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Abstract 30 

With the development of high-throughput experimental technologies, large-scale RNA 31 

sequencing (RNA-Seq) data have been and continue to be produced, but have led to 32 

challenges in extracting relevant biological knowledge hidden in the produced 33 

high-dimensional gene expression matrices. Here, we present easyMF, a user-friendly 34 

web platform that aims to facilitate biological discovery from large-scale 35 

transcriptome data through matrix factorization (MF). The easyMF platform enables 36 

users with little bioinformatics experience to streamline transcriptome analysis from 37 

raw reads to gene expression and to decompose expression matrix from thousands of 38 

genes to a handful of metagenes. easyMF also offers a series of functional modules 39 

for metagene-based exploratory analysis with an emphasis on functional gene 40 

discovery. As a modular, containerized and open-source platform, easyMF can be 41 

customized to satisfy users’ specific demands and deployed as a web server for broad 42 

applications. easyMF is freely available at https://github.com/cma2015/easyMF. We 43 

demonstrated the application of easyMF with four case studies using 940 RNA 44 

sequencing datasets from maize (Zea mays L.).  45 
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Introduction 60 

High-throughput sequencing of RNA (RNA-Seq) is being used in almost all biology 61 

and related research laboratories, and has become a key research tool for profiling 62 

genome-wide gene expression in various species. The constant improvement of 63 

RNA-Seq technologies coupled with sharp decreases in sequencing costs and data 64 

generation timelines now enables investigators to perform  sequencing-based 65 

projects for hundreds of thousands of samples from different cells, tissues, organs, 66 

experimental conditions, individuals and species (Cardoso-Moreira et al., 2019; 67 

Nelms and Walbot, 2019; One Thousand Plant Transcriptomes, 2019; Sarropoulos et 68 

al., 2019; Shulse et al., 2018; Qiu et al., 2020). The large-scale transcriptome 69 

sequencing, however, results in considerable challenges for data analysis, as the 70 

outputs are naturally represented as high-dimensional gene expression matrices (genes 71 

in rows and samples in columns), from which it is difficult to extract new information 72 

through traditional gene expression analysis approaches like differential expression 73 

analysis and correlation-based statistical analysis. 74 

 75 

Machine learning is a branch of artificial intelligence that enables computer 76 

algorithms to learn hidden knowledge from Big Data in biology and other sciences 77 

(Ma et al., 2014; Mooney and Pejaver, 2018; Cuocolo et al., 2019). Matrix 78 

factorization (MF; also known as matrix decomposition) is a class of unsupervised 79 

machine learning techniques that can decompose high-dimensional data into 80 

low-dimensional structures, while preserving as much information as possible from 81 

the original data (Koren et al., 2009) . With the development of a variety of computer 82 

algorithms, such as principal component analysis (PCA) (Abdi and Williams, 2010), 83 

independent component analysis (ICA) (Hyvarinen and Oja, 2000), and non-negative 84 

matrix factorization (NMF) (Lee and Seung, 2000), MF is regarded as well suited for 85 

large-scale transcriptome data analysis (Stein-O'Brien et al., 2018). MF reduces the 86 

gene expression matrix from thousands of genes to a handful of metagenes, each of 87 

which can represent a weighted combination of the individual genes. MF can also 88 

decompose the gene expression matrix into a product of two low-dimensional 89 
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matrices: the amplitude matrix (AM; genes in rows and metagenes in columns) and 90 

the pattern matrix (PM; metagenes in rows and samples in columns), which have 91 

served as the basis for a series of metagene-base applications, such as sample 92 

clustering analysis, functional gene discovery, cell type identification, and so on 93 

(Stein-O'Brien et al., 2018; Noor et al., 2019; Sompairac et al., 2019; Nguyen and 94 

Wang, 2020). Several MF-based pipelines are available, but these tools were designed 95 

for specific or limited functionalities (Table S1). Moreover, when developing tools 96 

for high-throughput sequencing data, ensuring reliability, reproducibility, flexibility 97 

and ease of use become a crucial desideratum. Accordingly, the absence of a reliable, 98 

reproducible, all-in-one, and easy-to-use platform is to a great extent obstructing 99 

MF-based transcriptome analyses for both computational and experimental biologists. 100 

 101 

To address this limitation, we here present easyMF, a web platform that facilitates 102 

MF-based knowledge discovery from large-scale transcriptome data. The easyMF 103 

platform was equipped using the Big-Data-supported Galaxy system with 104 

user-friendly graphic user interfaces, allowing researchers with little programming 105 

experience to streamline transcriptome analysis from raw reads to gene expression, 106 

and to carry out our MF, and metagene-based exploratory analysis. All analysis data, 107 

such as inputs, parameters, intermediate results, and outputs, are permanently 108 

recorded in the “History” panel of easyMF, making complex MF-based transcriptomic 109 

analysis reproducible and amenable to collaborative modes. In addition to the Galaxy 110 

system, easyMF was also powered with the advanced Docker packaging technology, 111 

making it easy to install and deployable in user-customized hardwire under different 112 

operating systems (i.e., Windows, Linux, and Macintosh). With these flexible, 113 

interactive, reproducible, and easy-to-use features, we expect easyMF to serve as a 114 

valuable tool with broad application potential. We provide examples of the application 115 

of easyMF to 940 RNA sequencing datasets of maize (Zea mays L.) inbred line B73. 116 

 117 

Results 118 

Overview of easyMF 119 
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The easyMF platform comprises three functional modules, named Matrix Preparation, 120 

Matrix Factorization, and Deep Mining (Figure 1). Matrix Preparation was designed 121 

to prepare a high-quality gene expression matrix for downstream analysis. Matrix 122 

Factorization can be used to decompose the gene expression matrix into an AM and 123 

