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30  Abstract

31  With the development of high-throughput experimental technologies, large-scale RNA
32 sequencing (RNA-Seq) data have been and continue to be produced, but have led to
33 challenges in extracting relevant biological knowledge hidden in the produced
34 high-dimensional gene expression matrices. Here, we present easyMF, a user-friendly
35 web platform that aims to facilitate biological discovery from large-scale
36  transcriptome data through matrix factorization (MF). The easyMF platform enables
37  users with little bioinformatics experience to streamline transcriptome analysis from
38  raw reads to gene expression and to decompose expression matrix from thousands of
39  genes to a handful of metagenes. easyMF also offers a series of functional modules
40  for metagene-based exploratory analysis with an emphasis on functional gene
41  discovery. As a modular, containerized and open-source platform, easyMF can be
42 customized to satisfy users’ specific demands and deployed as a web server for broad
43  applications. easyMF is freely available at https://github.com/cma2015/easyMF. We
44  demonstrated the application of easyMF with four case studies using 940 RNA
45  sequencing datasets from maize (Zea mays L.).

46

47  Keywords: Galaxy, Integrative analysis, Matrix factorization, Metagene,
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60  Introduction

61  High-throughput sequencing of RNA (RNA-Seq) is being used in almost all biology
62  and related research laboratories, and has become a key research tool for profiling
63  genome-wide gene expression in various species. The constant improvement of
64  RNA-Seq technologies coupled with sharp decreases in sequencing costs and data
65  generation timelines now enables investigators to perform  sequencing-based
66  projects for hundreds of thousands of samples from different cells, tissues, organs,
67  experimental conditions, individuals and species (Cardoso-Moreira et al., 2019;
68  Nelms and Walbot, 2019; One Thousand Plant Transcriptomes, 2019; Sarropoulos et
69 al., 2019; Shulse et al.,, 2018; Qiu et al., 2020). The large-scale transcriptome
70  sequencing, however, results in considerable challenges for data analysis, as the
71  outputs are naturally represented as high-dimensional gene expression matrices (genes
72 in rows and samples in columns), from which it is difficult to extract new information
73 through traditional gene expression analysis approaches like differential expression
74 analysis and correlation-based statistical analysis.

75

76  Machine learning is a branch of artificial intelligence that enables computer
77  algorithms to learn hidden knowledge from Big Data in biology and other sciences
78  (Ma et al., 2014; Mooney and Pejaver, 2018; Cuocolo et al., 2019). Matrix
79  factorization (MF; also known as matrix decomposition) is a class of unsupervised
80  machine learning techniques that can decompose high-dimensional data into
81  low-dimensional structures, while preserving as much information as possible from
82  the original data (Koren et al., 2009) . With the development of a variety of computer
83  algorithms, such as principal component analysis (PCA) (Abdi and Williams, 2010),
84  independent component analysis (ICA) (Hyvarinen and Oja, 2000), and non-negative
85  matrix factorization (NMF) (Lee and Seung, 2000), MF is regarded as well suited for
86  large-scale transcriptome data analysis (Stein-O'Brien et al., 2018). MF reduces the
87  gene expression matrix from thousands of genes to a handful of metagenes, each of
88  which can represent a weighted combination of the individual genes. MF can also

89  decompose the gene expression matrix into a product of two low-dimensional
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90  matrices: the amplitude matrix (AM; genes in rows and metagenes in columns) and
91  the pattern matrix (PM; metagenes in rows and samples in columns), which have
92 served as the basis for a series of metagene-base applications, such as sample
93  clustering analysis, functional gene discovery, cell type identification, and so on
94  (Stein-O'Brien et al., 2018; Noor et al., 2019; Sompairac et al., 2019; Nguyen and
95  Wang, 2020). Several MF-based pipelines are available, but these tools were designed
96  for specific or limited functionalities (Table S1). Moreover, when developing tools
97  for high-throughput sequencing data, ensuring reliability, reproducibility, flexibility
98  and ease of use become a crucial desideratum. Accordingly, the absence of a reliable,
99  reproducible, all-in-one, and easy-to-use platform is to a great extent obstructing
100  MF-based transcriptome analyses for both computational and experimental biologists.
101

102 To address this limitation, we here present easyMF, a web platform that facilitates
103 MF-based knowledge discovery from large-scale transcriptome data. The easyMF
104  platform was equipped using the Big-Data-supported Galaxy system with
105  user-friendly graphic user interfaces, allowing researchers with little programming
106  experience to streamline transcriptome analysis from raw reads to gene expression,
107 and to carry out our MF, and metagene-based exploratory analysis. All analysis data,
108  such as inputs, parameters, intermediate results, and outputs, are permanently
109  recorded in the “History” panel of easyMF, making complex MF-based transcriptomic
110  analysis reproducible and amenable to collaborative modes. In addition to the Galaxy
111 system, easyMF was also powered with the advanced Docker packaging technology,
112 making it easy to install and deployable in user-customized hardwire under different
113 operating systems (i.e., Windows, Linux, and Macintosh). With these flexible,
114  interactive, reproducible, and easy-to-use features, we expect easyMF to serve as a
115  valuable tool with broad application potential. We provide examples of the application
116  of easyMF to 940 RNA sequencing datasets of maize (Zea mays L.) inbred line B73.
117

118  Results

119  Overview of easyMF
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120  The easyMF platform comprises three functional modules, named Matrix Preparation,
121  Matrix Factorization, and Deep Mining (Figure 1). Matrix Preparation was designed
122 to prepare a high-quality gene expression matrix for downstream analysis. Matrix
123 Factorization can be used to decompose the gene expression matrix into an AM and
124  PM using three different computer algorithms, i.e., PCA, ICA, and NMF. Deep
125 Mining was designed to perform metagene-based statistical analysis for sample
126  clustering, signature gene identification, functional gene discovery, cell type detection,
127  and pathway activity inference. These functional modules were built with a
128  comprehensive set of functions (Table S2), which can be selected by users to
129 customize their own pipelines for satisfying specific needs.

