

The distribution of onion virulence gene clusters among *Pantoea* spp.

1 **Shaun P. Stice¹, Gi Yoon Shin², Stefanie De Armas³, Santosh Koirala¹, Guillermo A. Galván⁴,**
2 **Maria Inés Siri³, Paul M. Severns¹, Teresa Coutinho², Bhabesh Dutta¹, Brian H. Kvítko^{1*}**

3 ¹College of Agriculture and Environmental Science, Department of Plant Pathology, University of
4 Georgia, Athens, Georgia, United States of America

5 ²Centre for Microbial Ecology and Genomics, Forestry and Agriculture Biotechnology Institute,
6 Department of Biochemistry Genetics and Microbiology, University of Pretoria, Pretoria, South
7 Africa

8 ³ Facultad de Química, Área Microbiología, Departamento de Biociencias, Universidad de la
9 República, Montevideo, Uruguay

10 ⁴ Facultad de Agronomía, Centro Regional Sur (CRS), Departamento de Producción Vegetal,
11 Universidad de la República, Canelones, Uruguay

12 *** Correspondence:**

13 Corresponding Author

14 bkvitko@uga.edu

15 **Keywords:** *Pantoea ananatis*₁, *Pantoea* spp.₂, onion₃, virulence gene₄, bulb rotting₅, gene cluster
16 distribubution₆

17 **Abstract**

18 *Pantoea ananatis* is a gram-negative bacterium and the primary causal agent of center rot of onions
19 in Georgia. Previous genomic studies identified two virulence gene clusters, HiVir and *alt*, associated
20 with center rot. The HiVir gene cluster is required to induce necrosis on onion tissues via synthesis of
21 a predicted small molecule toxin. The *alt* gene cluster aids in tolerance to thiosulfinates generated
22 during onion tissue damage. Whole genome sequencing of other *Pantoea* species suggest that these
23 gene clusters are present outside of *P. ananatis*. To assess the distribution of these gene clusters, two
24 PCR primer sets were designed to detect the presence of HiVir and *alt*. Two hundred fifty-two strains
25 of *Pantoea* spp. were phenotyped using the red onion scale necrosis (RSN) assay and were assayed
26 using PCR for the presence of these virulence genes. A diverse panel of strains from three distinct
27 culture collections comprised of 24 *Pantoea* species, 41 isolation sources, and 23 countries, collected
28 from 1946-2019, were tested. There is a significant association between the *alt* PCR assay and
29 *Pantoea* strains recovered from symptomatic onion ($P<0.001$). There is also a significant association
30 of a positive HiVir PCR and RSN assay among *P. ananatis* strains but not among *Pantoea* spp.,
31 congeners. This may indicate a divergent HiVir cluster or different pathogenicity and virulence
32 mechanisms. Last, we describe natural *alt* positive [RSN⁺/HiVir⁺/*alt*⁺] *P. ananatis* strains, which
33 cause extensive bulb necrosis in a neck-to-bulb infection assay compared to *alt* negative
34 [RSN⁺/HiVir⁺/*alt*⁻] *P. ananatis* strains. A combination of assays that include PCR of virulence genes
35 [HiVir and *alt*] and an RSN assay can potentially aid in identification of onion-bulb-rotting
36 pathogenic *P. ananatis* strains.

38 **1 Introduction**

39 Onion center rot is an economically impactful disease that routinely results in significant losses to the
40 yield and marketability of onion (*Allium cepa* L.). Symptoms of the disease include necrotized leaves
41 and rotted bulbs (Gitaitis and Gay, 1997). The causal agent of onion center rot is primarily *Pantoea*
42 *ananatis* in the southeastern United States; however, bacterial onion blights and bulb rots caused by
43 other *Pantoea* species, including *Pantoea allii*, *P. agglomerans*, *P. stewartii* subsp. *indologenes*, and
44 *P. dispersa*, have been reported in the literature (Edens et al., 2006; Brady et al., 2011; Chang et al.,
45 2018; Stumpf et al., 2018). *P. ananatis* is transmitted by thrips and can move from infected onion
46 leaves to the corresponding onion scales (Carr et al., 2013; Dutta et al., 2016). Recent comparative
47 and functional genetic studies have determined that the HiVir and *alt* gene clusters function together
48 to drive necrotrophic infection of onion by virulent *P. ananatis* strains (Stice et al., 2020).

49 The HiVir gene cluster is a chromosomal gene cluster in *P. ananatis* that is hypothesized to code for
50 the synthesis of a yet undescribed phosphonate secondary metabolite that acts as a plant toxin
51 (Asselin et al., 2018; Takikawa and Kubota, 2018). Deletion of the first gene in the HiVir cluster
52 *pepM*, a phosphoenolpyruvate mutase gene, renders strains unable to induce necrotic lesions on
53 onion foliage and tobacco leaves. The mutant strains were also unable to induce necrosis on
54 detached red onion scales after three days of inoculation (red onion scale necrosis, RSN), compared
55 to the wild-type (WT) strain (Asselin et al., 2018; Stice et al., 2020). The HiVir cluster, which was
56 originally identified as a potential insecticidal toxin cluster by De Maayer et al. 2014, is common to
57 several plant pathogenic *P. ananatis* strains (De Maayer et al., 2014). The HiVir cluster is present in
58 the genomes of the *P. ananatis* type strain LMG 2665^T (GenBank: JMJ00000000; EL29_RS14675-
59 RS14595) and the strain LMG 20103 (GenBank: NC_013956; PANA_RS16700-RS16615), which
60 are the causal agents of pineapple fruitlet rot and Eucalyptus blight, respectively (De Maayer et al.,
61 2010; Adam et al., 2014). *P. ananatis* strains reported as non-pathogenic on onion lacked the HiVir
62 cluster (Asselin et al., 2018).

63 The plasmid-borne gene cluster *alt* encodes a cohort of enzymes that confer tolerance to the
64 antimicrobial thiosulfinates released by damaged *Allium* tissues (Stice et al., 2020). We previously
65 characterized the function of the *alt* cluster in *P. ananatis* by creating autoluminescently-labeled
66 PNA 97-1R isogenic mutants (Δalt , $\Delta pepM$, and $\Delta alt\Delta pepM$) and by testing them using the RSN
67 assay and a neck-to-bulb infection/colonization assay. The later assay involves inoculating onion
68 plants (bulb-swelling stage) at the neck with a bacteria-soaked toothpick and evaluating them at
69 harvest maturity for *P. ananatis* colonization using long exposure imaging to determine bacterial
70 colonization patterns. The strain PNA 97-1R WT [HiVir⁺/*alt*⁺] was RSN⁺ and caused a bulb rot in
71 the neck-to-bulb infection assay, with extensive colonization supported by a bioluminescent signal
72 throughout the symptomatic tissue. The strain PNA 97-1R Δalt [HiVir⁺/*alt*⁻] was also RSN⁺ but did
73 not cause a bulb rot in the neck-to-bulb infection assay and lacked a bioluminescent signal in the
74 tissue. The strain PNA 97-1R $\Delta pepM$ [HiVir⁺/*alt*⁺] and $\Delta alt\Delta pepM$ [HiVir⁻/*alt*⁻] were RSN⁻, did not
75 cause a bulb rot, and did not produce bioluminescent signal in the neck-to-bulb assay (Stice et al.,
76 2020). The qualitative difference of bulb rot symptoms in the neck-to-bulb infection assay between
77 the WT and the Δalt mutant strains indicated that the presence or absence of this cluster is important
78 for bulb colonization and center rot symptoms in onion (Stice et al., 2020). Considering that the
79 HiVir cluster is required for foliar necrosis in various *P. ananatis* strains and both the HiVir and *alt*
80 clusters are required for the neck-to-bulb colonization of the onion bulb, we hypothesize that
81 aggressive bulb rotting strains should contain both the *alt* and the HiVir clusters.

82 Though the HiVir and *alt* clusters have been functionally studied in *P. ananatis*, these clusters are
83 distributed among other *Pantoea* spp. that have been reported to cause onion center rot disease
84 (Stumpf et al., 2018; Stice et al., 2020). Using BlastX search schemes in the NCBI GenBank
85 Database, we identified homologous HiVir clusters in several strains of *P. agglomerans* and *P.*
86 *stewartii* subsp. *indologenes* and homologous *alt* clusters in several strains of *P. agglomerans*, *P.*
87 *stewartii* subsp. *indologenes*, and *P. allii*. Hence, it would be useful to assess the distribution of both
88 gene clusters amongst *Pantoea* spp. isolated from onion and non-onion sources. Here we describe
89 two PCR assays to detect the pathogenicity and virulence factors (HiVir and the *alt* virulence genes)
90 and the RSN assay for determining the onion pathogenic potential of *Pantoea* spp. strains. We
91 utilized these three assays to analyze three distinct culture collections ($n=252$ strains) comprised of
92 *Pantoea* spp. strains of environmental, pathogenic, epiphytic, and endophytic origins. In addition, we
93 characterized three natural *alt* positive [RSN⁺/HiVir⁺/*alt*⁺] and three natural *alt* negative
94 [RSN⁺/HiVir⁺/*alt*⁻] *P. ananatis* strains based on the symptomatology of onions when using a neck-to-
95 bulb infection assay.

