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ABSTRACT: Rapid progress in various advanced analytical methods such as single-cell technologies 14 

enable unprecedented and deeper understanding of microbial ecology beyond the resolution of 15 

conventional approaches. A major application challenge exists in the determination of sufficient sample 16 

size without sufficient prior knowledge of the community complexity and, the need to balance between 17 

statistical power and limited time or resources. This hinders the desired standardization and wider 18 

application of these technologies. Here, we proposed, tested and validated a computational sampling size 19 

assessment protocol taking advantage of a metric, named kernel divergence. This metric has two 20 
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advantages: First, it directly compares dataset-wise distributional differences with no requirements on 21 

human intervention or prior knowledge-based pre-classification. Second, minimal assumptions in 22 

distribution and sample space are made in data processing to enhance its application domain. This enables 23 

test-verified appropriate handling of datasets with both linear and non-linear relationships. The model was 24 

then validated in a case study with eight SCRS phenotyping datasets each sampled from a different 25 

enhanced biological phosphorus removal (EBPR) activated sludge community located across North 26 

America. The model allows the determination of sufficient sampling size for any targeted or customized 27 

information capture capacity or resolution level. For example, an approximated sampling size of 50 or 28 

100 spectra for full-scale EBPR-related ecosystems at 5% or 2% OPU cluster resolution. Promised by its 29 

flexibility and minimal restriction of input data types, the proposed method is expected to be a 30 

standardized approach for sampling size optimization, enabling more comparable and reproducible 31 

experiments and analysis on complex environmental samples. Finally, these advantages exhibit the 32 

capability of generalizing to other single-cell technologies or environmental applications, provided that 33 

the input datasets contain only continuous features. 34 

 35 

 36 

TOC 37 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

INTRODUCTION 47 

Advances in various modern analytical methods such as single-cell technologies have enabled 48 

unprecedented high-resolution and fundamental study of environmental microbiology than traditional 49 

cultivation-based and bulk-measurement methods. Some examples include metabolite probing (e.g. stable 50 

isotope probing) 1, 2, single-cell phenotype identification (e.g., fluorescence in-situ hybridization (FISH)) 51 

3 and sensitive, high through-put cell sorting (e.g., FISH-activated flow cytometry (FACS) and optical 52 

tweezer-based cell sorting) 4, 5. Situational studies in addition exhibit demand for non-invasive, real-time, 53 

label-free and continuously observation methods, in complement to or beyond these current single-cell 54 

technologies. These technologies, including single-cell Raman microspectroscopy can reveal cell 55 

response and metabolic changes under stimulation from various environmental changes. 56 

Being a member of vibrational spectroscopic technology, Raman spectroscopy profiles the photons which 57 

are inelastically scattered to different frequencies due to the energy exchange between the monochromatic 58 

photon and a vibrating molecule. Its result spectra encode the fingerprints for pinpointing the chemical 59 

composition in observed cell sample, and ultimately, resolving its cellular phenotype and metabolic state. 60 

Single-cell Raman spectroscopy (SCRS) and its combination with other single-cell methods present 61 

promises for meeting this demand 6-9, and they have been demonstrated as powerful techniques in sub-62 

cellular level substrate composition profiling 10, 11, high through-put metabolic pathway and cell type 63 

identification 6, 12, 13, cell sorting 14, and qualitative or quantitative 3D structural imaging 15, 16. 64 

SCRS has been explored and demonstrated as one of the top candidate single-cell techniques, for cell 65 

identification up to strain-level discrimination of microorganism members from targeted community from 66 

different environmental matrices, including clean room 17, drinks 18, food 19, water 20, or cerebrospinal 67 

fluid 21. Xu and Webb et al. demonstrated that the high resolution of SCRS was able to discern two strains 68 

of only single-gene mutation apart 22. In addition, in contrast and complementary to genomics-based 69 

microorganism profiling approaches, SCRS captures and reflects the cell’s “metabolic state”, which is 70 
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more dynamic and responsive to environmental stimuli. Furthermore, SCRS enabled technologies may 71 

help fill the gap in linking cellular phenotypes with their genotypes 23. 72 

One challenge associated with the application of single-cell technology such as SCRS for complex 73 

environmental samples is the determination of sufficient sampling size without prior knowledge of the 74 

system diversity, yet with the need to balance between statistical power and cost of resources and time. 75 

This challenge raises from two major facts. First, to our knowledge, current automation level for SCRS 76 

sampling still under-satisfies the high through-put requirements for very-large scale surveys. Restricted 77 

by its labor and time demand, most previous studies randomly select a sample size (i.e., the number of 78 

single-cell spectra to collect per environmental sample) 22, 24, estimate empirically 25, or follow lab-specific 79 

protocols 11, 26. A commonly selected range of SCRS dataset size is 200-1,000 in dependence to the 80 

population complexity 23, 27, 28 or 20-200 spectra per label in classification-oriented studies 21, 25, 29 with a 81 

largest reported total sample size of 10759 30. Second, the level of microbial community diversity in 82 

different environmental samples varies largely, therefore it is difficult to estimate a priori. The optimal 83 

SCRS sampling depth for any given system remains unsolved and it limits the standardization of SCRS 84 

for its wider applications. This drives the demand for a robust method which statistically validates the 85 

sampling depth without knowing the composition and complexity of the microbial community. 86 

