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Abstract

In 2016, the International Agency for Research on Cancer, part of the
World Health Organization, released the Exposome-Explorer, the first
database dedicated to biomarkers of exposure for environmental risk fac-
tors for diseases. The database contents resulted from a manual literature
search that yielded over 8500 citations, but only a small fraction of these
publications were used in the final database. Manually curating a database
is time-consuming and requires domain expertise to gather relevant data
scattered throughout millions of articles. This work proposes a super-
vised machine learning approach to assist the previous manual literature
retrieval process.

The manually retrieved corpus of scientific publications used in the
Exposome-Explorer was used as training and testing sets for the machine
learning models (classifiers). Several parameters and algorithms were eval-
uated to predict an article’s relevance based on different datasets made of
titles, abstracts and metadata.

The top performance classifier was built with the Logistic Regres-
sion algorithm using the title and abstract set, achieving an F2-score of
70.1%. Furthermore, from 705 articles classified as relevant, we extracted
545 biomarkers, including 460 new candidate entries to the Exposome-
Explorer database.

Our methodology reduced the number of articles to be manually screened
by the database curators by nearly 90%, while only misclassifying 22.1%
of the relevant articles. We expect that this methodology can also be
applied to similar biomarkers datasets or be adapted to assist the manual
curation process of similar chemical or disease databases.
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Background

Biomarkers are biological parameters objectively measured in the body as in-
dicators of normal biological conditions, environmental lifestyles, pathological
conditions, or responses to therapeutic interventions [1]. They can be chemicals,
metabolites, enzymes or other biochemical substances, like products of an inter-
action between a compound and a target molecule or a cell type. Characterizing
the relationship between biomarkers and the possible biological outcomes is cru-
cial to correctly predict clinical responses, screen, monitor and diagnose patients
and to improve efficiency in clinical trials. Biomarkers play a significant role
in risk assessment, as they allow one to identify exposure to hazards and to
associate responses with the probability of a disease or exposure outcome.

Biomarkers of exposure are a specific type of biomarkers that reflect exposure
of an individual to an environmental factor (such as diet, pollutants or infectious
agents) known to affect the etiology of diseases. Compounds can get in contact
with living organisms through absorption, inhalation or ingestion and then are
either metabolized, stored or eliminated. This exposure can be detected by
analysing biospecimens, such as blood or urine, or by measuring concentrations
and characterizing the exogenous substance, its metabolites or its products of
interaction with target molecules.

Exposome-Explorer is a manually curated database of biomarkers of ex-
posure to environmental risk factors developed by the International Agency
for Research on Cancer and with collaboration with the University of Alberta,
Canada [2]. It contains detailed information on the nature of biomarkers, popu-
lations and subjects in which biomarkers have been measured, samples analysed,
methods used for biomarker analysis, their concentrations in biospecimens, cor-
relations with external exposure measurements, and biological reproducibility
over time [3]. To develop the database, experts searched biomedical literature in
the Web of Science (WOS), using queries with specific keywords associated with
dietary and pollutant biomarkers. More than 8500 citations from 1975 to 2014
were manually screened according to the title and abstract to identify publica-
tions describing biomarkers of exposure. Only a small fraction was considered
relevant and data from 480 publications was manually analysed and annotated,
and finally included in the database.

Gathering relevant data scattered throughout millions of articles from text
repositories is a time-consuming task which requires specialized professionals to
manually retrieve and annotate relevant information within the articles. Keep-
ing biological databases updated as new papers are released, as well as collecting
new data, is equally challenging and time consuming. Such tasks would benefit
from being assisted with text-mining tools. To our knowledge, there is no ma-
chine learning Information Retrieval (IR) solution available to assist literature
screening regarding biomarkers of exposure.

Studies have been carried out to either improve the IR task using machine
learning or to perform entity recognition (ER) and information extraction (IE)
on biomarkers’ data. However, none applies IR-based methods to biomark-
ers of exposure. Almeida et al. [4] developed a machine learning system for
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supporting the first task of the biological literature manual curation process,
called triage, which involves identifying very few relevant documents among a
much larger set of documents. They were looking for articles related to charac-
terized lignocellulose-active proteins of fungal origin to curate the mycoCLAP
database [5]. They compared the performance of various classification models,
by experimenting with dataset sampling factors and a set of features, as well
as three different machine learning algorithms (Näıve Bayes, Support Vector
Machine and Logistic Model Trees). The most fitting model to perform text
classification on abstracts from PubMed was obtained using domain relevant
features, an under-sampling technique, and the Logistic Model Trees algorithm,
with a corresponding F-measure of 0.575. Lever et al. [6] used a supervised
learning approach to develop an IE-based method to extract sentences con-
taining relevant relationships involving biomarkers from PubMed abstracts and
Pubmed Central Open Access full text papers. With this approach, they built
the CIViCmine knowledge base [7], containing over 90,992 biomarkers associated
with genes, drugs and cancer types. Their goal was to reduce the time needed
to manually curate databases, such as the Clinical Interpretation of Variants
in Cancer (CIViC) knowledgebase [8], and to make it easier for the community
curators, as well as editors, to contribute with content.