96 2 Materials and Methods

97 2.1 Bacterial strains and culture conditions

98 A total of 252 *Pantoea* spp. strains were selected from three independently curated culture
99 collections: University of Georgia – Coastal Plain Experiment Station (UGA-CPES) ($n=74$ strains),
100 University of Pretoria – Bacterial Culture Collection (UP-BCC) ($n=124$ strains), and Universidad de
101 la República – Microorganisms of Agricultural Importance (UR-MAI) ($n=54$ strains). All bacterial
102 strains were stored under cryopreservation at their respective institutions at -80 °C. Strains were
103 routinely cultured from single clones recovered on either nutrient agar (NA) or lysogeny broth (LB)
104 agar parent plates and were grown in 5 mL of NA/LB liquid media in 14 mL glass culture tubes at 28
105 °C with shaking.

106 2.2 Description of *Pantoea* culture collections

107 2.2.1 Strain selection

108 Each institution selected strains from their respective collections to include diverse *Pantoea* spp. and
109 isolation sources, with specific enrichment of *P. ananatis* strains and *Pantoea* spp. strains isolated
110 from diseased onion. Biases in strain selection were unavoidable; however, we employed relevant
111 statistical methods to account for biases in our data sets.

112 2.2.2 University of Georgia Coastal Plains Experiment Station (UGA-CPES)

113 Strains selected from the University of Georgia Coastal Plains Experiment Station (UGA-CPES)
114 consisted of 4 *Pantoea* species isolated between 1983 and 2018: *P. ananatis* ($n=69$), *P. agglomerans*
115 ($n=2$), *P. allii* ($n=1$), and *P. stewartii* subsp. *indologenes* ($n=2$). UGA-CPES-selected strains were
116 primarily isolated from onion bulbs/leaves exhibiting center rot symptoms ($n=43$) and onion seeds
117 ($n=2$), whereas the remainder of the strains were isolated from environmental sources, either from
118 weeds ($n=17$) or thrips ($n=12$), using semi-selective PA20 agar (Goszczynska et al., 2006).

119 2.2.3 University of Pretoria Bacterial Culture Collection (UP-BCC)

120 Strains selected from the University of Pretoria Bacterial Culture Collection (UP-BCC) consisted of
121 17 *Pantoea* species isolated between 1946 and 2015: *P. agglomerans* ($n=18$), *P. allii* ($n=16$), *P.*
122 *ananatis* ($n=44$), *P. anthophila* ($n=5$), *P. beijingensis* ($n=2$), *P. conspicua* ($n=1$), *P. deleyi* ($n=1$), *P.*
123 *dispersa* ($n=6$), *P. eucalypti* ($n=6$), *P. eucrina* ($n=3$), *P. pleuroti* ($n=2$), *P. rodasii* ($n=1$), *P.*

124 *rwandensis* ($n=1$), *P. stewartii* ($n=10$), *P. vagans* ($n=4$), *P. wallisii* ($n=2$), and *P. spp.* [species not
125 determined] ($n=2$). UP- BCC-selected strains were primarily isolated from onion ($n=33$), Eucalyptus
126 ($n=23$), and maize ($n=22$). Seventy-eight of the UP-BCC strains were isolated from other sources
127 ranging from human wounds to watermelon. Thirty-one of the selected strains in the UP-BCC are
128 from the Belgian Coordinated Collections of Microorganisms (BCCM/LMG Bacteria Culture
129 Collection).

130 **2.2.4 Universidad de la República Microorganisms of Agricultural Importance (UR-MAI)**

131 Strains selected from the Universidad de la República Microorganisms of Agricultural Importance
132 (UR-MAI) collection consisted of six *Pantoea* spp. isolated between 2015 and 2019: *P. agglomerans*
133 ($n=11$), *P. allii* ($n=4$), *P. ananatis* ($n=2$), *P. eucalypti* ($n=33$), *P. vagans* ($n=1$), and *P. spp.* [species
134 not determined] ($n=3$). UR-MAI-selected strains were isolated from streaked and spotted onion
135 leaves, seed-stalks, and decayed onion bulbs.

136 **2.3 DNA extraction**

137 **2.3.1 UGA-CPES**

138 Bacterial genomic DNA was extracted from overnight (O/N) cultures using the Gentra Puregene
139 Yeast/Bact Kit (Qiagen) (25/74 strains). The purified DNA was adjusted to a final concentration of
140 80-50 ng/ μ L with Tris-EDTA buffer (10mM Tris-HCL, 1 mM EDTA, pH 8.0) and stored at 4 °C
141 until use. DNA was also extracted using a DNA boil-prep protocol (49/74 strains). A single colony
142 was selected from a culture plate, removed with a sterile toothpick, and agitated in a 200 μ L PCR
143 tube with 50 μ L of sterile nuclease-free water. The PCR tube was heated to 95 °C for 20 m with a
144 hold at 4 °C. Boil-preps were stored at 4 °C until use.

145 **2.3.2 UP-BCC**

146 Bacterial genomic DNA was extracted using the Zymo Quick-DNA miniprep kit (Zymo Research) or
147 PrepMan extraction kit (Applied Biosystems) according to the manufacturer instructions.

148 **2.3.3 UR-MAI**

149 Bacterial suspensions were grown O/N in NBY after transferring single colonies of each strain from
150 48 h cultures on NBY-agar medium on a rotary shaker at 150 rpm. Thereafter, 2 mL of bacterial
151 suspensions were used for DNA extraction following the protocol described by Ausubel *et al.* 2003
152 (Ausubel *et al.*, 2003). Final DNA concentrations were adjusted to 50 ng/ μ L and stored until use.

153 **2.4 HiVir PCR assay design**

154 The HiVir2p_F/R primer pair was designed to detect *P. ananatis* strains with the ability to induce the
155 red scale necrosis (RSN) phenotype associated with the HiVir cluster (Stice *et al.*, 2020).
156 HiVir2p_F/R was designed using a MAUVE alignment of the HiVir cluster and the Primer3 (v2.3.7)
157 plugin within Geneious Prime (v 2019.1.3) (Darling *et al.*, 2004). The HiVir clusters of PNA 97-1R
158 (GenBank: CP020943.2; B9Q16_20825-20770) and LMG 2665^T (GenBank: NZ_JFZU01000015;
159 CM04_RS24645-RS25770) [RSN⁺/HiVir⁺] were aligned with three genome-sequenced strains
160 carrying a HiVir cluster that did not have the RSN phenotype: PNA 98-11 (GenBank:
161 QGTO01000003; C7426_103320-103334), PANS 02-1 (GenBank: NZ_QRDI01000007;
162 C7423_RS14790- RS14860), and PANS 04-2 (GenBank: NZ_NMZV01000004; CG432_14985-
163 15075) [RSN/HiVir⁺] (Table 1). The resulting forward primer HiVir2pF
164 (AATATCCATCAGTACCATT) overlapped with a T→C SNP conserved among the three

165 previously described RSN⁺ strains within the *pepM* gene with the intention of reducing the rate of
166 false positive PCR results (Figure 1A). The reverse primer HiVir2p_R
167 (TGTAAATGGGCCTTTAC) annealed to a region in the *pavC* gene (GenBank: NZ_CP020943;
168 B9Q16_20825).

169 **2.5 alt PCR assay design**

170 The *alt1p_F/R* primer pair was designed to detect *P. ananatis* and *Enterobacter ludwigii* strains
171 containing the *alt* gene cluster described by Stice *et al.* 2020. To identify conserved regions of the *alt*
172 cluster a MAUVE alignment of three *P. ananatis* strains [PNA 15-1 (GenBank: NMZZ01000009;
173 CG436_20695-20745), PNA 06-1 (GenBank: NMZY01000011; CG435_22460- 22510), PNA 97-1R
174 (GenBank: CP020945.2; B9Q16_23170- 23120)] and one *E. ludwigii* strain [EcWSU1 (Genbank:
175 CP002887.1; EcWSU1_A045-062)] was conducted (Figure 1B). The *alt1p_F/R* primers were
176 generated from this alignment and the resulting primer pair, *alt1p_F*
177 (AGAATGCAGAACGGCTGGC) and *alt1p_R* (CCACCTGATTCAATCATCAG) were generated
178 using the Primer3 (v2.3.7) plugin within Geneious Prime (v 2019.1.3).

179 **2.6 PCR amplification**

180 Primer assay oligos were ordered from Eurofins Genomics LLC (Louisville, KY). Primers were
181 initially tested in a multiplex PCR reaction. However, to maintain consistency at multiple institutions,
182 a simplex PCR scheme was adopted. Amplicon size and interpretation did not change when using a
183 multiplex or simplex scheme. At UGA-CPES 74 strains were tested (0 multiplex, 74 simplex), at UP-
184 BCC 54 strains were tested (42 multiplex, 82 simplex), and at UR-MAI 54 strains were tested (0
185 multiplex, 54 simplex). PCR reagents varied depending on the institution. Individual reactions
186 conducted with UGA-CPES consisted of a 10 μ L mixture containing 5 μ L of GoTaq Green Master
187 Mix 2X (Promega Corporation), 0.5 μ L of template DNA, 0.5 μ L of each primer and dH₂O to the
188 final volume. Reactions conducted with UP-BCC consisted of 10 μ L reactions: 1 μ L 10X DreamTaq
189 Buffer, 0.5 μ L of each primer, 0.4 μ L 2 mM dNTPs, 0.5 μ L genomic DNA, 0.2 μ L DreamTaq DNA
190 Polymerase (Thermo scientific), and dH₂O to the final volume. Reactions conducted at UR-MAI
191 consisted of 50 μ L reactions: 5 μ L 10X Standard Taq Buffer (NEB), 2.5 μ L of each primer, 2 μ L 10
192 mM dNTPs, 1 μ L genomic DNA, and dH₂O to the final volume. All reactions were run under the
193 following conditions: 2 m at 98 °C; repeat 30 cycles of 10 s at 98 °C, 30 s at 47.4 °C (HiVir2p_F/R) /
194 52.3 °C (*alt1p_F/R*), 30 s at 72 °C; 10 m at 72 °C, hold at 4 °C. Amplified products were detected by
195 gel electrophoresis of 10 μ L of PCR reactions in a 1.5% TBE agarose gel with SYBR Safe dye
196 (Thermo Scientific, Waltham, MA).

