017) and the Pearson's
154 correlation coefficient (PCC) algorithm (see **Methods**; **Figure S2**). The
155 patternMarkers calculates the Euclidean distance between normalized AM coefficients
156 and the 0-1 pattern of metagenes. While the PCC algorithm scores the association
157 between gene expression values and PM coefficients.

158
159 The easyMF platform makes use of gene-level relationships in the AM for functional
160 gene discovery (Fehrman et al., 2015) and pathway activity inference (see **File S1**).
161 This platform also makes use of sample-level relationships in the PM to perform
162 temporal, spatial, and integrated transcriptome analysis. In the current version,
163 easyMF provides six optional algorithms (mclust (Scrucca et al., 2016), apcluster
164 (Bodenhofer et al., 2011), SSE, fpc (Hennig, 2013), vegan (Dixon, 2003), and gap
165 (Maechler et al., 2012)) to cluster samples using PM coefficients. The clusters are
166 visualized in plots, as well as tables, providing a quick overview of the relationships
167 between samples. The easyMF platform can also be used to determine the extent to
168 which genes change over time in response to perturbations (e.g., developmental time),
169 and does so by integrating gene expression values, and gene- and sample-level
170 relationships. It can also be used to identify signature genes dominated at specific
171 compartments of the transcriptomes with spatial resolution in individual tissue
172 samples (spatial transcriptomes), and to identify the type of unknown cells from
173 single-cell RNA-Seq data.

174
175 **Application of easyMF to 940 maize RNA-Seq samples**
176 To demonstrate the utility of easyMF, we used it to perform a large-scale analysis of
177 RNA-Seq data from maize B73 samples manually collected from the NCBI GEO and
178 SRA databases (**Table S3**). After a series of data processing steps (see **Methods**), a
179 maize gene expression matrix (denoted as G_1) of 28,874 protein-coding genes and 940

180 samples was constructed, in which each gene had FPKM (fragments per kilobase of
181 transcript per million mapped reads) ≥ 1 in at least 15 RNA-Seq samples. As one of
182 the most important sources of food, feed, and biofuel materials, maize seed has been
183 extensively characterized using RNA-Seq technologies to understand its complex
184 gene expression patterns at the genome-wide level. The availability of extensive
185 transcriptomes from 285 seed samples provided us an opportunity to explore the
186 ability of easyMF to be used to attain new knowledge about seeds.

187

188 **The easyMF platform is capable of effectively prioritizing seed-related genes**

189 A schematic overview of the application of easyMF to gene prioritization is depicted
190 in **Figure 2A** and **Figure S3**. easyMF first uses the PCA algorithm to decompose the
191 matrix G_1 into two matrices, namely amplitude matrix AM_1 and pattern matrix PM_1 .
192 At a threshold of Cronbach's $\alpha > 0.7$, easyMF generated 161 metagenes, capturing
193 96.4% of the variation in gene expression (**Figure S4**). Then, the performance of
194 easyMF in maize functional gene prioritization was extensively evaluated using the
195 leave-one-out cross-validation (LOOCV) strategy on 75 Gene Ontology (GO) terms
196 (**Table S4**), each of which consisted of 5~500 experimentally validated genes,
197 provided by Ensembl Plants (Bolser et al., 2017) (<http://plants.ensembl.org>) and
198 maize-GAMER (Wimalanathan et al., 2018). For each GO term, we quantified the
199 performance of easyMF using the area under the receiver operating characteristic
200 (ROC) curve (AUC) and the area under the self-ranked curve (AUSR) (for details, see
201 **Methods**). For a comparison, we also tested the recently proposed network-based
202 gene discovery system MaizeNet (Lee et al., 2019) and a random selection strategy
203 using the same LOOCV experiment. The MaizeNet system prioritizes functional
204 genes in maize using a co-functional network inferred from more than 20 distinct
205 types of genomic and proteomic data sets. The random selection process was repeated
206 100 times by randomly assigning gene identifiers to the score and rank results
207 obtained from PCA in each round of the LOOCV experiments. The mean evaluation
208 results were used for the random selection strategy. For AUC-based and AUSR-based
209 evaluations, easyMF performed much better than random selection, and exhibited

210 comparable or superior prediction performances as compared to the network-based
211 approach MaizeNet (**Figure 2B, C**).
212

213 These encouraging results prompted us to further access the ability of easyMF to
214 prioritize seed-related genes. A manual literature survey was conducted to identify 70
215 experimentally validated genes functionalized in maize seed development (**Table S5**).
216 The LOOCV experiments on these 70 seed-related genes showed AUSR values of
217 0.283, 0.168, and 0.046 (**Figure 2D**) and AUC values of 0.768, 0.591, and 0.500
218 (**Figure 2E**) for easyMF, MaizeNet, and random selection, respectively. Using all of
219 these 70 seed-related genes as input, easyMF generated a prediction model to identify
220 seed-related candidate genes at the genome scale. A detailed literature review showed
221 that four of the top 10 candidates predicted by easyMF have been experimentally
222 validated: *ZmNRPI* (*no-apical-meristem-related protein1*, Zm00001d040189) (Guo et
223 al., 2003; Haun and Springer, 2008; Yi et al., 2019), *ZmMYB127* (*MYB-transcription*
224 *factor 127*, Zm00001d041935) (Bernardi et al., 2019; Yi et al., 2019), *ZmTAR3*
225 (*tryptophan aminotransferase related3*, Zm00001d037674) (Bernardi et al., 2012;
226 Zhan et al., 2018) and *ZmEREB167* (*AP2-EREBP-transcription factor 167*,
227 Zm00001d032095) (Bernardi et al., 2019; Yi et al., 2019) (**Table S6**).
228

229 Overall, these results indicated easyMF to be a reliable and effective platform for
230 prioritizing functional genes through MF-based transcriptome analysis. Lists of
231 seed-related candidate genes prioritized by easyMF and MaizeNet are provided in
232 **Table S6** for the benefit of researchers who in the future may pursue experimental
233 validation.
234

235 **The easyMF platform can be used to perform robust sample clustering for**
236 **facilitating the identification of seed signature genes**

237 We next considered the application of easyMF to sample clustering of a large-scale
238 gene expression matrix. By implementing the NMF algorithm, easyMF decomposed
239 the gene expression matrix G_1 into two matrices, namely amplitude matrix AM_2 and

240 pattern matrix PM_2 , and reduced the dimension of G_1 from 28,874 genes to 11
241 metagenes (**Figure 3A**). Maize samples can then be analyzed by summarizing gene
242 expression patterns in terms of the coefficients of metagenes (i.e., the relative weights
243 of samples in PM_2). There were three metagenes (metagene1, metagene7, and
244 metagene10) that had significantly higher coefficients in seed samples than in
245 non-seed samples (**Figure 3B**), indicative of an association between these three
246 metagenes and seed samples. This association was further highlighted by a
247 hierarchical clustering analysis of the PM_2 (11 metagenes \times 940 samples), in which
248 all seed samples were clustered into three subgroups (**Figure 3A**).
249

250 Based on these three seed-related metagenes, we identified 774 signature genes
251 (metagene1: 216, metagene7: 213, and metagene10: 345) by using patternMarkers
252 and the PCC algorithm (**Supplemental Table S7**). Most (95.99%) of these 774 genes
253 were specially expressed in seed samples (**Figure 3C**), with this expression pattern
254 determined using the Tau method (Kryuchkova-Mostacci and Robinson-Rechavi,
255 2017), by which a tissue specificity score higher than 0.7 was measured. Several of
256 these signature genes have been experimentally associated with maize seed
257 development, including *ZmABI3* (*ABSCISIC ACID INSENSITIVE3*;
258 *Zm00001d001838*) (Ma et al., 2019), *ZmDE18* (*defective18*; *Zm00001d023718*)
259 (Bernardi et al., 2012), *ZmNAC130* (*NAC-transcription factor 130*, *Zm00001d008403*)
260 (Zhang et al., 2019), *ZmZAG2* (*Zea AGAMOUS homolog2*, *Zm00001d041781*)
261 (Schmidt et al., 1993), *ZmSBT2* (*subtilisin2*, *Zm00001d006669*) (Lopez et al., 2017),
262 and endosperm-specific transcription factors (TFs) *Opaque2* (*O2*; *Zm00001d018971*)
263 (Schmidt et al., 1990) and *Opaque11* (*O11*; *Zm00001d003677*) (Feng et al., 2018). In
264 maize kernel, the major chemical component is starch, which provides ~70% of the
265 kernel weight (Flint-Garcia et al., 2009). Of the above 774 signature genes, several
266 were starch-related genes. One representative example is *ZmBT1* (*brittle endosperm1*;
267 *Zm00001d015746*), a mutant of which severely reduces starch content (Shannon et al.,
268 1998). Maize kernels also contain several types of storage proteins, most of which are

269 zeins (Tsai, 1979). There were 21 zein-encoding genes identified as seed-related
270 signature genes with obviously high expression levels in both the middle and late
271 phases of seed development from 10 days after pollination (DAP), covering four
272 different types of subfamilies including α -, β -, γ -, and δ -zeins (**Figure 3D**). Gene
273 ontology (GO) enrichment analysis revealed several seed-related signature genes
274 associated with embryonic development, including two genes encoding seed
275 maturation proteins (Zm00001d026037 and Zm00001d024414), and a late
276 embryogenesis abundant gene *ZmRAB28* (*responsive to abscisic acid28*,
277 Zm00001d027740) (Niogret et al., 1996). We found that several of the MADS-box
278 (named for yeast *minichromosomal maintenance* [*MCM1*], plant *AGAMOUS* [*AG*]
279 and *DEFICIENS* [*DEF*], and human *serum response factor* [*SRF*]) TFs were also
280 identified as seed-related signature genes, and may be involved in ovule development.
281 Some such representative examples were *ZmMADS1* (Zm00001d023955), *ZmMADS6*
282 (Zm00001d017614), *ZmMADS27* (Zm00001d006094), *ZmMADSL6*
283 (Zm00001d031620), *ZmMADS24* (Zm00001d034047), and *ZmMADS7-LIKE*
284 (Zm00001d021057).