130

131 The easyMF platform is typically started with an input of a gene expression matrix, in
132 which genes are in rows and samples are in columns. The gene expression matrix can
133 also be automatically generated from raw reads using a bioinformatics pipeline
134 (Figure S1), which was specially designed for users unfamiliar with RNA-Seq data
135  analysis. After specifying the accession numbers of RNA-Seq datasets from the
136  National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
137 (GEO) and/or Sequence Read Archive (SRA) databases, the customized pipeline can
138 be implemented for a series of RNA-Seq data analyses, including data retrieval,
139  format transferring, quality control, reads mapping, and gene expression
140  quantification. To improve the quality of the gene expression matrix, easyMF removes
141 batch effects from different experiments using the sva function (Leek et al., 2012),
142 filters genes expressed at low levels with user-specified criteria, and removes outlier
143 samples using a sample-based PCA approach (Fehrmann et al., 2015).

144

145  The easyMF platform subsequently decomposes the gene expression matrix into a
146  product of the AM and PM with three optional algorithms, namely PCA, ICA and
147 NMF, which calculate metagenes through orthogonal decomposition, independent
148 decomposition and dependent decomposition, respectively. The number of metagenes

149 can be specified by users, or chosen according to optimized parameters: the internal
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150  consistency of Cronbach's a value for PCA (Fehrmann et al., 2015) and the inflection
151  point of the rate of the mean residual decline for ICA and NMF (Gaujoux and Seoighe,
152 2010). For each metagene, genes with dominant patterns (defined as signature genes)
153 are identified using patternMarkers (Stein-O'Brien et al., 2017) and the Pearson’s
154 correlation coefficient (PCC) algorithm (see Methods; Figure S2). The
155  patternMarkers calculates the Euclidean distance between normalized AM coefficients
156  and the 0-1 pattern of metagenes. While the PCC algorithm scores the association
157  between gene expression values and PM coefficients.

158

159  The easyMF platform makes use of gene-level relationships in the AM for functional
160  gene discovery (Fehrmann et al., 2015) and pathway activity inference (see File S1).
161  This platform also makes use of sample-level relationships in the PM to perform
162  temporal, spatial, and integrated transcriptome analysis. In the current version,
163  easyMF provides six optional algorithms (mclust (Scrucca et al., 2016), apcluster
164  (Bodenhofer et al., 2011), SSE, fpc (Hennig, 2013), vegan (Dixon, 2003), and gap
165  (Maechler et al., 2012)) to cluster samples using PM coefficients. The clusters are
166  visualized in plots, as well as tables, providing a quick overview of the relationships
167  between samples. The easyMF platform can also be used to determine the extent to
168  which genes change over time in response to perturbations (e.g., developmental time),
169 and does so by integrating gene expression values, and gene- and sample-level
170  relationships. It can also be used to identify signature genes dominated at specific
171  compartments of the transcriptomes with spatial resolution in individual tissue
172 samples (spatial transcriptomes), and to identify the type of unknown cells from
173 single-cell RNA-Seq data.

174

175 Application of easyMF to 940 maize RNA-Seq samples

176 ~ To demonstrate the utility of easyMF, we used it to perform a large-scale analysis of
177  RNA-Seq data from maize B73 samples manually collected from the NCBI GEO and
178  SRA databases (Table S3). After a series of data processing steps (see Methods), a

179  maize gene expression matrix (denoted as G,) of 28,874 protein-coding genes and 940
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180  samples was constructed, in which each gene had FPKM (fragments per kilobase of
181  transcript per million mapped reads) > 1 in at least 15 RNA-Seq samples. As one of
182 the most important sources of food, feed, and biofuel materials, maize seed has been
183 extensively characterized using RNA-Seq technologies to understand its complex
184  gene expression patterns at the genome-wide level. The availability of extensive
185  transcriptomes from 285 seed samples provided us an opportunity to explore the
186  ability of easyMF to be used to attain new knowledge about seeds.

187

188  The easyMF platform is capable of effectively prioritizing seed-related genes

189 A schematic overview of the application of easyMF to gene prioritization is depicted
190  in Figure 2A and Figure S3. easyMF first uses the PCA algorithm to decompose the
191  matrix G; into two matrices, namely amplitude matrix AM; and pattern matrix PM;.
192 At a threshold of Cronbach’s a > 0.7, easyMF generated 161 metagenes, capturing
193 96.4% of the variation in gene expression (Figure S4). Then, the performance of
194  easyMF in maize functional gene prioritization was extensively evaluated using the
195  leave-one-out cross-validation (LOOCV) strategy on 75 Gene Ontology (GO) terms
196  (Table S4), each of which consisted of 5~500 experimentally validated genes,
197  provided by Ensembl Plants (Bolser et al., 2017) (http://plants.ensembl.org) and
198  maize-GAMER (Wimalanathan et al., 2018). For each GO term, we quantified the
199  performance of easyMF using the area under the receiver operating characteristic
200  (ROC) curve (AUC) and the area under the self-ranked curve (AUSR) (for details, see
201  Methods). For a comparison, we also tested the recently proposed network-based
202  gene discovery system MaizeNet (Lee et al., 2019) and a random selection strategy
203  using the same LOOCV experiment. The MaizeNet system prioritizes functional
204  genes in maize using a co-functional network inferred from more than 20 distinct
205  types of genomic and proteomic data sets. The random selection process was repeated
206 100 times by randomly assigning gene identifiers to the score and rank results
207  obtained from PCA in each round of the LOOCV experiments. The mean evaluation
208  results were used for the random selection strategy. For AUC-based and AUSR-based

209  evaluations, easyMF performed much better than random selection, and exhibited
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210  comparable or superior prediction performances as compared to the network-based
211 approach MaizeNet (Figure 2B, C).