PM using three different computer algorithms, i.e., PCA, ICA, and NMF. Deep 124 

Mining was designed to perform metagene-based statistical analysis for sample 125 

clustering, signature gene identification, functional gene discovery, cell type detection, 126 

and pathway activity inference. These functional modules were built with a 127 

comprehensive set of functions (Table S2), which can be selected by users to 128 

customize their own pipelines for satisfying specific needs. 129 

 130 

The easyMF platform is typically started with an input of a gene expression matrix, in 131 

which genes are in rows and samples are in columns. The gene expression matrix can 132 

also be automatically generated from raw reads using a bioinformatics pipeline 133 

(Figure S1), which was specially designed for users unfamiliar with RNA-Seq data 134 

analysis. After specifying the accession numbers of RNA-Seq datasets from the 135 

National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 136 

(GEO) and/or Sequence Read Archive (SRA) databases, the customized pipeline can 137 

be implemented for a series of RNA-Seq data analyses, including data retrieval, 138 

format transferring, quality control, reads mapping, and gene expression 139 

quantification. To improve the quality of the gene expression matrix, easyMF removes 140 

batch effects from different experiments using the sva function (Leek et al., 2012), 141 

filters genes expressed at low levels with user-specified criteria, and removes outlier 142 

samples using a sample-based PCA approach (Fehrmann et al., 2015).  143 

 144 

The easyMF platform subsequently decomposes the gene expression matrix into a 145 

product of the AM and PM with three optional algorithms, namely PCA, ICA and 146 

NMF, which calculate metagenes through orthogonal decomposition, independent 147 

decomposition and dependent decomposition, respectively. The number of metagenes 148 

can be specified by users, or chosen according to optimized parameters: the internal 149 
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consistency of Cronbach's α value for PCA (Fehrmann et al., 2015) and the inflection 150 

point of the rate of the mean residual decline for ICA and NMF (Gaujoux and Seoighe, 151 

2010). For each metagene, genes with dominant patterns (defined as signature genes) 152 

are identified using patternMarkers (Stein-O'Brien et al., 2017) and the Pearson’s 153 

correlation coefficient (PCC) algorithm (see Methods; Figure S2). The 154 

patternMarkers calculates the Euclidean distance between normalized AM coefficients 155 

and the 0-1 pattern of metagenes. While the PCC algorithm scores the association 156 

between gene expression values and PM coefficients. 157 

 158 

The easyMF platform makes use of gene-level relationships in the AM for functional 159 

gene discovery (Fehrmann et al., 2015) and pathway activity inference (see File S1). 160 

This platform also makes use of sample-level relationships in the PM to perform 161 

temporal, spatial, and integrated transcriptome analysis. In the current version, 162 

easyMF provides six optional algorithms (mclust (Scrucca et al., 2016), apcluster 163 

(Bodenhofer et al., 2011), SSE, fpc (Hennig, 2013), vegan (Dixon, 2003), and gap 164 

(Maechler et al., 2012)) to cluster samples using PM coefficients. The clusters are 165 

visualized in plots, as well as tables, providing a quick overview of the relationships 166 

between samples. The easyMF platform can also be used to determine the extent to 167 

which genes change over time in response to perturbations (e.g., developmental time), 168 

and does so by integrating gene expression values, and gene- and sample-level 169 

relationships. It can also be used to identify signature genes dominated at specific 170 

compartments of the transcriptomes with spatial resolution in individual tissue 171 

samples (spatial transcriptomes), and to identify the type of unknown cells from 172 

single-cell RNA-Seq data. 173 

 174 

Application of easyMF to 940 maize RNA-Seq samples 175 

To demonstrate the utility of easyMF, we used it to perform a large-scale analysis of 176 

RNA-Seq data from maize B73 samples manually collected from the NCBI GEO and 177 

SRA databases (Table S3). After a series of data processing steps (see Methods), a 178 

maize gene expression matrix (denoted as G1) of 28,874 protein-coding genes and 940 179 
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samples was constructed, in which each gene had FPKM (fragments per kilobase of 180 

transcript per million mapped reads) ≥ 1 in at least 15 RNA-Seq samples. As one of 181 

the most important sources of food, feed, and biofuel materials, maize seed has been 182 

extensively characterized using RNA-Seq technologies to understand its complex 183 

gene expression patterns at the genome-wide level. The availability of extensive 184 

transcriptomes from 285 seed samples provided us an opportunity to explore the 185 

ability of easyMF to be used to attain new knowledge about seeds.  186 

 187 

The easyMF platform is capable of effectively prioritizing seed-related genes 188 

A schematic overview of the application of easyMF to gene prioritization is depicted 189 

in Figure 2A and Figure S3. easyMF first uses the PCA algorithm to decompose the 190 

matrix G1 into two matrices, namely amplitude matrix AM1 and pattern matrix PM1. 191 

At a threshold of Cronbach’s α > 0.7, easyMF generated 161 metagenes, capturing 192 

96.4% of the variation in gene expression (Figure S4). Then, the performance of 193 

easyMF in maize functional gene prioritization was extensively evaluated using the 194 

leave-one-out cross-validation (LOOCV) strategy on 75 Gene Ontology (GO) terms 195 

(Table S4), each of which consisted of 5~500 experimentally validated genes, 196 

provided by Ensembl Plants (Bolser et al., 2017) (http://plants.ensembl.org) and 197 

maize-GAMER (Wimalanathan et al., 2018). For each GO term, we quantified the 198 

performance of easyMF using the area under the receiver operating characteristic 199 

(ROC) curve (AUC) and the area under the self-ranked curve (AUSR) (for details, see 200 