285
286 Further analysis of these seed-related signature genes, together with the ChIP-Seq
287 data of *O2* assayed at the stage of 15 DAP (Li et al., 2015), identified 32 signature
288 genes as *O2*-modulated and/or -bound target genes (**Figure 3E; Table S7**), including
289 α , β , and γ -zein genes (e.g., Zm00001d048809, Zm00001d048812,
290 Zm00001d035760), as well as functionally unannotated genes (e.g.,
291 Zm00001d019925, Zm00001d020498, Zm00001d048810, and Zm00001d019156).
292 Considering the characteristics of tissue specificity, these identified regulatory
293 relationships between seed-signature genes would be valuable for investigating
294 regulatory mechanisms occurring specifically in maize seed.

295
296 **Use of easyMF to reveal the relationship between time after pollination and gene**
297 **expression during early maize seed development**

298 Of 285 seed samples, 62 were harvested for 31 time points (two biological replicates

299 per time point) from four stages of early maize seed development: at about double
300 fertilization (0~16 hours after pollination [HAP]; stage I), coenocyte formation
301 (20~44 HAP; stage II), cellularization (48~102 HAP; stage III), and differentiation
302 (108~144 HAP; stage IV) (Yi et al., 2019). Using these temporal transcriptomes, a
303 gene expression matrix G_t of 22,428 protein-coding genes and 31 time points was
304 constructed in which each gene had $FPKM \geq 1$ in at least one time point. In the
305 following, we illustrate the application of easyMF to G_t to explore the temporal effect
306 on gene expression during early maize seed development.

307
308 The NMF algorithm with easyMF was used to decompose G_t into a product of two
309 matrices, namely amplitude matrix AM_t and pattern matrix PM_t (**Figure 4A**).
310 Hierarchical clustering of AM_t showed that 31 time points can be grouped into three
311 sets, corresponding to three metagenes: metagene1 for stages I and II of the maize
312 seed development, metagene2 for stage III, and metagene3 for stage IV. The easyMF
313 platform grouped time points from stages I and II into one set, consistent with the
314 hierarchical clustering analysis of the gene expression matrix G_t , where samples from
315 the stages I and II were clustered in the same main branch (Yi et al., 2019). In our
316 work, easyMF identified 1,250, 698, and 1,219 signature genes with peak expressions
317 at stages I+II, III, and IV, respectively (**Table S7**). Three representative examples,
318 including *ZmUMC1966* (*Zm00001d016705*) for metagene1, *ZmZNOD1* (*Zea*
319 *nodulation homolog1*; *Zm00001d045302*) for metagene2, and *ZmFL3* (*floury3*;
320 *Zm00001d009292*) for metagene3, are shown in **Figure 4B**.

321
322 For each set of signature genes, easyMF implemented topGO (Alexa and
323 Rahnenführer, 2009) to perform GO enrichment analysis for the purpose of
324 identifying important biological processes involved in the maize early seed
325 development. This exploratory analysis revealed the importance of photosynthesis at
326 approximately the double fertilization and coenocyte formation stages. Several
327 signature genes from metagene1, including *ZmPSB29* (*photosystem II subunit29*,
328 *Zm00001d021763*), *ZmPSA2* (*photosystemI2*, *Zm00001d031738*), and three

329 oxygen-evolving complex genes (Zm00001d036535, Zm00001d021703,
330 Zm00001d014564) (Pal et al., 2013; Vogt et al., 2015) are enriched in the
331 photosynthesis system, corresponding to GO terms such as “photosynthesis, light
332 harvesting in photosystem I”, “response to light stimulus”, and “photosystem II
333 assembly” (**Figure 4C** and **Table S8**). Auxin has been reported to regulate cell fate
334 specification at cellularization (Pagnussat et al., 2009), and xylose has been reported
335 to be the most abundant monosaccharide constituent of maize cell walls (Jung and
336 Casler, 2006). Several cell wall-related genes that may play roles during the
337 cellularization stage were identified by using easyMF, including two cell wall
338 invertase-related genes *incw1* (*cell wall invertase 1*; Zm00001d016708) and *incw5*
339 (*cell wall invertase 5*; Zm00001d025354). Twenty-three signature genes from
340 metagene2 were also identified to respond to auxin and to be involved in the xylan
341 metabolic process (**Table S8**). Cellular oxidant detoxification was linked according to
342 the easyMF analysis with the initial endosperm differentiation stage. From metagene3,
343 19 signature genes, including *ZmDHAR2* (Zm00001d011035), *ZmUMC2588*
344 (Zm00001d014608), *ZmNRX1* (Zm00001d029457), *ZmPOX3* (Zm00001d037547),
345 and *ZmRBOH4* (Zm00001d052653), were indicated to possibly participate in cellular
346 oxidant detoxification (**Table S8**), and to be expressed more abundantly at the initial
347 endosperm differentiation stage than at the cellularization phase (**Figure 4D**).
348

349 In summary, these results indicated the value of using easyMF to extract expression
350 patterns from temporal transcriptomes for the purpose of determining the responses of
351 signature genes to developmental time, and consequently its value also in contributing
352 to gaining a better understanding of the biology of specific developmental phases.
353

354 **Use of easyMF to attain compartment-specific biological knowledge from maize**
355 **seed spatial transcriptomes**

356 Finally, we focused on the spatial transcriptomes profiled from 10 compartments of
357 maize kernel at 8 DAP (**Figure 5A**), with these 10 compartments including the
358 aleurone (AL), the basal endosperm transfer layer (BETL), the embryo-surrounding

359 region (ESR), the central starchy endosperm (CSE), the conducting zone (CZ), the
360 embryo (EMB), the nucellus (NU), the placento-chalazal region (PC), the pericarp
361 (PE), and the vascular region of the pedicel (PED) (Zhan et al., 2015). Using these
362 transcriptomes, a gene expression matrix G_s (22,998 genes \times 10 compartments) was
363 constructed, in which each gene had FPKM ≥ 1 in at least one compartment. The
364 easyMF platform was then tested for its usefulness in the analysis of spatial
365 transcriptomes, specifically by decomposing the expression matrix G_s with the NMF
366 algorithm and varying the number of metagenes.

367
368 We found that easyMF can distinguish compartments from filial and maternal tissues
369 of maize kernel when setting the number of metagenes to be two. Hierarchical
370 clustering of the generated pattern matrix showed that compartments belonging to
371 filial and maternal tissues of 8-DAP maize kernel were perfectly grouped into two
372 metagenes, respectively (**Figure 5B**). When increasing the number of metagenes,
373 easyMF was able to identify signature genes and biological processes associated with
374 specific maize kernel compartments. For example, when the number of metagenes
375 was set to five, three spatially adjacent compartments were assigned to the same
376 metagene (specifically, EMB, AL, and CSE for metagene3) (**Figure 5C**). Use of
377 easyMF led to the identification of 286 signature genes for metagene3 (**Table S7**), GO
378 analysis of which revealed a significant enrichment in GO terms related to DNA
379 replication, cell cycle, nuclear division, and organelle organization (**Figure 5D; Table**
380 **S9**), consistent with the extensive developmental and mitotic activity within these
381 three compartments at this stage (Doll et al., 2020). Interestingly, the GO term “RNA
382 modification” was also found to be significantly enriched, and was found in the
383 annotations of 21 signature genes including 15 genes encoding pentatricopeptide
384 repeat-containing proteins such as Zm00001d012961, Zm00001d015346, and
385 Zm00001d016815, with high expression levels in the EMB, AL, and CSE
386 compartments (**Figure 5E**). When the number of metagenes was increased to ten,
387 easyMF extracted a different spatial expression pattern for each of these 10
388 compartments (**Figure 5F**), allowing for the identification of compartment-specific

389 genes and different biological processes. For example, in the EMB-related metagene
390 (i.e., metagene6), several signature genes such as *ZmWOX12a* (wuschel-related
391 homeobox12A, Zm00001d022524) (Wu et al., 2007) and *ZmOLE4* (oleosin4,
392 Zm00001d033612) (Miquel et al., 2014) were associated with organism development,
393 corresponding to the GO terms “post-embryonic development”, “cell differentiation”,
394 and “reproductive system development” (**Figure 5G-H; Table S7; Table S9**). In
395 contrast, several signature genes (e.g., *ZmIAA40* (Aux/IAA-transcription factor 40,
396 Zm00001d044818), *ZmPIN12* (PIN-formed protein12, Zm00001d045219), and
397 *ZmZIM14* (ZIM-transcription factor 14, Zm00001d048268)) from the metagene8 (PC
398 compartment) were enriched in terms indicating processes involving response to
399 stimulus such as “defense response”, “response to abscisic acid”, and “response to
400 biotic stimulus” (**Figure 5G; Table S7; Table S9**).