Sampling size assessment of SCRS from environmental samples were discussed in previous studies but 87 

is often restricted to situational applications. Learning-curve (LC) based technique targeting 5% Bayes 88 

error rate was proven effective to investigate proper sample size to train a classifier 31, 32; however it is a 89 

quite different objective and this method is not suitable for unsupervised applications. Majed et al. (2009) 90 

first attempted a practical solution by iteratively sampling and classifying samples, tracking abundance 91 

changes of classified categories 25. Their relative abundances would be repeatedly calculated, adding a 92 

fixed number of spectra each time, until they stabilized above a sample depth threshold. However, its 93 

reliance on classification requires a significant amount of both human intervention and domain knowledge 94 

to select appropriate discriminating criteria. For example, in their proposed protocol, an exploratory 95 
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experiment was first carried out to identify 65% biomass (in biovolume) as a functional group of known 96 

metabolic traits. The choice of classification criteria which target this majority type of cells therefore was 97 

validated. Despite the cost of preliminary experiments, such a dominating microbial group or species is 98 

not guaranteed to exist in more complex environmental samples. introduction of an adopted rarefaction-99 

like technique for enabling direct application on continuous feature datasets (e.g., SCRS) without pre-100 

classification, which defined maximum pairwise Euclidean distance as the diversity measure of a sample 101 

set, was named as “diversity index (DI)” 28. However, two potential issues exist with this DI-based 102 

approach. First, the DI of the entire observation dataset is directly treated as reference in sampling size 103 

assessment, implicitly regarding it as the population but without further validation. Second, using 104 

maximum Euclidean distance to represent the diversity discards all detailed distance distributional 105 

structures, potentially causing under-estimation of the true diversity. Thirdly, the definition and parameter 106 

for quantifying “diversity” is required, which may not be available such as the case for the SCRS data.  107 

In this study, we propose a new algorithm for sample size assessment that circumvents the disadvantages 108 

inherent to previously reported approaches. Our algorithm iteratively increases the number of samples 109 

until the optimal sample size is achieved. At each increment, our algorithm measures the distributional 110 

difference due to the increase in sample size via kernel divergence, a pseudometric that measures the 111 

difference between two population distributions. As more samples are collected and observed, the 112 

distributional change due to the added samples also converges towards zero. By observing this decreasing 113 

trend, our algorithm is capable of predicting the sample size as the change in distribution becomes less 114 

than a user-defined threshold. Compared to previously reported approaches, this method has two major 115 

advantages. First, no distribution or linear relationship is assumed in the input data; this enables more 116 

general and improved handling of datasets when such assumptions do not necessarily hold. Second, it is 117 

unsupervised, granting the independence to either classification or other pre-processing which may 118 

require extra prior knowledge (e.g., microbial community composition) and human intervention (e.g., 119 

selection of classification criteria). This method is validated in a case study using SCRS datasets sampled 120 
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from eight independent enhanced biological phosphorus removal (EBPR) microbial communities, each 121 

obtained from a different North American wastewater treatment facility. To our knowledge, this is the first 122 

population-blind sample size prediction and assessment method that has been applied on biospectroscopic 123 

datasets. The outcome will facilitate wider, more standardized and more reliable application of advanced 124 

analytical technologies such as SCRS for various environmental studies. In addition, since minimal 125 

assumption is made with the input data, this approach can potentially be applied on sampling size 126 

assessments with any other dataset as long as it only contains continuous features. 127 

METHODOLOGY 128 

Given a population 𝑌 , we wish to discover the smallest possible subset of the population that still 129 

statistically represent the total population. If we denote the subset as 𝑋 it can be determined by increasing 130 

the size of the subset until its internal statistics become stable, i.e., when adding more samples no longer 131 

updates the distribution of the subset. Kernel Divergence (𝒟𝑝 ) allows one to measure the non-linear 132 

distribution difference between two distributions. This study leverages this pseudometric to evaluate the 133 

statistical change between increments of samples added to the subset. By iteratively tracking this value, 134 

the size of the smallest sufficient subset can be determined when the distributional change becomes 135 

negligible. 136 

Kernel Divergence 137 

Inspired by He et al. (2017), we noticed that to reliably measure the distributional differences between 138 

two sample sets is critical in sampling size assessment. There are currently many ways of measuring the 139 

distributional difference between two populations. Broadly, they can be organized into two categories: F-140 

divergence 33 and Integral Probability Metrics (IPMs) 34. F-divergence uses the ratio between two 141 

distributions to measure their similarity while IPMs use their difference. In general, F-divergence requires 142 

the researcher to know the distribution ahead of time. This makes it difficult to compute the divergence 143 

given just samples, e.g. the Kullback-Leibler divergence 35. Alternatively, IPMs do not require prior 144 
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knowledge of the sample distributions. Instead, they approximate the distribution directly from the 145 

samples. A standard IPM is the Maximum Mean Discrepancy (MMD) . It measures the similarity between 146 

two distributions by comparing their 1st moment in the Reproducing Kernel Hilbert Space (RKHS). In its 147 

original space, it consequently compares all of its moments. Kernel divergence is different in that it uses 148 

the 2nd moment in the RKHS, therefore, it is a shift and rotation invariant in RKHS. Instead of comparing 149 

the distributions based on their moment, kernel divergence looks at the shape of the data in RKHS as 150 

measured by its variance along its principal components. This approach is extremely memory efficient as 151 

it allows us to compress the distributional information with a couple of eigenvalues. Any new incoming 152 

population can consequently be also reduced to these numbers to compare their distribution difference. 153 

We propose the usage of kernel divergence, motivated by two observations. First, by mapping data onto 154 

the RKHS, the non-linear aspects of the data can be captured for analysis36. Second, the variances along 155 

the principal components (PCs)37 of a dataset summarize the shape of the data.  Figure 1 (a) and (b) shows 156 

a scatterplot of two populations from the same distributions.  Note that PC variances of the distributions 157 

in (a) and (b) closely matches each other, indicating a resemblance in the shape of the data. Alternatively, 158 
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Figure 1 (c) shows a scatter plot from a population belonging to a different distribution. Note that its 159 

variances along the PCs are also noticeably different from that in (a) or (b). 160 