Methods). For a comparison, we also tested the recently proposed network-based 201 

gene discovery system MaizeNet (Lee et al., 2019) and a random selection strategy 202 

using the same LOOCV experiment. The MaizeNet system prioritizes functional 203 

genes in maize using a co-functional network inferred from more than 20 distinct 204 

types of genomic and proteomic data sets. The random selection process was repeated 205 

100 times by randomly assigning gene identifiers to the score and rank results 206 

obtained from PCA in each round of the LOOCV experiments. The mean evaluation 207 

results were used for the random selection strategy. For AUC-based and AUSR-based 208 

evaluations, easyMF performed much better than random selection, and exhibited 209 
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comparable or superior prediction performances as compared to the network-based 210 

approach MaizeNet (Figure 2B, C). 211 

 212 

These encouraging results prompted us to further access the ability of easyMF to 213 

prioritize seed-related genes. A manual literature survey was conducted to identify 70 214 

experimentally validated genes functionalized in maize seed development (Table S5). 215 

The LOOCV experiments on these 70 seed-related genes showed AUSR values of 216 

0.283, 0.168, and 0.046 (Figure 2D) and AUC values of 0.768, 0.591, and 0.500 217 

(Figure 2E) for easyMF, MaizeNet, and random selection, respectively. Using all of 218 

these 70 seed-related genes as input, easyMF generated a prediction model to identify 219 

seed-related candidate genes at the genome scale. A detailed literature review showed 220 

that four of the top 10 candidates predicted by easyMF have been experimentally 221 

validated: ZmNRP1 (no-apical-meristem-related protein1, Zm00001d040189) (Guo et 222 

al., 2003; Haun and Springer, 2008; Yi et al., 2019), ZmMYB127 (MYB-transcription 223 

factor 127, Zm00001d041935) (Bernardi et al., 2019; Yi et al., 2019), ZmTAR3 224 

(tryptophan aminotransferase related3, Zm00001d037674) (Bernardi et al., 2012; 225 

Zhan et al., 2018) and ZmEREB167 (AP2-EREBP-transcription factor 167, 226 

Zm00001d032095) (Bernardi et al., 2019; Yi et al., 2019) (Table S6). 227 

 228 

Overall, these results indicated easyMF to be a reliable and effective platform for 229 

prioritizing functional genes through MF-based transcriptome analysis. Lists of 230 

seed-related candidate genes prioritized by easyMF and MaizeNet are provided in 231 

Table S6 for the benefit of researchers who in the future may pursue experimental 232 

validation. 233 

 234 

The easyMF platform can be used to perform robust sample clustering for 235 

facilitating the identification of seed signature genes 236 

We next considered the application of easyMF to sample clustering of a large-scale 237 

gene expression matrix. By implementing the NMF algorithm, easyMF decomposed 238 

the gene expression matrix G1 into two matrices, namely amplitude matrix AM2 and 239 
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pattern matrix PM2, and reduced the dimension of G1 from 28,874 genes to 11 240 

metagenes (Figure 3A). Maize samples can then be analyzed by summarizing gene 241 

expression patterns in terms of the coefficients of metagenes (i.e., the relative weights 242 

of samples in PM2). There were three metagenes (metagene1, metagene7, and 243 

metagene10) that had significantly higher coefficients in seed samples than in 244 

non-seed samples (Figure 3B), indicative of an association between these three 245 

metagenes and seed samples. This association was further highlighted by a 246 

hierarchical clustering analysis of the PM2 (11 metagenes × 940 samples), in which 247 

all seed samples were clustered into three subgroups (Figure 3A). 248 

 249 

Based on these three seed-related metagenes, we identified 774 signature genes 250 

(metagene1: 216, metagene7: 213, and metagene10: 345) by using patternMarkers 251 

and the PCC algorithm (Supplemental Table S7). Most (95.99%) of these 774 genes 252 

were specially expressed in seed samples (Figure 3C), with this expression pattern 253 

determined using the Tau method (Kryuchkova-Mostacci and Robinson-Rechavi, 254 

2017), by which a tissue specificity score higher than 0.7 was measured. Several of 255 

these signature genes have been experimentally associated with maize seed 256 

development, including ZmABI3 (ABSCISIC ACID INSENSITIVE3; 257 

Zm00001d001838) (Ma et al., 2019), ZmDE18 (defective18; Zm00001d023718) 258 

(Bernardi et al., 2012), ZmNAC130 (NAC-transcription factor 130, Zm00001d008403) 259 

(Zhang et al., 2019), ZmZAG2 (Zea AGAMOUS homolog2, Zm00001d041781) 260 

(Schmidt et al., 1993), ZmSBT2 (subtilisin2, Zm00001d006669) (Lopez et al., 2017), 261 

and endosperm-specific transcription factors (TFs) Opaque2 (O2; Zm00001d018971) 262 

(Schmidt et al., 1990) and Opaque11 (O11; Zm00001d003677) (Feng et al., 2018). In 263 

maize kernel, the major chemical component is starch, which provides ~70% of the 264 

kernel weight (Flint-Garcia et al., 2009). Of the above 774 signature genes, several 265 

were starch-related genes. One representative example is ZmBT1 (brittle endosperm1; 266 

Zm00001d015746), a mutant of which severely reduces starch content (Shannon et al., 267 

1998). Maize kernels also contain several types of storage proteins, most of which are 268 
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zeins (Tsai, 1979). There were 21 zein-encoding genes identified as seed-related 269 

signature genes with obviously high expression levels in both the middle and late 270 

phases of seed development from 10 days after pollination (DAP), covering four 271 

different types of subfamilies including α-, β-, γ-, and δ-zeins (Figure 3D). Gene 272 

ontology (GO) enrichment analysis revealed several seed-related signature genes 273 

associated with embryonic development, including two genes encoding seed 274 

maturation proteins (Zm00001d026037 and Zm00001d024414), and a late 275 

embryogenesis abundant gene ZmRAB28 (responsive to abscisic acid28, 276 

Zm00001d027740) (Niogret et al., 1996). We found that several of the MADS-box 277 