Following the previous approaches, this work aims to reduce the time, effort
and resources necessary to keep the Exposome-Explorer database updated as
new articles are published, by using a supervised machine learning approach to
automatically classify relevant publications and automatically recognize candi-
date biomarkers to be reviewed by the curators. The approach of the curators of
this database consisted in developing search queries to retrieve relevant publica-
tions and then manually analyse each one. However, the number of publications
retrieved is still too large to manually screen each one of them. This work pro-
poses a system, available on Github (https://github.com/lasigeBioTM/BLiR),
to further narrow down the literature that holds important information about
biomarkers of exposure. The existing manually curated data used to develop
the Exposome-Explorer database has been used to train and test the models
(classifiers). We also provide a corpus articles classified by our system as rele-
vant, along with biomarkers automatically annotated on the abstracts of these
articles. When given a new publication, these classifiers can predict whether this
publication is relevant to the database and annotate the candidate biomakers
mentioned on that document.

Methods

Exposome-Explorer dataset

This work was developed using the data used to set up and develop the Exposome-
Explorer, which included:

− the queries used to search for citations with information about dietary and
pollutant biomarkers in the Web of Science (WOS);
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− the WOS search results based on the previous queries, with 8575 cita-
tions used to manually screen the relevant articles containing biomarker
information;

− the 480 publications used to extract information about biomarkers for the
database.

Data Collection

All 480 publications used to curate the database were expected to be listed in
the 8575 citations retrieved from the WOS. However, only 396 of them were
present: the 84 publications absent from the WOS query results were addition-
ally identified by database annotators while screening the literature for relevant
articles. These 84 scientific papers were excluded from the dataset used to build
the models since we could not replicate the original workflow if we included
them.

The existing dataset, listed above, was missing some features that we wanted
to explore to construct our models, such as number of citations and PubMed ID.
For this reason, PubMed was used to extract the titles, abstracts and metadata
(publication date, author names, number of times the article was cited and
journal name). The PubMed search and retrieval of PMIDs, titles, abstract and
metadata was carried out with E-utilities, a public API available at NCBI Entrez
system. Some publications were found through the DOI to PMID (PubMed ID)
converter and others by a combined search with the title and first author name.
The resulting corpus of articles consisted of 7083 publications.

Data Preprocessing

After retrieving the title, abstract and metadata for each article, it was necessary
to prepare the textual data to be used as input by the machine learning models
(classifiers). This task included:

(i) Assign labels to each article: A supervised learning approach was used
to build the classifiers, which means each article (document) has a known
class assigned to it. To label each article, the list with the 396 articles used
to curate the database was cross-referenced with the 7083 publications in
the corpus. If they were present in the list, they were considered relevant
and assigned the label 1. If they were not present in the list, as they were
not used to extract information about biomarkers, they were considered
irrelevant and therefore assigned the label 0;

(ii) Natural Language Processing: The text was separated into words (tokens).
All words with the same root were reduced to a common form (stemming)
and all stop words were removed. The tokens were lowercased and then
combined into n-grams, a contiguous sequence of n items from a given
sample of text or speech. For example, for n = 2, the features from
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the sentence “Determining thiocyanate serum levels”, were combined into
three n-grams: “determin thiocyan”, “thiocyan serum” and “serum level”;

(iii) Transform textual data to numerical data: The machine learning model
expects numeric data as its input. However, the titles, abstracts, and
metadata are in text format. To this end, each distinct token that occurred
in the documents was mapped to a numerical identifier, and the number
was used to refer to the token instead of the token itself;

(iv) Build the matrices: Each feature represents one column and each docu-
ment represents a row of the matrix. Depending on the type of matrix
chosen, the matrix contained either n-gram counts (number of times each
term occurs in each document) or TFIDF (term frequency-inverse docu-
ment frequency) features (how important a n-gram is to a document in a
collection of documents). An additional column was added to the training
and testing data, with the respective labels. The goal of the classifier was
to predict this column when applied to a new data.