401
402 Taken together, as a result of an MF-based analysis of maize seed spatial
403 transcriptomes, it was shown that easyMF could be used to open a window for
404 attaining compartment-specific biological knowledge with the discovery of signature
405 genes and related biological processes, and its use here specifically enhanced our
406 understanding of the process of cell differentiation during seed development.

407
408 **Discussion**
409 With the ever-increasing volumes of RNA-Seq data, the use of MF has been a
410 foundational approach to extracting biological knowledge in transcriptomic studies.
411 Although a variety of MF-based software packages are already available (**Table S1**),
412 many of them have limitations, including not being easy to use, and not providing an
413 all-in-one solution in the transcriptome data analysis. We compared the features
414 provided in the easyMF platform with those in available MF-based software packages,
415 and describe here three major differences.

416
417 One distinct difference involves their capabilities of preparing a high-quality gene
418 expression matrix, which is essential for knowledge discovery through MF-based and

419 other forms of transcriptome analysis. All currently available MF-based software
420 packages only accept a gene expression matrix as input, and do not provide for the
421 option to process raw RNA-Seq data to gene expression values (**Table S1**). This
422 limitation hinders the ability to effectively analyze RNA-Seq data generated locally
423 by the user or deposited in public repositories (e.g., the NCBI GEO and SRA
424 databases). In addition, they lack a quality control function that filters genes expressed
425 at low levels and/or outlier samples for downstream analysis. The easyMF platform
426 was designed to address these two limitations by incorporating a customized
427 RNA-Seq analysis pipeline (**Figure S1**), which is invaluable for researchers with
428 relatively little experience in high-throughput RNA-Seq data analysis.

429

430 Another notable difference involves the comprehensiveness of the MF-based analysis.
431 Almost all currently available MF tools, except Compadre (Ramos-Rodriguez et al.,
432 2012), were designed with a focus on only one of the three above-mentioned MF
433 algorithms (PCA, ICA, and NMF) and have limited embedded functionalities for
434 metagene-based exploratory analysis (**Table S1**). In contrast, easyMF was specially
435 designed to implement all three of these MF algorithms with R packages: ‘stats’
436 (*prcomp*) for PCA (Team, 2018), ‘ica’ (*icafast*) for ICA (Helwig, 2018), and ‘bignmf’
437 (*bignmf*) for NMF (Pan et al., 2012). It can be used to perform a series of
438 metagene-based exploratory analytical tasks through sample clustering, signature
439 gene identification, functional gene discovery, and pathway activity inference (**Figure**
440 **1**). These features allow easyMF to serve as an all-in-one platform for
441 comprehensively mining large-scale gene expression data using MF algorithms.

442

443 The third and last major difference involves the flexibility of use. Most currently
444 available MF tools were produced as bioinformatics toolkits with command-based
445 implementations, and lack intuitive representations of the results of the analyses. But
446 easyMF was developed as a Galaxy-based platform that aims to easily perform
447 MF-based analysis. Taking advantage of the Galaxy system, easyMF provides
448 user-friendly GUIs to design bioinformatics pipelines with different functionalities,

449 handle large volumes of RNA-Seq data, adjust different input parameters, examine the
450 running status, and visualize output results. It also permanently records all analysis
451 data such as inputs, parameters, intermediate results, and outputs in the 'history' panel
452 of the easyMF platform, making complex MF-based transcriptomic analysis
453 reproducible and amenable to collaborative modes. Moreover, easyMF is packaged
454 into a Docker image that can be employed under different operating systems (i.e.,
455 Windows, Linux, and Macintosh), overcoming issues related to code changes, library
456 dependencies and backward compatibility over time. We expect the easy
457 implementation of easyMF as well as the detailed user documentation and
458 open-access wiki discussion groups to allow researchers, regardless of their levels of
459 programming experience, to carry out accessible, reproducible and collaborative
460 analyses of large-volume of RNA-Seq data with MF algorithms.

461

462 We have demonstrated the use of easyMF in the MF-based analysis of maize
463 transcriptomes for four case studies: (1) prioritization of seed-related genes, (2)
464 clustering analysis of seed samples, (3) temporal analysis of maize seed
465 transcriptomes, and (4) spatial analysis of maize seed transcriptomes. The new
466 knowledge attained about maize seeds using easyMF illustrated that this tool is
467 readily applicable and flexible to confront a range of biological questions, allowing
468 users to more effectively concentrate on hypothesis testing. There were also some
469 limitations regarding the study. First, the efficiency of easyMF was illustrated only
470 using 940 RNA-Seq datasets from maize. The ability of easyMF to handle more
471 transcriptome data and more complex species (e.g., hexaploid bread wheat) needs to
472 be investigated in future work. Secondly, we did not show the application of easyMF
473 in the analysis of single-cell transcriptome data (**File S1; Figure S5**), which were
474 deficient for maize kernels at the time the work was carried out. Single-cell RNA-Seq,
475 which measures gene expressions at the level of a single cell, has been developed as a
476 powerful method to investigate the function of individual cells (Tang et al., 2010).
477 Using single-cell RNA-Seq data from *Arabidopsis* root (Shulse et al., 2018), we found
478 that easyMF can be used to map six cell types according to 13 clusters of 4,043 cells

479 **(Figure S6).** Thirdly and lastly, large-scale transcriptome analysis using MF and other
480 algorithms is often time-consuming and requires heavy computational resources.
481 Despite the easy deployment and implementation of easyMF, it still cannot be used by
482 researchers lacking high-throughput computational resources. In such cases, we
483 would happily collaborate on analyses, and such a collaboration can be requested by
484 contacting the corresponding author.

485

486 The easyMF project is still being developed and improved. The source codes, user
487 manual, Docker image, prototype web server and all future updates are available at
488 the homepage of easyMF project (<https://github.com/cma2015/easyMF>). The easyMF
489 Docker image can be obtained at <https://hub.docker.com/r/malab/easymf>. A porotype
490 web server for easyMF has been developed by the Aliyun cloud computing
491 architecture and can be accessed at <http://easymf.omicstudio.cloud>.

492

493 **Methods**

494 **Generation of the maize gene expression matrix G_1**

495 easyMF presents a customized bioinformatics pipeline to generate gene expression
496 matrix from raw RNA-Seq reads (**Figure S1**). This bioinformatics pipeline has been
497 applied to generate the maize gene expression matrix G_1 . In brief, 1,066 maize
498 RNA-Seq datasets were firstly collected from NCBI's Gene Expression Omnibus
499 (GEO) and/or Sequence Read Archive (SRA) databases (as of 26 July 2019). Raw
500 RNA-Seq data were preprocessed using fastp (version 0.20.0) (Chen et al., 2018) for
501 quality control, including sequencing adapter trimming and low-quality read filtering.
502 Subsequently, high-quality RNA-Seq reads from each sample were aligned to maize
503 reference genome (APGv4, https://plants.ensembl.org/Zea_mays/Info/Index) using
504 HISAT2 (version 2.1.0) (Kim et al., 2015), generating a BAM (binary alignment map)
505 file recording read-genome alignments. BAM files were then used as inputs of
506 StringTie (version 1.3.6) (Pertea et al., 2015) to estimate gene expression abundance.
507 To obtain a high-quality gene expression matrix, a two-step quality control was
508 implemented to filter genes expressed at low levels and remove outlier samples. For

509 expression-level quality control, genes with FPKM (fragments per kilobase of
510 transcript per million mapped reads) ≥ 1 in at least 15 RNA-Seq samples were
511 retained. For low-quality samples, we firstly averaged the statistical duplicated
512 samples based on PCC with criteria: $PCC > 0.999$ (Fehrmann et al., 2015). Then,
513 outlier samples whose correlation with the first principal component (sample based
514 principal component analysis) less than 0.75 were removed. Finally, a gene expression
515 matrix G_1 with 28,874 protein-coding genes and 940 samples was obtained for the
516 downstream application.

517

518 **Identification of signature genes**

519 easyMF decomposes a high-dimensional gene expression matrix (genes in rows and
520 samples in columns) into a product of two low-dimensional metagene-based matrices:
521 an amplitude matrix (AM; genes in rows and metagenes in columns) and a pattern
522 matrix (PM; metagenes in rows and samples in columns). Using gene-level
523 relationships in the AM and sample-level relationships in the PM, easyMF identifies
524 genes exhibiting dominant patterns (defined as signature genes) for each metagene
525 using the patternMarkers (Stein-O'Brien et al., 2017) and the Pearson's correlation
526 coefficient (PCC) statistics. patternMarkers calculates a Euclidean distance (ED)
527 between normalized AM coefficients (i.e., coefficients in the AM) and a 0-1 pattern of
528 metagenes (**Figure S2A**). Suppose the number of metagenes is M , the ED score for
529 gene i and metagene k ($1 \leq k \leq M$) is calculated using following formula:

$$530 \quad ED(i, k) = \sqrt{\sum_{j=1}^M \left(\frac{A_{ij}}{\max A_i} - w_{kj} \right)^2},$$

531 where A_{ij} represents the AM coefficient of gene i in metagene j ($1 \leq j \leq M$), $\max A_i$
532 denotes the maximum value of AM coefficient of gene i among all M metagenes, \bar{w}_k
533 is a numeric unit vector specifying the status of each component ($w_{kj} = 1$ only when
534 $k = j$, otherwise equals to 0). For each gene i , easyMF repeats this process to generate
535 a vector of ED scores for all metagenes.

