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Abstract

Molecular QTLs (xQTLs) are widely studied to identify functional variation and possible mechanisms
underlying genetic associations with diseases. Larger xQTL sample sizes are critical to help identify causal
variants, improve predictive models, and increase power to detect rare associations. This will require scalable
and accurate methods for analysis of tens of thousands of molecular traits in large cohorts, and/or from
summary statistics in meta-analysis, both of which are currently lacking. We developed APEX (All-in-one
Package for Efficient Xqtl analysis), an efficient toolkit for xQTL mapping and meta-analysis that provides (a)
highly optimized linear mixed models to account for relatedness and shared variation across molecular traits;
(b) rapid factor analysis to infer latent technical and biological variables from molecular trait data; (c) fast and
accurate trait-level omnibus tests that incorporate prior functional weights to increase statistical power; and (d)
compact summary data files for flexible and accurate joint analysis of multiple variants (e.qg., joint/conditional
regression or Bayesian finemapping) without individual-level data in meta-analysis. We applied the methods to

data from three LCL eQTL studies and the UK Biobank. APEX is open source: https://corbing.github.io/apex.
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Introduction

Human genetics studies have identified tens of thousands of molecular QTLs- genetic loci associated
with differences in molecular quantitative traits- including mRNA (eQTL), microRNA (miQTL), or protein (pQTL)
expression, metabolite (metQTL), methylation (mQTL) levels (1, 2). By mapping DNA sequence variation to
heritable differences in the transcriptome and epigenome, xQTL studies have provided important insights into
genome function and gene regulation (3-5). xQTLs are also of interest in genome-wide association studies
(GWAS) as possible biological antecedents of genetic associations with complex traits and diseases (6-10).
Integrative analyses of xQTL and GWAS data have provided insight into the biological mechanisms underlying
GWAS associations, and helped identify causal disease genes and therapeutic targets (11-13).

Larger XxQTL studies are crucial to identify causal variants driving xQTL association signals, detect low-
frequency and rare xQTL variants, and more accurately predict expression or methylation levels from genotype
data. The next generation of xQTL studies will require scalable methods for association analysis in large multi-
ethnic cohorts, accurate methods for downstream statistical analysis (e.g., Bayesian finemapping and
colocalization analysis) from summary statistics in meta-analysis, and integrative methods to utilize prior
knowledge of genome function. We developed APEX, a toolkit for scalable xQTL association analysis and
meta-analysis, to address these challenges.

Molecular trait data suffers from a high degree of technical and biological variation, which can both
mask and confound cis and trans genetic associations (14-17). Latent variable models such as PEER (16) and
dimension reduction techniques such as principal component analysis (PCA) (18, 19) are often used to infer
unobserved common sources of technical and biological variation in xQTL studies. PEER is particularly
effective in xQTL analysis, but computationally demanding. In APEX, we implemented simple, efficient
algorithms for high-dimensional factor analysis using early stopping for regularization (20, 21). We found that
this approach is nearly as fast as PCA and far faster than PEER, while yielding equal or greater numbers of cis
discoveries than either method.

Linear mixed models (LMM) are widely used to account for population structure and cryptic familial
relatedness in genome-wide association studies (GWAS), and can additionally account for shared technical
and biological variation across molecular traits in xQTL studies (18). However, despite multiple existing LMM

methods for xQTL analysis (18, 22), ordinary least squares (OLS) is often used in practice for its greater
1
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computational efficiency. Even family-based eQTL studies often use a two-stage approach in which LMM
residuals are used as response variables in OLS (23, 24), which may reduce statistical power (25). In APEX,
we developed efficient algorithms for LMM association analysis to account for population structure,
relatedness, and technical variation with tens of thousands of traits, which are accurate for small samples and
scale linearly in sample size.

Permutation tests are the current standard to calculate trait-level xQTL omnibus tests and account for
correlations between tests statistics across variants and traits in xQTL discovery (19, 26, 27). This approach is
burdensome for large sample sizes, and does not readily capitalize prior knowledge of variant functionality.
The aggregated Cauchy association test (ACAT) is a recently-developed method to combine p-values under
arbitrary dependence structures (28, 29). We applied ACAT to aggregate xQTL test statistics for each
molecular trait, which scales linearly in the number of variants and independent of sample size. Unlike
permutation tests, which implicitly assign equal prior weight to all variants, ACAT can incorporate functional
prior weights between variants and molecular traits. We found that simply weighting by the chromosomal
distance between each variant and transcription start site (TSS) (30) substantially increased xQTL discoveries.

While dozens of xQTL studies have been conducted (2), meta-analysis is hampered by difficulties
sharing human genomic data. Marginal variant-trait associations can be meta-analyzed using regression
slopes and standard errors or z-scores alone. However, these statistics are not sufficient for analyses that
involve the joint effects of multiple variants, such as joint and conditional analysis (31, 32), Bayesian
finemapping (33-37), aggregation tests (31, 38, 39), and colocalization analysis (40). Multiple-variant analysis
further requires variance-covariance or linkage disequilibrium (LD) matrices, which characterize the joint
distribution of single-variant xQTL association statistics. In GWAS, proxy LD from a genotype reference panel
is often used for multiple-variant analysis from summary statistics, but this is problematic for small or
ancestrally heterogenous samples (32, 35), both of which are common in omics studies (2, 3, 17, 41). Indeed,
previous XQTL meta-analyses have generally analyzed only marginal variant-trait associations (42-44). In
APEX, we developed compact xQTL summary association data formats for accurate multiple-variant analysis

in meta-analysis without individual-level data.
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Results
Software development