212

213 These encouraging results prompted us to further access the ability of easyMF to
214  prioritize seed-related genes. A manual literature survey was conducted to identify 70
215  experimentally validated genes functionalized in maize seed development (Table SS).
216  The LOOCV experiments on these 70 seed-related genes showed AUSR values of
217 0.283, 0.168, and 0.046 (Figure 2D) and AUC values of 0.768, 0.591, and 0.500
218  (Figure 2E) for easyMF, MaizeNet, and random selection, respectively. Using all of
219  these 70 seed-related genes as input, easyMF generated a prediction model to identify
220  seed-related candidate genes at the genome scale. A detailed literature review showed
221  that four of the top 10 candidates predicted by easyMF have been experimentally
222 validated: ZmNRPI (no-apical-meristem-related proteinl, Zm00001d040189) (Guo et
223 al., 2003; Haun and Springer, 2008; Yi et al., 2019), ZmMYB127 (MYB-transcription
224 factor 127, Zm00001d041935) (Bernardi et al., 2019; Yi et al., 2019), ZmTAR3
225  (tryptophan aminotransferase related3, Zm00001d037674) (Bernardi et al., 2012;
226  Zhan et al., 2018) and ZmEREBI167 (AP2-EREBP-transcription factor 167,
227 Zm00001d032095) (Bernardi et al., 2019; Yi et al., 2019) (Table S6).

228

229  Overall, these results indicated easyMF to be a reliable and effective platform for
230  prioritizing functional genes through MF-based transcriptome analysis. Lists of
231  seed-related candidate genes prioritized by easyMF and MaizeNet are provided in
232 Table S6 for the benefit of researchers who in the future may pursue experimental
233 validation.

234

235  The easyMF platform can be used to perform robust sample clustering for
236  facilitating the identification of seed signature genes

237 We next considered the application of easyMF to sample clustering of a large-scale
238  gene expression matrix. By implementing the NMF algorithm, easyMF decomposed

239  the gene expression matrix G; into two matrices, namely amplitude matrix AM, and
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240  pattern matrix PM,, and reduced the dimension of G; from 28,874 genes to 11
241  metagenes (Figure 3A). Maize samples can then be analyzed by summarizing gene
242 expression patterns in terms of the coefficients of metagenes (i.e., the relative weights
243  of samples in PM;). There were three metagenes (metagenel, metagene7, and
244  metagenel(0) that had significantly higher coefficients in seed samples than in
245  non-seed samples (Figure 3B), indicative of an association between these three

246  metagenes and seed samples. This association was further highlighted by a
247  hierarchical clustering analysis of the PM; (11 metagenes X 940 samples), in which

248  all seed samples were clustered into three subgroups (Figure 3A).

249

250  Based on these three seed-related metagenes, we identified 774 signature genes
251  (metagenel: 216, metagene7: 213, and metagenelQ: 345) by using patternMarkers
252 and the PCC algorithm (Supplemental Table S7). Most (95.99%) of these 774 genes
253  were specially expressed in seed samples (Figure 3C), with this expression pattern
254  determined using the Tau method (Kryuchkova-Mostacci and Robinson-Rechavi,
255 2017), by which a tissue specificity score higher than 0.7 was measured. Several of
256  these signature genes have been experimentally associated with maize seed
257  development, including ZmABI3 (ABSCISIC ACID INSENSITIVE3,;
258  Zm00001d001838) (Ma et al., 2019), ZmDEIS8 (defectivel8; Zm00001d023718)
259  (Bernardi et al., 2012), ZmNAC130 (NAC-transcription factor 130, Zm00001d008403)
260 (Zhang et al., 2019), ZmZAG2 (Zea AGAMOUS homolog2, Zm00001d041781)
261 (Schmidt et al., 1993), ZmSBT?2 (subtilisin2, Zm00001d006669) (Lopez et al., 2017),
262  and endosperm-specific transcription factors (TFs) Opaque2 (O2; Zm00001d018971)
263 (Schmidt et al., 1990) and Opaquell (O11; Zm00001d003677) (Feng et al., 2018). In
264  maize kernel, the major chemical component is starch, which provides ~70% of the
265  kernel weight (Flint-Garcia et al., 2009). Of the above 774 signature genes, several
266  were starch-related genes. One representative example is ZmBT1 (brittle endosperml;
267  Zm00001d015746), a mutant of which severely reduces starch content (Shannon et al.,

268  1998). Maize kernels also contain several types of storage proteins, most of which are
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269  zeins (Tsai, 1979). There were 21 zein-encoding genes identified as seed-related
270  signature genes with obviously high expression levels in both the middle and late
271  phases of seed development from 10 days after pollination (DAP), covering four
272 different types of subfamilies including a-, B-, y-, and d-zeins (Figure 3D). Gene
273 ontology (GO) enrichment analysis revealed several seed-related signature genes
274  associated with embryonic development, including two genes encoding seed
275  maturation proteins (Zm00001d026037 and Zm00001d024414), and a late
276  embryogenesis abundant gene ZmRAB28 (responsive to abscisic acid28,
277  Zm00001d027740) (Niogret et al., 1996). We found that several of the MADS-box
278  (named for yeast minichromosomal maintenance [MCMI], plant AGAMOUS [AG]
279  and DEFICIENS [DEF], and human serum response factor [SRF]) TFs were also
280 identified as seed-related signature genes, and may be involved in ovule development.
281  Some such representative examples were ZmMADSI (Zm00001d023955), ZmMADS6
282 (Zm00001d017614), ZmMADS27 (Zm00001d006094), ZmMADSL6
283 (Zm00001d031620), ZmMADS24 (Zm00001d034047), and ZmMADS7-LIKE
284 (Zm00001d021057).