The metadata of each article was handled slightly differently from the titles
and the abstracts. Since it already had numerical attributes (publication date
and number of citations), the matrix was created with two columns dedicated
to these features, instead of having one column for each year and number of
citations. The authors’ names were joined into one single word (Wallace RB
→ WallaceRB) and were neither combined into n-grams nor went through the
stemming and stop word removal stages. The journal name had no special
preprocessing.

Stemming was performed using the class SnowballStemmer from the mod-
ule nltk.stem in the NLTK package [9]. Steps (ii), (iii) and (iv) used the
Scikit-learn [10] classes CountVectorizer and TfidfVectorizer from the mod-
ule sklearn.feature extraction.text. The main difference between the two
classes is that the first one converts a collection of raw text documents to a ma-
trix of token counts and the last one to a matrix of TFIDF features. Combina-
tions of three different parameters were tested to preprocess the data, resulting
in different matrices used to build the classifier and, therefore, different results.
The parameters tested were:

− ngram range (min n, max n): the lower and upper boundary of n for
different n-grams to be extracted. The range values tested were n = {1},
n = {1, 2} and n = {1, 2, 3};

− min df: ignore all n-grams that have a document frequency lower than
the given threshold. If min df = 2, then terms that only appear in one
article (document) will be ignored. The values of min df ranged from 2
to 23, depending on the value of n used in the ngram range parameter
([1 + n− gram, 21 + n− gram]);

− type of the matrix: matrix of token counts or TFIDF features.
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Finally, we divided the dataset into a train set of 70% and a test set of
30%, while keeping the same proportion of positive and negative classes on
both subsets. The train set was used to optimize the parameters through Cross
Validation (CV) and the test set was used to obtain the results on held-out
data.

Machine learning models

The goal of the IR task was to reduce the time needed to screen the articles,
by narrowing down the literature available to a set of publications that provide
a reliable resource of information, in this specific case, related to biomarkers of
exposure. Thus, in this case we can model the IR task as a classification task,
where we have to decide whether a document is relevant or not.

Building the classifiers

The machine learning models, also known as classifiers, were separately trained
and tested using the titles, abstracts, titles + abstracts and titles + metadata,
to assess which section of the article was more suitable to predict its relevance.
We explored the combination of titles and metadata since our preliminary re-
sults indicated that the metadata by itself would not obtain reasonable results.
However, these preliminary results also indicated that combining the abstracts
with metadata would result in equal or worse results than using just the ab-
stracts. For this reason, we did not explore the option of combining abstracts
with metadata, or combining all three.

Six machine learning algorithms were explored:

• Decision Tree[11]: the features are fractioned in branches that represent
a condition to be applied to each instance;

• Logistic Regression[12]: learns a logistic function to perform binary
classification;

• Näıve Bayes[13]: the independence of the features is assumed and a
probability model is used to determine the most probable label for each
instance;

• Neural Network[14]: this algorithm can learn non-linear functions by
introducing hidden layers between the input features and output label;

• Random Forest[15]: combines various tree estimators trained on sub-
samples of the training data;

• Support Vector Machine[16]: the data is represented as points in a
hyperplane and the algorithm tries to establish a clear division between
the instances with the same label.
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The Scikit-learn package was used to run these algorithms. Most of the
parameters used for each algorithm were the default ones, however, a few ones
were altered to better suit the data (class weight, solver, kernel, gamma,

bootstrap, n estimators), others to maximize the performance of the model
(C, alpha, max depth, min samples leaf), and one to assure a deterministic
behaviour during fitting (random state). The values of the parameters altered
to maximize the performance of the model were found through grid search with
10-fold CV on the train set. Table 1 summarizes the Scikit-learn functions used
and the parameters changed for each algorithm.

Table 1: Scikit-learn functions and parameters for each algorithm: Decision
Tree (DT), Logistic Regression (LR), Näıve Bayes (NB), Neural Network (NN),
Random Forest (RF) and Support Vector Machine (SVM).