We developed APEX (All-in-one Package for Efficient Xqtl analysis), a software toolkit for scalable
XQTL mapping and meta-analysis. Core running modes for molecular trait preprocessing, cis and trans
association analysis, and xQTL meta-analysis are summarized in Figure 1 (see Methods and Supplementary
Materials for further details). APEX is a command-line tool implemented in C++, supports multithreading to
expedite linear algebra, and provides flexible sub-setting options to facilitate parallelization across genomic
regions. It uses the Eigen (45) and Spectra (46) C++ libraries for linear algebra, and HTSIib to process
indexed BED, BCF, and VCF files (47). Precompiled Linux binaries and source code are available online.
Application to 3 lymphoblastoid cell line (LCL) eQTL data sets

We analyzed LCL eQTLs using genotype, expression, and technical covariate data from the GTEx
project v8 (41), Geuvadis project (5), and HapMap project (3, 48, 49) (Table 1). GTEx (n = 147) and Geuvadis
(n = 454) have RNA-seq LCL expression measurements and whole genome sequencing (WGS) based
genotype calls. HapMap (n = 518) has array-based LCL expression measurements and array-based genotype
calls, from which we imputed genotypes using the 1000 Genomes Project reference panel (50). Data and
processing procedures for each study are further described in Methods.

Rapid factor analysis of molecular traits for xQTL analysis

We inferred hidden covariates from gene expression measurements in each study using PEER (16),
expression principal component (ePC) analysis (19), and expression factor analysis (eFA) (20, 21). For each
method, we varied the number of hidden covariates from 1 to 100. eFA and PEER explicitly model shared and
unique variances for each trait, whereas ePCs capture maximal variance across all traits (51). Conceptually,
ePC can be viewed as a special case of eFA in which all traits are assumed to have equal unique variance
(unexplained by common factors). Further details are given in Methods and Supplementary Materials.

We used APEX to perform cis-eQTL analysis in each study modeling the hidden factor covariates as
either fixed effects using ordinary least squares (OLS) or random effects using restricted maximum likelihood
(REML) (14) (Figure 2). ePC and eFA covariates were calculated directly in APEX, and PEER factors were
calculated using the PEER R package (16). For each method and data set, we varied the number of inferred

covariates between 1 and 100. Across the studies, APEX eFA was 86 to 5033 times faster than PEER for
3
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models with >50 common factors (and 30 to 779 times faster for 20 to 50 factors), and provided equal or
greater numbers of cis discoveries in each of the 3 data sets (Figure 2, panel A). Random-effect eFA provided
the greatest number of discoveries in each of the 3 data sets, and fixed-effect or random-effect ePCs generally
yielded the smallest numbers of discoveries.

To assess Type | error rates for fixed-effect and random-effect models with ePC or eFA covariates, we
simulated 100 expression data sets under the null hypothesis in the Geuvadis study. We used the empirical
covariance between expression and observed covariates (not inferred from expression) and empirical variance
matrix of expression residuals (projecting out observed covariates) to simulate expression under the null
hypothesis matching the observed covariance structure (Supplementary Figures 1-2). With each simulated
expression matrix, we re-calculated the inferred covariates (eFA or ePC) and performed cis-eQTL analysis
modeling the inferred covariates as either fixed or random effects. Association tests from all configurations
(fixed-effect or random-effect models with between 1 and 100 inferred covariates) showed well-calibrated Type
| error rates (Supplementary Figure 3).

Fast, scalable linear mixed models with tens of thousands of molecular traits

We assessed the computational performance and numerical concordance of APEX and standard tools
for linear mixed model (LMM) association analysis: FastGWA (52), BOLT-LMM (53), GMMAT (54), and
GENESIS (55). APEX uses a 3-stage approach to efficiently estimate LMM null models and association
statistics with tens of thousands of traits (Supplementary Figure 4), whereas the other tools are intended for
single-trait analysis. We note that each of these tools supports a variety of features not considered in our
analysis here—for example, GMMAT and GENESIS support flexible generalized LMM (GLMM) for binary and
other non-normal traits, and BOLT-LMM supports flexible variance partitioning. For LMM association analysis,
FastGWA and BOLT-LMM use approximations for efficient analysis in large cohorts, which may be less
accurate with smaller sample sizes (e.g., <5000 (56)). GENESIS, GMMAT, and APEX do not use such
approximations, and APEX further uses small-sample LMM association tests (Supplementary Materials). To
assess computational performance for LMM association analysis in large cohorts, we used genotype data and
a sparse GRM for 10,000 individuals from the UK Biobank study, and simulated expression data for 16,329

traits with heritability drawn from a uniform distribution (Methods). Variant component estimates and single-

variant association test statistics were nearly numerically equivalent between APEX, GMMAT, and GENESIS,

4


https://doi.org/10.1101/2020.12.18.423490
http://creativecommons.org/licenses/by-nd/4.0/

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

GWhich vias Mot GorHhe oy RS raview) IS e uinoHbder, Who Das Qrantel PIOFORY & BGEnoe 0 Aspisy (he prabredt I PErpetity. 1t s made
available under aCC-BY-ND 4.0 International license.