285

286  Further analysis of these seed-related signature genes, together with the ChIP-Seq
287  data of O2 assayed at the stage of 15 DAP (Li et al., 2015), identified 32 signature
288  genes as O2-modulated and/or -bound target genes (Figure 3E; Table S7), including
289 a, P, and y-zein genes (e.g., Zm00001d048809, Zm00001d048812,
290  Zm00001d035760), as well as functionally unannotated genes (e.g.,
291 Zm00001d019925, Zm00001d020498, Zm00001d048810, and Zm00001d019156).
292 Considering the characteristics of tissue specificity, these identified regulatory
293  relationships between seed-signature genes would be valuable for investigating
294  regulatory mechanisms occurring specifically in maize seed.

295

296  Use of easyMF to reveal the relationship between time after pollination and gene
297  expression during early maize seed development

298  Of 285 seed samples, 62 were harvested for 31 time points (two biological replicates
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299  per time point) from four stages of early maize seed development: at about double
300  fertilization (0~16 hours after pollination [HAP]; stage I), coenocyte formation
301  (20~44 HAP; stage II), cellularization (48~102 HAP; stage III), and differentiation
302 (108~144 HAP; stage IV) (Yi et al., 2019). Using these temporal transcriptomes, a
303  gene expression matrix G; of 22,428 protein-coding genes and 31 time points was
304  constructed in which each gene had FPKM > 1 in at least one time point. In the
305  following, we illustrate the application of easyMF to G; to explore the temporal effect
306  on gene expression during early maize seed development.

307

308  The NMF algorithm with easyMF was used to decompose G; into a product of two
309  matrices, namely amplitude matrix AM; and pattern matrix PM; (Figure 4A).
310  Hierarchical clustering of AM; showed that 31 time points can be grouped into three
311  sets, corresponding to three metagenes: metagenel for stages I and II of the maize
312 seed development, metagene2 for stage III, and metagene3 for stage IV. The easyMF
313 platform grouped time points from stages I and II into one set, consistent with the
314  hierarchical clustering analysis of the gene expression matrix G;, where samples from
315  the stages I and II were clustered in the same main branch (Yi et al., 2019). In our
316  work, easyMF identified 1,250, 698, and 1,219 signature genes with peak expressions
317  at stages I+II, III, and IV, respectively (Table S7). Three representative examples,
318 including ZmUMCI1966 (Zm00001d016705) for metagenel, ZmZNODI (Zea
319  nodulation homologl; Zm00001d045302) for metagene2, and ZmFL3 (floury3,
320  Zm00001d009292) for metagene3, are shown in Figure 4B.

321

322 For each set of signature genes, easyMF implemented topGO (Alexa and
323 Rahnenfiihrer, 2009) to perform GO enrichment analysis for the purpose of
324 identifying important biological processes involved in the maize early seed
325  development. This exploratory analysis revealed the importance of photosynthesis at
326  approximately the double fertilization and coenocyte formation stages. Several
327  signature genes from metagenel, including ZmPSB29 (photosystem Il subunit29,
328  Zm00001d021763), ZmPSA2 (photosystemI2, Zm00001d031738), and three
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329  oxygen-evolving  complex genes (Zm00001d036535, Zm00001d021703,
330 Zm00001d014564) (Pal et al., 2013; Vogt et al.,, 2015) are enriched in the
331  photosynthesis system, corresponding to GO terms such as “photosynthesis, light
332 harvesting in photosystem I”, “response to light stimulus”, and “photosystem II
333 assembly” (Figure 4C and Table S8). Auxin has been reported to regulate cell fate
334  specification at cellularization (Pagnussat et al., 2009), and xylose has been reported
335  to be the most abundant monosaccharide constituent of maize cell walls (Jung and
336 Casler, 2006). Several cell wall-related genes that may play roles during the
337  cellularization stage were identified by using easyMF, including two cell wall
338  invertase-related genes incwl (cell wall invertase 1; Zm00001d016708) and incw5
339 (cell wall invertase 5; Zm00001d025354). Twenty-three signature genes from
340  metagene2 were also identified to respond to auxin and to be involved in the xylan
341  metabolic process (Table S8). Cellular oxidant detoxification was linked according to
342 the easyMF analysis with the initial endosperm differentiation stage. From metagene3,
343 19 signature genes, including ZmDHAR2 (Zm00001d011035), ZmUMC2588
344 (Zm00001d014608), ZmNRX1 (Zm00001d029457), ZmPOX3 (Zm00001d037547),
345  and ZmRBOH4 (Zm00001d052653), were indicated to possibly participate in cellular
346  oxidant detoxification (Table S8), and to be expressed more abundantly at the initial
347  endosperm differentiation stage than at the cellularization phase (Figure 4D).

348

349  In summary, these results indicated the value of using easyMF to extract expression
350  patterns from temporal transcriptomes for the purpose of determining the responses of
351  signature genes to developmental time, and consequently its value also in contributing
352 to gaining a better understanding of the biology of specific developmental phases.

353

354  Use of easyMF to attain compartment-specific biological knowledge from maize
355  seed spatial transcriptomes

356  Finally, we focused on the spatial transcriptomes profiled from 10 compartments of
357 maize kernel at § DAP (Figure 5A), with these 10 compartments including the

358  aleurone (AL), the basal endosperm transfer layer (BETL), the embryo-surrounding
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359  region (ESR), the central starchy endosperm (CSE), the conducting zone (CZ), the
360  embryo (EMB), the nucellus (NU), the placento-chalazal region (PC), the pericarp
361 (PE), and the vascular region of the pedicel (PED) (Zhan et al., 2015). Using these
362  transcriptomes, a gene expression matrix G (22,998 genes x 10 compartments) was
363  constructed, in which each gene had FPKM > 1 in at least one compartment. The
364  easyMF platform was then tested for its usefulness in the analysis of spatial
365  transcriptomes, specifically by decomposing the expression matrix G5 with the NMF
366  algorithm and varying the number of metagenes.