197 **2.7 Determining the sensitivity of the *alt* and HiVir PCR assays**

198 The sensitivity of each primer pair was tested using purified genomic DNA and a bacterial
199 suspension of PNA 97-1R [HiVir⁺/*alt*⁺]. Purified genomic DNA (185 ng/ μ L) was serially diluted in
200 5-fold increments to 18,500; 3,700; 740; 148; 29.6; and 5.92 pg per PCR reaction and subjected to
201 the simplex PCR assay described previously. A bacterial suspension of PNA 97-1R was prepared
202 from a log-phase culture and adjusted to a concentration of 0.3 OD₆₀₀ ≈ 1×10⁸ colony forming units
203 (CFU)/mL. DNA was extracted using the boil-prep method previously described. The boiled 1×10⁸
204 CFU/mL suspension was diluted and added to individual reactions to obtain the following
205 concentrations: 3,500; 3,000; 2,500; 2,000; 1,000; 500; 300; 200; 40; and 8 CFU per PCR reaction.

206 **2.8 Validation of the HiVir and *alt* PCR assays using on whole genome sequencing data**

207 Eighty-nine (74 UGA-CPES, 15 UP-BCC, 0 UR-MAI) of the strains tested with the *alt* and HiVir
208 PCR assays have publicly available complete or draft whole genome sequences available
209 (Supplementary Table 1). We determined the accuracy of the HiVir and *alt* PCR assays by
210 comparing experimental PCR results to *in-silico* PCR results of sequenced genomes. Each individual
211 genome was downloaded and imported into Geneious prime (v2019.1.3). The “test with saved
212 primer” function was used to probe each primer pair against the genomes of the 89 sequenced strains.
213 Results of individual virulence gene cluster presence by PCR assay in strains were tested for a
214 significant association compared with the *in-silico* confirmation of *alt* and HiVir primer binding in
215 sequenced genomes ($n=89$) by creating a 2×2 contingency table and calculating a two-tailed Fisher’s
216 exact test in Microsoft Excel. The accuracy was calculated by summing up the true positive and true
217 negative results and dividing by the total number of strains tested in this manner. A true positive is a
218 strain that had a positive PCR amplicon and a positive *in-silico* primer bind. A true negative is a
219 strain that had a negative PCR amplicon and a negative *in-silico* primer bind.

220 **2.9 High-throughput red scale necrosis assay (RSN)**

221 The red scale necrosis assay (RSN) was conducted as a high-throughput phenotypic assay to assess
222 the onion pathogenic potential of strains in each culture collection. The assay was conducted as
223 previously described with minor modifications (Stice et al., 2018). At UGA-CPES and UP-BCC,
224 consumer produce red onions (*Allium cepa* L.) were purchased, whereas at UR-MAI stored red
225 onions cv. “Naqué” from postharvest experimental plots were taken, cut to approximately 3 cm wide
226 scales, sterilized in a 3% household bleach solution for 1 m, promptly removed and rinsed in dH₂O.
227 Scales with a healthy unmarred appearance were used. Simple humidity chambers were used to
228 encourage disease and prevent the drying of onion scales (approximately 80% relative humidity).
229 Chambers consisted of a potting tray (27 × 52 cm) or similar plastic storage container, two layers of
230 paper towels pre-wetted with distilled water, and the plastic removable portion of pipette trays or a
231 similar item to prevent direct contact between the paper towels and the scales (Supplementary Figure
232 1). Disinfested onion scales were spaced evenly with approximately 1 cm of buffer between each
233 scale in the humidity chamber (Supplementary Figure 1). Individual onion scales were wounded
234 cleanly through the scale with a sterile pipette tip or needle and inoculated with a 10 µL drop of
235 bacterial overnight LB or NA culture (Supplementary Figure 1). Sterile LB or NA culture was used
236 as a negative control and strain PNA 97-1R was used as a positive control. The tray was covered with
237 a plastic humidity dome or a loosely sealed container lid and incubated at room temperature for 72 h.
238 Following incubation, strains that induced a distinct necrotic lesion with a defined border and
239 clearing of the anthocyanin pigment on the onion scales were recorded as RSN⁺, while strains
240 exhibiting no clearing were recorded as RSN⁻ (Figure 1A, picture inset).

241 **2.10 Mini-Tn7Lux labeling of PNA 97-1R and LMG 2665^T**

242 To determine the colonization of the putative non-bulb rotting type strain *P. ananatis* LMG 2665^T
243 [RSN⁺/HiVir⁺/*alt*⁻] and the known bulb rotting strain *P. ananatis* PNA 97-1R [RSN⁺/HiVir⁺/*alt*⁺], we
244 used labeling methods as previously described (Stice et al., 2020). In brief, *Escherichia coli* (*Eco*)
245 RHO3 pTNS3, *Eco* RHO5 pTn7PA143LuxFK, and the target *P. ananatis* strain were combined in a
246 tri-parental mating. A five milliliter LB culture of each strain was grown O/N. After 12-14 h of
247 incubation, 1 mL of each culture was centrifuged to pellet the bacteria. The supernatant was
248 discarded, and the pellet resuspended in 100 µL of fresh LB broth. Twenty µL of each concentrated
249 bacterial suspension was added to a sterile 1.5 mL microfuge tube. LB plates amended with 200
250 µg/mL diaminopimelic acid (DAP) were prepared, and sterile nitrocellulose membranes were placed
251 on the plates. Amendment with DAP allows for growth of DAP-auxotrophic *Eco* RHO3 and RHO5

252 strains. A 20 μ L volume of the mixed cultures and parental controls were spotted onto individual
253 nitrocellulose membrane squares and allowed to dry. Following O/N incubation, the mixture was
254 removed from the nitrocellulose membrane using a sterile loop and resuspended in 1 mL LB. The
255 incubated mixed culture suspension was plated on Kanamycin (Km) LB selection plates. The
256 following day Km-resistant colonies were selected and confirmed for luminescence with 2 m
257 exposure settings with a ccd imager (analyticJena UVChemStudio, Upland, CA).

258 **2.11 Neck-to-bulb infection assay**

259 The neck-to-bulb infection assay was conducted as previously described (Stice et al., 2020). Three
260 independent biological experiments were conducted with four technical repetitions per experiment.
261 Three *alt* negative [RSN⁺/ HiVir⁺/*alt*⁻] strains [*P. ananatis* putative non-bulb rotting strains LMG
262 2665^T (causal agent of pineapple fruitlet rot, Tn7Lux), *P. ananatis* LMG 20103 (causal agent of
263 Eucalyptus blight), and a Georgia *P. ananatis* natural variant lacking the *alt* gene cluster PNA 02-18
264 (onion origin)] were compared along with a negative dH₂O control to three putative bulb-rotting *alt*-
265 positive [RSN⁺/Hivir⁺/*alt*⁺] strains [PNA 97-1R (causal agent of onion center rot, Tn7Lux) and two
266 additional Georgia strains isolated from onion in 2006 and 2015, PNA 15-1 and PNA 06-1 in a neck-
267 to-bulb infection assay].

268 **2.11.1 Inoculum preparation**

269 Cultures were grown O/N in LB, washed via centrifugation and resuspension in sterile dH₂O, and the
270 concentration adjusted to OD₆₀₀ 0.3 \approx 1 \times 10⁸ CFU/mL in sterile dH₂O with a final volume of 25 mL.
271 Sterile toothpicks were soaked in the inoculum suspension for 20 m.

272 **2.11.2 Plant growth conditions and inoculation**

273 At UGA-CPES, seven-week-old onion seedlings (cv. Sweet Agent) were obtained from the Vidalia
274 Onion and Vegetable experiment station (Lyons, GA) and were potted individually in 16 cm \times 15 cm
275 (diameter \times height) plastic pots with commercial potting mix on Dec 3rd, 2019. The onions were
276 grown at the UGA South Milledge Greenhouse (Athens, GA). Greenhouse conditions were
277 maintained at 24° C with 60% relative humidity and no supplemental lighting. Seedlings were
278 watered using a hand hose directed at the base of the plants. Onion plants were inoculated at the end
279 of the bulb development stage approximately 20 days before bulb maturation stage by inserting the
280 inoculum-soaked toothpick horizontally through the onion neck just below the leaf fan (a favored
281 thrips feeding site). Toothpicks were left in the plants. Colored tags were used to mark each
282 treatment. Following inoculation, onions were randomized into blocks representing each replication.
283 At 20 d post-inoculation, the onions were harvested for imaging. For harvesting, onion bulbs were
284 removed from soil (which was sterilized and discarded following the experiment), rinsed with water,
285 and cut twice transversely at the center of the bulb to produce a 1.5 cm section of the center of the
286 onion (Supplementary Figure 2). The remaining portion of the top of the bulb had foliage removed
287 and was cut longitudinally (Supplementary Figure 2).