as expected; FastGWA test statistics showed lower concordance with other methods (Supplementary Figure
5). LMM association analysis using APEX was >200-fold faster than GENESIS and GMMAT, 51.4-fold faster
than BOLT-LMM, and 2.5-fold faster than FastGWA (Supplementary Table 1).
Powerful and efficient cis-xQTL omnibus tests

We performed single-variant and gene-level cis-eQTL analysis in each study using APEX, FastQTL,
and QTLtools (Figure 3). APEX and FastQTL use multiple linear regression (MLR) to adjust for covariates by
default, whereas QTLtools uses simple linear regression with expression residuals (SLR-resid). We note that
QTLtools can also perform MLR by regressing out covariates from genotype files prior to association analysis.
Gene-level p-values from QTLtools and FastQTL use a Beta-approximated permutation test (Beta), whereas
APEX uses either ACAT with constant weights (ACAT) or ACAT with distance-to-TSS weights between each
variant and gene (ACAT-dTSS). FastQTL was run using adaptive p-values with 100 to 1000 permutations;
QTLtools was run with 1000 permutations.

We compared the numbers of cis-eQTL discoveries at 1% false discover rate (FDR) in each study from
Beta permutation tests using FastQTL (27) or QTLtools (19), and from ACAT (28, 29) using APEX (Figure 3
panel A). Each method calculates gene-level omnibus cis-eQTL p-values (cis-eGene p-values) based on
single-variant association test statistics within a 1 megabase (Mbp) window of the transcription start site (TSS).
QTLtools and FastQTL use permutation tests of the minimum p-value across variants, and expedite
computation by modeling the null distribution as a beta density using a fixed number of permutations (27). In
each of the three studies, ACAT and permutation-based p-values were generally concordant (Supplementary
Figure 6), but ACAT yielded more cis-eGene discoveries overall and was >30x faster (Figure 3, panels A and
D). We also calculated weighted ACAT test statistics, in which each variant received a weight proportional to
e where d is the number of base pairs between the variant and TSS and y = 1e-5 (30). dTSS weighting
further increased the number of cis-eGene discoveries by 14 to 30% across single studies (Figure 3, panel A).

We assessed p-value calibration for ACAT (implemented in APEX) and permutation-based p-values
(implemented in FastQTL and QTLtools) by simulating expression data under the null hypothesis using
genotype and expression data from the Geuvadis study (Figure 3 panel B). We used the sample covariance

matrices of expression and observed covariates to simulate expression traits under the observed covariance

structure (Methods). Empirical Type | error rates were well-controlled for both ACAT and Beta p-values, and

5
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SLR-resid p-values were conservative (shown previously in (57)). Permutation test p-values from SLR-resid
were also notably conservative, which is expected because while trait residuals and genotype residuals are

orthogonal to covariates, permuted trait residuals and unadjusted genotypes are not.

Accurate multiple-variant xQTL meta-analysis from summary statistics

We assessed CPU time, memory, and storage required to create summary files for xQTL meta-analysis
using APEX. We generated single-variant association summary statistics (sumstat files) and adjusted LD
matrices (vcov files, which store the variance-covariance of association test statistics) for each of the 3 studies
using APEX (Supplementary Figures 7-8). Summary statistics files were generated across all autosomes in
0.17 to 0.33 CPU hours and required 0.42 to 0.49 Gb storage per study (Supplementary Table 2). Adjusted LD
files, which included LD for all pairs of variants within sliding 2 Mbp windows, were generated across all
autosomes in 32.1 to 75.3 CPU hours and required 21.5, 34.3, 119.7 GB storage for GTEx, Geuvadis, and
HapMap respectively (Supplementary Table 2). HapMap, which used imputed genotype dosages, required
notably more time and storage than the other studies, which used WGS-based hard-call genotypes. We also
compared adjusted LD storage using RareMetalWorker (RMW) (31), a tool for rare-variant association meta-
analysis, across the 3 studies. APEX was 1.5 to 2.2-fold faster and required 4.5 to 21.5-fold less storage than

RMW (Supplementary Table 3).

Score statistics and adjusted LD (stored in APEX sumstat and vcov files) are sufficient for a wide range
of analyses involving the joint effects of multiple variants, including joint and conditional analysis, Bayesian
finemapping, and penalized linear regression. We used APEX sumstat and vcov files from each LCL study to
perform stepwise regression analysis using APEX-meta (Figure 4 and Supplementary Figure 9) and Bayesian
finemapping using the susieR R package (33) (Figure 5) in individual studies and meta-analysis. To assess
the accuracy of summary-based analyses, we also performed these analyses from individual-level data.
Stepwise regression slopes and p-values and finemapping posterior inclusion probabilities (PIPs) were nearly

numerically equivalent between individual-level vs sumstat data (Pearson Rsq > 0.999; Figure 5 panel C).
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To assess the accuracy of joint analysis from association summary statistics using proxy LD or
unadjusted LD rather than APEX vcov files (which store adjusted LD), we performed finemapping with
association summary statistics from HapMap and either (a) unadjusted LD (the correlation matrix of genotypes
in HapMap, not adjusted for PCs and other covariates), or (b) proxy LD (adjusted LD from Geuvadis as a proxy
for adjusted LD from HapMap). Unadjusted LD is often used for multiple-variant analysis from GWAS
summary statistics (e.g., (32)), and differs from adjusted LD when genotypes are correlated with covariates
(e.g., genotype PCs in multi-ethnic studies). PIPs using proxy LD or unadjusted LD yielded substantially lower
concordance with the exact PIPs that adjusted LD (Figure 5 panel C), which is expected due to the relatively
small sample sizes and differences in ancestry composition between HapMap and Geuvadis. Notably, many
other XxQTL studies have relatively small sample size and heterogeneous ancestry composition
(Supplementary Figure 10).