367

368  We found that easyMF can distinguish compartments from filial and maternal tissues
369  of maize kernel when setting the number of metagenes to be two. Hierarchical
370  clustering of the generated pattern matrix showed that compartments belonging to
371  filial and maternal tissues of 8-DAP maize kernel were perfectly grouped into two
372 metagenes, respectively (Figure 5B). When increasing the number of metagenes,
373  easyMF was able to identify signature genes and biological processes associated with
374  specific maize kernel compartments. For example, when the number of metagenes
375  was set to five, three spatially adjacent compartments were assigned to the same
376  metagene (specifically, EMB, AL, and CSE for metagene3) (Figure 5C). Use of
377  easyMF led to the identification of 286 signature genes for metagene3 (Table S7), GO
378  analysis of which revealed a significant enrichment in GO terms related to DNA
379  replication, cell cycle, nuclear division, and organelle organization (Figure 5D; Table
380 S9), consistent with the extensive developmental and mitotic activity within these
381  three compartments at this stage (Doll et al., 2020). Interestingly, the GO term “RNA
382  modification” was also found to be significantly enriched, and was found in the
383  annotations of 21 signature genes including 15 genes encoding pentatricopeptide
384  repeat-containing proteins such as Zm00001d012961, ZmO00001d015346, and
385  Zm00001d016815, with high expression levels in the EMB, AL, and CSE
386  compartments (Figure SE). When the number of metagenes was increased to ten,
387 easyMF extracted a different spatial expression pattern for each of these 10

388  compartments (Figure SF), allowing for the identification of compartment-specific
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389  genes and different biological processes. For example, in the EMB-related metagene
390  (i.e., metagene6), several signature genes such as ZmWOXI2a (wuschel-related
391  homeobox12A, Zm00001d022524) (Wu et al., 2007) and ZmOLE4 (oleosin4,
392 Zm00001d033612) (Miquel et al., 2014) were associated with organism development,
393  corresponding to the GO terms “post-embryonic development”, “cell differentiation”,
394  and “reproductive system development” (Figure 5G-H; Table S7; Table S9). In
395  contrast, several signature genes (e.g., ZmIAA40 (Aux/IAA-transcription factor 40,
396  Zm00001d044818), ZmPIN12 (PIN-formed proteinl2, Zm00001d045219), and
397  ZmZIM14 (ZIM-transcription factor 14, Zm00001d048268)) from the metagene8 (PC
398  compartment) were enriched in terms indicating processes involving response to
399  stimulus such as “defense response”, “response to abscisic acid”, and “response to
400  biotic stimulus” (Figure 5G; Table S7; Table S9).

401

402  Taken together, as a result of an MF-based analysis of maize seed spatial
403  transcriptomes, it was shown that easyMF could be used to open a window for
404  attaining compartment-specific biological knowledge with the discovery of signature
405  genes and related biological processes, and its use here specifically enhanced our
406  understanding of the process of cell differentiation during seed development.

407

408  Discussion

409  With the ever-increasing volumes of RNA-Seq data, the use of MF has been a
410  foundational approach to extracting biological knowledge in transcriptomic studies.
411  Although a variety of MF-based software packages are already available (Table S1),
412 many of them have limitations, including not being easy to use, and not providing an
413  all-in-one solution in the transcriptome data analysis. We compared the features
414  provided in the easyMF platform with those in available MF-based software packages,
415  and describe here three major differences.

416

417  One distinct difference involves their capabilities of preparing a high-quality gene

418  expression matrix, which is essential for knowledge discovery through MF-based and
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419  other forms of transcriptome analysis. All currently available MF-based software
420  packages only accept a gene expression matrix as input, and do not provide for the
421  option to process raw RNA-Seq data to gene expression values (Table S1). This
422 limitation hinders the ability to effectively analyze RNA-Seq data generated locally
423 by the user or deposited in public repositories (e.g., the NCBI GEO and SRA
424  databases). In addition, they lack a quality control function that filters genes expressed
425  at low levels and/or outlier samples for downstream analysis. The easyMF platform
426  was designed to address these two limitations by incorporating a customized
427  RNA-Seq analysis pipeline (Figure S1), which is invaluable for researchers with
428  relatively little experience in high-throughput RNA-Seq data analysis.

429

430  Another notable difference involves the comprehensiveness of the MF-based analysis.
431  Almost all currently available MF tools, except Compadre (Ramos-Rodriguez et al.,
432 2012), were designed with a focus on only one of the three above-mentioned MF
433 algorithms (PCA, ICA, and NMF) and have limited embedded functionalities for
434  metagene-based exploratory analysis (Table S1). In contrast, easyMF was specially
435  designed to implement all three of these MF algorithms with R packages: ‘stats’
436 (prcomp) for PCA (Team, 2018), ‘ica’ (icafast) for ICA (Helwig, 2018), and ‘bignmf”
437  (bignmf) for NMF (Pan et al., 2012). It can be used to perform a series of
438  metagene-based exploratory analytical tasks through sample clustering, signature
439  gene identification, functional gene discovery, and pathway activity inference (Figure
440 1). These features allow easyMF to serve as an all-in-one platform for
441  comprehensively mining large-scale gene expression data using MF algorithms.