536

537 easyMF uses the PCC statistic to quantify the correlation between gene expression

538 abundance and PM coefficients (**Figure S2B**). For gene i and metagene k , the PCC
539 score is calculated using the following formula:

$$PCC_{ik} = \frac{cov(\vec{e}_i, \vec{P}_k)}{\sqrt{Var(\vec{e}_i) \cdot Var(\vec{P}_k)}},$$

540 Where \vec{e}_i represents the i -th gene's expression values, $Var(\vec{e}_i)$ represents the
541 variance of i -th gene's expression values, \vec{P}_k represents the i -th gene's PM
542 coefficients, $Var(\vec{P}_k)$ represents the variance of i -th gene's PM coefficients. The
543 gene i is regarded as a signature gene of metagene k , if it satisfied with three
544 conditions: i) equals to the minimal ED score; ii) $PCC \geq 0.6$; iii) P -value $\leq 1.0E-03$.
545 Of note, the thresholds of PCC and P -value can be user-adjusted in web interface of
546 easyMF.

547

548 **Metagene-based gene prioritization**

549 For a given set of genes (denoted as labeled genes), easyMF firstly examines the
550 difference in the distribution of AM coefficients between labeled genes and unlabeled
551 (all except labeled genes in the AM) genes by using Student's t-test, following by a
552 transformation of the significance level P -value to z -score using the standard normal
553 quantile function 'qnorm' in R. A higher z -score indicates a larger difference in the
554 AM coefficient between labeled and unlabeled genes, thus corresponding to stronger
555 biological association between the metagene and the gene set. This results to a z -score
556 vector with a length of metagene number for the given gene set. Subsequently, the
557 association between z -scores and AM coefficients of corresponding genes is examined
558 using the PCC statistic (Fehrmann et al., 2015). Finally, easyMF prioritizes candidate
559 genes functionally associated with the given gene set based on the decreasing PCC
560 values (**Figure S3**).

561

562 **Performance evaluation of gene prioritization approaches**

563 The leave-one-out cross-validation (LOOCV) experiment was used to evaluate the

564 performance of easyMF and MaizeNet (Lee et al., 2019) in gene prioritization. In
565 LOOCV experiment, each labeled gene and all unlabeled genes were used as testing
566 samples and their normalized scores (min-max normalization) were then calculated.
567 The performance of easyMF and MaizeNet were further evaluated using the area
568 under the receiver operating characteristic (ROC) curve (AUC) and the area under the
569 curve of self-ranked curve (AUSR). The ROC curve is a plot of true-positive rate
570 (TPR) along the y axis versus false-positive rate (FPR) along the x axis. While the
571 self-rank curve is a plot of ratio (Ra) along the y axis versus self-rank along the x axis
572 (Tzfadia et al., 2012), the Ra can be calculated by the following formula:

573
$$Ra(l) = \sum_{(\eta \in rank) \cap (\eta \leq l)} I(\eta) / n,$$

574 Where $rank$ represents the ranks of all positive genes, $Ra(l)$ represents the ratio of
575 ranks lower than a pre-defined level of l (e.g., 1000). Both AUC and AUSR, ranging
576 from 0 to 1, were finally calculated using the trapezoid rule (Radivojac et al., 2013),
577 with greater value indicating better prediction performance.

578

579 **FIGURE LEGENEDS**

580 **Figure 1.** Overview of easyMF.

581

582 **Figure 2.** Application of easyMF to gene prioritization.

583 (A) A schematic overview of easyMF in gene prioritization. Performance evaluation
584 of easyMF, MaizeNet and Random Selection approaches in terms of (B) AUSR and
585 (C) AUC. LOOCV experiments were performed using experimentally validated genes
586 from 75 GO terms from Biological Process (BP), Cellular Component (CC), and
587 Molecular Function (MF) domains. The easyMF platform was found to be superior to
588 MaizeNet in the prioritization of 70 seed-related genes in terms of (D) the AUSR, and
589 (E) the AUC.

590

591 **Figure 3.** Application of easyMF to clustering analysis.

592 (A) Hierarchical clustering analysis of the pattern matrix PM_2 decomposed from 940

593 maize RNA-Seq samples using easyMF. (B) The distribution of coefficients between
594 seed and non-seed samples among 11 metagenes in PM₂. (C) Expression patterns of
595 seed-related signature genes among 940 maize RNA-Seq samples. (D) Heatmap
596 showing expression levels of 21 zein-encoding genes among 285 seed samples. (E)
597 Regulatory network consisting of *O2* transcription factor and seed-related signature
598 genes. Thirty-two seed-related signature genes were identified as *O2*-modulated
599 and/or -bound target genes using ChIP-Seq data.

600

601 **Figure 4.** Application of easyMF to temporal transcriptome analysis.

602 (A) Heatmap of the pattern matrix PM_t decomposed from temporal transcriptomes of
603 early developmental stages of maize seed. (B) Expression profiles of *ZmUMC1966*
604 (*Zm00001d016705*), *ZmZNOD1* (*Zea nodulation homolog1*; *Zm00001d045302*), and
605 *ZmFL3* (*floury3*; *Zm00001d009292*). (C) GO enrichment results of signature genes
606 from three metagenes. (D) Heatmap showing expression levels of 19 genes with
607 annotations enriched with the “cellular oxidant detoxification” term.

608

609 **Figure 5.** Application of easyMF to spatial transcriptome analysis.

610 (A) Scheme representing 10 compartments of maize kernel at 8 DAP. (B) Hierarchical
611 clustering analysis of the pattern matrix grouped 10 compartment samples from filial
612 and maternal tissues into two distinct classes when the number of metagenes was set
613 to two. (C) Hierarchical clustering analysis of the pattern matrix grouped spatially
614 adjacent compartments into the same metagene when the number of metagenes was
615 set to five. (D) GO enrichment results of signature genes from the metagene related to
616 EMB, AL, and CSE compartments. (E) Heatmap exhibiting expression levels of 21
617 signature genes with annotations enriched with the “RNA modification” term. (F)
618 Hierarchical clustering analysis of the pattern matrix identified compartment-specific
619 metagenes when the number of metagenes was set to ten. (G) GO enrichment results
620 of signature genes from EMB- and PC-related metagenes. (H) Heatmap exhibiting
621 expression levels of 13 signature genes with annotations enriched with the
622 “post-embryonic development” term.

623

624 **Supplementary Data**

625 **All Supplemental tables (Table S1-9) are available at the Zenodo Public Data**
626 **Repository (<http://doi.org/10.5281/zenodo.4383238>).**

627 **File S1.** Metagene-based pathway activity analysis and single-cell RNA-Seq data
628 analysis.

629 **Table S1.** Summary of MF-based software tools.

630 **Table S2.** Description of functional modules in easyMF.

631 **Table S3.** Summary of 940 maize RNA-Seq datasets used in this study.

632 **Table S4.** Summary of 75 GO terms used to evaluate the performance of gene
633 prioritization methods.

634 **Table S5.** List of 70 experimentally validated genes functionalized in maize seed
635 development.

636 **Table S6.** Genome-wide prioritization of candidate seed-related genes using easyMF
637 and MaizeNet.

638 **Table S7.** List of signature genes identified from gene expression matrix G_1 , G_t , and
639 G_s .

640 **Table S8.** GO enrichments of signature genes identified from gene expression matrix
641 G_t .

642 **Table S9.** GO enrichments of signature genes identified from gene expression matrix
643 G_s .

644

645 **Figure S1.** The bioinformatics pipeline for the generation of a gene expression matrix
646 from RNA-Seq data.

647

648 **Figure S2.** Identification of signature genes using patternMarkers (A) and Pearson's
649 correlation coefficient (PCC) algorithm (B).

650

651 **Figure S3.** Prioritization of candidate genes involved in a pre-specific function.

652

653 **Figure S4.** PCA statistics of optimal metagenes. The blue and black dots represent the
654 Cronbach's α value and the explained variance of each metagene, respectively. The
655 red dots represent the cumulative explained variance. At the threshold of Cronbach's
656 α of 0.7, easyMF generated 161 optimal metagenes, capturing 96.4% of the variation
657 in gene expression.

658

659 **Figure S5.** Identification of cell types of unknown cells from single-cell RNA-Seq
660 data.

661

662 **Figure S6.** t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality
663 reduction of 4,043 single *Arabidopsis* root cells, which are represented by individual
664 points. All captured cells were clustered into 13 populations corresponding to six cell
665 types.