(named for yeast minichromosomal maintenance [MCM1], plant AGAMOUS [AG] 278 

and DEFICIENS [DEF], and human serum response factor [SRF]) TFs were also 279 

identified as seed-related signature genes, and may be involved in ovule development. 280 

Some such representative examples were ZmMADS1 (Zm00001d023955), ZmMADS6 281 

(Zm00001d017614), ZmMADS27 (Zm00001d006094), ZmMADSL6 282 

(Zm00001d031620), ZmMADS24 (Zm00001d034047), and ZmMADS7-LIKE 283 

(Zm00001d021057). 284 

 285 

Further analysis of these seed-related signature genes, together with the ChIP-Seq 286 

data of O2 assayed at the stage of 15 DAP (Li et al., 2015), identified 32 signature 287 

genes as O2-modulated and/or -bound target genes (Figure 3E; Table S7), including 288 

α, β, and γ-zein genes (e.g., Zm00001d048809, Zm00001d048812, 289 

Zm00001d035760), as well as functionally unannotated genes (e.g., 290 

Zm00001d019925, Zm00001d020498, Zm00001d048810, and Zm00001d019156). 291 

Considering the characteristics of tissue specificity, these identified regulatory 292 

relationships between seed-signature genes would be valuable for investigating 293 

regulatory mechanisms occurring specifically in maize seed. 294 

 295 

Use of easyMF to reveal the relationship between time after pollination and gene 296 

expression during early maize seed development 297 

Of 285 seed samples, 62 were harvested for 31 time points (two biological replicates 298 
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per time point) from four stages of early maize seed development: at about double 299 

fertilization (0~16 hours after pollination [HAP]; stage I), coenocyte formation 300 

(20~44 HAP; stage II), cellularization (48~102 HAP; stage III), and differentiation 301 

(108~144 HAP; stage IV) (Yi et al., 2019). Using these temporal transcriptomes, a 302 

gene expression matrix Gt of 22,428 protein-coding genes and 31 time points was 303 

constructed in which each gene had FPKM ≥ 1 in at least one time point. In the 304 

following, we illustrate the application of easyMF to Gt to explore the temporal effect 305 

on gene expression during early maize seed development. 306 

 307 

The NMF algorithm with easyMF was used to decompose Gt into a product of two 308 

matrices, namely amplitude matrix AMt and pattern matrix PMt (Figure 4A). 309 

Hierarchical clustering of AMt showed that 31 time points can be grouped into three 310 

sets, corresponding to three metagenes: metagene1 for stages I and II of the maize 311 

seed development, metagene2 for stage III, and metagene3 for stage IV. The easyMF 312 

platform grouped time points from stages I and II into one set, consistent with the 313 

hierarchical clustering analysis of the gene expression matrix Gt, where samples from 314 

the stages I and II were clustered in the same main branch (Yi et al., 2019). In our 315 

work, easyMF identified 1,250, 698, and 1,219 signature genes with peak expressions 316 

at stages I+II, III, and IV, respectively (Table S7). Three representative examples, 317 

including ZmUMC1966 (Zm00001d016705) for metagene1, ZmZNOD1 (Zea 318 

nodulation homolog1; Zm00001d045302) for metagene2, and ZmFL3 (floury3; 319 

Zm00001d009292) for metagene3, are shown in Figure 4B.  320 

 321 

For each set of signature genes, easyMF implemented topGO (Alexa and 322 

Rahnenführer, 2009) to perform GO enrichment analysis for the purpose of 323 

identifying important biological processes involved in the maize early seed 324 

development. This exploratory analysis revealed the importance of photosynthesis at 325 

approximately the double fertilization and coenocyte formation stages. Several 326 

signature genes from metagene1, including ZmPSB29 (photosystem II subunit29, 327 

Zm00001d021763), ZmPSA2 (photosystemI2, Zm00001d031738), and three 328 
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oxygen-evolving complex genes (Zm00001d036535, Zm00001d021703, 329 

Zm00001d014564) (Pal et al., 2013; Vogt et al., 2015) are enriched in the 330 

photosynthesis system, corresponding to GO terms such as “photosynthesis, light 331 

harvesting in photosystem I”, “response to light stimulus”, and “photosystem II 332 

assembly” (Figure 4C and Table S8). Auxin has been reported to regulate cell fate 333 

specification at cellularization (Pagnussat et al., 2009), and xylose has been reported 334 

to be the most abundant monosaccharide constituent of maize cell walls (Jung and 335 

Casler, 2006). Several cell wall-related genes that may play roles during the 336 

cellularization stage were identified by using easyMF, including two cell wall 337 

invertase-related genes incw1 (cell wall invertase 1; Zm00001d016708) and incw5 338 

(cell wall invertase 5; Zm00001d025354). Twenty-three signature genes from 339 

metagene2 were also identified to respond to auxin and to be involved in the xylan 340 

metabolic process (Table S8). Cellular oxidant detoxification was linked according to 341 

the easyMF analysis with the initial endosperm differentiation stage. From metagene3, 342 

19 signature genes, including ZmDHAR2 (Zm00001d011035), ZmUMC2588 343 

(Zm00001d014608), ZmNRX1 (Zm00001d029457), ZmPOX3 (Zm00001d037547), 344 

and ZmRBOH4 (Zm00001d052653), were indicated to possibly participate in cellular 345 

oxidant detoxification (Table S8), and to be expressed more abundantly at the initial 346 

endosperm differentiation stage than at the cellularization phase (Figure 4D).  347 