Sklearn functions Parameters

DT DecisionTreeClassifier class weight = ’balanced’;

random state = 0; min samples leaf = 5

LR LogisticRegression class weight = ’balanced’;

random state = 0; solver =

’liblinear’; C = 10.0, 1.0 or 0.1*

NB MultinomialNB alpha = 0.01

NN MLPClassifier solver = ’lbfgs’; random state = 0

RF RandomForestClassifier class weight = ’balanced’;

random state = 0; bootstrap = False;

max depth = 20; min samples leaf = 2;

n estimators = 100

SVMSVC class weight = ’balanced’;

random state = 0; kernel = ’rbf’;

gamma = ’scale’

*C = 0.1 for term-count matrices; For TFIDF matrices, C = 10.0 for the abstracts; C = 1.0
for the titles and titles + metadata; C = 0.1 for the metadata

Ensemble learning

When testing different classifiers using the abstracts, titles, titles + abstracts or
the titles + metadata set, the prediction each model makes for a certain article
might differ. The titles + metadata model may correctly identify a publication
as being relevant, while the abstracts model fails to do so. For this reason, we
explored ensembles of classifiers to understand if we could retrieve more relevant
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publications this way.
We used two ensemble approaches to join the results of multiple models.

The first was Bagging, where the same algorithm is used to train a classifier on
random subsets of the training data, and the results are then combined [17].
The second was Stacking, which consists in training multiple classifiers and
using their output to train a final model which predicts the classes [18]. With
this approach, each of the first-level classifiers can be specified, as well as the
final classifier. Therefore, we used all of the previously mentioned algorithms
as first-level classifiers, and then tried each of them as the final estimator. For
the Bagging approach, we also tried every algorithm previously mentioned. In
both cases, we used the parameters specified in Table 1, using the Scikit-learn
implementations and the default parameters of the BaggingClassifier and
StackingClassifier classes.

Performance Evaluation

In the data preprocessing task, labels were given to each article: 0 for irrelevant
(negative) and 1 for relevant (positive). These labels were considered the gold-
standard and represent the actual class of the publications.

In the document classification task, all classifiers built were optimized using
the Scikit-learn CV function (sklearn.model selection.cross validate). This
model optimization technique provides a more accurate estimate of the model’s
performance, since it evaluates how the model will perform on unseen data.
Additionally, we selected a test set to evaluate the models after parameter op-
timization.

The cv parameter of the function determines how many groups the data
will be split into. In this work, a cv = 10 was used, which means the data was
separated into 10 groups, each one was used 9 times as a training set and once as
the testing set. Ten different models were built using the same parameters, with
different training sets. Each time a trained model was applied to testing data,
it generated a vector with predicted classes for those documents. By comparing
the predictions of the testing set to the gold standard, it was possible to separate
the documents into four different categories:

− True Positives (TP): documents correctly labelled as positive;

− False Positives (FP): documents incorrectly labelled as positive;

− True Negatives (TN): documents correctly labelled as negative;

− False Negatives (FN): documents incorrectly labelled as negative.

This categorization allows to calculate the precision and recall, two com-
monly used metrics that assess the performance of the tools by measuring the
quality of the results in terms of relevancy. Precision (P) is the proportion of
true positives items over all the items the system has labelled as positive. Recall

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.20.423685doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.20.423685
http://creativecommons.org/licenses/by/4.0/


(R) is the proportion of true positives items over all the items that should have
been labelled as positive.

P =
TP

TP + FP
R =

TP

TP + FN

The F1-score is a measure between 0 and 1 that combines both precision and
recall. Higher values of this metric indicate that the system classifies most items
in the correct category, therefore having low numbers of FP and FN.

F1 = 2 · P ·R
P + R

Furthermore, we also considered a variation of the F1-score, the F2-score,
where more weight is given to the recall:

F2 = 5 · P ·R
4 · P + R

This metric was important for our evaluation since we wanted to avoid low recall
values, which would mean that many documents were mistakenly classified as
not relevant. Our objective was to reduce the number of documents that manual
curators had to analyse, but without losing important information.

To estimate the balance between the true positive rate (recall) and false
positive rate, we also computed the area under the Receiver operating charac-
teristic (ROC AUC). We used the Scikit-learn implementation of this measure,
which computes the area under a curve plotted by the true positive rate and
false positive rate at various thresholds.