288 **2.11.3 Imaging**

289 Onions inoculated with non-labeled strains were imaged with a color camera and center rot symptom
290 incidence was recorded. Onion inoculated with Tn7Lux auto-bioluminescent reporter strains (LMG
291 2665^T and PNA 97-1R) were imaged with a color camera followed by bright-field and long exposure
292 imaging with the ccd imager (Analytic Jena UVP ChemStudio, Upland, CA). Within the
293 VisionWorks software manual, long-exposure imaging was selected with the following settings:
294 capture time 2 m, 70% focus, and 100% brightness (aperture), stack image, and saved to TIFF

295 format. Brightfield images were captured with the following settings: capture time 40 mS, 70%
296 focus, 60% brightness (aperture), and saved to TIFF format. After imaging, bright-field and long-
297 exposure images were merged using ImageJ (Fiji release). The incidence of center rot symptoms and
298 presence of a bioluminescent signal in long exposure images were recorded.

299 **2.12 Statistical analysis**

300 To determine whether a significant association exists between the HiVir PCR assay (positive vs.
301 negative) and the RSN phenotype (positive vs. negative) we conducted a two-tailed Fisher exact test
302 on 2×2 contingency tables in Microsoft Excel. The accuracy of a positive HiVir PCR assay as a
303 predictor of the RSN phenotype was calculated by summing the true positive and true negative
304 results and dividing by the total number of strains tested.

305 We tested whether a significant association exists between the *alt* PCR assay (positive vs. negative)
306 and the source of isolation (onion vs. non-onion) using the two-tailed Fisher exact test previously
307 described.

308 To determine whether source of isolation (onion or non-onion) or *Pantoea* group (*P. ananatis* or
309 *Pantoea* spp.) was associated with an *alt*⁺ genotype and an RSN⁺ phenotype, we used a Z-proportions
310 test to compare the proportion of four groups (RSN⁺ *alt*⁻, RSN⁺ *alt*⁺, RSN⁻ *alt*⁺, and RSN⁻ *alt*⁻). The
311 two-tailed ($\alpha < 0.05$) Z-proportions test assumes a normal distribution and considers the number of
312 samples of each proportion being tested to determine whether the two proportions statistically differ
313 according to a Z-statistic (Ramsey and Schafer, 2002).

314 To determine whether the percent center rot incidence at the onion midline differed among the three
315 bulb rotting and non-bulb rotting strains, we conducted an ANOVA and Tukey-HSD test using R-
316 Studio v1.2.1335 (package agricolae).

317 **3 Results**

318 An objective of this study was to assess the utility of two PCR assays and the phenotypic RSN assay
319 for identifying *Pantoea* onion virulence genes. To accomplish this objective, we worked among three
320 separate institutions to test the three assays. The assays were originally developed for use with *P.*
321 *ananatis* strains; however, to investigate the breadth of their utility and potential limitations, we
322 included a wider selection of *Pantoea* spp.

323 **3.1 HiVir PCR assay**

324 The HiVir cluster encodes predicted biosynthetic enzymes for the production of a small molecule
325 phosphonate phytotoxin. The HiVir2p_F/R primer pair amplified an 857 bp portion of DNA
326 including *pepM*, the intergenic region, and *pavC* while overlapping with an SNP associated with the
327 RSN⁻ phenotype (Figure 1A, C). Amplification of the HiVir2p_F/R amplicon among all 252 strains
328 tested in this study is depicted in Supplementary Table 1 (1=HiVir⁺, 0=HiVir⁻).

329 A positive HiVir PCR assay should be indicative of a present and functional HiVir cluster resulting
330 in a positive RSN assay phenotype, while a negative HiVir PCR is expected to result in a negative
331 RSN phenotype. The accuracy of a positive HiVir PCR assay corresponding to an *in-silico* primer
332 bind was calculated among the 89 sequenced strains to be 95.51% with a significant association
333 ($P < 0.001$). The accuracy of PCR predicting an RSN⁺ phenotype was empirically determined among
334 *P. ananatis* ($n=115$) and *Pantoea* spp. ($n=137$). The accuracy of the HiVir PCR assay among *P.*

335 *ananas* was 92.2 % and the accuracy among *Pantoea* spp. was 88.3 %. There was a significant
336 association between the HiVir PCR result and the RSN result among *P. ananas* ($P<0.001$) but not
337 among *Pantoea* spp. ($P=0.296$) (Supplementary Table 1).

338 **3.2 alt PCR assay**

339 The *alt* cluster encodes a cohort of putative disulfide exchange redox enzymes that confers tolerance
340 to antimicrobial thiosulfinates produced in disrupted onion tissues. The *alt1p_F/R* primer pair
341 amplified a 414 bp conserved portion of DNA encompassing the end of the *altB*, the intergenic
342 region, and the beginning of *altC* (Figure 1B, C). Amplification of the *alt1p_F/R* amplicon is
343 depicted in Supplementary Table 1 (1=*alt*⁺, 0=*alt*⁻).

344 The accuracy of a positive *alt* PCR assay corresponding to an *in-silico* primer bind was calculated
345 among the 89 sequenced strains to be 95.51% with a significant association ($P<0.001$). There was a
346 statistically significant association of the *alt* PCR assay (positive vs. negative) with isolation source
347 (onion vs. non-onion) among *P. ananas* ($n=115$; $P<0.001$) and *Pantoea* spp. ($n=137$; $P<0.001$)
348 (Supplementary Table 1).

349 **3.3 Sensitivity of PCR assays**

350 Assessing the sensitivity of each PCR assay is important if these primers are used in the future for
351 diagnostic purposes. The sensitivity of the assay refers to the minimum amount/concentration of
352 DNA or bacterial template that can give a successful amplification. The minimum quantity of DNA
353 with an interpretable amplicon was determined to be 29.6 pg of DNA per 10 μ L reaction. The
354 minimum number of colony forming units (CFU) per boil-prep template was determined to be 1,000
355 CFU for the *HiVir2p_F/R* primer pair and 300 CFU for the *alt1p_F/R* primer pair per 10 μ L reaction.

356 **3.4 Distribution of red scale necrosis (RSN) phenotype and HiVir *alt* PCR results.**

357 A positive HiVir amplicon was observed among 5 of the 17 species tested: *P. ananas* (58/115), *P.*
358 *allii* (1/21), *P. eucalypti* (2/39), *P. conspicua* (1/1), and *P. stewartii* subsp. *indologenes* (1/10)
359 (Supplementary Table 1). Positive RSN results were observed among 6 of the 17 species within the
360 *Pantoea* genus tested including: *P. ananas* (55/115 tested), *P. agglomerans* (1/31 tested), *P. allii*
361 (10/21 tested), *P. eucalypti* (4/39 tested), *P. stewartii* subsp. *indologenes* (1/10 tested), and *P. vagans*
362 (1/5 tested) (Supplementary Table 1). A positive *alt* amplicon was observed in the same six species
363 tested: *P. ananas* (49/115 tested), *P. agglomerans* (13/31 tested), *P. allii* (18/21 tested), *P. eucalypti*
364 (28/39 tested), *P. stewartii* subsp. *indologenes* (1/10 tested), and *P. vagans* (1/5 tested)
365 (Supplementary Table 1).

366 **3.5 Proportion of *P. ananas* and *Pantoea* spp. strains among groups (onion vs. non-onion)**

367 The proportion of *P. ananas* strains from onion with RSN⁺ *alt*⁺ (26/51) was significantly greater
368 than *P. ananas*-types from non-onion sources (10/64) ($P<0.001$, Table 1, Figure 2, Supplementary
369 Table 2). The proportion of *P. ananas* from non-onion sources with RSN⁺ *alt*⁻ (19/64) was
370 significantly greater compared to *P. ananas* from onion (2/51) ($P<0.001$, Table 1, Figure 2,
371 Supplementary Table 2). The proportion of *Pantoea* spp. strains from onion with RSN⁻ *alt*⁺ (49/77)
372 was significantly greater compared to *Pantoea* spp. from non-onion sources (2/60) ($P<0.001$, Table
373 1, Figure 2, Supplementary Table 2).

374 **3.6 *P. ananas* neck-to-bulb infection assay**

375 The percent incidence of dark necrotized tissue at the onion midline in the neck-to-bulb infection
376 assay was significantly greater in *alt* positive [RSN⁺/Hivir⁺/*alt*⁺] *P. ananatis* strains PNA 97-1R
377 (41.7%), PNA 15-1 (75%), and PNA 06-1(58.3%), compared to three *alt* negative [RSN⁺/Hivir⁺/*alt*⁻]
378 *P. ananatis* strains LMG 2665^T (0%), LMG 20103 (0%), and PNA 02-18 (0%) ($P<0.001$, two-way
379 ANOVA, HSD-post) (Figure 3A, B). Long exposure imaging of Tn7Lux autobioluminescent reporter
380 strains LMG 2665^T and PNA 97-1R indicated a luminescence signal in the onion midline sections
381 infected with PNA 97-1R that was absent in onions infected with LMG 2665^T (Figure 3A). This
382 qualitative difference in onion bulb symptom production between the [RSN⁺/Hivir⁺/*alt*⁺] non-bulb-
383 rotting *P. ananatis* type strain LMG 2665^T and [RSN⁺/Hivir⁺/*alt*⁺] bulb-rotting *P. ananatis* strain
384 PNA 97-1R is consistent with previous evidence whereby the presence of the *alt* cluster in a Hivir⁺
385 strain leads to a higher incidence of bulb rot in the neck-to-bulb assay.