 161 

(a)                                                   (b)                                                    (c) 162 

Figure 1. Example of how the principal components can be used to compare distributions. (a) and (b) were generated by an 163 

identical population while (a) has three times the number of samples than (b). (c) was generated from a different distribution 164 

and exhibited different variation ratios along PC1 and PC2 in comparison to (a) and (b). 165 

Unfortunately, since the PCs can only capture linear relationships, it is no longer an appropriate tool when 166 

the data fail to match the linear assumption. Since the data distribution from real applications are 167 

commonly unknown, using PCs to compare distributions may not be appropriate for all cases. The idea 168 

of Kernel Divergence is to combine RKHS’s ability to capture non-linear relationship with PC’s ability to 169 

summarize the data. By first projecting the data into RKHS, non-linear PCs 38 can now be used to compare 170 

the distributions. Since the concept of PCs is commonly used for the original data space, we will 171 

distinguish the PCs in RKHS as the kernel principal components, or KPCs. 172 

There are several advantages in using Kernel Divergence. First, the value computed by the divergence 173 

can be treated as a distance between two distributions. It is always a positive value where a 𝒟𝑝 = 0 174 

denotes a complete equivalence of the empirical variances along the KPCs. Conversely, a larger 𝒟𝑝 also 175 

indicates a further distance between two distributions. Second, the value of the divergence 𝒟𝑝  has 176 

practical meanings as suggested by its theoretical proof. Namely, it denotes the worst-case error along a 177 
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KPC. For example, if 𝒟𝑝 = 0.01, then the biggest difference between two samples along any single KPC 178 

is bounded within 1%. Third, and more importantly to practitioners, 𝒟𝑝 can be efficiently computed using 179 

only a few lines of code with existing open-source software. 180 

Computing the Kernel Divergence 181 

We define a population of samples as 𝑋 ∈ ℝ𝑛×𝑑 where 𝑛 and 𝑑 denotes the number of samples and the 182 

dimension respectively. Let 𝐻  be a centering matrix defined as 𝐻 = 𝐼𝑛 −
1

𝑛
𝟏𝑛×𝑛  where 𝐼𝑛  denotes an 183 

identity matrix of size 𝑛  and 𝟏𝑛×𝑛 ∈ ℝ𝑛×𝑛  denotes a matrix of 1s. Then a centered kernel matrix is 184 

defined as 𝐻𝐾𝑋𝐻 where i-th row and j-th column element of the 𝐾𝑋 is defined as 185 

𝐾𝑋𝑖,𝑗
= exp {−

‖𝑥𝑖 − 𝑥𝑗‖
2

2

2𝜎2
}, 186 

known as radial basis function (RBF) kernel, where exp(⋅) stands for the exponential function with base 187 

𝑒, and ‖𝑥𝑖 − 𝑥𝑗‖
2

2
 is the squared Euclidean distance between i-th and j-th samples. We chose this kernel 188 

function for its flexibility to approximate a wide range of non-linear functions. 189 

Given the definition of a centered kernel, we define 𝐾𝔸 and 𝐾𝕊 as the centered kernels for two population 190 

samples of 𝔸  and 𝕊 . Let the 𝑚  largest eigenvalues of 𝐾𝔸  be 𝜆𝔸 = [𝜆𝔸
(1)

, … , 𝜆𝔸
(𝑚)

] , where 𝜆𝔸
(1)

≥ ⋯ ≥191 

𝜆𝔸
(𝑚)

 , and the 𝑚  largest eigenvalues of 𝐾𝕊  be 𝜆𝕊 = [𝜆𝕊
(1)

, … , 𝜆𝕊
(𝑚)

] , where 𝜆𝕊
(1)

≥ ⋯ ≥ 𝜆𝕊
(𝑚)

 . Here, 𝑚  is 192 

preferably the number of “major” eigenvalues indicated being before a significant value drop in the 193 

eigenvalue spectra plot. Eigenvalues are the variances in the respective eigenvector directions. It is notable 194 

that some datasets will exhibit gradually decreasing eigenvalues with no such drop. In such cases, an extra 195 
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parameter 𝑝 , the percentage of the total variance which we wish to preserve from the population, is 196 

introduced to calculate 𝑚; specifically, 197 

𝑚 = min {𝑎 | 
∑ 𝜆𝔸,𝑖

𝑎
𝑖=1

∑ 𝜆𝕊,𝑖
𝑎
𝑖=1

≥ 𝑝 } . 198 

Once the centered kernels of the two populations are calculated, the kernel divergence between 𝐾𝔸 and 199 

𝐾𝕊 is defined as 200 

𝒟𝑝(𝐾𝔸, 𝐾𝕊) = ‖
1

‖𝜆𝔸‖1
𝜆𝔸 −

1

‖𝜆𝕊‖1
𝜆𝕊‖

∞

, 201 

where ‖∙‖1 and ‖∙‖∞ are 𝐿1 and 𝐿∞ norms respectively. A brief proof of kernel divergence as a measure 202 

is provided in Supporting Information Proof S1. 203 

Sample Size Assessment 204 

Assume that a sample set 𝕊 has already been physically acquired from a population ℙ. However, knowing 205 

only this end-status of sampling process but no a priori population composition knowledge for reference, 206 

sample size assessment would be almost impossible. To overcome this difficulty, we model the sample 207 

acquisition process for better profiling of the sample distribution changes via randomized virtual sampling 208 

simulation; while, this modelling step implicitly assumes that the physical sampling experiment (which 209 

acquires 𝕊) is unbiased. This will result in a kernel divergence profile at each sampling depth, during 210 

acquisition towards the same dataset 𝕊 while in a randomized order. Such simulation can be repeated 211 