 348 

In summary, these results indicated the value of using easyMF to extract expression 349 

patterns from temporal transcriptomes for the purpose of determining the responses of 350 

signature genes to developmental time, and consequently its value also in contributing 351 

to gaining a better understanding of the biology of specific developmental phases. 352 

 353 

Use of easyMF to attain compartment-specific biological knowledge from maize 354 

seed spatial transcriptomes 355 

Finally, we focused on the spatial transcriptomes profiled from 10 compartments of 356 

maize kernel at 8 DAP (Figure 5A), with these 10 compartments including the 357 

aleurone (AL), the basal endosperm transfer layer (BETL), the embryo-surrounding 358 
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region (ESR), the central starchy endosperm (CSE), the conducting zone (CZ), the 359 

embryo (EMB), the nucellus (NU), the placento-chalazal region (PC), the pericarp 360 

(PE), and the vascular region of the pedicel (PED) (Zhan et al., 2015). Using these 361 

transcriptomes, a gene expression matrix Gs (22,998 genes × 10 compartments) was 362 

constructed, in which each gene had FPKM ≥ 1 in at least one compartment. The 363 

easyMF platform was then tested for its usefulness in the analysis of spatial 364 

transcriptomes, specifically by decomposing the expression matrix Gs with the NMF 365 

algorithm and varying the number of metagenes. 366 

 367 

We found that easyMF can distinguish compartments from filial and maternal tissues 368 

of maize kernel when setting the number of metagenes to be two. Hierarchical 369 

clustering of the generated pattern matrix showed that compartments belonging to 370 

filial and maternal tissues of 8-DAP maize kernel were perfectly grouped into two 371 

metagenes, respectively (Figure 5B). When increasing the number of metagenes, 372 

easyMF was able to identify signature genes and biological processes associated with 373 

specific maize kernel compartments. For example, when the number of metagenes 374 

was set to five, three spatially adjacent compartments were assigned to the same 375 

metagene (specifically, EMB, AL, and CSE for metagene3) (Figure 5C). Use of 376 

easyMF led to the identification of 286 signature genes for metagene3 (Table S7), GO 377 

analysis of which revealed a significant enrichment in GO terms related to DNA 378 

replication, cell cycle, nuclear division, and organelle organization (Figure 5D; Table 379 

S9), consistent with the extensive developmental and mitotic activity within these 380 

three compartments at this stage (Doll et al., 2020). Interestingly, the GO term “RNA 381 

modification” was also found to be significantly enriched, and was found in the 382 

annotations of 21 signature genes including 15 genes encoding pentatricopeptide 383 

repeat-containing proteins such as Zm00001d012961, Zm00001d015346, and 384 

Zm00001d016815, with high expression levels in the EMB, AL, and CSE 385 

compartments (Figure 5E). When the number of metagenes was increased to ten, 386 

easyMF extracted a different spatial expression pattern for each of these 10 387 

compartments (Figure 5F), allowing for the identification of compartment-specific 388 
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genes and different biological processes. For example, in the EMB-related metagene 389 

(i.e., metagene6), several signature genes such as ZmWOX12a (wuschel-related 390 

homeobox12A, Zm00001d022524) (Wu et al., 2007) and ZmOLE4 (oleosin4, 391 

Zm00001d033612) (Miquel et al., 2014) were associated with organism development, 392 

corresponding to the GO terms “post-embryonic development”, “cell differentiation”, 393 

and “reproductive system development” (Figure 5G-H; Table S7; Table S9). In 394 

contrast, several signature genes (e.g., ZmIAA40 (Aux/IAA-transcription factor 40, 395 

Zm00001d044818), ZmPIN12 (PIN-formed protein12, Zm00001d045219), and 396 

ZmZIM14 (ZIM-transcription factor 14, Zm00001d048268)) from the metagene8 (PC 397 

compartment) were enriched in terms indicating processes involving response to 398 

stimulus such as “defense response”, “response to abscisic acid”, and “response to 399 

biotic stimulus” (Figure 5G; Table S7; Table S9).  400 

 401 

Taken together, as a result of an MF-based analysis of maize seed spatial 402 

transcriptomes, it was shown that easyMF could be used to open a window for 403 

attaining compartment-specific biological knowledge with the discovery of signature 404 

genes and related biological processes, and its use here specifically enhanced our 405 

understanding of the process of cell differentiation during seed development. 406 

 407 

Discussion 408 

With the ever-increasing volumes of RNA-Seq data, the use of MF has been a 409 

foundational approach to extracting biological knowledge in transcriptomic studies. 410 

Although a variety of MF-based software packages are already available (Table S1), 411 

many of them have limitations, including not being easy to use, and not providing an 412 

all-in-one solution in the transcriptome data analysis. We compared the features 413 

provided in the easyMF platform with those in available MF-based software packages, 414 

and describe here three major differences. 415 

 416 

One distinct difference involves their capabilities of preparing a high-quality gene 417 

expression matrix, which is essential for knowledge discovery through MF-based and 418 
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other forms of transcriptome analysis. All currently available MF-based software 419 

packages only accept a gene expression matrix as input, and do not provide for the 420 

option to process raw RNA-Seq data to gene expression values (Table S1). This 421 

limitation hinders the ability to effectively analyze RNA-Seq data generated locally 422 

by the user or deposited in public repositories (e.g., the NCBI GEO and SRA 423 

databases). In addition, they lack a quality control function that filters genes expressed 424 

at low levels and/or outlier samples for downstream analysis. The easyMF platform 425 

was designed to address these two limitations by incorporating a customized 426 

RNA-Seq analysis pipeline (Figure S1), which is invaluable for researchers with 427 

relatively little experience in high-throughput RNA-Seq data analysis. 428 

 429 

Another notable difference involves the comprehensiveness of the MF-based analysis. 430 