Biomarkers recognition

We performed biomarker recognition on the documents classified as positive by
our best performing classifier. The objective of this task was to demonstrate
how the document classifiers can be used to aid the curation process. By au-
tomatically screening the articles for biomarkers, curators can focus on articles
that mention entities of their interest and help them to extract information from
those articles. We used the Chemical Entities of Biological Interest (ChEBI) on-
tology [19] as a reference vocabulary, and identified chemical entities mentioned
in the abstracts using MER, a Minimal Entity Recognition tool [20]. This tool
returns a list of entities recognized in the text, including their exact location
and unique identifier, if available. It has the advantage of being adaptable to
any lexicon and has been tested in a scenario where thousands of documents
had to be processed [21]. Unlike other entity recognition tools, MER does not
require training data to recognize a new type of entity. In this case, the entities
correspond to candidate biomarkers, along with documents where they were
found.
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Results

Data Collection and Preprocessing

After data collection, the Exposome-Explorer dataset consisted of titles, ab-
stracts, and metadata from a total of 7083 publications. Among them, 6687 were
considered irrelevant, because no information about biomarkers was extracted
from them for the Exposome-Explorer database. The remaining 396 publica-
tions were considered relevant, as they were used to construct the database.

In the beginning, all articles from all types of biomarkers in the dataset were
used, however, this approach yielded poor results. To try to improve the results,
the data was restricted to articles regarding dietary biomarkers, since they were
handled more attentively by the curators. The new dataset consisted of 3016
publications (2860 irrelevant + 156 relevant).

Document Classification

Dietary biomarker publications Our first objective was to train models
to classify which articles from a search query were relevant to the Exposome-
Explorer database. We optimized both the parameters used to preprocess the
diet training data (ngram, minimum frequency, vectorizer), as well as hyperpa-
rameters of each algorithm, using grid search-CV. For each algorithm, we tested
several combinations and selected the trained models that achieved the highest
score of each metric on the CV evaluation.

The maximum values each algorithm could reach for these metrics, using
optimized preprocessing and algorithm parameters, are summarized in Table 2.
The complete values for each highest metric, as well as the parameters used,
can be found in Additional File 1. For example, the maximum F2-score of 0.701
of the LR algorithm on the titles+abstracts set was obtained using a min df of
5, ngram range (1, 3) and a token count matrix. We can see that all algorithms
except Decision Trees could achieve high values on the various data subsets,
although using only the titles, the LR algorithm achieved higher scores in most
metrics. The parameters and algorithms used to maximize the F2-score for each
feature set can be found in Table 4.

In addition to exploring single classifiers, we also explored two ensemble
approaches: Bagging and Stacking. We trained a Stacked classifier that com-
bined the best individual models (Table 1), and then applied again one of the
algorithms as the final classifier. Table 3 show the maximum Precision, Re-
call, F1-Score, F2-score and ROC-AUC of each algorithm, using the Stacking
and Bagging approach, and training only on the abstracts+titles subset, which
provided the best results of most of the individual models. This way, we can
compare directly with the results of Table 2. The full set of values of each metric
is also provided in Additional File 1.

We then applied the classifiers of the previous table with highest F2-score
to the test set which we did not use during grid search-CV 5. With this held-
out dataset, we wanted to observe if the classifiers had been overfitted to the
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Table 2: Dietary biomarkers document classification results. Highest precision,
recall, F1-score, F2-score and ROC-AUC achieved by each algorithm: Decision
Tree (DT), Logistic Regression (LR), Näıve Bayes (NB), Neural Network (NN),
Random Forest (RF) and Support Vector Machine (SVM). The highest value
of each metric on each feature type is bolded.

TITLES
MaxPrecision MaxRecall MaxF1 MaxF2 MaxROC-AUC

DT 0.216 0.433 0.262 0.302 0.635
LR 0.388 0.707 0.495 0.601 0.910
NB 0.528 0.652 0.475 0.561 0.903
NN 0.560 0.331 0.385 0.348 0.887
RF 0.415 0.661 0.489 0.577 0.889

SVM 0.586 0.688 0.462 0.560 0.904

ABSTRACTS
MaxPrecision MaxRecall MaxF1 MaxF2 MaxROC-AUC

DT 0.337 0.570 0.397 0.449 0.720
LR 0.559 0.770 0.618 0.687 0.953
NB 0.606 0.752 0.644 0.684 0.952
NN 0.854 0.441 0.542 0.472 0.948
RF 0.621 0.705 0.591 0.644 0.954

SVM 0.512 0.798 0.572 0.658 0.949

TITLES + ABSTRACTS
MaxPrecision MaxRecall MaxF1 MaxF2 MaxROC-AUC

DT 0.379 0.533 0.419 0.480 0.740
LR 0.550 0.779 0.614 0.701 0.948
NB 0.601 0.788 0.643 0.695 0.950
NN 0.764 0.432 0.528 0.463 0.945
RF 0.665 0.687 0.586 0.634 0.953