442

443  The third and last major difference involves the flexibility of use. Most currently
444  available MF tools were produced as bioinformatics toolkits with command-based
445  implementations, and lack intuitive representations of the results of the analyses. But
446  easyMF was developed as a Galaxy-based platform that aims to easily perform
447  MF-based analysis. Taking advantage of the Galaxy system, easyMF provides

448  user-friendly GUIs to design bioinformatics pipelines with different functionalities,
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449  handle large volumes of RNA-Seq data, adjust different input parameters, examine the
450  running status, and visualize output results. It also permanently records all analysis
451  data such as inputs, parameters, intermediate results, and outputs in the ‘history’ panel
452 of the easyMF platform, making complex MF-based transcriptomic analysis
453  reproducible and amenable to collaborative modes. Moreover, easyMF is packaged
454  into a Docker image that can be employed under different operating systems (i.e.,
455  Windows, Linux, and Macintosh), overcoming issues related to code changes, library
456  dependencies and backward compatibility over time. We expect the easy
457  implementation of easyMF as well as the detailed user documentation and
458  open-access wiki discussion groups to allow researchers, regardless of their levels of
459  programming experience, to carry out accessible, reproducible and collaborative
460  analyses of large-volume of RNA-Seq data with MF algorithms.

461

462  We have demonstrated the use of easyMF in the MF-based analysis of maize
463  transcriptomes for four case studies: (1) prioritization of seed-related genes, (2)
464  clustering analysis of seed samples, (3) temporal analysis of maize seed
465  transcriptomes, and (4) spatial analysis of maize seed transcriptomes. The new
466  knowledge attained about maize seeds using easyMF illustrated that this tool is
467  readily applicable and flexible to confront a range of biological questions, allowing
468  users to more effectively concentrate on hypothesis testing. There were also some
469  limitations regarding the study. First, the efficiency of easyMF was illustrated only
470  using 940 RNA-Seq datasets from maize. The ability of easyMF to handle more
471  transcriptome data and more complex species (e.g., hexaploid bread wheat) needs to
472 be investigated in future work. Secondly, we did not show the application of easyMF
473 in the analysis of single-cell transcriptome data (File S1; Figure SS5), which were
474  deficient for maize kernels at the time the work was carried out. Single-cell RNA-Seq,
475  which measures gene expressions at the level of a single cell, has been developed as a
476 powerful method to investigate the function of individual cells (Tang et al., 2010).
477  Using single-cell RNA-Seq data from Arabidopsis root (Shulse et al., 2018), we found

478  that easyMF can be used to map six cell types according to 13 clusters of 4,043 cells
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479  (Figure S6). Thirdly and lastly, large-scale transcriptome analysis using MF and other
480  algorithms is often time-consuming and requires heavy computational resources.
481  Despite the easy deployment and implementation of easyMF, it still cannot be used by
482  researchers lacking high-throughput computational resources. In such cases, we
483  would happily collaborate on analyses, and such a collaboration can be requested by
484  contacting the corresponding author.

485

486  The easyMF project is still being developed and improved. The source codes, user
487  manual, Docker image, prototype web server and all future updates are available at
488  the homepage of easyMF project (https://github.com/cma2015/easyMF). The easyMF
489  Docker image can be obtained at https://hub.docker.com/r/malab/easymf. A porotype
490 web server for easyMF has been developed by the Aliyun cloud computing
491  architecture and can be accessed at http://easymf.omicstudio.cloud.

492

493  Methods

494  Generation of the maize gene expression matrix G

495  easyMF presents a customized bioinformatics pipeline to generate gene expression
496  matrix from raw RNA-Seq reads (Figure S1). This bioinformatics pipeline has been
497  applied to generate the maize gene expression matrix Gj. In brief, 1,066 maize
498  RNA-Seq datasets were firstly collected from NCBI’s Gene Expression Omnibus
499  (GEO) and/or Sequence Read Archive (SRA) databases (as of 26 July 2019). Raw
500 RNA-Seq data were preprocessed using fastp (version 0.20.0) (Chen et al., 2018) for
501  quality control, including sequencing adapter trimming and low-quality read filtering.
502  Subsequently, high-quality RNA-Seq reads from each sample were aligned to maize
503  reference genome (APGv4, https://plants.ensembl.org/Zea mays/Info/Index) using
504  HISAT?2 (version 2.1.0) (Kim et al., 2015), generating a BAM (binary alignment map)
505  file recording read-genome alignments. BAM files were then used as inputs of
506  StringTie (version 1.3.6) (Pertea et al., 2015) to estimate gene expression abundance.
507 To obtain a high-quality gene expression matrix, a two-step quality control was

508 implemented to filter genes expressed at low levels and remove outlier samples. For
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509  expression-level quality control, genes with FPKM (fragments per kilobase of
510  transcript per million mapped reads) > 1 in at least 15 RNA-Seq samples were
511  retained. For low-quality samples, we firstly averaged the statistical duplicated
512 samples based on PCC with criteria: PCC > 0.999 (Fehrmann et al., 2015). Then,
513  outlier samples whose correlation with the first principal component (sample based
514  principal component analysis) less than 0.75 were removed. Finally, a gene expression
515  matrix G; with 28,874 protein-coding genes and 940 samples was obtained for the
516  downstream application.

517

518  Identification of signature genes

519  easyMF decomposes a high-dimensional gene expression matrix (genes in rows and
520  samples in columns) into a product of two low-dimensional metagene-based matrices:
521  an amplitude matrix (AM; genes in rows and metagenes in columns) and a pattern
522 matrix (PM; metagenes in rows and samples in columns). Using gene-level
523  relationships in the AM and sample-level relationships in the PM, easyMF identifies
524  genes exhibiting dominant patterns (defined as signature genes) for each metagene
525  using the patternMarkers (Stein-O'Brien et al., 2017) and the Pearson’s correlation
526  coefficient (PCC) statistics. patternMarkers calculates a Euclidean distance (ED)
527  between normalized AM coefticients (i.e., coefficients in the AM) and a 0-1 pattern of
528  metagenes (Figure S2A). Suppose the number of metagenes is M, the ED score for

529  gene i and metagene k (1< k < M) is calculated using following formula:

530 ED(i, k) = \/Zj‘/’:l(

Aij

maxA;

— Wyj)?,

531  where 4; represents the AM coefficient of gene i in metagene j (1< j < M), max4;
532 denotes the maximum value of AM coefficient of gene i among all M metagenes, wy,
533 is a numeric unit vector specifying the status of each component (wy; = 1 only when
534 k=, otherwise equals to 0). For each gene i, easyMF repeats this process to generate
535  avector of ED scores for all metagenes.