Almost all currently available MF tools, except Compadre (Ramos-Rodriguez et al., 431 

2012), were designed with a focus on only one of the three above-mentioned MF 432 

algorithms (PCA, ICA, and NMF) and have limited embedded functionalities for 433 

metagene-based exploratory analysis (Table S1). In contrast, easyMF was specially 434 

designed to implement all three of these MF algorithms with R packages: ‘stats’ 435 

(prcomp) for PCA (Team, 2018), ‘ica’ (icafast) for ICA (Helwig, 2018), and ‘bignmf’ 436 

(bignmf) for NMF (Pan et al., 2012). It can be used to perform a series of 437 

metagene-based exploratory analytical tasks through sample clustering, signature 438 

gene identification, functional gene discovery, and pathway activity inference (Figure 439 

1). These features allow easyMF to serve as an all-in-one platform for 440 

comprehensively mining large-scale gene expression data using MF algorithms. 441 

 442 

The third and last major difference involves the flexibility of use. Most currently 443 

available MF tools were produced as bioinformatics toolkits with command-based 444 

implementations, and lack intuitive representations of the results of the analyses. But 445 

easyMF was developed as a Galaxy-based platform that aims to easily perform 446 

MF-based analysis. Taking advantage of the Galaxy system, easyMF provides 447 

user-friendly GUIs to design bioinformatics pipelines with different functionalities, 448 
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handle large volumes of RNA-Seq data, adjust different input parameters, examine the 449 

running status, and visualize output results. It also permanently records all analysis 450 

data such as inputs, parameters, intermediate results, and outputs in the ‘history’ panel 451 

of the easyMF platform, making complex MF-based transcriptomic analysis 452 

reproducible and amenable to collaborative modes. Moreover, easyMF is packaged 453 

into a Docker image that can be employed under different operating systems (i.e., 454 

Windows, Linux, and Macintosh), overcoming issues related to code changes, library 455 

dependencies and backward compatibility over time. We expect the easy 456 

implementation of easyMF as well as the detailed user documentation and 457 

open-access wiki discussion groups to allow researchers, regardless of their levels of 458 

programming experience, to carry out accessible, reproducible and collaborative 459 

analyses of large-volume of RNA-Seq data with MF algorithms. 460 

 461 

We have demonstrated the use of easyMF in the MF-based analysis of maize 462 

transcriptomes for four case studies: (1) prioritization of seed-related genes, (2) 463 

clustering analysis of seed samples, (3) temporal analysis of maize seed 464 

transcriptomes, and (4) spatial analysis of maize seed transcriptomes. The new 465 

knowledge attained about maize seeds using easyMF illustrated that this tool is 466 

readily applicable and flexible to confront a range of biological questions, allowing 467 

users to more effectively concentrate on hypothesis testing. There were also some 468 

limitations regarding the study. First, the efficiency of easyMF was illustrated only 469 

using 940 RNA-Seq datasets from maize. The ability of easyMF to handle more 470 

transcriptome data and more complex species (e.g., hexaploid bread wheat) needs to 471 

be investigated in future work. Secondly, we did not show the application of easyMF 472 

in the analysis of single-cell transcriptome data (File S1; Figure S5), which were 473 

deficient for maize kernels at the time the work was carried out. Single-cell RNA-Seq, 474 

which measures gene expressions at the level of a single cell, has been developed as a 475 

powerful method to investigate the function of individual cells (Tang et al., 2010). 476 

Using single-cell RNA-Seq data from Arabidopsis root (Shulse et al., 2018), we found 477 

that easyMF can be used to map six cell types according to 13 clusters of 4,043 cells 478 
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(Figure S6). Thirdly and lastly, large-scale transcriptome analysis using MF and other 479 

algorithms is often time-consuming and requires heavy computational resources. 480 

Despite the easy deployment and implementation of easyMF, it still cannot be used by 481 

researchers lacking high-throughput computational resources. In such cases, we 482 

would happily collaborate on analyses, and such a collaboration can be requested by 483 

contacting the corresponding author. 484 

 485 

The easyMF project is still being developed and improved. The source codes, user 486 

manual, Docker image, prototype web server and all future updates are available at 487 

the homepage of easyMF project (https://github.com/cma2015/easyMF). The easyMF 488 

Docker image can be obtained at https://hub.docker.com/r/malab/easymf. A porotype 489 

web server for easyMF has been developed by the Aliyun cloud computing 490 

architecture and can be accessed at http://easymf.omicstudio.cloud. 491 

 492 

Methods 493 

Generation of the maize gene expression matrix G1 494 

easyMF presents a customized bioinformatics pipeline to generate gene expression 495 

matrix from raw RNA-Seq reads (Figure S1). This bioinformatics pipeline has been 496 

applied to generate the maize gene expression matrix G1. In brief, 1,066 maize 497 

RNA-Seq datasets were firstly collected from NCBI’s Gene Expression Omnibus 498 

(GEO) and/or Sequence Read Archive (SRA) databases (as of 26 July 2019). Raw 499 

RNA-Seq data were preprocessed using fastp (version 0.20.0) (Chen et al., 2018) for 500 

quality control, including sequencing adapter trimming and low-quality read filtering. 501 

Subsequently, high-quality RNA-Seq reads from each sample were aligned to maize 502 

reference genome (APGv4, https://plants.ensembl.org/Zea_mays/Info/Index) using 503 

HISAT2 (version 2.1.0) (Kim et al., 2015), generating a BAM (binary alignment map) 504 

file recording read-genome alignments. BAM files were then used as inputs of 505 

StringTie (version 1.3.6) (Pertea et al., 2015) to estimate gene expression abundance. 506 