multiple times for estimation of the mean kernel divergence profile with minimal dependence to the 212 
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randomization effects. These modelling steps summarize the core algorithm in our assessment protocol, 213 

represented as in the pseudo-code below: 214 

(1) 𝐴1← randomly select 𝑘0 samples from 𝕊; 215 

(2) 𝐴𝑛+1← randomly select 𝑘 samples from 𝕊\𝐴𝑛, insert to 𝐴𝑛; 216 

(3) Calculate kernel divergence 𝒟𝑝(𝐴𝑛, 𝐴𝑛+1); 217 

(4) Repeat (2)-(3) until 𝕊\𝐴𝑛 = ∅; 218 

(5) Repeat (1)-(4) multiple times; this results in multiple kernel divergence profiles by acquiring the 219 

same dataset 𝕊 in different orders. 220 

For simplicity, at each Step (2), the number of samples drawn is standardized as a fixed number 𝑘, denoted 221 

as batch size. 𝑘 is often determined by the physical analytical system. This is a sensitive parameter to 222 

kernel divergence calculation, thus should be determined a priori and kept unchanged during a single 223 

assessment. For SCRS data, since the Raman system yields single spectrum for each cell at each sampling 224 

event, the 𝑘 value is therefore 1. Finally, we determine sample sufficiency of dataset 𝕊 by checking if the 225 

“average” kernel divergence profile resulted from the above steps has converged to zero with a pre-defined 226 

threshold 𝑡. Applying the interpretation of kernel divergence, the presence of such point of convergence 227 

(POC) identifies a sampling depth at which further addition of 𝑘 more samples (i.e., a batch) will no 228 

longer significantly update the sample distribution. In other words, the presence of such POC implies that 229 

𝕊  is sufficient, otherwise not sufficient. The eigenvalue preserving percentage 𝑝  (if used in kernel 230 

divergence calculation) and the number of iterations in Step (5) (default: 1000) are the last two adjustable 231 

parameters in our proposed protocol, in addition to 𝑘 and 𝑡. 232 

SCRS Datasets from EBPR Facilities 233 

SCRS-based phenotypic survey was conducted on 8 different EBPR-related sludge samples, each 234 

generating an individual SCRS dataset. Investigating the community composition phenotypic 235 

characteristics captured by Raman spectra is conceptually analogous to the operational taxonomic units 236 
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(OTUs) based survey via 16S-rRNA amplicon sequencing 23. Each sludge sample represents the microbial 237 

community in the EBPR anaerobic reactor of a different wastewater reuse and reclamation facility 238 

(WRRF) across the North America, with various geological, configurations, operational and influent 239 

water characteristics (Table S2), including 4 conventional EBPR and 4 side-stream EBPR processes. 240 

Studies showed that Raman spectra are sensitive to the experimental conditions and instrumental factors 241 

therefore all an identical protocol was followed in acquisition of those 8 SCRS datasets to maximize their 242 

cross-comparability. Briefly, each sludge sample was independently performed a phosphorus release and 243 

uptake kinetics batch test as described by Gu et al. (2008) 39. Raman-based phenotypic survey was 244 

performed on the sludge extracted throughout the batch test following the preparing and acquisition 245 

protocol described by Majed et al. (2008) and Onnis-Hayden et al. (2019) 40-42. All spectra were acquired 246 

with a 400-1800 cm-1 range which is often referred as the “fingerprint range” for various cellular or 247 

biomass substances 6, 23, 43. All acquired spectra were then preprocessed with LabSpec 6 (HORIBA, 2 248 

Miyanohigashi, Kisshoin, Minamiku Kyoto 601-8510 Japan), for cosmic spike removal, smoothing, 249 

background subtraction, baseline correction and vector-normalization. The survey resulted in a total of 250 

922 spectra in eight WRRF-specific datasets labelled from A-H. Two datasets, F (207 spectra from 251 

Westside Regional, S2EBPR) and H (214 spectra from Upper Blackstone, conventional EBPR) had larger 252 

sample size in comparison to the other six (ranging from 80-89). 253 

  254 

RESULTS AND DISCUSSION  255 

The proposed protocol was first tested with synthetic datasets to demonstrate its sample size assessment 256 

performance and results interpretation. Multiple tests with different parameter settings were conducted 257 

for discussion on the selection of parameters with respect to the experimental protocol in real applications. 258 
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Then the model was validated in a case studying with microbial SCRS phenotyping datasets acquired in 259 

experiments. 260 

Test with Synthetic Datasets 261 

The tested synthetic datasets include both simple, linear and non-linear relationships. The dataset 262 

construction and the test results are as follows: 263 

Dataset construction. The first dataset (Dateset 1) is a series 2-dimensional datasets to test the model's 264 

performance on sample size assessment (Figure 2 (left)). A total of five sub-datasets were generated from 265 

an identical mixture distribution to resemble five independent sampling experiments from a same, infinite-266 

sized population but targeting at different sampling sizes, respectively 20, 40, 100, 200 and 500. The 267 

source distribution is composited by four 2-dimensional Gaussian distributions (i.e. 𝐷 = 2, 𝐾 = 4), and 268 

is designed to be non-overlapping and linearly separable for better testing our model performance with 269 
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simple datasets. Therefore, each Gaussian sub-population is centered respectively at (±2.5, ±2.5), with 270 

variance of 0.1 on both axes. 271 

Dataset 2 has a spiral morphology 44 aimed for testing with complex, non-linear datasets. This 2-272 

dimensional dataset contains 3 clusters in total of 312 samples (𝐷 = 2 , 𝑁 = 312 , 𝐾 = 3 ) (Figure 2 273 

(right)). 274 

 275 

Figure 2. Visualization of synthetic datasets used in performance testing of proposed sample size assessment method using 276 

kernel divergence. Dataset 1 (left) is generated with a mixture composed of four 2-dimensional Gaussian sub-populations, each 277 

has 25% of the total population and independent variance of 0.1 on both axes. It contains five sub-datasets of various sizes (20, 278 