SVM 0.512 0.807 0.564 0.664 0.948

TITLES + METADATA
MaxPrecision MaxRecall MaxF1 MaxF2 MaxROC-AUC

DT 0.307 0.468 0.328 0.390 0.693
LR 0.392 0.734 0.502 0.616 0.930
NB 0.373 0.707 0.456 0.566 0.914
NN 0.603 0.266 0.333 0.274 0.905
RF 0.476 0.725 0.492 0.592 0.924

SVM 0.163 0.168 0.144 0.154 0.725

training set due to the parameter optimization procedure.
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Table 3: Dietary biomarkers ensemble classifiers’ results. Highest precision,
recall, F2-score and ROC-AUC reached for each algorithm: Decision Tree (DT),
Logistic Regression (LR), Näıve Bayes (NB), Neural Network (NN), Random
Forest (RF) and Support Vector Machine (SVM). The NB algorithm did not
work with the Stacking approach.

BAGGING
MaxPrecision MaxRecall MaxF1 MaxF2 MaxROC-AUC

DT 0.742 0.477 0.546 0.502 0.941
LR 0.664 0.707 0.642 0.663 0.950
NB 0.716 0.580 0.594 0.582 0.951
NN 0.729 0.477 0.537 0.497 0.942
RF 0.648 0.541 0.571 0.550 0.958

SVM 0.740 0.405 0.489 0.433 0.957

STACKING
MaxPrecision MaxRecall MaxF1 MaxF2 MaxROC-AUC

DT 0.417 0.735 0.513 0.622 0.842
LR 0.380 0.890 0.521 0.685 0.961
NN 0.581 0.505 0.521 0.509 0.911
RF 0.568 0.734 0.624 0.673 0.952

SVM 0.374 0.890 0.513 0.679 0.947

Table 4: Algorithm and parameters used to get the highest F2 for each set of
data.

Title Abstracts T + A T + M
Algorithm LR LR LR LR

df 4 4 5 4
n-gram [1, 2] [1, 3] [1, 2] 2
matrix token-count TFIDF token-count token-count

Precision 0.388 0.500 0.514 0.392
Recall 0.707 0.770 0.779 0.734

F1-score 0.495 0.587 0.614 0.502
F2-score 0.601 0.687 0.701 0.616

ROC AUC 0.910 0.938 0.937 0.930

All biomarker publications To quantify how much restricting the dataset to
dietary biomarkers had improved the results, new models were trained with the
whole corpus of 7083 publications from all biomarkers using the same algorithms
and parameters that had maximized the recall score for dietary biomarkers. The
comparison between the values of precision, recall and F-score can be found in
Table 6.

Afterwards, we performed biomarker recognition on the 707 articles iden-
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Table 5: Dietary biomarkers classifiers on the test set. Precision, recall, F2-
score and ROC-AUC achieved each algorithm: Decision Tree (DT), Logistic
Regression (LR), Näıve Bayes (NB), Neural Network (NN), Random Forest
(RF) and Support Vector Machine (SVM), as well as the Bagging and Stacking
approaches, using the combinations that achieved the highest F2-score.

Precision Recall F1 F2 ROC-AUC
DT 0.403 0.532 0.459 0.500 0.744
LR 0.530 0.745 0.619 0.689 0.854
NB 0.515 0.745 0.609 0.684 0.853
NN 0.700 0.447 0.545 0.482 0.718
RF 0.450 0.766 0.567 0.672 0.857

SVM 0.451 0.787 0.574 0.685 0.867
Bagging 0.542 0.681 0.604 0.648 0.825
Stacking 0.388 0.851 0.533 0.687 0.889

Table 6: Comparison of precision, recall and F-score between the whole dataset
and the restricted dataset.