To obtain a high-quality gene expression matrix, a two-step quality control was 507 

implemented to filter genes expressed at low levels and remove outlier samples. For 508 
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expression-level quality control, genes with FPKM (fragments per kilobase of 509 

transcript per million mapped reads) ≥ 1 in at least 15 RNA-Seq samples were 510 

retained. For low-quality samples, we firstly averaged the statistical duplicated 511 

samples based on PCC with criteria: PCC > 0.999 (Fehrmann et al., 2015). Then, 512 

outlier samples whose correlation with the first principal component (sample based 513 

principal component analysis) less than 0.75 were removed. Finally, a gene expression 514 

matrix G1 with 28,874 protein-coding genes and 940 samples was obtained for the 515 

downstream application. 516 

 517 

Identification of signature genes 518 

easyMF decomposes a high-dimensional gene expression matrix (genes in rows and 519 

samples in columns) into a product of two low-dimensional metagene-based matrices: 520 

an amplitude matrix (AM; genes in rows and metagenes in columns) and a pattern 521 

matrix (PM; metagenes in rows and samples in columns). Using gene-level 522 

relationships in the AM and sample-level relationships in the PM, easyMF identifies 523 

genes exhibiting dominant patterns (defined as signature genes) for each metagene 524 

using the patternMarkers (Stein-O'Brien et al., 2017) and the Pearson’s correlation 525 

coefficient (PCC) statistics. patternMarkers calculates a Euclidean distance (ED) 526 

between normalized AM coefficients (i.e., coefficients in the AM) and a 0-1 pattern of 527 

metagenes (Figure S2A). Suppose the number of metagenes is M, the ED score for 528 

gene i and metagene k (1≤ k ≤ M) is calculated using following formula: 529 

𝐸𝐷ሺ𝑖, 𝑘ሻ ൌ  ට∑ ሺ
஺೔ೕ

௠௔௫஺೔
െ 𝑤௞௝ሻଶெ

௝ୀଵ  , 530 

where Aij represents the AM coefficient of gene i in metagene j (1≤ j ≤ M), maxAi 531 

denotes the maximum value of AM coefficient of gene i among all M metagenes, 𝑤ഥ௞ 532 

is a numeric unit vector specifying the status of each component ( 𝑤௞௝ = 1 only when 533 

k = j, otherwise equals to 0). For each gene i, easyMF repeats this process to generate 534 

a vector of ED scores for all metagenes.  535 

 536 

easyMF uses the PCC statistic to quantify the correlation between gene expression 537 
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abundance and PM coefficients (Figure S2B). For gene i and metagene k, the PCC 538 

score is calculated using the following formula: 539 

𝑃𝐶𝐶௜௞ ൌ  
𝑐𝑜𝑣ሺ𝑒௜, 𝑃ሬ⃗௞ሻ

ට𝑉𝑎𝑟ሺ𝑒௜ሻ ∙ 𝑉𝑎𝑟൫𝑃ሬ⃗௞൯
  , 

Where 𝑒௜  represents the i-th gene’s expression values, 𝑉𝑎𝑟ሺ𝑒௜ሻ  represents the 540 

variance of i-th gene’s expression values, 𝑃ሬ⃗௞  represents the i-th gene’s PM 541 

coefficients, 𝑉𝑎𝑟൫𝑃ሬ⃗௞൯ represents the variance of i-th gene’s PM coefficients. The 542 

gene i is regarded as a signature gene of metagene k, if it satisfied with three 543 

conditions: i) equals to the minimal ED score; ii) PCC ≥ 0.6; iii) P-value ≤ 1.0E-03. 544 

Of note, the thresholds of PCC and P-value can be user-adjusted in web interface of 545 

easyMF. 546 

 547 

Metagene-based gene prioritization 548 

For a given set of genes (denoted as labeled genes), easyMF firstly examines the 549 

difference in the distribution of AM coefficients between labeled genes and unlabeled 550 

(all except labeled genes in the AM) genes by using Student’s t-test, following by a 551 

transformation of the significance level P-value to z-score using the standard normal 552 

quantile function ‘qnorm’ in R. A higher z-score indicates a larger difference in the 553 

AM coefficient between labeled and unlabeled genes, thus corresponding to stronger 554 

biological association between the metagene and the gene set. This results to a z-score 555 

vector with a length of metagene number for the given gene set. Subsequently, the 556 

association between z-scores and AM coefficients of corresponding genes is examined 557 

using the PCC statistic (Fehrmann et al., 2015). Finally, easyMF prioritizes candidate 558 

genes functionally associated with the given gene set based on the decreasing PCC 559 

values (Figure S3). 560 

 561 

Performance evaluation of gene prioritization approaches 562 

The leave-one-out cross-validation (LOOCV) experiment was used to evaluate the 563 
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performance of easyMF and MaizeNet (Lee et al., 2019) in gene prioritization. In 564 

LOOCV experiment, each labeled gene and all unlabeled genes were used as testing 565 

samples and their normalized scores (min-max normalization) were then calculated. 566 

The performance of easyMF and MaizeNet were further evaluated using the area 567 

under the receiver operating characteristic (ROC) curve (AUC) and the area under the 568 

curve of self-ranked curve (AUSR). The ROC curve is a plot of true-positive rate 569 

(TPR) along the y axis versus false-positive rate (FPR) along the x axis. While the 570 

self-rank curve is a plot of ratio (Ra) along the y axis versus self-rank along the x axis 571 