40, 100, 200 and 500). The 100-sample dataset is shown as a representative. Dataset 2 “spiral” (right) is a 312-sample, 2-279 

dimensional dataset containing three clusters, each forms a non-linear spiral shape 44. 280 

Sufficient sampling size assessment. We first demonstrate the calculation and decision making of the 281 

proposed sampling size assessment protocol with Dataset 1. The kernel divergence at different sampling 282 

depths are shown in Figure 3, calculated using empirical parameter settings with batch size 𝑘 = 1 to 283 

simulate the one-by-one sampling strategy, and using empirical convergence threshold 𝑡 = 0.01  and 284 

1,000 iterations. We determined 𝑚 = 3 as almost 100% variation fell on the first 3 KPCs (Figure S2). 285 

The selection of threshold 𝑡 = 0.01 was identified in sensitivity test corresponding to a 0.8% foreign class 286 
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abundance (will be discussed in detail later). The mean kernel divergence was plotted as solid lines shaded 287 

with the standard deviations observed at each sampling depth. 288 

The closely overlapping kernel divergence profiles indicates that POC estimation is rather robust and 289 

consistent, being independent to the dataset size but only the sample distributions. For this data set, the 290 

estimated sufficient samples size is around 40 with a targeted convergence threshold of 0.01. As shown 291 

in Figure 3, sample size less than 40 ( N=20, 40) was not sufficient to meet the targeted POC. Of course, 292 

the sufficient sample size depends on the user-chosen POC level. If the target POC threshold is at 0.005, 293 

then the sufficient samples size for this data set would be around 85. 294 

 295 

 296 

Figure 3. Per sample kernel divergence profiled at various sampling depths simulated independently from each sub-dataset in 297 

Dataset 1. All simulations used first 3 eigenvalues 𝒎 = 𝟑, batch size 𝒌 = 𝟏, 1000 iterations and convergence thresholds 𝒕 =298 

𝟎. 𝟎𝟏, 𝟎. 𝟎𝟎𝟓 (shown as horizontal lines). The point of convergence (POC) indicates the minimal sample size required to bound 299 

the distributional difference below the indicated threshold, subject to adding one more sample. A lower threshold corresponds 300 

to larger sample size. 301 

Assessment with non-linear dataset. A series of similar simulations were conducted on the Dataset 2 302 

“spiral” containing subpopulations that are not linearly separable. All assessment simulations were 303 

conducted with 1,000 iterations and three different batch sizes 𝑘 = 1, 2, 5. We chose 𝑚 = 5 eigenvalues 304 
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which encode approximately 95.5% of total variances along KPCs (Figure S3) . A convergence threshold 305 

𝑡 = 0.005 was selected for this case, which was identified in sensitivity test corresponding to a 3.3% 306 

foreign class abundance. Results are shown in Figure 4. The sufficient sample size varied depending on 307 

the batch sample size k values. Note that k value is physically determined by the analytical method itself. 308 

Here, we demonstrated that the sufficient samples size for targeted POC threshold increased from 59 to 309 

123 as the batch sample size increased from k=1 to k=3. 310 

 311 

Figure 4. Sample size assessment results with non-linear dataset. Plot shows kernel divergence profiled with different number 312 

of samples (1, 2 and 5) per iterative addition (batch size), simulated with Dataset 2 “spiral”. All calculation used first 5 313 

eigenvalues (𝒎 = 𝟓) and were from 1000 simulation iterations. Convergence threshold 𝒕 = 𝟎. 𝟎𝟎𝟓 (shown as horizontal line). 314 

The point of convergence (POC) indicates the minimal sample size required to bound the distributional difference below the 315 

indicated threshold, subject to each batch size. 316 

Figure 5 investigates the statistical properties of the POCs in each simulation iterations under different 317 

convergence thresholds, which were identified as the last step in each specific simulation iteration having 318 

a kernel divergence larger than the given threshold. These results showed that, taking the advantage of 319 

RBF kernel, our method can effectively capture the distributional information in a dataset with non-linear 320 

aspects. For example, with convergence threshold 𝑡 = 0.005, 2.5%-97.5% quantile of identified POC 321 

subsets had estimated class means being within ±2.03 of the actual population mean on both dimensions. 322 
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And, the estimated class abundances were within ±7.0% of actual abundance. At 25%-75% quartile, error 323 

of class means, and abundances were ±0.72 and ±2.7% respectively. A smaller threshold would result in 324 

more parametrically accurate POC subsets; however, it requires more samples to achieve reliable POCs. 325 

The test showed that the POC subset sizes had 25%-75% quartile respectively from 47-61 with 𝑡 = 0.01, 326 

102-124 with 𝑡 = 0.005 or 307-312 with 𝑡 = 0.001. In addition, incorporating the radial basis function 327 
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(RBF) kernel enabled the kernel divergence to be appropriate in measuring dissimilarity between two 328 

datasets with non-linear aspects, and therefore our method is generally applicable in other datasets. 329 

 330 
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 331 

Figure 5. Box plots of mean (top) and fractions (bottom) for each class in the subset selection at each individual POC with 332 

different convergence threshold 𝒕. from the 1,000 simulation iterations. The simulation POC is determined as the last step in 333 

specific sampling simulation that had a kernel divergence larger than the given threshold 𝒕. The horizontal red lines indicate 334 

the ground truth calculated from the whole “spiral” dataset. 335 

Selection of convergence threshold 𝒕. Results in Figure 5 showed the relationship and potential impact 336 

to the mean and abundance estimations of each class associated with different convergence threshold 337 

criteria. As the threshold pre-determines the resolution of two datasets being asserted “different”, it also 338 

relates with the minimal abundance of identifiable classes. To reveal this effect, we chose one class from 339 

the original datasets, Dataset 1 and 2, (referred to as “the foreign class”), and randomly delete a sub-340 

selection of its samples. This creates artificial datasets with the foreign class at varying abundances. With 341 

random repeats and the dataset with no foreign class as a reference, we could estimate the minimal 342 

abundance of the foreign class to exhibit a significant change in kernel divergence under chosen threshold. 343 