386 4 Discussion

387 *Pantoea ananatis* is a broad host range pathogen with strains inducing disease symptoms ranging
388 from fruitlet rots to leaf blights in a variety of hosts, including pineapple, eucalyptus, rice, maize,
389 melon, and onion (Coutinho and Venter, 2009). To date, only two onion pathogen-specific virulence
390 mechanisms have been genetically characterized: the chromosomal Hivir gene cluster and the
391 plasmid localized *alt* gene cluster (Asselin et al., 2018; Stice et al., 2020). The Hivir gene cluster is
392 hypothesized to code for biosynthesis of a yet unidentified phosphonate compound based on the
393 genetic requirement for a characteristic *pepM* (phosphoenolpyruvate mutase) gene for *P. ananatis* to
394 induce necrosis in onion tissue and tobacco leaves (Asselin et al., 2018). The *alt* gene cluster confers
395 tolerance to the antimicrobial thiosulfinates released by damaged Allium tissues (Stice et al., 2020).

396 We developed two PCR assays to detect the Hivir and *alt* gene clusters and utilized the RSN assay to
397 characterize the onion pathogenic potential of *P. ananatis* strains. We applied these assays to
398 determine the distribution of onion-associated virulence gene clusters among *Pantoea* strains in three
399 unique culture collections comprised of 252 strains. Previous studies have identified that the Hivir
400 and *alt* gene clusters are distributed outside of *P. ananatis*, as demonstrated by their presence in
401 strains of *P. stewartii* subsp. *indologenes*, *P. allii*, and *P. agglomerans* based on whole genome
402 sequencing (Stice et al., 2020). By leveraging these simple assays against the UGA-CPES (focused
403 on diseased onion strains, primarily of *P. ananatis*, or isolated from the onion-associated weeds and
404 thrips) and UP-BCC (focused on many *Pantoea* spp. including pathogenic rice, maize, and
405 eucalyptus strains, among others), we observed a significant enrichment of the *alt* gene cluster among
406 strains recovered from diseased onions, and a strong statistical association between the Hivir PCR
407 and RSN phenotypic assays (Figure 2, Supplementary Table 1). The distribution of these onion
408 virulence genetic clusters will be useful for future studies of *Pantoea* strains involved in the onion
409 center rot complex. In addition, defining genetic features of bulb-rotting *P. ananatis* strains, based on
410 the presence or absence of the *alt* cluster, will help distinguish strains of *P. ananatis* that are a greater
411 threat to onion production (Figure 3).

412 4.1 Utility of Hivir PCR assay

413 We designed the Hivir PCR assay to detect *P. ananatis* strains that induce red onion scale necrosis.
414 To do this, we compared three strains in our collection that have the Hivir cluster in their sequenced
415 draft genomes but lack the RSN phenotype. The forward primer, Hivir2p_F, overlaps with a
416 conserved SNP among the RSN⁺/Hivir⁺ strains. Our results indicate the Hivir2p_F/R primers work
417 as expected with no amplification in the RSN⁺/Hivir⁺ strains such as PNA 98-11 (Figure 1A,C). The
418 Hivir PCR assay is sensitive and accurate in predicting the RSN ability of *P. ananatis* strains with a

419 significant association between the PCR result and the RSN phenotype. Among *Pantoea* spp.
420 (excluding *P. ananatis*) the HiVir PCR assay is less accurate and does not have a statistically
421 significant association with RSN. An example would be *P. vagans* LMG 24196, a strain isolated
422 from eucalyptus leaves and shoots showing symptoms of blight and dieback in Argentina (Brady et
423 al., 2009). LMG 24196 is RSN⁺ but HiVir⁻ in our tests. We hypothesize that LMG 24196 either
424 possesses a divergent, non-*P. ananatis*-type HiVir cluster that is not amplified by our HiVir primer
425 set, or that this strain may use an alternative virulence mechanism to cause red scale necrosis.
426 Seventeen of the 252 strains sampled in this study display an RSN⁺ HiVir⁻ result (1 UGA-CPES, 14
427 UP-BCC, 2 UR-MAI). Due to the weak correlation between the HiVir PCR assay and the RSN
428 phenotype outside of *P. ananatis*, we have concluded that RSN phenotyping is the more reliable
429 assay for determining the onion pathogenic potential of strains both within *P. ananatis* and among
430 *Pantoea* spp. With this information, we organized and grouped our results from Supplementary Table
431 1 to focus on the RSN phenotype for most figures and tables in this study.

432 **4.2 Utility of RSN assay**

433 The RSN assay may be predictive of the general plant pathogenic potential of *Pantoea* strains
434 infecting hosts other than onion such as maize and rice. *P. ananatis* BD 647 was isolated from
435 symptomatic maize, and its pathogenicity was experimentally validated; in this study it tested
436 RSN⁺/HiVir⁺/alt⁻ (Gosczynska et al., 2007). *P. agglomerans* LMG 2596 was isolated from a
437 symptomatic onion umbel, and its pathogenicity was validated; in this study it tested RSN⁺/HiVir⁻
438 /alt⁺ (Hattingh and Walters, 1981). *P. ananatis* strains causing stem necrosis and palea browning of
439 rice, including DAR76141, CTB1135, SUPP2113, had an RSN⁺/HiVir⁻/alt⁻ result (Table S1) (Cother
440 et al., 2004; Kido et al., 2008, 2010).

441 **4.3 Utility of alt PCR assay**

442 We designed the *alt* PCR assay to detect the *alt* cluster among *P. ananatis* strains and a homologous
443 cluster present in an *Enterobacter ludwigii* strain as described in our previous work (Stice et al.,
444 2020). The *alt* cluster confers tolerance to antimicrobial thiosulfinate that are present in onion and
445 garlic tissues. Due to the reactive and unstable nature of these molecules, it was not practical to test
446 all strains for thiosulfinate tolerance in a high throughput manner. However, we tested for and found
447 a statistically significant association between a positive *alt* PCR assay and strains sourced from onion
448 tissue in both *P. ananatis* strains and *Pantoea* spp. (Table 1, Figure 2).

449 **4.4 Distribution of onion associated virulence gene clusters**

450 **4.4.1 UGA-CPES**

451 The UGA-CPES collection included mostly *P. ananatis* strains isolated from symptomatic onions
452 along with strains isolated from onion-associated weeds and thrips. *P. ananatis* strains originating
453 from symptomatic onion typically contained the RSN⁺/HiVir⁺/alt⁺ result; however, strains with only
454 HiVir, only *alt*, or neither gene cluster were also recovered. We would expect center-rot-causing
455 strains to harbor both traits, as these virulence determinants have been demonstrated experimentally
456 to strongly contribute to neck-to-bulb infection. Among *P. ananatis* strains isolated from sources
457 other than onion, the RSN⁺/alt⁻ result was more pronounced (Table 1).

458 **4.4.2 UP-BCC**

459 The UP-BCC collection included *Pantoea* strains from diverse sources with specific enrichment in
460 maize, eucalyptus, and onion. Most strains tested RSN⁻ alt⁻ (Table 1). *P. ananatis* species had

461 enrichment of the RSN⁺ and *alt*⁺ results when isolated from onion. There was a larger proportion of
462 *P. ananatis* strains in the UP-BCC with the RSN⁺*alt*⁻ phenotype, which supports our interpretation
463 that RSN⁺/HiVir⁺ may be broadly associated with *P. ananatis* plant pathogenicity but that the *alt*
464 cluster is common among strains associated with onion.

465 **4.4.3 UR- MAI**

466 The UR-MAI collection was entirely comprised of strains originating from diseased onion. The
467 RSN⁺/HiVir⁺/*alt*⁺ result was obtained from the two strains belonging to the species *P. ananatis*
468 within this collection. Interestingly, the RSN⁺/*alt*⁺ result was also found in one *P. eucalypti* strain
469 (MAI 6036) and one *P. agglomerans* strain (MAI6045) recovered from symptomatic onion leaves
470 and seed stalks. The HiVir⁻/RSN⁺/*alt*⁺ result was nearly universally distributed among recovered
471 strains from this survey (Supplementary Table 1, Figure 2, Table 1). This suggests that alternative
472 onion necrosis mechanisms exist among *Pantoea* spp.

473 **4.5 Proportional analysis of RSN and *alt* results among strains**

474 Considering the selection of strains was biased in regard to isolation source (mostly of onion origin),
475 we grouped the RSN/*alt* results of our strains based on two metrics for a proportional analysis: 1.)
476 onion vs. non-onion strains, 2.) *P. ananatis* vs. *Pantoea* spp. strains. We then conducted a Z-
477 proportions test. This test allowed us to reveal broad differences by comparing proportions of strains
478 in defined groups. A significantly greater portion of strains of onion origin have the RSN⁺/*alt*⁺ and
479 RSN⁻/*alt*⁺ results compared to those of non-onion origin for both *P. ananatis* and *Pantoea* spp. strains
480 (Figure 2, Supplementary Table 2). This offers support for our conceptual model of *alt* cluster
481 enrichment among onion pathogenic strains. Conversely, a significantly greater proportion of *P.*
482 *ananatis* strains of non-onion origin has the RSN⁺/*alt*⁻ result compared to those of onion origin
483 (Figure 2, Supplementary Table 2). This suggests that strains causing foliar symptoms on crops such
484 as rice and maize may utilize the HiVir encoded toxin but do not require the *alt* cluster, as their hosts
485 do not produce the thiosulfinate defensive chemistry found in onions.