Functional characterization of LCL eQTL variants and genes

We hypothesized that mMRNA expression heritability is lower for genes that are more evolutionarily
constrained, and that therefore eGenes detected only in meta-analysis are more constrained on average than
those detected in single studies. To assess this hypothesis, we compared the loss-of-function
observed/expected upper bound fraction (LOEUF), a recently developed metric of genetic constraint (smaller
LOEUF suggests greater constraint) (58), across genes that were tested in all 3 studies (11,750 genes). Novel
LCL eGenes (eQTL associations detected by meta-analysis, but not by individual studies) and genes with no
significant signal had significantly lower LOEUF than previously-identified eGenes (Mann—Whitney p = 2.1e-7
and 2.2e-16 respectively), while the difference in LOEUF was less pronounced for novel eGenes vs genes with
no detected eQTLs (p = 0.0096) (Figure 4 panel C). Moreover, genes with larger numbers of significant cis-
eQTL signals (identified in stepwise regression; Methods) tend to have larger LOEUF values (p < 2.2e-16)
(Figure 4 panel D). While gene length is associated with LOEUF, we observed no significant trends between
gene length and eQTL signals. These results suggest that larger samples sizes will be required to detect
XQTLs for more biologically important genes, highlighting the utility of meta-analysis.

We assessed functional enrichment of primary and secondary LCL eQTL variants identified in meta-

analysis across the 3 studies. We used binomial logistic regression to identify features associated with LCL

eQTL variants controlling for distance to nearest TSS and minor allele frequency (MAF) (Methods). First, we
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assessed enrichment of LCL eQTL variants in tissue-specific DNase | hypersensitive sites (DHSs) across 16
tissue groups (59). LCL eQTLs showed striking enrichment in lymphoid-specific DHS compared to other tissue
groups (Supplementary Figure 11). Next, we assessed overlap enrichment of LCL eQTL variants overlapping
GWAS variants identified using the NHGRI-EBI GWAS Catalog (60). Among 15 categories of GWAS traits,
LCL eQTL variants showed strongest enrichment with GWAS variants for immune diseases (Supplementary

Figure 12). These results suggest that LCL eQTL variants capture cell-type specific functionality, and highlight

the utility of xQTL analysis in diverse tissues and cell types.

Discussion

Future xQTL studies will be conducted in increasingly large and diverse cohorts, and are poised to
capitalize on growing knowledge of functional elements in the human genome. We developed APEX to
empower these studies by providing a flexible, scalable framework for cis and trans xQTL analysis and meta-
analysis. APEX provides rapid high-dimensional factor analysis to infer latent technical and biological factors,
efficient linear mixed model (LMM) association analysis for cis and trans xQTL mapping, procedures to
incorporate prior weights in primary and secondary xQTL signal discovery, and a framework for accurate joint
analysis of multiple variant effects from xQTL summary data.

Our LMM framework for molecular traits extends upon previous work (14, 22) by optimizing association
analysis with high-dimensional traits and structured random-effect covariance matrices. In particular, we
precompute and recycle computationally expensive terms for each molecular trait and each variant, and exploit
the structure of random-effect covariance matrices (low-rank or block-diagonal) to expedite linear algebra.
With these optimizations, LMM association analysis scales linearly in sample size and the number of traits,
enabling rapid analysis with large xQTL cohorts. APEX also uses small-sample adjustment and avoids large-
sample approximations to provide accurate p-values for smaller cohorts.

In GWAS, random effects are typically used to account for infinitesimal genetic effects or familial
relatedness in LMM association analysis. In xQTL studies, random effects can also be used to model shared
technical and biological variation across traits (14, 22). Our results suggest that this strategy outperforms
ordinary least squares (OLS) when using expression factor analysis covariates, but underperforms OLS when

using expression PC covariates. A variety of other methods can be applied to infer hidden covariates from
8
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molecular trait data, and various other strategies (e.g., penalized regression) can be used to include these
covariates in xQTL analysis. We believe this is a worthy area for further research. Here, our work provides
rapid inference of latent technical and biological covariates from molecular trait data, and a flexible LMM
framework to include these covariates as fixed or random effects in XxQTL association analysis.

Our meta-analysis framework extends from previous eQTL meta-analysis tools (61) by enabling
accurate multiple-variant analysis, including joint/conditional analysis (using APEX mode meta), Bayesian
finemapping (using susieR (33) or DAP (34)), and colocalization analysis (using external software), from xQTL
summary statistics. These methods are fundamental in a variety of applications, including predictive weight
estimation (e.g., for TWAS) and integrative analysis of GWAS loci. Methods that use LD from a reference
panel as a proxy for meta-analysis LD may be inaccurate when reference or meta-analysis sample size is
limited (e.g., < 5000), ancestry composition differs between reference vs meta-analysis samples, or genotypes
are correlated with covariates in meta-analysis. In APEX, we provide exact study-specific adjusted LD
matrices (vcov files); similar strategies have been used for rare-variant association meta-analysis (31, 38), but
not to our knowledge for genome-wide xQTL or finemapping meta-analysis. The proposed xQTL meta-
analysis framework enables flexible and highly accurate multiple-variant modeling with arbitrary sample sizes,
ancestry compositions, and sets of covariates.