Note the choice of foreign class has minimal impact to the results due to the high symmetry. The results 344 
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in Figure 6 showed that under a same kernel divergence threshold level, the size of detectable foreign 345 

class varies largely depending on the parent dataset. The simpler dataset (Dataset 1) requires less samples 346 

to achieve the same kernel divergence level comparing to the non-linear Dataset 2. For example, mixing 347 

foreign class at abundances of 0.4% and 0.8% leads to 0.005 and 0.01 kernel divergence; while 3% and 348 

9.5% abundances of the foreign class would be required respectively with Dataset 2. Considering both 349 

the effect of precision, resolution and dataset complexity, we suggest that 𝑡 ≤ 0.01 would be adequate 350 

empirically in general, and 𝑡 ≤ 0.001 is considerable when a high accuracy is desired. 351 

 352 

Figure 6. Kernel divergence sensitivity test with varying the abundance of one of the classes (referred to as “foreign class”). 353 

All kernel divergences were calculated in reference to the absence of the entire foreign class. The lines and shades show the 354 

mean and standard deviation respectively estimated by random sub-selection of samples in the foreign class. The standard 355 

deviation in the Dataset 1 profile is minimal and barely visible. 356 

Case Study: Sample Size Assessment for SCRS Phenotyping Datasets 357 

After performance evaluation on two synthetic datasets with or without linear relationship, the proposed 358 

algorithm and method were applied to investigate sampling size requirements with single-cell Raman 359 

spectroscopic dataset retrieved from eight microbial communities representing eight different wastewater 360 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

reuse and reclamation facilities (WRRFs) located in North America 27, 42. Details on these EBPR facilities, 361 

sampling and SCRS data acquisition were described in the methods section and in supporting information. 362 

Sampling size assessment. Kernel divergence profiling simulations were conducted independently on 363 

individual SCRS-based phenotyping dataset, using parameter 𝑘 = 1 , 𝑡 = 0.01, 0.005  and 1000 364 

permutations. Sample batch size k=1 since our data was obtained using single-cell Raman 365 

microspectroscopy at single cell resolution 27. As no clear group of major eigenvalues can be identified, 366 

we used parameters 𝑝 = 96% in calculations (Figure S4). 367 

As shown in Figure 7, the sufficient sample size based on each individual kernel divergence profile for 368 

the eight EBPR communities ranged from 26-39 under a resolution threshold of 𝑡 = 0.01. The parallel 369 

assessment under a higher resolution by lowering the threshold of convergence to 𝑡 = 0.005 revealed an 370 

increased sample size range from 47-71 among the EBPR plants. These were below the empirical 371 

reliability checking criteria discussed previously (POC:  𝑁 < 0.85 ). This range are consistent with 372 

previously reported values (60-65 samples) proposed by Majed et al. (2009) via an alternative rationale 373 

25. 374 

Investigation of the convergence threshold. The sensitivity test shown in Figure 8 further investigated 375 

the convergence thresholds towards a more physical and practical interpretation, by evaluating the 376 

maximum abundance level of sample clusters that could be potentially missed with varying thresholds. 377 

Operational phenotypic units (OPU) clustering was first carried out individually to identify cluster groups 378 

in each dataset, using correlation distance, average linkage as described by Li et al. (2018) 23. Figure 8 379 

then shows the maximum kernel divergence observed when randomly removing one identified OPU 380 

cluster which is below a targeted abundance level. The results indicate that for 7 out of the 8 datasets, 381 

using a threshold of 0.01 captures all OPU clusters of more than 5% abundance; and using a threshold of 382 

0.005, this resolution can be improved to 2%. Therefore, we conclude that for these 8 datasets from EBPR 383 

communities, the sample sizes were sufficient to capture all OPU clusters of at least 5% relative 384 
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abundance, and among them, 5 date sets were further sufficient at capturing OPUs with 2% relative 385 

abundance. 386 

 387 

 388 
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Figure 7. Kernel divergence profiles versus sampling depth, simulated independently on 8 single-cell Raman spectroscopic 389 

(SCRS) microbial phenotyping datasets, from 8 individual full-scale enhanced biological phosphorus removal (EBPR) systems 390 

in different wastewater reuse and reclamation facilities (WRRFs) located across North America. Simulation parameters were 391 

eigenvalue preserving percentage 𝒑 = 𝟗𝟔% , 1000 iterations, convergence threshold 𝒕 = 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟎𝟓  (shown as the two 392 

horizontal lines) and batch size 𝒌 = 𝟏 for single-cell Raman microspectroscopic method. The point of convergence (POC) 393 

indicates the minimal sample size required based on the targeted convergence threshold 𝒕 and batch size 𝒌. 394 
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 395 

Figure 8. Sensitivity test of kernel divergence convergence over single OPU cluster abundance. The kernel divergence values 396 

were calculated by randomly removing a single OPU cluster not exceeding an abundance threshold (x-axis). The maximum 397 

kernel divergence calculated at each abundance threshold was shown on the y-axis. The OPU clusters were identified using 398 

correlation distance and average linkage as described by Li et al. (2018) 23 using a same cut-off at 0.7. The results indicated 399 
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the relationship between OPU resolution and choice of convergence threshold 𝒕. For example, a point x=5%, y=0.01 means 400 

that using a threshold 𝒕 = 𝟎. 𝟎𝟏 allows at most one OPU up to 5% abundance being ignored. Such assessment results may be 401 

specific to each dataset. 402 

It is noticed that the identified sample sizes for the same target POC threshold among the eight EBPR 403 

communities were rather comparable, indicating an intrinsic “similarity” of the microbial phenotypic 404 