486 **4.6 The association of HiVir and *alt* gene clusters with *P. ananatis* bulb rot symptoms**

487 We previously demonstrated that both the HiVir and *alt* gene clusters were required by *P. ananatis*
488 PNA 97-1R [RSN⁺/HiVir⁺/*alt*⁺] to create center rot associated symptoms in a neck-to-bulb infection
489 assay (Stice et al., 2020). We expected the *alt* positive putative bulb-rotting strains PNA 97-1R, PNA
490 15-1, and PNA 06-1 [RSN⁺/HiVir⁺/*alt*⁺] to cause symptomatic bulb rots at the onion midline
491 compared to *alt* negative putative non-bulb-rotting strains LMG 2665^T (causal agent of pineapple
492 fruitlet rot), PNA 02-18 (natural onion isolate lacking *alt*), and LMG 20103 (causal agent of
493 eucalyptus blight) [RSN⁺/HiVir⁺/*alt*⁻]. Our results were consistent with this hypothesis whereby the
494 three natural *alt* positive [RSN⁺/Hivir⁺/*alt*⁺] *P. ananatis* strains had a significantly higher incidence of
495 bulb rot symptoms in the neck-to-bulb infection assay compared to *alt* negative [RSN⁺/Hivir⁺/*alt*⁻] *P.*
496 *ananatis* strains (Figure 3). To facilitate access to the *alt* positive [RSN⁺/Hivir⁺/*alt*⁺] *P. ananatis*
497 strain PNA 97-1R, we have deposited it to the international Belgium Coordinated Collection of
498 Microorganisms under the accession LMG 31960.

499 **4.7 Conclusion**

500 The three culture collections tested in this study have allowed us to gather a preliminary picture of
501 the distribution of the [HiVir⁺ /*alt*⁺] genotypes and RSN⁺ phenotype associated with onion center rot.
502 The HiVir and *alt* PCR assays which were respectively designed to be specific and inclusive were
503 validated on a panel of sequenced genomes with 95.15% accuracy (Figure 1). The RSN assay was

504 confirmed to be a robust method capable of assessing *Pantoea* strains carrying pathogenic potential
505 (Figure 2). A positive RSN and HiVir PCR assay were significantly associated among *P. ananatis*
506 strains; however, there was not a significant association among *Pantoea* spp., suggesting the assay
507 could be improved by including new sequencing information in future primer designs. Conversely,
508 the *alt* PCR assay allowed for the detection of *alt* associated genes in six *Pantoea* species with a
509 significant correlation between a positive *alt* PCR assay and strains of onion tissue origin among both
510 *P. ananatis* and *Pantoea* spp. We also demonstrated that natural *alt* positive [RSN⁺/HiVir⁺/*alt*⁺] *P.*
511 *ananatis* congeners have enhanced bulb rot potential in the neck-to-bulb infection assay compared to
512 *alt* negative [RSN⁺/HiVir⁺/*alt*⁻] *P. ananatis* congeners.

513 **5 Conflict of Interest**

514 The authors declare that the research was conducted in the absence of any commercial or financial
515 relationships that could be construed as a potential conflict of interest.

516 **6 Author Contributions**

517 S.S., B.K., and B.D. conceived and planned the experiments in this study. S.S. designed and tested
518 primers. S.S. and S.K. tested the UGA-CPES strain collection. S.S., G.S., and T.C. tested the UP-
519 BCC strain collection. S.A., G.G., and M.S. tested the UR-MAI strain collection. S.S. completed
520 auto-bioluminescent strain labeling and the bulb-to-scale pathogenicity assay. S.S. processed
521 experimental data and designed figures. P.S. advised and completed statistical analyses. All authors
522 discussed and contributed to the final manuscript.

523 **7 Funding**

524 This work was supported with funding from the Vidalia Onion Committee to B.K. and B.D., United
525 States Department of Agriculture (USDA) SCBGP project AM180100XXXXG014 to B.D. We
526 acknowledge support from grants FMV 104703 (ANII, Uruguay) and CSIC Grupos de Investigación
527 I+D 2000 (CSIC, Udelar, Uruguay) to S.D.A., G.A.G. and M.I.S. This work is supported by
528 Specialty Crops Research Initiative Award 2019-51181-30013 from the USDA National Institute of
529 Food and Agriculture to B.D. and B.K. Any opinions, findings, conclusions, or recommendations
530 expressed in this publication are those of the author(s) and do not necessarily reflect the view of the
531 U.S. Department of Agriculture.

532 **8 Acknowledgments**

533 We would like to acknowledge Li Yang for use of equipment, and members of the Yang and Kvitko
534 Labs, as well as Ron Walcott and Brenda Schroeder, for helpful discussions regarding the preparation
535 of the manuscript.

536 **9 References**

537 Adam, Z., Tambong, J. T., Lewis, C. T., Levesque, C. A., Chen, W., Bromfield, E. S. P., et al.
538 (2014). Draft Genome Sequence of *Pantoea ananatis* Strain LMG 2665T, a Bacterial Pathogen
539 of Pineapple Fruitlets. *Genome Announc.* 2, e00489-14-e00489-14.
540 doi:10.1128/genomeA.00489-14.

541 Asselin, J. A. E., Bonasera, J. M., and Beer, S. V. (2018). Center rot of onion (*Allium cepa*) caused by
542 *pantoea ananatis* requires *pepM*, a predicted phosphonate-related gene. *Mol. Plant-Microbe*

543 *Interact.* 31, 1291–1300. doi:10.1094/MPMI-04-18-0077-R.

544 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (2003).
545 *Current Protocols in Molecular Biology Current Protocols in Molecular Biology*.

546 Brady, C. L., Goszcynska, T., Venter, S. N., Cleenwerck, I., de Vos, P., Gitaitis, R. D., et al. (2011).
547 *Pantoea allii* sp. nov., isolated from onion plants and seed. *Int. J. Syst. Evol. Microbiol.* 61, 932–
548 937. doi:10.1099/ijss.0.022921-0.

549 Brady, C. L., Venter, S. N., Cleenwerck, I., Engelbeen, K., Vancanneyt, M., Swings, J., et al. (2009).
550 *Pantoea vagans* sp. nov., *Pantoea eucalypti* sp. nov., *Pantoea deleyi* sp. nov. and *Pantoea*
551 *anthophila* sp. nov. *Int. J. Syst. Evol. Microbiol.* 59, 2339–2345. doi:10.1099/ijss.0.009241-0.

552 Carr, E. A., Zaid, A. M., Bonasera, J. M., Lorbeer, J. W., and Beer, S. V. (2013). Infection of onion
553 leaves by *Pantoea ananatis* leads to bulb infection. *Plant Dis.* 97, 1524–1528.
554 doi:10.1094/PDIS-06-12-0597-RE.

555 Chang, C. P., Sung, I. H., and Huang, C. J. (2018). *Pantoea dispersa* causing bulb decay of onion in
556 Taiwan. *Australas. Plant Pathol.* 47, 609–613. doi:10.1007/s13313-018-0596-2.

557 Cother, E. J., Reinke, R., McKenzie, C., Lanoiselet, V. M., and Noble, D. H. (2004). An unusual
558 stem necrosis of rice caused by *Pantoea ananas* and the first record of this pathogen on rice in
559 Australia. *Australas. Plant Pathol.* 33, 495–503. doi:10.1071/AP04053.

560 Coutinho, T. A., and Venter, S. N. (2009). *Pantoea ananatis*: An unconventional plant pathogen. *Mol.*
561 *Plant Pathol.* 10, 325–335. doi:10.1111/j.1364-3703.2009.00542.x.

562 Darling, A. C. E., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: Multiple alignment of
563 conserved genomic sequence with rearrangements. *Genome Res.* 14, 1394–1403.
564 doi:10.1101/gr.2289704.

565 De Maayer, P., Chan, W. Y., Rubagotti, E., Venter, S. N., Toth, I. K., Birch, P. R. J., et al. (2014).
566 Analysis of the *Pantoea ananatis* pan-genome reveals factors underlying its ability to colonize
567 and interact with plant, insect and vertebrate hosts. *BMC Genomics* 15, 1–14. doi:10.1186/1471-
568 2164-15-404.

569 De Maayer, P., Chan, W. Y., Venter, S. N., Toth, I. K., Birch, P. R. J., Joubert, F., et al. (2010).
570 Genome sequence of *Pantoea ananatis* LMG20103, the causative agent of Eucalyptus blight and
571 dieback. *J. Bacteriol.* 192, 2936–2937. doi:10.1128/JB.00060-10.

572 Dutta, B., Gitaitis, R., Barman, A., Avci, U., Marasigan, K., and Srinivasan, R. (2016). Interactions
573 Between *Frankliniella fusca* and *Pantoea ananatis* in the Center Rot Epidemic of Onion (*Allium*
574 *cepa*). *Phytopathology* 106, 956–962. doi:10.1094/PHYTO-12-15-0340-R.

575 Edens, D. G., Gitaitis, R. D., Sanders, F. H., and Nischwitz, C. (2006). First Report of *Pantoea*
576 *agglomerans* Causing a Leaf Blight and Bulb Rot of Onions in Georgia. *Plant Dis.* 90, 1551–
577 1551. doi:10.1094/pd-90-1551a.

578 Gitaitis, R. D., and Gay, J. D. (1997). First Report of a Leaf Blight, Seed Stalk Rot, and Bulb Decay
579 of Onion by *Pantoea ananas* in Georgia. *Plant Dis.* 81, 1096.