(Tzfadia et al., 2012), the Ra can be calculated by the following formula: 572 

𝑅𝑎ሺ𝑙ሻ ൌ ∑ 𝐼ሺ𝜂ሻሺఎ∈௥௔௡௞ሻ∩ሺఎஸ௟ሻ 𝑛⁄ , 573 

Where 𝑟𝑎𝑛𝑘 represents the ranks of all positive genes, 𝑅𝑎ሺ𝑙ሻ represents the ratio of 574 

ranks lower than a pre-defined level of l (e.g., 1000). Both AUC and AUSR, ranging 575 

from 0 to 1, were finally calculated using the trapezoid rule (Radivojac et al., 2013), 576 

with greater value indicating better prediction performance. 577 

 578 

FIGURE LEGENEDS 579 

Figure 1. Overview of easyMF.  580 

 581 

Figure 2. Application of easyMF to gene prioritization. 582 

(A) A schematic overview of easyMF in gene prioritization. Performance evaluation 583 

of easyMF, MaizeNet and Random Selection approaches in terms of (B) AUSR and 584 

(C) AUC. LOOCV experiments were performed using experimentally validated genes 585 

from 75 GO terms from Biological Process (BP), Cellular Component (CC), and 586 

Molecular Function (MF) domains. The easyMF platform was found to be superior to 587 

MaizeNet in the prioritization of 70 seed-related genes in terms of (D) the AUSR, and 588 

(E) the AUC. 589 

 590 

Figure 3. Application of easyMF to clustering analysis. 591 

(A) Hierarchical clustering analysis of the pattern matrix PM2 decomposed from 940 592 
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maize RNA-Seq samples using easyMF. (B) The distribution of coefficients between 593 

seed and non-seed samples among 11 metagenes in PM2. (C) Expression patterns of 594 

seed-related signature genes among 940 maize RNA-Seq samples. (D) Heatmap 595 

showing expression levels of 21 zein-encoding genes among 285 seed samples. (E) 596 

Regulatory network consisting of O2 transcription factor and seed-related signature 597 

genes. Thirty-two seed-related signature genes were identified as O2-modulated 598 

and/or -bound target genes using ChIP-Seq data. 599 

 600 

Figure 4. Application of easyMF to temporal transcriptome analysis. 601 

(A) Heatmap of the pattern matrix PMt decomposed from temporal transcriptomes of 602 

early developmental stages of maize seed. (B) Expression profiles of ZmUMC1966 603 

(Zm00001d016705), ZmZNOD1 (Zea nodulation homolog1; Zm00001d045302), and 604 

ZmFL3 (floury3; Zm00001d009292). (C) GO enrichment results of signature genes 605 

from three metagenes. (D) Heatmap showing expression levels of 19 genes with 606 

annotations enriched with the “cellular oxidant detoxification” term. 607 

 608 

Figure 5. Application of easyMF to spatial transcriptome analysis. 609 

(A) Scheme representing 10 compartments of maize kernel at 8 DAP. (B) Hierarchical 610 

clustering analysis of the pattern matrix grouped 10 compartment samples from filial 611 

and maternal tissues into two distinct classes when the number of metagenes was set 612 

to two. (C) Hierarchical clustering analysis of the pattern matrix grouped spatially 613 

adjacent compartments into the same metagene when the number of metagenes was 614 

set to five. (D) GO enrichment results of signature genes from the metagene related to 615 

EMB, AL, and CSE compartments. (E) Heatmap exhibiting expression levels of 21 616 

signature genes with annotations enriched with the “RNA modification” term. (F) 617 

Hierarchical clustering analysis of the pattern matrix identified compartment-specific 618 

metagenes when the number of metagenes was set to ten. (G) GO enrichment results 619 

of signature genes from EMB- and PC-related metagenes. (H) Heatmap exhibiting 620 

expression levels of 13 signature genes with annotations enriched with the 621 

“post-embryonic development” term. 622 
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 623 

Supplementary Data 624 

All Supplemental tables (Table S1-9) are available at the Zenodo Public Data 625 

Repository (http://doi.org/10.5281/zenodo.4383238). 626 

File S1. Metagene-based pathway activity analysis and single-cell RNA-Seq data 627 

analysis. 628 

Table S1. Summary of MF-based software tools. 629 

Table S2. Description of functional modules in easyMF. 630 

Table S 3. Summary of 940 maize RNA-Seq datasets used in this study. 631 

Table S4. Summary of 75 GO terms used to evaluate the performance of gene 632 

prioritization methods. 633 

Table S5. List of 70 experimentally validated genes functionalized in maize seed 634 

development. 635 

Table S6. Genome-wide prioritization of candidate seed-related genes using easyMF 636 

and MaizeNet. 637 

Table S7. List of signature genes identified from gene expression matrix G1, Gt, and 638 

Gs. 639 

Table S8. GO enrichments of signature genes identified from gene expression matrix 640 

Gt. 641 

Table S9. GO enrichments of signature genes identified from gene expression matrix 642 

Gs. 643 

 644 

Figure S1. The bioinformatics pipeline for the generation of a gene expression matrix 645 

from RNA-Seq data. 646 

 647 

Figure S2. Identification of signature genes using patternMarkers (A) and Pearson’s 648 

correlation coefficient (PCC) algorithm (B). 649 

 650 

Figure S3. Prioritization of candidate genes involved in a pre-specific function. 651 

 652 
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Figure S4. PCA statistics of optimal metagenes. The blue and black dots represent the 653 

Cronbach's α value and the explained variance of each metagene, respectively. The 654 

red dots represent the cumulative explained variance. At the threshold of Cronbach’s 655 

α of 0.7, easyMF generated 161 optimal metagenes, capturing 96.4% of the variation 656 

in gene expression. 657 

 658 

Figure S5. Identification of cell types of unknown cells from single-cell RNA-Seq 659 

data. 660 

 661 

Figure S6. t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality 662 

reduction of 4,043 single Arabidopsis root cells, which are represented by individual 663 

points. All captured cells were clustered into 13 populations corresponding to six cell 664 

types. 665 
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