TITLES
Precision Recall F1 F2 ROC AUC

All biomarkers 0.362 0.529 0.430 0.485 0.737
Dietary biomarkers 0.386 0.574 0.462 0.523 0.762

ABSTRACTS
Precision Recall F1 F2 ROC AUC

All biomarkers 0.218 0.765 0.340 0.510 0.801
Dietary biomarkers 0.342 0.809 0.481 0.635 0.862

TITLES + ABSTRACTS
Precision Recall F1 F2 ROC AUC

All biomarkers 0.354 0.630 0.453 0.545 0.781
Dietary biomarkers 0.468 0.787 0.587 0.693 0.869

TITLES + METADATA
Precision Recall F1 F2 ROC AUC

All biomarkers 0.310 0.681 0.426 0.550 0.795
Dietary biomarkers 0.330 0.638 0.435 0.538 0.784

tified by the classifier with highest F2 on Table 6 as relevant (which included
TPs and FPs), using an automatic annotation tool and manual validation. We
obtained 545 biomarkers from these documents, which we provide as Additional
File 2.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.20.423685doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.20.423685
http://creativecommons.org/licenses/by/4.0/


Discussion

The highest F2-score (0.701) was obtained using a single classifier with the
Logistic Regression (LR) algorithm on the abstracts and title set, using cross-
validation (Table 2). Among the 905 dietary publications used to test the clas-
sifiers, 365 were classified as positive, which could reduce by 90% (proportion
of articles classified as positive) the time needed to find 77.9% (recall score)
of the relevant articles, and only 22.1% of the relevant articles would be lost.
Looking at the results from the titles and metadata set, globally lower values
were obtained when compared to the abstracts sets. Using features from both
the titles and abstracts resulted in better F2-scores in almost every algorithm,
comparing with using them separately. This indicates that, similarly to how
it is carried out during manual curation, both titles and abstracts should be
considered when evaluating the relevance of an article to the database. The LR
algorithm obtained the best performance on many metrics, although the SVM
algorithm obtained a higher recall using the titles and titles and abstracts, and
Random Forests obtained the highest ROC-AUC on the same sets. The Neural
Networks algorithm obtained the highest precision using the abstracts, titles
and abstracts, and titles and metadata sets.

To assess whether joining the best models would improve the scores, we
applied two ensemble approaches to the abstracts set: Bagging and Stacked.
In some cases, using a Bagging approach results in better scores than just the
model by itself, for example, comparing the scores of the Decision Tree classifier.
However, in most cases, using just one classifier provided better results. The
Stacking approach also obtained better scores in some cases, including a maxi-
mum recall of 0.890 using the Logistic Regression and SVM classifiers. However
this approach took much longer to train since it requires training one model with
each of the previously mentioned algorithms, as well as an additional model to
predict the class based on the other models’ prediction scores. Furthermore,
both ensemble approaches resulted in similar or worse results than the single
classifiers. This could be due to the increased complexity of these models, which
may be less adaptable to new data due to overfitting to the train data.

In Table 5, we can see the effect of the cross-validation evaluation when
compared to the test set validation. Although some of the scores are lower, the
LR algorithm also achieves the highest balanced scores and the Neural Networks
achieves the highest precision. The Stacking algorithm achieves a high recall,
but at the cost of lower precision. Although the balanced metrics are lower
on the test set when compared to the test set evaluation, we believe that the
difference is not relevant, since the cross-validation results were averaged over
five iterations, and the test set shows the results of only one run.

Error analysis

In order to interpret the gap of results between the training set and the pre-
dictions obtained from the classifiers, the LR classifier built with the titles was
analysed. This classifier had a similar recall score to the abstracts but, as the
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titles are shorter, they make the interpretation easier. One interesting pattern
we noticed was that almost all titles that had the words “food frequency ques-
tionnaire” were classified as relevant. From a total of 82 titles containing these
words, only 2 were classified as irrelevant (both had words such as “calcium”,
“water” and “energy” that were mostly found on irrelevant articles); 29 were
TP and the remaining 51 were being wrongly labelled as relevant.

The title “Toenail selenium as an indicator of selenium intake among middle-
aged men in an area with low soil selenium” was classified as negative, when
it was in fact used in the database (FN). 39 out of 40 titles with the word
“selenium” were not used in the database and thus labelled irrelevant: this
over-represented feature may be the reason why the classifier failed to classify
this article as relevant although selenium was considered of interest by the an-
notators.

It is also important to highlight that papers inserted in the database have
been analysed considering the full-texts. This means that papers tagged as ”rel-
evant” either by the classifier and/or manually, could subsequently be rejected
by the annotators, for a variety of reasons including ”the paper is not-available
online”, or ”the data in the paper is not presented in a way acceptable for the
database”. These papers would then be considered false positive by the clas-
sifier, because they are present in the corpus of citations but absent from the
database.