536

537  easyMF uses the PCC statistic to quantify the correlation between gene expression
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538  abundance and PM coefficients (Figure S2B). For gene i and metagene &, the PCC

539  score is calculated using the following formula:
cov(&;, Py)

\/Var(éi) -Var(PB,) '

PCCy, =

540  Where &; represents the i-th gene’s expression values, Var(é;) represents the

541  variance of i-th gene’s expression values, ﬁk represents the i-th gene’s PM

542 coefficients, Var(ﬁk) represents the variance of i-th gene’s PM coefficients. The

543  gene i is regarded as a signature gene of metagene £k, if it satisfied with three
544  conditions: 1) equals to the minimal ED score; i) PCC 2 0.6; iii) P-value < 1.0E-03.
545  Of note, the thresholds of PCC and P-value can be user-adjusted in web interface of
546  easyMF.

547

548  Metagene-based gene prioritization

549  For a given set of genes (denoted as labeled genes), easyMF firstly examines the
550  difference in the distribution of AM coefficients between labeled genes and unlabeled
551  (all except labeled genes in the AM) genes by using Student’s t-test, following by a
552 transformation of the significance level P-value to z-score using the standard normal
553 quantile function ‘qnorm’ in R. A higher z-score indicates a larger difference in the
554  AM coefficient between labeled and unlabeled genes, thus corresponding to stronger
555  biological association between the metagene and the gene set. This results to a z-score
556  vector with a length of metagene number for the given gene set. Subsequently, the
557  association between z-scores and AM coefficients of corresponding genes is examined
558  using the PCC statistic (Fehrmann et al., 2015). Finally, easyMF prioritizes candidate
559  genes functionally associated with the given gene set based on the decreasing PCC
560  values (Figure S3).

561

562  Performance evaluation of gene prioritization approaches

563  The leave-one-out cross-validation (LOOCV) experiment was used to evaluate the
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564  performance of easyMF and MaizeNet (Lee et al., 2019) in gene prioritization. In
565 LOOCYV experiment, each labeled gene and all unlabeled genes were used as testing
566 ~ samples and their normalized scores (min-max normalization) were then calculated.
567  The performance of easyMF and MaizeNet were further evaluated using the area
568  under the receiver operating characteristic (ROC) curve (AUC) and the area under the
569  curve of self-ranked curve (AUSR). The ROC curve is a plot of true-positive rate
570  (TPR) along the y axis versus false-positive rate (FPR) along the x axis. While the
571  self-rank curve is a plot of ratio (Ra) along the y axis versus self-rank along the x axis
572 (Tzfadia et al., 2012), the Ra can be calculated by the following formula:

573 Ra(l) = Xmeranynmsn I /1,

574  Where rank represents the ranks of all positive genes, Ra(l) represents the ratio of
575  ranks lower than a pre-defined level of / (e.g., 1000). Both AUC and AUSR, ranging
576 ~ from O to 1, were finally calculated using the trapezoid rule (Radivojac et al., 2013),
577  with greater value indicating better prediction performance.

578

579  FIGURE LEGENEDS

580  Figure 1. Overview of easyMF.

581

582  Figure 2. Application of easyMF to gene prioritization.

583  (A) A schematic overview of easyMF in gene prioritization. Performance evaluation
584  of easyMF, MaizeNet and Random Selection approaches in terms of (B) AUSR and
585  (C) AUC. LOOCYV experiments were performed using experimentally validated genes
586  from 75 GO terms from Biological Process (BP), Cellular Component (CC), and
587  Molecular Function (MF) domains. The easyMF platform was found to be superior to
588  MaizeNet in the prioritization of 70 seed-related genes in terms of (D) the AUSR, and
589  (E) the AUC.

590

591  Figure 3. Application of easyMF to clustering analysis.

592 (A) Hierarchical clustering analysis of the pattern matrix PM, decomposed from 940
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593  maize RNA-Seq samples using easyMF. (B) The distribution of coefficients between
594  seed and non-seed samples among 11 metagenes in PM,. (C) Expression patterns of
595  seed-related signature genes among 940 maize RNA-Seq samples. (D) Heatmap
596  showing expression levels of 21 zein-encoding genes among 285 seed samples. (E)
597  Regulatory network consisting of O2 transcription factor and seed-related signature
598  genes. Thirty-two seed-related signature genes were identified as O2-modulated
599  and/or -bound target genes using ChIP-Seq data.

600

601  Figure 4. Application of easyMF to temporal transcriptome analysis.

602  (A) Heatmap of the pattern matrix PM; decomposed from temporal transcriptomes of
603  early developmental stages of maize seed. (B) Expression profiles of ZmUMC1966
604  (Zm00001d016705), ZmZNOD1 (Zea nodulation homologl; Zm00001d045302), and
605  ZmFL3 (floury3; Zm00001d009292). (C) GO enrichment results of signature genes
606  from three metagenes. (D) Heatmap showing expression levels of 19 genes with
607  annotations enriched with the “cellular oxidant detoxification” term.