While our applications focused on eQTL studies, APEX sumstat and vcov formats are also well-suited
for GWAS of quantitative traits, which can be used, for example, in colocalization analysis of GWAS and xQTL
signals. More broadly, we encourage GWAS and xQTL studies to publicly release adjusted LD data in addition
to single-variant association summary statistics when possible. With streamlined tools for the analysis of such
data, greater availability of sufficient statistics including LD would increase reproducibility, enhance meta-
analysis, and accelerate discovery.

The statistical methods in APEX can be extended in a variety of ways, such as by (a) leveraging
correlations between molecular traits across multiple tissues or cell-types, (b) modeling genetic correlations
between traits of the same tissue or cell-type, or (c) supporting generalized linear models for non-normal traits.
Multivariate LMMs can be used to account for the correlation structure of genetic and environmental

components of molecular traits across and within tissues or cell-types. Also, zero-inflated Poisson or negative

binomial generalized linear mixed models (GLMMs) may be desirable for some types of molecular trait data.
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Our data applications have several limitations, including (a) analysis of only LCL eQTLs, (b) relatively
small eQTL sample sizes, and (c) limited trans-eQTL analysis. Our LCL eQTL analysis revealed striking
enrichment with relevant tissue-specific DHS, highlighting the utility of xQTL analysis across diverse tissues
and cell types. Moreover, APEX is well suited for analysis of mMRNA expression and other molecular traits
across broader sets of tissues or cell types due to its computational efficiency. While the three LCL eQTL had
limited sample sizes, our simulation studies using UK Biobank genotype data demonstrated that APEX is
scalable to larger cohorts, with >100-fold improvement in CPU time relative to standard tools. Finally, we note
that APEX fully supports trans-eQTL analysis, as illustrated in simulation studies.

In summary, APEX provides an efficient and comprehensive framework for cis and trans xQTL mapping
and meta-analysis. For XQTL studies of a single cohort, APEX provides efficient inference of latent technical
and biological factors from molecular trait data (20), which performs competitively with state-of-the-art methods
in cis-eQTL analysis and orders of magnitude faster; rapid LMM assaociation analysis with tens of thousands of
molecular traits; powerful, efficient trait-level xQTL omnibus tests; and accurate multiple-variant analysis. For
XQTL meta-analysis, APEX provides accurate single-variant and joint multiple-variant regression analysis, and

compact summary data formats for flexible and accurate multiple-variant modeling (e.g., Bayesian

finemapping) without individual-level data across multiple studies.

Online Methods

Statistical methods implemented in APEX
Principal components and factor analysis of molecular traits

APEX provides efficient algorithms to calculate principal components (PCA) and factor analysis (FA) of
molecular traits. For PCA, we calculate k PC covariates as the first k left singular vectors of the truncated
singular value decomposition (SVD) of the n X p normalized expression matrix Y, which is scaled and centered
so that each column (trait) has mean 0 and variance 1. The SVDisY = UDV', and Uy = (U4, Uy, ..., Uy) are
the PC covariates. When the number of traits is larger than the number of samples, we calculate Uy, from the

truncated SVD (or eigendecomposition) of YYT, as YY' = UD?U". Otherwise, we calculate U, = YV(k)D(‘,}),

where the right singular vectors V, are calculated from Y'Y = VD?V.
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The FA model is Y = ZB + E where Z is the n x k matrix of common factors, B is the k X p matrix of
factor loadings, and E is the n x p matrix of unique factors. The rows of E are independent, and each row

vector is multivariate normal with covariance matrix £ = diag(o?, ..., g7). In APEX, we estimate the common

factors Z using an SVD of YE~1/2, which we initialize with constant variances 6j2 =1forallj=1,2,..,p. Given
the first k left singular vectors Uy, of YE~*/2, we update the estimates as 67 = ﬁ |- ﬁ(k)ﬁ&))yjni for each

traitj = 1,2, ...,p, and repeat. A similar algorithm was suggested by (62), but the underlying likelihood is
unbounded if 6[1 — 0, and convergence generally fails in practice. As proposed by (20, 21), we perform

regularization by halting after a fixed number of iterations. If the number of samples is greater than the number
of traits (n > p), we modify this approach using the p X k right singular vectors rather than the n x k left
singular vectors of YE~'/2. The time complexity of this procedure is 0(min(n, p)? k + pnk), where n is the
sample size, p is the number of traits, and k is the number of factors. Further details are given in
Supplementary Materials.

Statistical methods for cis and trans LMM association analysis

APEX provides a scalable linear mixed model (LMM) framework to account for familial relatedness (14,

63) or technical variation (18, 22) (Supplementary Figure 4). For traits t = 1, 2, ..., p, we assume the model

Y, =Ca, + GB; +Zb, + &
where Y, is the observed trait, C is the matrix of fixed-effect covariates, G is the matrix of genotypes, and Z is
the matrix of random-effect covariates. To account for relatedness, ZZ™ = K where K is a genetic relatedness
matrix (GRM); and to account for technical and biological variation, Z is comprised of inferred factor covariates.
We assume the residual &, is multivariate normal distributed with mean 0 and variance Is#, and the random
effects are multivariate normally distributed with mean 0 and variance Iz?.