Restricting the analysis to the dietary biomarker citations provided much
better metrics than when using all the data from the database (dietary, pol-
lutants, and reproducibility values) (Table 6). When restricting the analysis
to citations describing the different classes of biomarkers of pollution, the per-
formance of the models was even lower (preliminary results not shown). This
difference in performance could be explained by the difference of nature of the
data searched by the annotators for the different sets of biomarkers. For dietary
biomarkers, the focus was made on publications providing correlation values
between dietary intakes and biomarkers measured in human biospecimens, and
mostly describing validation studies of dietary questionnaires with biomarkers.
For the pollutant biomarkers, the focus was made on papers describing con-
centration values of pollutant biomarkers in human biospecimens. Moreover,
by lack of time and human resources, not all potentially relevant publications
on pollution biomarkers were inserted in the Exposome-Explorer, while the di-
etary biomarkers were handled more attentively. As a consequence, the dietary
biomarkers account for almost half of the entries of the database. All of this
could explain why the model seems to perform better for dietary biomarkers.
Having a closer look at false positives obtained by the classifier on pollutants
could be a good way to check if the model developed on dietary biomarkers
could also be applied to pollutants, and identify new relevant papers from the
corpus of pollutants. This also means that as we obtain a more comprehensive
corpus for other classes of biomarkers, the performance of our machine learning
solution will also improve.
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Biomarkers recognition

We manually confirmed the biomarkers detected and provide the full list as
an Additional File. This list contains 545 chemical entities, along with the
documents where each one was identified. The most mentioned entities were
“polychlorobiphenyl” (CHEBI:53156) , “acid” (CHEBI:37527) and “phthalate”
(CHEBI:17563). While some of these entities already existed on the Explorer-
Explorer database, most (460) did not match any existing entry. In some cases,
the results of this approach were to broad, for example, “acid” corresponds to
mentions to specific acid molecules such as acetic acid or uric acid. However, this
approach was able to identify biomarkers on abstracts that were ignored during
the development of the database. For example, our approach identified “omega-
6 fatty acid” as a candidate biomarker (CHEBI:36009) on a document that was
not used for the database. This list of chemicals and documents where they were
found can be used to generate new candidate entries for the Exposome-Explorer
database.

Conclusions

The Exposome-Explorer database is being manually curated, without any assis-
tance from machine learning tools. As the number of scientific papers continues
to grow, text-mining tools could be a great help to assist the triage of documents
containing information about biomarkers of exposure and keep the database up-
dated.

To this end, several machine learning models were created using different
combinations of preprocessing parameters and algorithms. These classifiers were
trained using the publications’ abstracts, titles and metadata. The model with
the highest F2-score (70.1%) was built with the LR algorithm and used the
titles and abstracts to predict a paper’s relevance. We extracted named-entities
from the abstracts selected by this model, obtaining a total of 545 candidate
biomarkers.

To apply this methodology to the database curation pipeline, the IR task will
consist of two steps. In the first one, articles will be retrieved using the query
search on WOS, to target domain-specific publications. Then, the classifier
could be used to narrow down the publications even more, and a named-entity
recognition tool can be used to provide candidate entries to the database. Man-
ual curation will still be needed, to extract information about biomarkers from
full-text articles.

In the future, we will work on improving the results from the classifiers
that use the metadata set. For example, by testing different weights to the
authors, according to the position they appear in, or by creating new features
that result from the combinations between all authors within the same article.
We will also study the impact of the recognized biomarkers in the retrieval
classification. When analysing why the model misclassified some publications,
a few chemicals, like “calcium” and “selenium” were strongly associated with
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irrelevant articles. An idea to explore is to replace chemical tokens by a category
they belong, such as “chemical”, and see if it improves the precision and recall of
the classifiers. This should avoid over-fitting on the training set. Furthermore,
we will improve this gold standard by adding more types of biomarkers, that
can also classify non-dietary biomarkers. Another idea to explore is to train
deep learning models on other biomedical corpora and apply to the documents
of this gold standard dataset, since these approaches require larger datasets.
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Additional file 1

Excel file with the precision, recall, F1-score, F2-score and ROC-AUC of the
classifiers for all combinations of preprocessing parameters (min df, ngram range
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and matrix type) and algorithms (Decision Tree, Logistic Regression, Näıve
Bayes, Neural Network, Random Forest and SVM), along with two ensemble
algorithms, Bagging and Stacking.

Additional file 2 — Candidate Biomarkers

Tab-separated values file with the ChEBI IDs of the biomarker entities found on
the abstracts classified as relevant, along with the PubMed IDs of the documents
where they were found.
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