608

609  Figure 5. Application of easyMF to spatial transcriptome analysis.

610  (A) Scheme representing 10 compartments of maize kernel at 8§ DAP. (B) Hierarchical
611  clustering analysis of the pattern matrix grouped 10 compartment samples from filial
612  and maternal tissues into two distinct classes when the number of metagenes was set
613  to two. (C) Hierarchical clustering analysis of the pattern matrix grouped spatially
614  adjacent compartments into the same metagene when the number of metagenes was
615  set to five. (D) GO enrichment results of signature genes from the metagene related to
616 EMB, AL, and CSE compartments. (E) Heatmap exhibiting expression levels of 21
617  signature genes with annotations enriched with the “RNA modification” term. (F)
618  Hierarchical clustering analysis of the pattern matrix identified compartment-specific
619  metagenes when the number of metagenes was set to ten. (G) GO enrichment results
620  of signature genes from EMB- and PC-related metagenes. (H) Heatmap exhibiting
621  expression levels of 13 signature genes with annotations enriched with the

622  “post-embryonic development” term.
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623

624  Supplementary Data

625  All Supplemental tables (Table S1-9) are available at the Zenodo Public Data
626  Repository (http://doi.org/10.5281/zenod0.4383238).

627  File S1. Metagene-based pathway activity analysis and single-cell RNA-Seq data
628  analysis.

629  Table S1. Summary of MF-based software tools.

630  Table S2. Description of functional modules in easyMF.

631  Table S 3. Summary of 940 maize RNA-Seq datasets used in this study.

632  Table S4. Summary of 75 GO terms used to evaluate the performance of gene
633  prioritization methods.

634  Table S5. List of 70 experimentally validated genes functionalized in maize seed
635  development.

636  Table S6. Genome-wide prioritization of candidate seed-related genes using easyMF
637  and MaizeNet.

638  Table S7. List of signature genes identified from gene expression matrix Gi, Gy, and
639 Gs.

640  Table S8. GO enrichments of signature genes identified from gene expression matrix
641 G

642  Table S9. GO enrichments of signature genes identified from gene expression matrix
643 Gs.

644

645  Figure S1. The bioinformatics pipeline for the generation of a gene expression matrix
646  from RNA-Seq data.

647

648  Figure S2. Identification of signature genes using patternMarkers (A) and Pearson’s
649  correlation coefficient (PCC) algorithm (B).

650

651  Figure S3. Prioritization of candidate genes involved in a pre-specific function.

652
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653  Figure S4. PCA statistics of optimal metagenes. The blue and black dots represent the
654  Cronbach's a value and the explained variance of each metagene, respectively. The
655  red dots represent the cumulative explained variance. At the threshold of Cronbach’s
656  a of 0.7, easyMF generated 161 optimal metagenes, capturing 96.4% of the variation
657  in gene expression.

658

659  Figure S5. Identification of cell types of unknown cells from single-cell RNA-Seq
660  data.

661

662  Figure S6. t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality
663  reduction of 4,043 single Arabidopsis root cells, which are represented by individual
664  points. All captured cells were clustered into 13 populations corresponding to six cell
665  types.
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905  Figure 2. Application of easyMF to gene prioritization.

912 (A) A schematic overview of easyMF in gene prioritization. Performance evaluation
913  of easyMF, MaizeNet and Random Selection approaches in terms of (B) AUSR and
914  (C) AUC. LOOCYV experiments were performed using experimentally validated genes
915 from 75 GO terms from Biological Process (BP), Cellular Component (CC), and
916  Molecular Function (MF) domains. The easyMF platform was found to be superior to
917  MaizeNet in the prioritization of 70 seed-related genes in terms of (D) the AUSR, and
918  (E) the AUC.
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(A) Hierarchical clustering analysis of the pattern matrix PM, decomposed from 940

maize RNA-Seq samples using easyMF. (B) The distribution of coefficients between

seed and non-seed samples among 11 metagenes in PM,. (C) Expression patterns of

seed-related signature genes among 940 maize RNA-Seq samples. (D) Heatmap

showing expression levels of 21 zein-encoding genes among 285 seed samples. (E)

Regulatory network consisting of O2 transcription factor and seed-related signature

genes. Thirty-two seed-related signature genes were identified as O2-modulated

and/or -bound target genes using ChIP-Seq data.
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931  Figure 4. Application of easyMF to temporal transcriptome analysis.

937  (A) Heatmap of the pattern matrix PM; decomposed from temporal transcriptomes of
938  early developmental stages of maize seed. (B) Expression profiles of ZmUMCI1966
939  (Zm00001d016705), ZmZNODI1 (Zea nodulation homologl; Zm00001d045302), and
940  ZmFL3 (floury3; Zm00001d009292). (C) GO enrichment results of signature genes
941  from three metagenes. (D) Heatmap showing expression levels of 19 genes with
942  annotations enriched with the “cellular oxidant detoxification” term.
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941  Figure 5. Application of easyMF to spatial transcriptome analysis.

954  (A) Scheme representing 10 compartments of maize kernel at 8 DAP. (B) Hierarchical
955  clustering analysis of the pattern matrix grouped 10 compartment samples from filial
956  and maternal tissues into two distinct classes when the number of metagenes was set
957  to two. (C) Hierarchical clustering analysis of the pattern matrix grouped spatially
958  adjacent compartments into the same metagene when the number of metagenes was
959  set to five. (D) GO enrichment results of signature genes from the metagene related to
960 EMB, AL, and CSE compartments. (E) Heatmap exhibiting expression levels of 21
961  signature genes with annotations enriched with the “RNA modification” term. (F)
962  Hierarchical clustering analysis of the pattern matrix identified compartment-specific
963  metagenes when the number of metagenes was set to ten. (G) GO enrichment results
964  of signature genes from EMB- and PC-related metagenes. (H) Heatmap exhibiting
965  expression levels of 13 signature genes with annotations enriched with the
966  “post-embryonic development” term.
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