“richness” in these full-scale EBPR systems in North America. The correlation between SCRS-based 405 

phenotypic clusters (i.e. OPUs) and their phylogenetic OTUs, with underlying implications of the 406 

discriminative power of Raman spectrum features for discerning cells at various taxonomic levels (i.e. 407 

species, strains etc.), is still under investigation. Promising cell identification at strain level have been 408 

reported (ref.). The comparable kernel divergence profiles and narrow range of minimal sample size for 409 

a given targeted POC threshold for the 8 EBPR microbial communities suggested that these engineered 410 

wastewater treatment systems may have similar microbial phenotypic diversity measurements. How the 411 

phenotyping profiles correspond to their phylogenetic composition are yet to be revealed and is beyond 412 

the focus and scope of this study. 413 

We also compared our results with another prior-knowledge independent method proposed previously by 414 

He et al. (2017) 28. The diversity measure of a given sample set, named as “diversity index (DI)” resides 415 

as the core concepts in He’s assessment protocol, which was defined as the maximum pairwise Euclidean 416 

distance within the sample set. Through repeated virtual sampling experiments in a similar process, the 417 

“average DI” at each sampling depth was estimated, then plotted as shown in supplementary Figure S6. 418 
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Finally, two sample size guidelines can be determined according to the decision criteria proposed by He 419 

et al. (2017) 28: 420 

(1) 9-15 samples as “minimal size” identified when DI change per increasing sample depth by one is 421 

less than 0.01 of maximal (i.e. dataset-wise) DI; 422 

(2) 9-25 samples as “safe size” identified when average subset DI reaches 90% of maximal (dataset-423 

wise) DI. 424 

These results were significantly smaller than the values identified by our protocol, indicating DI led to a 425 

less diverse estimation in comparison to kernel divergence. Two potential reasons may have contributed 426 

to different performances of the DI-based and kernel divergence-based protocols. First, DI ignores details 427 

of the sample distance distribution but only its maximum, while kernel divergence utilizes comprehensive 428 

information of the entire distance matrix. Therefore, DI-based calculations will probably make false 429 

conclusions when two sample sets have different sample distributions but rather similar DI values. 430 

Second, a sole reliance on the maximum distance also increases its sensitivity to the presence of outliers; 431 

therefore, appropriate and sophisticated outlier removal techniques might also be necessary in real 432 

applications. Comparing to kernel divergence-based protocol, the DI-based method was likely 433 

underestimating the true diversity and complexity in our SCRS phenotyping datasets, resulting in reduced 434 

reliability. 435 

One of the main challenges in wider application of new emerging high-resolution technologies for 436 

profiling and characterization of complex environmental systems, such as SCRS and cell imaging, is the 437 

standardization of the experimental protocols and data analysis such as the optimal sampling size with the 438 

consideration of both time and resources cost and information sufficiency. There is no widely accepted 439 

approach and method for determining the sufficient sampling size on environmental datasets without pre-440 

classification. We proposed and validated a sample size assessment protocol using kernel divergence, a 441 

novel dissimilarity measure at the dataset-level, which is a more comprehensive and systematic 442 

quantitative comparison between two observation datasets. More importantly, our proposed method 443 
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enables the decision on sampling size without prior knowledge of the diversity and complexity of the 444 

system. This property is especially powerful as demanded by de novo studies with environmental samples. 445 

In addition, our proposed method has no restrictions on the input data as long as it contains continuous 446 

features. In particular, it can capture data with linear and non-linear relationships. All these generalities 447 

profit expansion to further potential applications. First, it provides a universal standard to compare the 448 

sampling size determining criteria among different experiments in different labs, contributing to more 449 

reliable, comparable and reproducible studies using similar single-cell technologies. In addition, robust 450 

cross-comparison among different experimental protocols could be validated as well. Second, we believe 451 

that the proposed sampling size assessment approach can be easily generalized to dataset generated from 452 

other analytical technologies . Potential examples include Raman-based spectral histopathological 453 

assessments, validating gating strategies in flow cytometry and collecting comprehensive cellular imaging 454 

library based on visual or morphological measurements. 455 
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10. Moudříková, S.a.r., et al., Quantification of polyphosphate in microalgae by Raman microscopy 501 

and by a reference enzymatic assay. Analytical chemistry, 2017. 89(22): p. 12006-12013. 502 

11. Wang, T., et al., Quantitative dynamics of triacylglycerol accumulation in microalgae populations 503 

at single-cell resolution revealed by Raman microspectroscopy. Biotechnology for biofuels, 2014. 7(1): 504 

p. 58. 505 

12. Lorenz, B., et al., Cultivation-free Raman spectroscopic investigations of bacteria. Trends in 506 

microbiology, 2017. 25(5): p. 413-424. 507 

13. Ando, J., et al., High-speed Raman imaging of cellular processes. Current opinion in chemical 508 

biology, 2016. 33: p. 16-24. 509 

14. Song, Y., H. Yin, and W.E. Huang, Raman activated cell sorting. Current opinion in chemical 510 

biology, 2016. 33: p. 1-8. 511 

15. Kallepitis, C., et al., Quantitative volumetric Raman imaging of three dimensional cell cultures. 512 

Nature communications, 2017. 8(1): p. 1-9. 513 

16. Freudiger, C.W., et al., Label-free biomedical imaging with high sensitivity by stimulated Raman 514 

scattering microscopy. Science, 2008. 322(5909): p. 1857-1861. 515 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17. Rösch, P., et al., Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: 516 

application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol., 2005. 71(3): p. 517 