By default, variance components are estimated by restricted maximum likelihood (REML) under the null
hypothesis of no single-variant associations. APEX supports sparse (64, 65) and low-rank (66) covariance
matrices for random effects, and uses specialized optimizations for each structure. We expedite computation
by precomputing and saving variance component estimates and LMM residuals for each trait, and residual
genotypic variance terms for each variant. While APEX precomputes LMM residuals, we note that it does not
use the GRAMMAR-gamma (67) or related approximations. For trans-xQTL analysis (considering all variant-
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trait pairs), the time complexity of LMM estimation and association testing in APEX is 0(pm?n + npq + nmq)
where n is the sample size, p the number of traits, m the number of covariates, and g the number of variants.
Further details are provided in Supplementary Materials.
Omnibus p-values for cis-xQTL signals

We used the aggregated Cauchy association test (ACAT) (28, 29) to calculate omnibus cis region p-
values for primary and secondary signals. ACAT omnibus p-values are calculated as p° = F{}; w;F~1(p;)}
where F is the cumulative density function (CDF) of the standard Cauchy distribution, w; are non-negative
weights with }; w; = 1, and p; are p-values. ACAT provides valid p-values under arbitrary dependence
structures, provided that p; are valid p-values (calibrated under the null hypothesis). When p; are single-
variant p-values in the cis region, we find that ACAT p-values with constant weights are highly concordant with
permutation-based p-values (Supplementary Figure 6), but much faster (Figure 3, Panel B).
Data formats for flexible and accurate xQTL meta-analysis

APEX provides genetic association summary statistics (sumstat) and variance-covariance (vcov) data
in an indexed, compressed binary format (Supplementary Figures 7-8). For fixed effects models, APEX
sumstat files store the vector of score statistics U, = GTPY, and residual sum of squares ¥, ' PY, for each trait
t, where G is the genotype matrix, P is a projection matrix, and Y is the matrix of molecular traits; APEX vcov
files store the variance-covariance matrix of score statistics V= G'PG (also called adjusted LD matrix). For cis
analysis, we store only score statistics for variants within a window of each molecular trait (1 Mbp by default),
and adjusted LD for variants within twice the specified window size. These statistics are sufficient for a wide
variety of downstream statistical analyses (for example, multiple-variant joint and conditional regression
modeling, aggregation tests, Bayesian finemapping, and colocalization analysis), and preserve the genetic
privacy of xQTL study participants. Similar strategies have been used to aggregate variants for gene-based
tests in rare-variant (RV) GWAS meta-analysis (31, 38), but to our knowledge no existing methods exist for
efficiently sharing and combining adjusted LD for genome-wide meta-analysis of common variants in GWAS or
XQTL studies. APEX summary data can be combined across multiple studies for meta-analysis in APEX mode

meta for joint and conditional regression analysis, or accessed and combined through an R interface for use

with other packages. Further details are given in Supplementary Materials.
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Secondary xQTL signal discovery
We implemented stepwise regression algorithms to detect multiple conditionally independent genetic

association signals (Supplementary Figure 9) using either individual-level data or sumstat and vcov files. At
each iteration, we evaluate signal-level significance using an omnibus p-value to test the null hypothesis that
no remaining variants are associated with the trait, calculated as p° = F{ZjeUWjF_l(p”S)}, where S and U are
the current sets of selected and unselected variants, pjs is the conditional p-value for variant j given selected

variants S, w; is the weight for variant j (normalized so that };;c, w; = 1 at iteration), and F is the CDF of the

standard Cauchy distribution. If p° < a, where « is a specified threshold, we select the most significant variant
in U (adding it to S and removing it from U) and continue; otherwise, we retain the current set S and exit.

Further details and extensions are given in Supplementary Materials.

Data sources

LCL eQTL genotype data

Genotype data from the 1000 Genomes Project Phase 3 in NCBI build 38 were obtained from the
International Genome Sample Resource (IGSR) webpage (68). WGS-based genotype data for the GTEx
project v8 were obtained from dbGaP under accession number (phg 001219.v1); variants and samples with
>15% missingness were excluded. Remaining missing genotype calls were imputed as best-guess hard call
genotypes using the phasing software Eagle (69). Genotype data from the HapMap project in NCBI build 36
from the Broad Institute webpage. This data set included 1,379,607 autosomal variants; to increase the
number of variants overlapping the other studies, HapMap genotypes were imputed with the 1000 Genomes
Project Phase 3 reference panel using Minimac3 (70); imputed variants were filtered with Mach-Rsq > 0.3. A
final list of 10,930,386 variants, the intersection of variants across the three studies, was used for meta-
analysis. Kinship matrices and genetic principal component covariates were calculated using PLINK 2 (64).
LCL gene expression data

RNA-seq expression data from the Geuvadis consortium, which performed RNA-seq on LCLs for a
subset of samples in the 1000 Genomes Project, were obtained from the IGSR webpage (5). RNA-seq
expression data from LCLs for GTEx v8 participants were obtained from dbGaP under accession number

(phe000037.v1). LCL expression microarray data for 618 individuals in the HapMap 3 study (17) were
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obtained from ArrayExpress (71); lllumina probe identifiers were mapped to Ensembl gene identifiers using the
illuminaHumanv2 Bioconductor R package. Genes that were lowly expressed (count <5) in > 25% of
individuals were excluded. Expression microarray measurements and RNA-seq TPMs were rank-normal
transformed within each study (5).
UK Biobank genotype data
Genotype data from the UK Biobank study were obtained under Application Number 52008. UK

Biobank protocols were approved by the National Research Ethics Service Committee and written informed
consent were signed by the participants. Marker variants were filtered by including only autosomal SNPs with
genotype missingness < 1% that passed all batch-wise genotype quality control steps (72) (590,606 variants
after filtering). We randomly selected a multi-ethnic subset of 10,000 UK Biobank participants for analysis,
among which 4,000 were Irish, 3,000 were South Asian (Indian, Pakistani, and Bangladeshi), and 3,000 were
African and Caribbean (all self-reported). We generated an ancestry-adjusted sparse genetic relatedness
matrix (GRM) using LD-pruned MAF > 0.01 variants in R (73) by projecting out genotype PCs from genotypes

and setting GRM elements to 0 for >4th degree estimated relatives (genetic correlation < 0.044). LD pruning

used pairwise r? < 0.1 in sliding windows of 50 SNPs moving 5 SNPs at a time.