580 doi:10.1094/PDIS.1997.81.9.1096C.

581 Goszczynska, T., Botha, W. J., Venter, S. N., and Coutinho, T. A. (2007). Isolation and Identification
582 of the Causal Agent of Brown Stalk Rot, A New Disease of Maize in South Africa. *Plant Dis.*
583 91, 711–718. doi:10.1094/PDIS-91-6-0711.

584 Goszczynska, T., Venter, S. N., and Coutinho, T. A. (2006). PA 20, a semi-selective medium for
585 isolation and enumeration of *Pantoea ananatis*. *J. Microbiol. Methods* 64, 225–231.
586 doi:10.1016/j.mimet.2005.05.004.

587 Hattingh, M. J., and Walters, D. F. (1981). Stalk and Leaf Necrosis of Onion Caused by *Erwinia*
588 *herbicola*. *Plant Dis.* 65, 615–618.

589 Kido, K., Adachi, R., Hasegawa, M., Yano, K., Hikichi, Y., Takeuchi, S., et al. (2008). Internal fruit
590 rot of netted melon caused by *Pantoea ananatis* (= *Erwinia ananas*) in Japan. *J. Gen. Plant*
591 *Pathol.* 74, 302–312. doi:10.1007/s10327-008-0107-3.

592 Kido, K., Hasegawa, M., Matsumoto, H., Kobayashi, M., and Takikawa, Y. (2010). *Pantoea ananatis*
593 strains are differentiated into three groups based on reactions of tobacco and welsh onion and on
594 genetic characteristics. *J. Gen. Plant Pathol.* 76, 208–218. doi:10.1007/s10327-010-0230-9.

595 Ramsey, F. L., and Schafer, D. W. (2002). The Statistical Sleuth—A Course in Methods of Data
596 Analysis Duxbury. *Thomas Learn.*

597 Stice, S. P., Stumpf, S. D., Gitaitis, R. D., and Kvitko, B. H. (2018). *Pantoea ananatis* Genetic
598 Diversity Analysis Reveals Limited Genomic Diversity as Well as Accessory Genes Correlated
599 with Onion Pathogenicity. *Front. Microbiol.* 9, 1–18. doi:10.3389/fmicb.2018.00184.

600 Stice, S. P., Thao, K. K., Khang, C. H., Baltrus, D. A., Dutta, B., and Kvitko, B. H. (2020).
601 Thiosulfinate Tolerance Is a Virulence Strategy of an Atypical Bacterial Pathogen of Onion.
602 *Curr. Biol.* 30, 3130-3140.e6. doi:10.1016/j.cub.2020.05.092.

603 Stumpf, S., Kvitko, B., and Dutta, B. (2018). Isolation and characterization of novel *Pantoea stewartii*
604 subsp. *indologenes* strains exhibiting center rot in onion. *Plant Dis.* 102, 727–733.
605 doi:0.1094/PDIS-08-17-1321-RE.

606 Takikawa, Y., and Kubota, Y. (2018). A genetic locus determining pathogenicity of *pantoea ananatis*.
607 (Abstr.). *Phytopathology* 108, 212. Available at: <https://doi.org/10.1094/PHYTO-108-10-S1.1>.

608

609 **10 Figures captions**

610 **10.1 Figure 1. Design and testing of HiVir and alt primers.**

611 Figure 1. Design and testing of HiVir and *alt* primers. The HiVir cluster encodes proteins predicted
612 for the production of a small molecule phosphonate phytotoxin. The *alt* cluster encodes proteins that
613 encode tolerance to antimicrobial thiosulfinates produced in damaged onion tissues. (A) MAUVE
614 alignment of sequenced *P. ananatis* strains with primer binding sites HiVir2_pF/R. All five strains
615 possess the HiVir cluster; however, PNA 97-1R and LMG 2665^T induce red onion scale necrosis 3
616 days post inoculation while PNA 98-11, PNA 02-1, and PANS 04-2 do not (picture insets).

617 HiVir2_pF primer incorporates the T→C SNP to aid in the detection of an RSN-associated HiVir
618 cluster. (B) MAUVE alignment of sequenced *P. ananatis* and *E. ludwigii* strains with primer binding
619 sites of *alt1p_F/R*. The three *P. ananatis* strains PNA 97-1R, PNA 15-1, and PNA 06-1 have
620 functional *alt* clusters. *E. ludwigii* EcWSU1 contains a homologous gene cluster to generate inclusive
621 primers. (C) Examples of gel electrophoresis of PCR amplicons. Strong amplicons of the predicted
622 size were considered a positive PCR result. PCR assays included *P. ananatis* 97-1R as a HiVir and
623 *alt* positive control. White arrows denote positive amplicons.

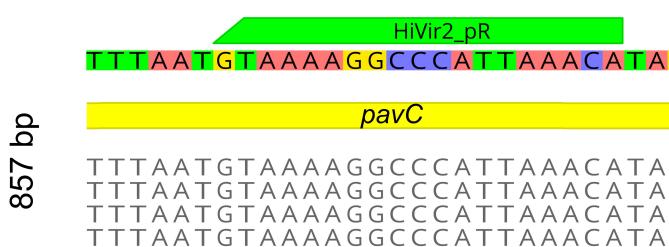
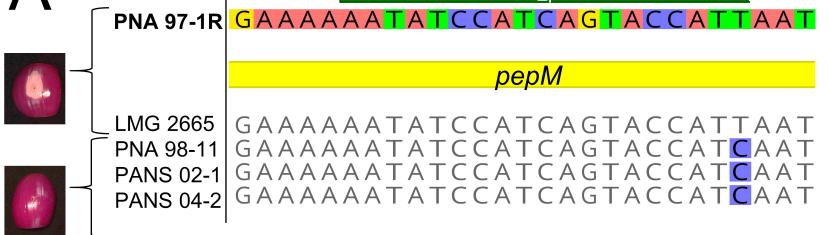
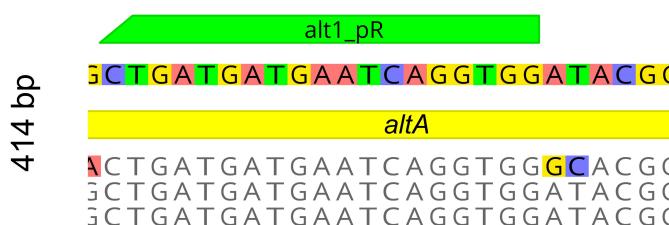
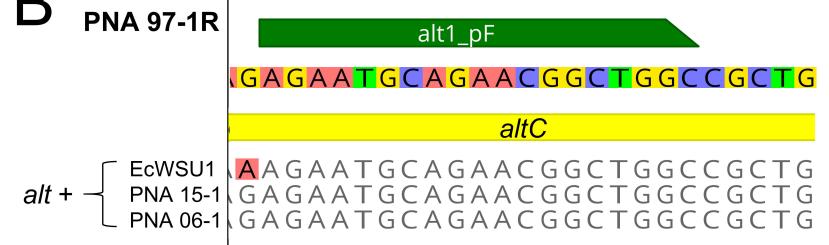
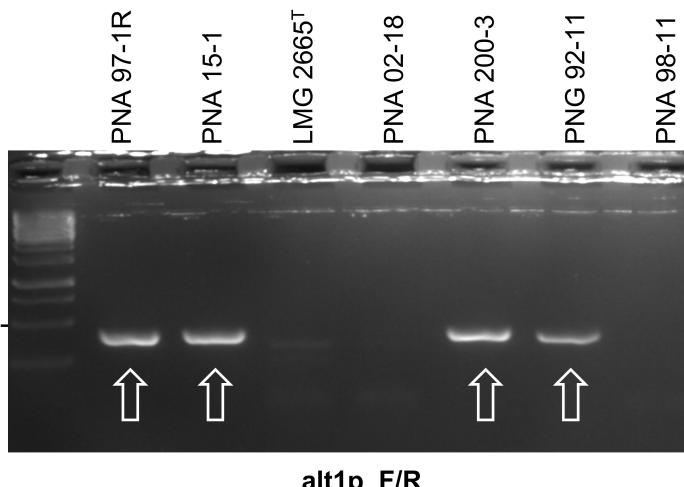
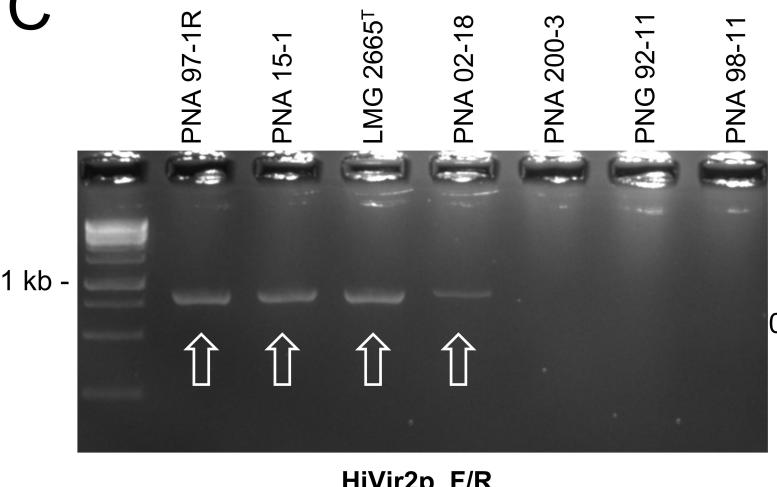
624 **10.2 Figure 2. Distribution of RSN phenotype and *alt* PCR assay amongst *Pantoea* spp.**