1626-1637. 518 

18. Meisel, S., et al., Raman spectroscopy as a potential tool for detection of Brucella spp. in milk. 519 

Appl. Environ. Microbiol., 2012. 78(16): p. 5575-5583. 520 

19. Meisel, S., et al., Identification of meat-associated pathogens via Raman microspectroscopy. Food 521 

microbiology, 2014. 38: p. 36-43. 522 

20. Majed, N., et al., Identification of functionally relevant populations in enhanced biological 523 

phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic 524 

diversity and heterogeneity. Environmental science technology, 2012. 46(9): p. 5010-5017. 525 

21. Kusić, D., et al., Identification of water pathogens by Raman microspectroscopy. Water research, 526 

2014. 48: p. 179-189. 527 

22. Xu, J., et al., Label-free discrimination of Rhizobial bacteroids and mutants by single-cell Raman 528 

microspectroscopy. Analytical chemistry, 2017. 89(12): p. 6336-6340. 529 

23. Li, Y., et al., Toward Better Understanding of EBPR Systems via Linking Raman-Based 530 

Phenotypic Profiling with Phylogenetic Diversity. Environmental science technology, 2018. 52(15): p. 531 

8596-8606. 532 

24. Große, C., et al., Label-free imaging and spectroscopic analysis of intracellular bacterial 533 

infections. Analytical chemistry, 2015. 87(4): p. 2137-2142. 534 

25. Majed, N., et al., Evaluation of intracellular polyphosphate dynamics in enhanced biological 535 

phosphorus removal process using Raman microscopy. Environmental science technology, 2009. 43(14): 536 

p. 5436-5442. 537 

26. Ji, Y., et al., Raman spectroscopy provides a rapid, non‐invasive method for quantitation of starch 538 

in live, unicellular microalgae. Biotechnology journal, 2014. 9(12): p. 1512-1518. 539 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27. Wang, D., et al., Side-stream enhanced biological phosphorus removal (S2EBPR) process 540 

improves system performance-A full-scale comparative study. Water research, 2019. 167: p. 115109. 541 

28. He, Y., et al., Label-free, simultaneous quantification of starch, protein and triacylglycerol in single 542 

microalgal cells. Biotechnology for biofuels, 2017. 10(1): p. 275. 543 

29. Xie, C., et al., Identification of single bacterial cells in aqueous solution using confocal laser 544 

tweezers Raman spectroscopy. Analytical chemistry, 2005. 77(14): p. 4390-4397. 545 

30. Stöckel, S., et al., Raman spectroscopic detection and identification of Burkholderia mallei and 546 

Burkholderia pseudomallei in feedstuff. Analytical bioanalytical chemistry, 2015. 407(3): p. 787-794. 547 

31. Ali, N., et al., Sample-size planning for multivariate data: a Raman-spectroscopy-based example. 548 

Analytical chemistry, 2018. 90(21): p. 12485-12492. 549 

32. Beleites, C., et al., Sample size planning for classification models. Analytica chimica acta, 2013. 550 

760: p. 25-33. 551 

33. Rényi, A. On measures of entropy and information. in Proceedings of the Fourth Berkeley 552 

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of 553 

Statistics. 1961. The Regents of the University of California. 554 

34. Müller, A., Integral probability metrics and their generating classes of functions. Advances in 555 

Applied Probability, 1997: p. 429-443. 556 

35. Kullback, S. and R.A. Leibler, On information and sufficiency. The annals of mathematical 557 

statistics, 1951. 22(1): p. 79-86. 558 

36. Gretton, A., et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms. 2005. Berlin, 559 

Heidelberg: Springer Berlin Heidelberg. 560 

37. Jolliffe, I.T., Principal Components in Regression Analysis, in Principal Component Analysis. 561 

1986, Springer New York: New York, NY. p. 129-155. 562 

38. Schölkopf, B., A. Smola, and K.-R. Müller, Nonlinear Component Analysis as a Kernel 563 

Eigenvalue Problem. Neural Computation, 1998. 10(5): p. 1299-1319. 564 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39. Gu, A.Z., et al., Functionally relevant microorganisms to enhanced biological phosphorus removal 565 

performance at full‐scale wastewater treatment plants in the United States. Water Environment 566 

Research, 2008. 80(8): p. 688-698. 567 

40. Majed, N. and A.Z. Gu, Application of Raman microscopy for simultaneous and quantitative 568 

evaluation of multiple intracellular polymers dynamics functionally relevant to enhanced biological 569 

phosphorus removal processes. Environmental science technology, 2010. 44(22): p. 8601-8608. 570 

41. Onnis‐Hayden, A., et al., Impact of solid residence time (SRT) on functionally relevant microbial 571 

populations and performance in full‐scale enhanced biological phosphorus removal (EBPR) systems. 572 

Water Environment Research, 2019. 92(3): p. 389-402. 573 

42. Onnis‐Hayden, A., et al., Survey of full‐scale sidestream enhanced biological phosphorus 574 

removal (S2EBPR) systems and comparison with conventional EBPRs in North America: Process 575 

stability, kinetics, and microbial populations. Water Environment Research, 2019. 92(3): p. 403-417. 576 

43. De Gelder, J., et al., Reference database of Raman spectra of biological molecules. Journal of 577 

Raman Spectroscopy, 2007. 38(9): p. 1133-1147. 578 

44. Chang, H. and D.-Y. Yeung, Robust path-based spectral clustering. Pattern Recognition, 2008. 579 

41(1): p. 191-203. 580 

 581 

  582 

 583 

 584 

 585 

 586 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423496
http://creativecommons.org/licenses/by-nc-nd/4.0/