666

667 **Competing interests**

668 The authors have declared no competing interests.

669

670 **Acknowledgements**

671 We thank High-Performance Computing (HPC) of Northwest A&F University for
672 providing computing resources. This work was supported by the National Natural
673 Science Foundation of China (31570371), the Youth 1000-Talent Program of China,
674 the Hundred Talents Program of Shaanxi Province of China, Projects of Youth
675 Technology New Star of Shaanxi Province (2017KJXX-67), and the Fundamental
676 Research Funds for the Central Universities (2452020041).

677

678 **Author Contributions**

679 C.M. conceived the project; W.M. and S.C. developed the platform and performed the
680 applications; W.M., S.C., J.Z., S.X., and M.S. tested the platform. S.C., W.M., Y.Q.
681 and C.M. explained the application results; S.C., W.M., and C.M. wrote the article. All
682 authors read, revised, and approved the final manuscript.

683

684 **References**

685 **Abdi, H., and Williams, L.J.** (2010). Principal component analysis. *Wiley Interdisciplinary Reviews: Computational Statistics* **2**, 433-459.

686 **Alexa, A., and Rahnenführer, J.** (2009). Gene set enrichment analysis with topGO. <https://bioconductor.riken.jp/packages/3.2/bioc/vignettes/topGO/inst/doc/topGO.pdf>.

687 **Bernardi, J., Battaglia, R., Bagnaresi, P., Lucini, L., and Marocco, A.** (2019). Transcriptomic and metabolomic analysis of *ZmYUC1* mutant reveals the role of auxin during early endosperm formation in maize. *Plant Sci* **281**, 133-145.

688 **Bernardi, J., Lanubile, A., Li, Q.B., Kumar, D., Kladnik, A., Cook, S.D., Ross, J.J., Marocco, A., and Chourey, P.S.** (2012). Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the *ZmYUC1* gene encoding endosperm-specific YUCCA1 protein in maize. *Plant Physiol* **160**, 1318-1328.

689 **Bodenhofer, U., Kothmeier, A., and Hochreiter, S.** (2011). APCluster: an R package for affinity propagation clustering. *Bioinformatics* **27**, 2463-2464.

690 **Bolser, D.M., Staines, D.M., Perry, E., and Kersey, P.J.** (2017). Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomic data. *Methods Mol Biol* **1533**, 1-31.

691 **Cardoso-Moreira, M., Halbert, J., Valloton, D., Velten, B., Chen, C., Shao, Y., Liechti, A., Ascenciao, K., Rummel, C., Ovchinnikova, S., Mazin, P.V., Xenarios, I., Harshman, K., Mort, M., Cooper, D.N., Sandi, C., Soares, M.J., Ferreira, P.G., Afonso, S., Carneiro, M., Turner, J.M.A., VandeBerg, J.L., Fallahshahroudi, A., Jensen, P., Behr, R., Lisgo, S., Lindsay, S., Khaitovich, P., Huber, W., Baker, J., Anders, S., Zhang, Y.E., and Kaessmann, H.** (2019). Gene expression across mammalian organ development. *Nature* **571**, 505-509.

692 **Chen, S., Zhou, Y., Chen, Y., and Gu, J.** (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* **34**, i884-i890.

693 **Cuocolo, R., Perillo, T., De Rosa, E., Ugga, L., and Petretta, M.** (2019). Current applications of big data and machine learning in cardiology. *J Geriatr Cardiol* **16**, 601-607.

694 **Dixon, P.J.J.o.V.S.** (2003). VEGAN, a package of R functions for community ecology **14**, 927-930.

695 **Doll, N.M., Just, J., Brunaud, V., Caius, J., Grimault, A., Depege-Fargeix, N., Esteban, E., Pasha, A., Provart, N.J., Ingram, G.C., Rogowsky, P.M., and Widiez, T.** (2020). Transcriptomics at

713 maize embryo/endosperm interfaces identifies a transcriptionally distinct endosperm subdomain
714 adjacent to the embryo scutellum. *Plant Cell* **32**, 833-852.

715 **Fehrman, R.S., Karjalainen, J.M., Krajewska, M., Westra, H.J., Maloney, D., Simeonov, A.,**
716 **Pers, T.H., Hirschhorn, J.N., Jansen, R.C., Schultes, E.A., van Haagen, H.H., de Vries, E.G.,**
717 **te Meerman, G.J., Wijmenga, C., van Vugt, M.A., and Franke, L.** (2015). Gene expression
718 analysis identifies global gene dosage sensitivity in cancer. *Nature Genetics* **47**, 115-125.

719 **Feng, F., Qi, W., Lv, Y., Yan, S., Xu, L., Yang, W., Yuan, Y., Chen, Y., Zhao, H., and Song, R.**
720 (2018). OPAQUE11 is a central hub of the regulatory network for maize endosperm development
721 and nutrient metabolism. *Plant Cell* **30**, 375-396.

722 **Flint-Garcia, S.A., Bodnar, A.L., and Scott, M.P.** (2009). Wide variability in kernel composition,
723 seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. *Theor*
724 *Appl Genet* **119**, 1129-1142.

725 **Gaujoux, R., and Seoighe, C.** (2010). A flexible R package for nonnegative matrix factorization. *BMC*
726 *Bioinformatics* **11**, 367.

727 **Guo, M., Rupe, M.A., Danilevskaya, O.N., Yang, X., and Hu, Z.** (2003). Genome-wide mRNA
728 profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize
729 endosperm. *Plant J* **36**, 30-44.

730 **Haun, W.J., and Springer, N.M.** (2008). Maternal and paternal alleles exhibit differential histone
731 methylation and acetylation at maize imprinted genes. *Plant J* **56**, 903-912.

732 **Helwig, N.E.** (2018). ica: independent component analysis.
733 <http://search.r-project.org/library/ica/html/ica-package.html>

734 **Hennig, C.** (2013). fpc: flexible procedures for clustering.
735 <https://cran.r-project.org/web/packages/fpc/index.html>.

736 **Hyvarinen, A., and Oja, E.** (2000). Independent component analysis: algorithms and applications.
737 *Neural Networks* **13**, 411-430.

738 **Jung, H.G., and Casler, M.D.** (2006). Maize stem tissues. *Crop Science* **46**, 1801.

739 **Kim, D., Langmead, B., and Salzberg, S.L.** (2015). HISAT: a fast spliced aligner with low memory
740 requirements. *Nat Methods* **12**, 357-360.

741 **Koren, Y., Bell, R., and Volinsky, C.** (2009). Matrix factorization techniques for recommender
742 systems. *Computer* **42**, 30-37.

743 **Kryuchkova-Mostacci, N., and Robinson-Rechavi, M.** (2017). A benchmark of gene expression
744 tissue-specificity metrics. *Brief Bioinform* **18**, 205-214.

745 **Lee, D., and Seung, H.S.** (2000). Algorithms for non-negative matrix factorization. *Advances in neural*
746 *information processing systems* **13**, 556-562.

747 **Lee, T., Lee, S., Yang, S., and Lee, I.** (2019). MaizeNet: a co-functional network for network-assisted
748 systems genetics in *Zea mays*. *Plant J* **99**, 571-582.

749 **Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E., and Storey, J.D.** (2012). The sva package for
750 removing batch effects and other unwanted variation in high-throughput experiments.
751 *Bioinformatics* **28**, 882-883.

752 **Li, C., Qiao, Z., Qi, W., Wang, Q., Yuan, Y., Yang, X., Tang, Y., Mei, B., Lv, Y., Zhao, H., Xiao, H.,**
753 **and Song, R.** (2015). Genome-wide characterization of *cis*-acting DNA targets reveals the
754 transcriptional regulatory framework of *opaque2* in maize. *Plant Cell* **27**, 532-545.

755 **Lopez, M., Gomez, E., Faye, C., Gerentes, D., Paul, W., Royo, J., Hueros, G., and Muniz, L.M.**
756 (2017). *ZmSBT1* and *ZmSBT2*, two new subtilisin-like serine proteases genes expressed in early
757 maize kernel development. *Planta* **245**, 409-424.

758 **Ma, C., Zhang, H.H., and Wang, X.** (2014). Machine learning for Big Data analytics in plants. *Trends*
759 *Plant Sci* **19**, 798-808.

760 **Ma, C., Li, B., Wang, L., Xu, M.L., Lizhu, E., Jin, H., Wang, Z., and Ye, J.R.** (2019).
761 Characterization of phytohormone and transcriptome reprogramming profiles during maize early
762 kernel development. *BMC Plant Biol* **19**, 197.

763 **Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K.** (2012). Cluster: cluster
764 analysis basics and extensions **1**, 56.

765 **Miquel, M., Trigui, G., d'Andrea, S., Kelemen, Z., Baud, S., Berger, A., Deruyffelaere, C., Trubuil,**
766 **A., Lepiniec, L., and Dubreucq, B.** (2014). Specialization of oleosins in oil body dynamics
767 during seed development in *Arabidopsis* seeds. *Plant Physiol* **164**, 1866-1878.

768 **Mooney, S.J., and Pejaver, V.** (2018). Big Data in public health: terminology, machine learning, and
769 privacy. *Annu Rev Public Health* **39**, 95-112.

770 **Nelms, B., and Walbot, V.** (2019). Defining the developmental program leading to meiosis in maize.
771 *Science* **364**, 52-56.