Data analysis and simulation procedures
Molecular trait simulation procedures

To evaluate Type | error rates of association test statistics, we simulated expression data under the null
hypothesis of no single-variant genetic associations in the Geuvadis study. We used the empirical covariance
between expression and technical covariates and simulate covariance of expression residuals to simulate
expression with a realistic correlation structure (Supplementary Figures 1-2). Specifically, in each replicate, we

simulated the row vector of expression across genes for participant i as a multivariate normal distribution with
mean (@, ...,iip)TCl-T and variance Z, where C; is the it" row vector of from technical covariates C (genotype
PCs, gender, batch, ethnicity indicator), &j = (CTC)‘lcTY]- is the estimated effects of technical covariates on
gene j expression ¥; (column vector), and X = ﬁY[I — C(CTC)"CT)YT is the sample covariance matrix of

expression residuals across genes. In each simulation replicate, we re-calculated the inferred covariates (ePC,

eFA, or PEER) from the simulated expression matrix.
14
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We simulated expression data in the UK Biobank study to assess the computational performance of
linear mixed models (LMMs) for xQTL analysis in large cohorts, which will be critical to identify rare and small-
effect xQTL variants and molecular traits that contribute to heritable diseases. In these experiments, we
simulated each trait independently from a multivariate normal distribution with mean Ca, where C is the matrix
of genotype PCs, and variance h?K + (1 — h?)I where K is the sparse genetic relatedness matrix. We
simulated the covariate effects a from an independent normal distribution, and pseudo-heritability parameter
h? from a uniform distribution.

LCL eQTL enrichment analysis

We used binomial logistic regression models to assess functional enrichment of LCL eQTLs. The
mean model was specified logit[P(¢; = 1)] = c]-Ta + x;v, where the outcome was defined as t; = 1 if variant j is
in high LD (r* > 0.8) with a lead LCL eQTL variant for any gene and ¢; = 0 otherwise, where lead eQTL
variants were identified using stepwise regression (described above). The scalar x; denotes the feature of
interest (e.g., x; = 1 if variant j overlaps a lymphoid-specific DHS and x; = 0 otherwise), and the covariate
vector ¢; included an intercept and cubic b-spline terms for log-transformed minor allele frequency (MAF) and

distance to nearest transcription start site (TSS). We included all variants that were tested for cis association

(within 1 Mbp of TSS for any tested gene).
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Figures

Figure 1. APEX toolkit for molecular QTL mapping and meta-analysis
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A: Mode factor provides factor analysis to infer shared technical and biological factors across traits. In QTL mapping
(modes cis and trans), inferred factor covariates can be modeled as fixed effects (by appending matrix F to covariate
matrix C) or random effects (using mode Imm). Mode Imm enables rapid linear mixed model (LMM) association analysis
(in modes cis and trans) by precomputing and storing variance component estimates, LMM trait residuals, and
approximate LMM genotypic variances. Mode store generates compact adjusted LD files for accurate multiple-variant
analysis from summary statistics (using mode meta for meta-analysis).

B: Individual-level molecular trait, genotype, and covariate data (and optional genetic relatedness matrix) are used as
input for single-variant and joint/conditional association analysis across traits (APEX modes cis and trans). These data
can also be used for Bayesian finemapping and colocalization analysis using external software packages.

C: Each study generates summary data files (single-variant score statistics using mode cis and adjusted LD matrices
using mode store) from individual-level data. These summary files can be used for single-variant and joint/conditional
association meta-analysis in mode meta, or combined using the Apex2R interface to create input data for Bayesian
finemapping and colocalization analysis using external packages.
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e16  Figure 2. Rapid factor analysis and linear mixed models for cis-eQTL analysis
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619  A: Number of LCL cis-eQTL discoveries at 1% FDR as a function of the number of hidden factors (x axis) inferred using
620 PEER, factor analysis (eFA), or principal components analysis (ePC) across 3 studies. ePC and eFA covariate effects
621  were estimated either as fixed effects (using OLS) or random effects (using REML) in association analysis using APEX.
622 PEER covariates effects were estimated as fixed effects.

623  B: Total running time (CPU hours) and maximum memory usage to generate ePC, eFA, and PEER covariates across

624 models with 5, 10, 20, 40, 60, 80, and 100 latent factors. All jobs used a single CPU core. ePC and eFA covariates were
625  calculated using APEX; PEER covariates were calculated using the PEER R package version 1.3 with a maximum of

626 1000 iterations.

627
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e2s  Figure 3. Fast and powerful cis-eQTL omnibus tests
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631  A: ACAT and dTSS weights increase eGene discoveries. Gene-level cis-eQTL discoveries for each LCL data set at
632 1% FDR. Because all methods maintain calibrated Type | error rates in simulations (panel B), a larger number of

633  discoveries suggests greater statistical power. Note that the number of tested genes varies across the three studies
634 (Figure 4).