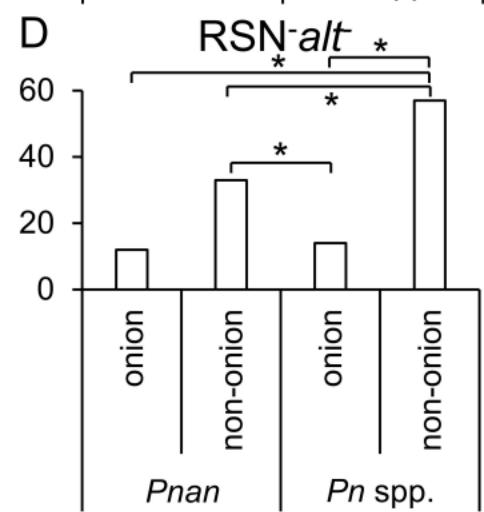
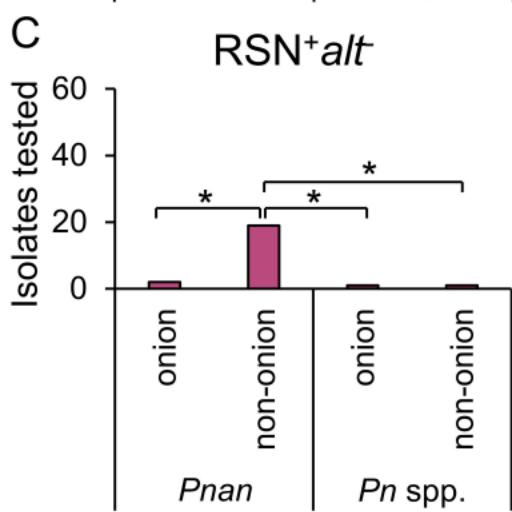
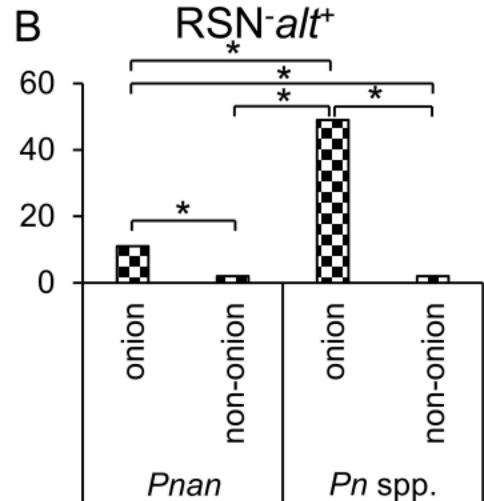
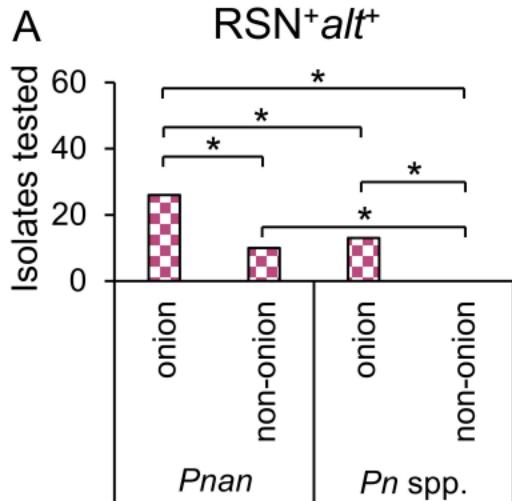
625 Figure 2. Distribution of RSN phenotype and *alt* PCR assay amongst *Pantoea* spp. Each data point
626 indicates a separate strain from Supplementary Table 1. RSN = defined necrotic lesion on detached
627 red onion scales three days after inoculation (Figure 1, picture inset). *alt* = PCR amplicon of the
628 expected size using *alt1p_F/R* primer (Figure 1C, right). Pnan = *Pantoea ananatis* strains. Pn spp. =
629 all other *Pantoea* strains, excluding *P. ananatis*. Onion = stains isolated from diseased onion tissue.
630 Non-onion = strains isolated from any sources other than onion tissue. A Z-statistic proportional
631 analysis was performed among the defined groups. Brackets indicate a significant difference between
632 two proportions. See Table 1 for raw counts. See Supplementary Table 2 for Z-statistic and P values.

633 **10.3 Figure 3. Neck-to-bulb infection assay correlates *P. ananatis* HiVir and *alt* traits with a
634 bulb-rotting phenotype.**

635 Figure 3. Neck-to-bulb infection assay reveals bulb-rotting *P. ananatis* strains. Four onions were
636 inoculated with a sterile toothpick soaked in a bacterial suspension of the respective strain 20 days
637 prior to harvest in a randomized block design. Upon harvest, onions were cut at the onion midline,
638 with the top portion cut again (Supplementary Figure 2). The incidence of a bioluminescent signal or
639 tissue discoloration associated with center rot was recorded for the longitudinal and transverse
640 sections. This experiment was conducted three times (n=12). (A) A panel of strains representing
641 pathogenic but non-bulb-rotting *P. ananatis* strains [top] and pathogenic bulb-rotting *P. ananatis*
642 strains [bottom]. The Tn7Lux labeled *P. ananatis* pathotype strain LMG 2665^T (causative agent of
643 Eucalyptus blight) is compared to labeled PNA 97-1R (causative agent of center rot of onion),
644 representative of the onion bulb rotting group and deposited to the international Belgium Coordinated
645 Collection of Microorganisms under the accession LMG 31960.

646 **11 Tables**







647 **Table 1.** Summary of Red Scale Necrosis (RSN) and *alt* primer probe (*alt1p_F/R*) results among
648 bacterial culture collections (Supplementary Table 1).

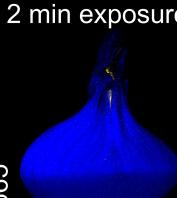




Isolation Source	Culture Collection	<i>Pantoea ananatis</i>				<i>Pantoea</i> spp.			
		RSN ^{+a} <i>alt</i> ⁺	RSN ⁻ <i>alt</i> ⁺	<i>alt</i> ⁻	RSN ⁻ <i>alt</i> ⁻	RSN ⁺ <i>alt</i> ⁺	RSN ⁻ <i>alt</i> ⁺	RSN ⁺ <i>alt</i> ⁻	RSN ⁻ <i>alt</i> ⁻
onion tissue	UGA-CPES	18	7	2	11	1	1	0	3
	UP-BCC	6	4	0	1	10	7	1	2
	UR-MAI	2	0	0	0	2	41	0	9
other sources	UGA-CPES	9	2	7	13	-	-	-	-
	UP-BCC	1	0	12	20	0	2	1	57
	UR-MAI	-	-	-	-	-	-	-	-

649 ^apredicted bulb rotting onion pathogenic *P. ananatis* strains ^bpredicted non-bulb rotting onion
650 pathogenic *P. ananatis* strains. Onion tissue = strains isolated from diseased onion tissue. Other
651 sources = strains isolated from any sources other than onion tissue. UGA-CPES = University of
652 Georgia Coastal Plains Experiment Station. UP-BCC = University of Pretoria Bacterial Culture
653 Collection. UR-MAI = Universidad de la República Microorganisms of Agricultural Importance
654 collection. RSN⁺ = strain that produced distinct necrotic lesion on detached red onion scales after
655 three days. RSN = defined necrotic lesion on detached red onion scales three days after inoculation
656 (Figure 1, picture inset). *alt* = PCR amplicon of the expected size using *alt1p_F/R* primers (Figure
657 1C, right).

658

659

A**B****C**


Anon-bulb rotting strains [RSN⁺Hvir⁺alt]

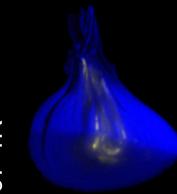
2 min exposure

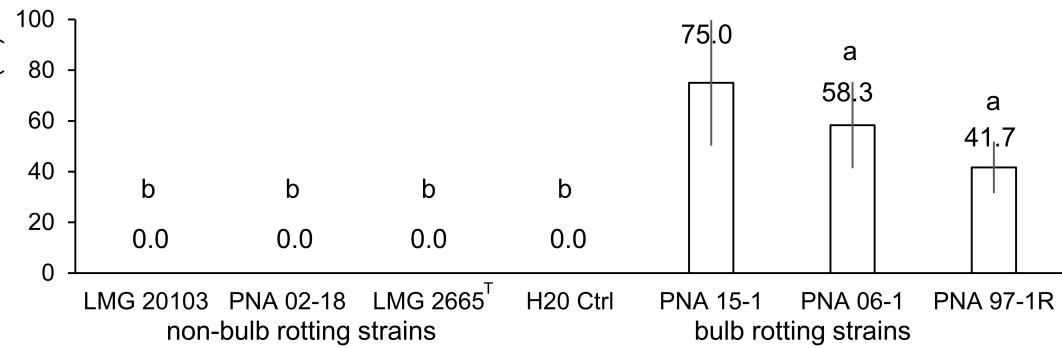
LMG 20103

PNA 02-18

LMG 2665^TLMG 2665^TdH₂Obulb rotting strains [RSN⁺Hvir⁺alt]

PNA 15-1


PNA 06-1


PNA 97-1R

PNA 97-1R

B

Center rot incidence (%)