772 **Nguyen, N.D., and Wang, D.** (2020). Multiview learning for understanding functional multiomics.

773 *PLoS Comput Biol* **16**, e1007677.

774 **Niogret, M.F., Culianez-Macia, F.A., Goday, A., Mar Alba, M., and Pages, M.** (1996). Expression
775 and cellular localization of *rab28* mRNA and Rab28 protein during maize embryogenesis. *Plant J*
776 **9**, 549-557.

777 **Noor, E., Cherkaoui, S., and Sauer, U.** (2019). Biological insights through omics data integration.
778 *Current Opinion in Systems Biology* **15**, 39-47.

779 **One Thousand Plant Transcriptomes, I.** (2019). One thousand plant transcriptomes and the
780 phylogenomics of green plants. *Nature* **574**, 679-685.

781 **Pagnussat, G.C., Alandete-Saez, M., Bowman, J.L., and Sundaresan, V.** (2009). Auxin-dependent
782 patterning and gamete specification in the *Arabidopsis* female gametophyte. *Science* **324**,
783 1684-1689.

784 **Pal, R., Negre, C.F., Vogt, L., Pokhrel, R., Ertem, M.Z., Brudvig, G.W., and Batista, V.S.** (2013).
785 S0-State model of the oxygen-evolving complex of photosystem II. *Biochemistry* **52**, 7703-7706.

786 **Pan, L., Qiu, Y., and Wei, T.** (2012). bignmf: Solving NMF via coordinate descent.
787 <https://github.com/panlanfeng/bignmf>.

788 **Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L.** (2015).
789 StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat
790 Biotechnol* **33**, 290-295.

791 **Qiu, Z., Chen, S., Qi, Y., Liu, C., Zhai, J., Xie, S., and Ma, C.** (2020). Exploring transcriptional
792 switches from pairwise, temporal and population RNA-Seq data using deepTS. *Brief Bioinform.*
793 doi: 10.1093/bib/bbaa137.

794 **Radivojac, P., Clark, W.T., Oron, T.R., Schnoes, A.M., Wittkop, T., Sokolov, A., Graim, K., Funk,
795 C., Verspoor, K., Ben-Hur, A., Pandey, G., Yunes, J.M., Talwalkar, A.S., Repo, S., Souza,
796 M.L., Piovesan, D., Casadio, R., Wang, Z., Cheng, J.L., Fang, H., Goughl, J., Koskinen,
797 P., Toronen, P., Nokso-Koivisto, J., Holm, L., Cozzetto, D., Buchan, D.W.A., Bryson, K.,
798 Jones, D.T., Limaye, B., Inamdar, H., Datta, A., Manjari, S.K., Joshi, R., Chitale, M.,
799 Kihara, D., Lisewski, A.M., Erdin, S., Venner, E., Lichtarge, O., Rentzsch, R., Yang, H.X.,
800 Romero, A.E., Bhat, P., Paccanaro, A., Hamp, T., Kassner, R., Seemayer, S., Vicedo, E.,
801 Schaefer, C., Achten, D., Auer, F., Boehm, A., Braun, T., Hecht, M., Heron, M.,
802 Honigschmid, P., Hopf, T.A., Kaufmann, S., Kiening, M., Krompass, D., Landerer, C.,
803 Mahlich, Y., Roos, M., Bjorne, J., Salakoski, T., Wong, A., Shatkay, H., Gatzmann, F.,
804 Sommer, I., Wass, M.N., Sternberg, M.J.E., Skunca, N., Supek, F., Bosnjak, M., Panov, P.,
805 Dzeroski, S., Smuc, T., Kourmpetis, Y.A.I., van Dijk, A.D.J., ter Braak, C.J.F., Zhou, Y.P.,
806 Gong, Q.T., Dong, X.R., Tian, W.D., Falda, M., Fontana, P., Lavezzo, E., Di Camillo, B.,
807 Toppo, S., Lan, L., Djuric, N., Guo, Y.H., Vucetic, S., Bairoch, A., Linial, M., Babbitt,**

808 **P.C., Brenner, S.E., Orengo, C., Rost, B., Mooney, S.D., and Friedberg, I.** (2013). A
809 large-scale evaluation of computational protein function prediction. *Nature Methods* **10**,
810 221-227.

811 **Ramos-Rodriguez, R.R., Cuevas-Diaz-Duran, R., Falciani, F., Tamez-Pena, J.G., and Trevino, V.**
812 (2012). COMPADRE: an R and web resource for pathway activity analysis by component
813 decompositions. *Bioinformatics* **28**, 2701-2702.

814 **Sarropoulos, I., Marin, R., Cardoso-Moreira, M., and Kaessmann, H.** (2019). Developmental
815 dynamics of lncRNAs across mammalian organs and species. *Nature* **571**, 510-514.

816 **Schmidt, R.J., Burr, F.A., Aukerman, M.J., and Burr, B.** (1990). Maize regulatory gene *opaque-2*
817 encodes a protein with a "leucine-zipper" motif that binds to zein DNA. *Proc Natl Acad Sci U S A*
818 **87**, 46-50.

819 **Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., and Yanofsky, M.F.** (1993).
820 Identification and molecular characterization of *ZAG1*, the maize homolog of the *Arabidopsis*
821 floral homeotic gene *AGAMOUS*. *Plant Cell* **5**, 729-737.

822 **Scrucca, L., Fop, M., Murphy, T.B., and Raftery, A.E.** (2016). mclust 5: clustering, classification
823 and density estimation using gaussian finite mixture models. *R J* **8**, 289-317.

824 **Shannon, J.C., Pien, F.M., Cao, H., and Liu, K.C.** (1998). Brittle-1, an adenylate translocator,
825 facilitates transfer of extraplastidial synthesized ADP--glucose into amyloplasts of maize
826 endosperms. *Plant Physiol* **117**, 1235-1252.

827 **Shulse, C.N., Cole, B.J., Turco, G.M., Zhu, Y., Brady, S.M., and Dickel, D.E.** (2018).
828 High-throughput single-cell transcriptome profiling of plant cell types. *bioRxiv* **402966**, doi:
829 <https://doi.org/10.1101/402966>.

830 **Sompairac, N., Nazarov, P.V., Czerwinska, U., Cantini, L., Biton, A., Molkenov, A., Zhumadilov,
831 Z., Barillot, E., Radvanyi, F., Gorban, A., Kairov, U., and Zinov'yev, A.** (2019). Independent
832 component analysis for unraveling the complexity of cancer omics datasets. *Int J Mol Sci* **20**,
833 4414.

834 **Stein-O'Brien, G.L., Arora, R., Culhane, A.C., Favorov, A.V., Garmire, L.X., Greene, C.S., Goff,
835 L.A., Li, Y., Ngom, A., Ochs, M.F., Xu, Y., and Fertig, E.J.** (2018). Enter the matrix:
836 factorization uncovers knowledge from omics. *Trends Genet* **34**, 790-805.

837 **Stein-O'Brien, G.L., Carey, J.L., Lee, W.S., Considine, M., Favorov, A.V., Flam, E., Guo, T., Li, S.,
838 Marchionni, L., Sherman, T., Sivy, S., Gaykalova, D.A., McKay, R.D., Ochs, M.F.,**

839 **Colantuoni, C., and Fertig, E.J.** (2017). PatternMarkers & GWCoGAPS for novel data-driven
840 biomarkers via whole transcriptome NMF. *Bioinformatics* **33**, 1892-1894.

841 **Tang, F., Barbacioru, C., Nordman, E., Li, B., Xu, N., Bashkirov, V.I., Lao, K., and Surani, M.A.**
842 (2010). RNA-Seq analysis to capture the transcriptome landscape of a single cell. *Nat Protoc* **5**,
843 516-535.

844 **Team, R.C.** (2018). R: A language and environment for statistical computing.
845 <https://www.r-project.org>.

846 **Tsai, C.Y.** (1979). Tissue-specific zein synthesis in maize kernel. *Biochem Genet* **17**, 1109-1119.

847 **Tzfadia, O., Amar, D., Bradbury, L.M., Wurtzel, E.T., and Shamir, R.** (2012). The MORPH
848 algorithm: ranking candidate genes for membership in *Arabidopsis* and tomato pathways.
849 *Plant Cell* **24**, 4389-4406.

850 **Vogt, L., Vinyard, D.J., Khan, S., and Brudvig, G.W.** (2015). Oxygen-evolving complex of
851 Photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. *Curr Opin
852 Chem Biol* **25**, 152-158.

853 **Wimalanathan, K., Friedberg, I., Andorf, C.M., and Lawrence-Dill, C.J.** (2018). Maize GO
854 annotation-methods, evaluation, and review (maize-GAMER). *Plant Direct* **2**, e00052.

855 **Wu, X., Chory, J., and Weigel, D.** (2007). Combinations of *WOX* activities regulate tissue
856 proliferation during *Arabidopsis* embryonic development. *Dev Biol* **309**, 306-316.

857 **Yi, F., Gu, W., Chen, J., Song, N., Gao, X., Zhang, X., Zhou, Y., Ma, X., Song, W., Zhao, H.,
858 Esteban, E., Pasha, A., Provart, N.J., and Lai, J.** (2019). High temporal-resolution
859 transcriptome landscape of early maize seed development. *Plant Cell* **31**, 974-992.