635 B: Calibration of permutation-based and ACAT p-values. Q-Q plots for each method in simulations under the null

636 hypothesis using genotype and expression data from Geuvadis. Traits were simulated using the observed correlation

637 structure of gene expression, and expression PC covariates were re-calculated from simulated expression values in each
638 replicate (Methods). P-values for all methods maintain calibrated or conservative Type | error rates, and SLR-resid

639 permutation-based p-values are notably conservative.

640 C: eQTL enrichment by dTSS. Density of chromosomal distance between top cis-eVariant and TSS across genes for
641  each study. Cis-eVariants are strongly enriched nearer the TSS.

642 D: CPU time and memory for eGene discovery. Analyses were run sequentially across chromosomes with 1 CPU; we
643 report maximum memory usage and total elapsed running time.

644
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Figure 4. Meta-analysis identifies novel primary and secondary cis-eQTLs
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A: Meta-analysis and dTSS weights increase eGene discoveries. eGenes detected in LCL cis-eQTL analysis across
studies and meta-analysis. Colored bars show total numbers of tested genes, and outlined bars show numbers of eGenes
(cis-eQTL genes) detected at 1% FDR using unweighted ACAT (solid line) and or distance to transcription start site
(dTSS) weighted ACAT (dashed line). dTSS weights increased eGene discoveries by 30.6% for GTEX, 14.4% for
Geuvadis, 14.1% for HapMap, and 10.0% for meta-analysis.

B: Meta-analysis and dTSS weights increase secondary eQTL discoveries. Secondary cis-eQTL variant discoveries
across studies and meta-analysis. Shown are numbers of genes with 2, 3, 4, or 25 LCL eQTL eVariant signals detected
at 1% FDR using unweighted (solid line) and dTSS-weighted ACAT. dTSS weights increased secondary signal
discoveries by 43.6% for GTEX, 23.3% for Geuvadis, 20.4% for HapMap, and 19.3% for meta-analysis.

C: Meta-analysis detects cis-eQTLs for constrained genes. Loss of function (LoF) observed/expected upper bound
fraction (LOEUF) is a metric of genetic constraint; constrained genes have smaller LOEUF. LOEUF densities are shown
for the 11,750 genes present in all (3 out of 3) studies, divided into 3 categories: (a) no cis-eQTLs detected at 1% FDR
(2,659 “non-signif’ genes), (b) 21 eQTL detected in meta-analysis but not individual studies (693 “novel eGenes”), and (c)
21 eQTL detected by =1 individual study (8,398 “known eGenes”). Both novel and non-significant genes have
significantly lower LOEUF than known eGenes, suggesting greater constraint.

D: Fewer secondary cis-eQTLs are detected for constrained genes. LOEUF densities for genes with 0, 1, ... =5

significant eVariants detected by stepwise regression in meta-analysis (1% FDR), shown for genes present in 3 out of 3
studies. Genes with more eVariants tend to have higher LOEUF (less constraint), as expected.
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Figure 5. Accurate QTL finemapping from summary statistics
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APEX xQTL sumstat and vcov files enable accurate multiple-variant analyses without individual-level data. Here, we
illustrate Bayesian finemapping from APEX summary statistics data using the susieR package and Apex2R interface to
access sumstat and vcov files.

A: Finemapping cis-eQTLs from summary statistics. cis-eQTL p-values (upper panel) and posterior inclusion
probabilities (PIPs) for cis variants at the FYN locus (6.p22) are shown across the three studies and meta-analysis.
Meta-analysis increases signal strength (upper panels) and precision identifying putative causal variants (lower panels).

B: Meta-analysis increases finemapping precision. We finemapped 9,787 genes present each of the 3 studies from
APEX sumstat and vcov summary data files using the susieR package. For each gene, we assigned each variant to its
most likely signal cluster (highest posterior probability), and calculated the maximum PIP across variants within each
signal cluster. Boxplots show the distribution of the maximum PIP within the 1st, 2", 314 and 4t signal cluster across
genes for each study. Maximum PIPs tend to increase with sample size, as expected.

C: APEX sumstat and vcov files enable accurate finemapping from summary statistics. Concordance of PIPs
across 71 genes using individual-level data (x axis) vs summary statistics (y axis) from HapMap with covariate-adjusted
HapMap LD (left), HapMap LD not adjusted for covariates (middle), or proxy LD from Geuvadis (right) adjusted for similar
covariates. PIPs from summary statistics using APEX vcov files (adjusted LD) are nearly numerically equivalent with
individual-level analysis. PIPs using unadjusted or proxy LD are less concordant with individual-level analysis (Spearman
r2 0.81 or 0.29 respectively).
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689 Tables

so0  Table 1. Descriptive statistics for LCL eQTL data sets

Sar_nple Genotype data TOt".’lI no. Expression data Total no.
size variants transcripts
GTEx v8 147 WGS 12,232,655 RNA-seq 22,759
Geuvadis 454 WGS 31,331,216 RNA-seq 17,815
HapMap 518 Genotyped and 29,539,804 Expression 16,329
imputed microarray

691

692  Summary of LCL data sets analyzed. For HapMap, we report the number of imputed variants. For all studies,
693 we report the number of variants before filtering. Processing and filtering procedures for each study are
694  described in Methods.

695
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