860 **Zhan, J., Li, G., Ryu, C.H., Ma, C., Zhang, S., Lloyd, A., Hunter, B.G., Larkins, B.A., Drews,
861 G.N., Wang, X., and Yadegari, R.** (2018). Opaque-2 regulates a complex gene network
862 associated with cell differentiation and storage functions of maize endosperm. *Plant Cell* **30**,
863 2425-2446.

864 **Zhan, J., Thakare, D., Ma, C., Lloyd, A., Nixon, N.M., Arakaki, A.M., Burnett, W.J., Logan, K.O.,
865 Wang, D., Wang, X., Drews, G.N., and Yadegari, R.** (2015). RNA sequencing of laser-capture
866 microdissected compartments of the maize kernel identifies regulatory modules associated with
867 endosperm cell differentiation. *Plant Cell* **27**, 513-531.

868 **Zhang, Z., Dong, J., Ji, C., Wu, Y., and Messing, J.** (2019). NAC-type transcription factors regulate
869 accumulation of starch and protein in maize seeds. *Proc Natl Acad Sci U S A* **116**, 11223-11228.

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

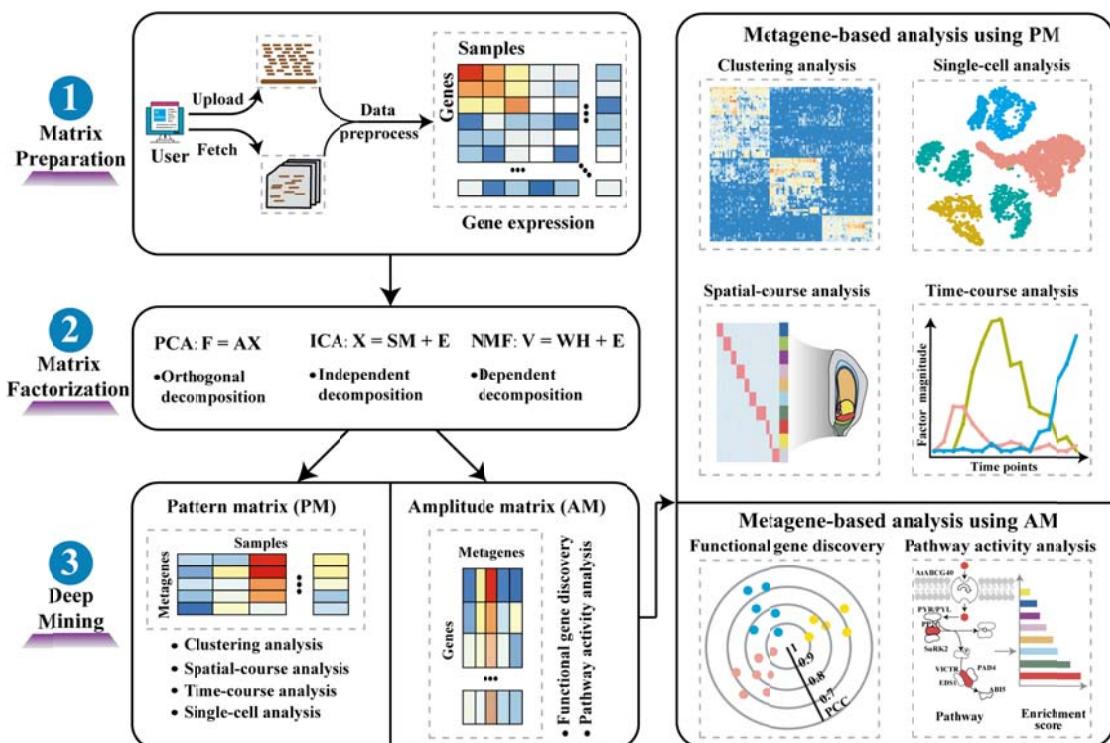
887

888

889

890

891



893

894

895 **Figure 1.** Overview of easyMF.

896

897

898

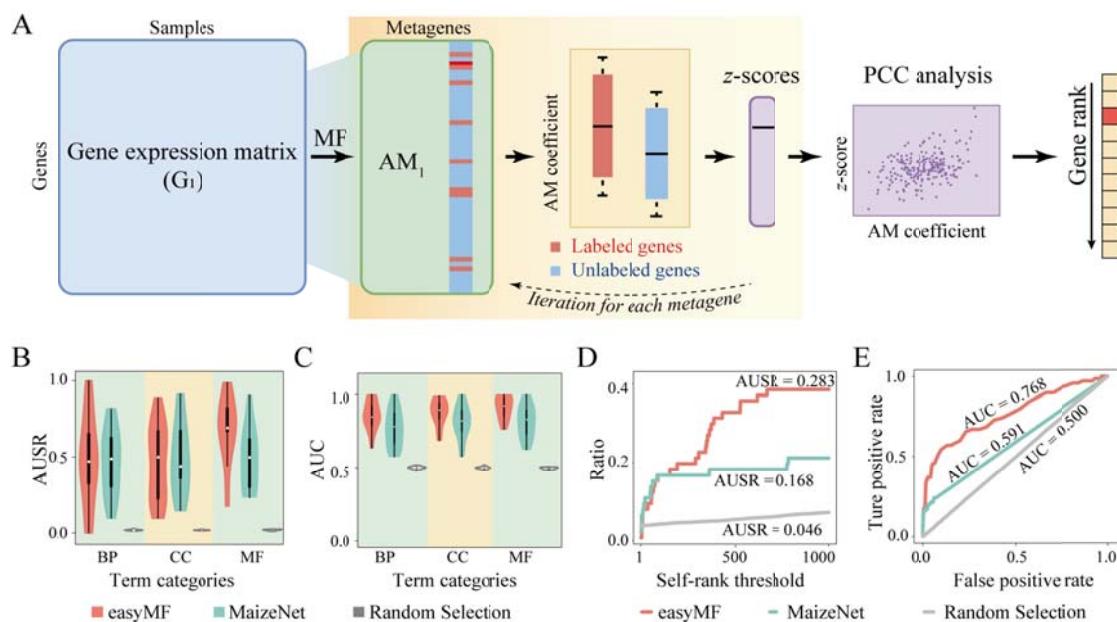
899

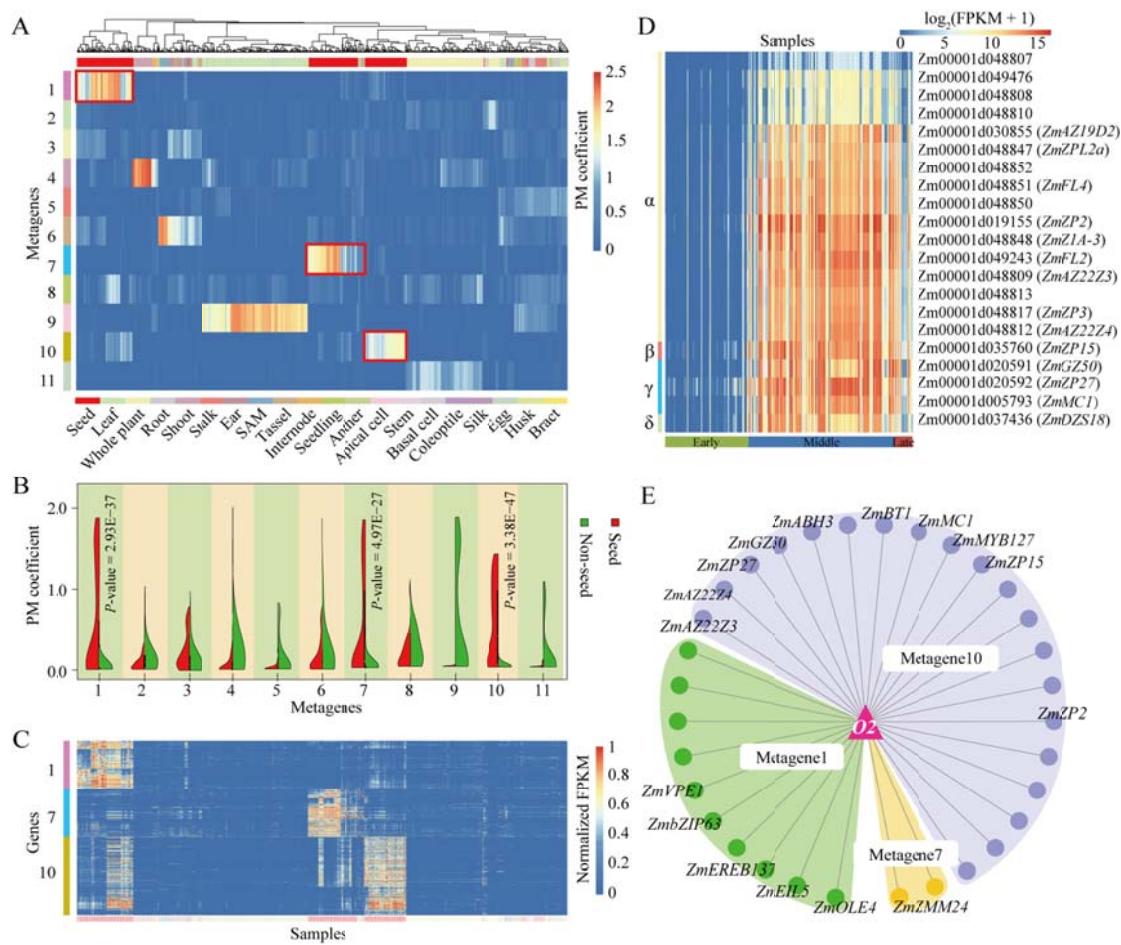
900

901

902

903





916

917 **Figure 3.** Application of easyMF to clustering analysis.

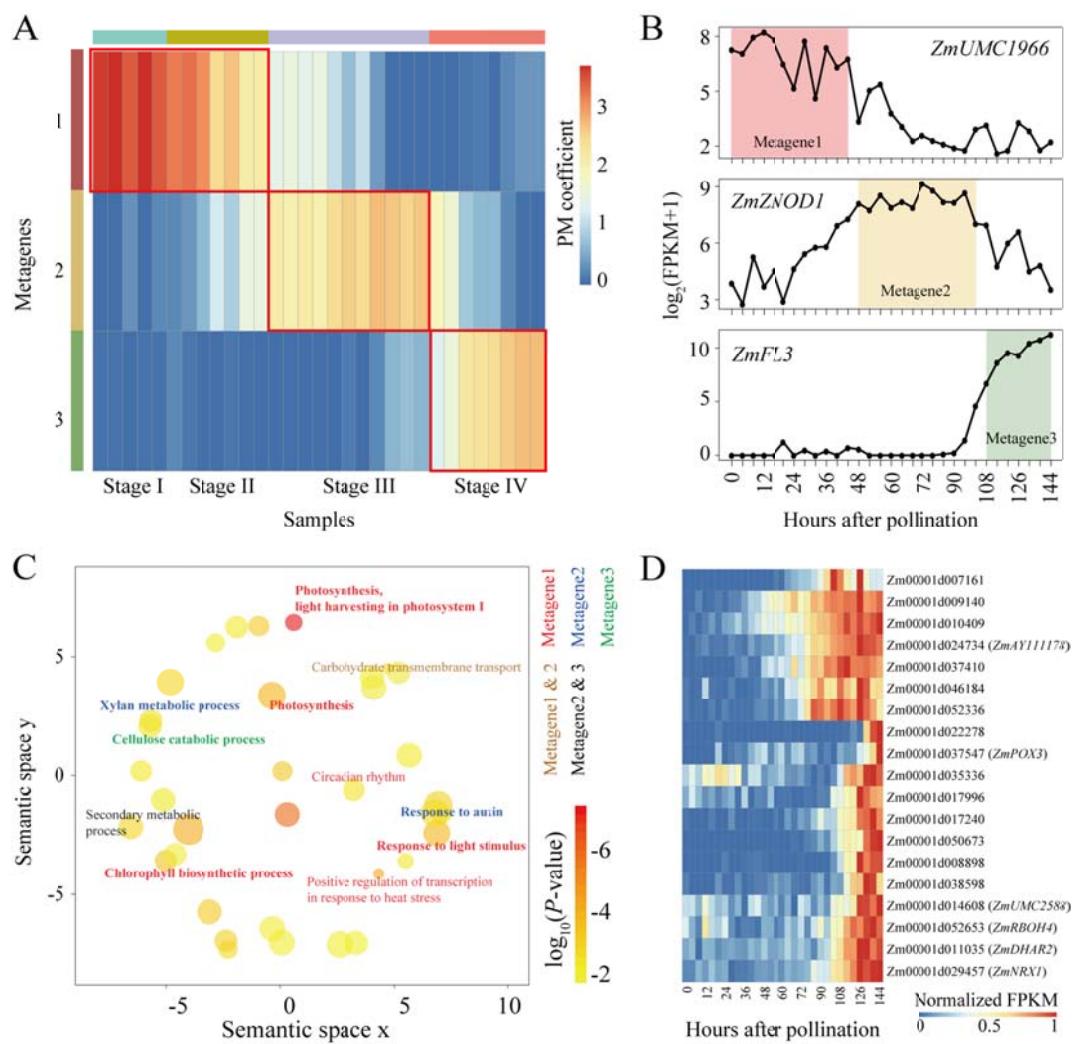
918 (A) Hierarchical clustering analysis of the pattern matrix PM_2 decomposed from 940
 919 maize RNA-Seq samples using easyMF. (B) The distribution of coefficients between
 920 seed and non-seed samples among 11 metagenes in PM_2 . (C) Expression patterns of
 921 seed-related signature genes among 940 maize RNA-Seq samples. (D) Heatmap
 922 showing expression levels of 21 zein-encoding genes among 285 seed samples. (E)
 923 Regulatory network consisting of O_2 transcription factor and seed-related signature
 924 genes. Thirty-two seed-related signature genes were identified as O_2 -modulated
 925 and/or -bound target genes using ChIP-Seq data.

926

927

928

929



930 **Figure 4.** Application of easyMF to temporal transcriptome analysis.

931 (A) Heatmap of the pattern matrix PM_t decomposed from temporal transcriptomes of
 932 early developmental stages of maize seed. (B) Expression profiles of *ZmUMC1966*
 933 (*Zm00001d016705*), *ZmZNOD1* (*Zea nodulation homolog1*; *Zm00001d045302*), and
 934 *ZmFL3* (*floury3*; *Zm00001d009292*). (C) GO enrichment results of signature genes
 935 from three metagenes. (D) Heatmap showing expression levels of 19 genes with
 936 annotations enriched with the “cellular oxidant detoxification” term.

937

938

939

940

941

942

943

944

945

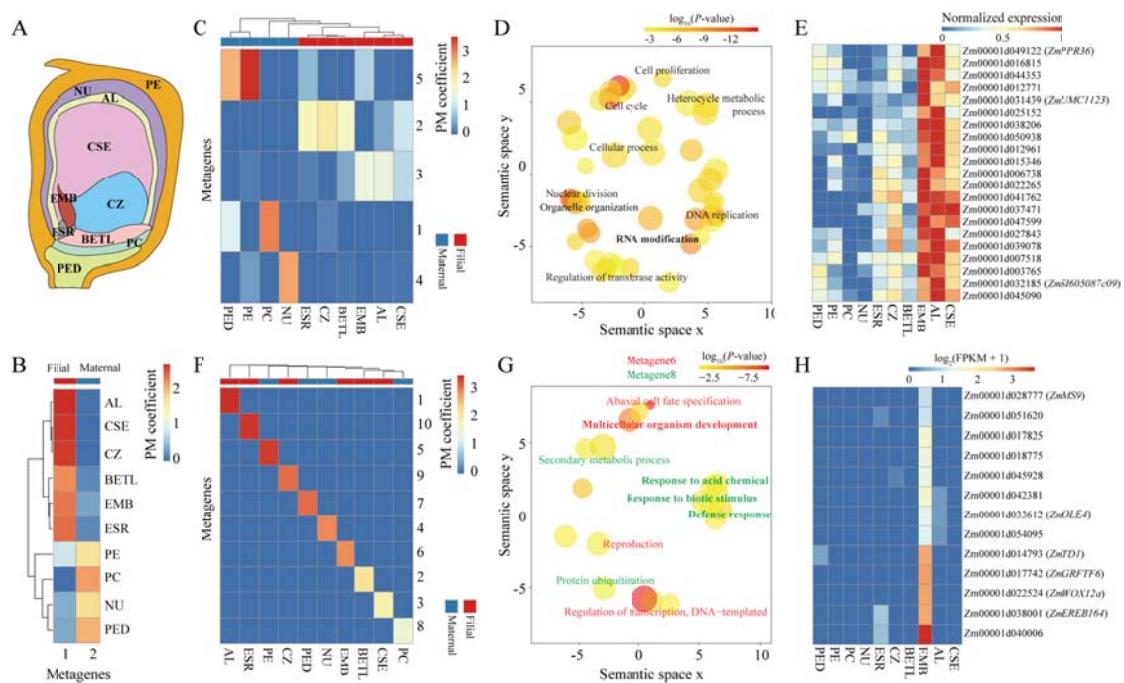
946

947

948

949

950



940

941 **Figure 5.** Application of easyMF to spatial transcriptome analysis.

942 (A) Scheme representing 10 compartments of maize kernel at 8 DAP. (B) Hierarchical
 943 clustering analysis of the pattern matrix grouped 10 compartment samples from filial
 944 and maternal tissues into two distinct classes when the number of metagenes was set
 945 to two. (C) Hierarchical clustering analysis of the pattern matrix grouped spatially
 946 adjacent compartments into the same metagene when the number of metagenes was
 947 set to five. (D) GO enrichment results of signature genes from the metagene related to
 948 EMB, AL, and CSE compartments. (E) Heatmap exhibiting expression levels of 21
 949 signature genes with annotations enriched with the "RNA modification" term. (F)
 950 Hierarchical clustering analysis of the pattern matrix identified compartment-specific
 951 metagenes when the number of metagenes was set to ten. (G) GO enrichment results
 952 of signature genes from EMB- and PC-related metagenes. (H) Heatmap exhibiting
 953 expression levels of 13 signature genes with annotations enriched with the
 954 "post-embryonic development" term.

955