

1

2 A versatile toolkit for molecular QTL mapping and meta-analysis at scale

3

4 Corbin Quick^{1*}, Li Guan², Zilin Li¹, Xihao Li¹, Rounak Dey¹, Yaowu Liu³, Laura Scott⁴, Xihong Lin^{1*}

5 ¹Harvard T. H. Chan School of Public Health, Department of Biostatistics

6 ²University of Michigan, Department of Computational Medicine and Bioinformatics

7 ³Southwestern University of Finance and Economics

8 ⁴University of Michigan, Department of Biostatistics and Center for Statistical Genetics

9 *Contact: qcorbin@hsph.harvard.edu, xlin@hsph.harvard.edu

10

11 **Abstract**

12 Molecular QTLs (xQTLs) are widely studied to identify functional variation and possible mechanisms

13 underlying genetic associations with diseases. Larger xQTL sample sizes are critical to help identify causal

14 variants, improve predictive models, and increase power to detect rare associations. This will require scalable

15 and accurate methods for analysis of tens of thousands of molecular traits in large cohorts, and/or from

16 summary statistics in meta-analysis, both of which are currently lacking. We developed APEX (All-in-one

17 Package for Efficient Xqtl analysis), an efficient toolkit for xQTL mapping and meta-analysis that provides (a)

18 highly optimized linear mixed models to account for relatedness and shared variation across molecular traits;

19 (b) rapid factor analysis to infer latent technical and biological variables from molecular trait data; (c) fast and

20 accurate trait-level omnibus tests that incorporate prior functional weights to increase statistical power; and (d)

21 compact summary data files for flexible and accurate joint analysis of multiple variants (e.g., joint/conditional

22 regression or Bayesian finemapping) without individual-level data in meta-analysis. We applied the methods to

23 data from three LCL eQTL studies and the UK Biobank. APEX is open source: <https://corbinq.github.io/apex>.

24

25

26 Introduction

27 Human genetics studies have identified tens of thousands of molecular QTLs- genetic loci associated
28 with differences in molecular quantitative traits- including mRNA (eQTL), microRNA (miQTL), or protein (pQTL)
29 expression, metabolite (metQTL), methylation (mQTL) levels (1, 2). By mapping DNA sequence variation to
30 heritable differences in the transcriptome and epigenome, xQTL studies have provided important insights into
31 genome function and gene regulation (3-5). xQTLs are also of interest in genome-wide association studies
32 (GWAS) as possible biological antecedents of genetic associations with complex traits and diseases (6-10).
33 Integrative analyses of xQTL and GWAS data have provided insight into the biological mechanisms underlying
34 GWAS associations, and helped identify causal disease genes and therapeutic targets (11-13).

35 Larger xQTL studies are crucial to identify causal variants driving xQTL association signals, detect low-
36 frequency and rare xQTL variants, and more accurately predict expression or methylation levels from genotype
37 data. The next generation of xQTL studies will require scalable methods for association analysis in large multi-
38 ethnic cohorts, accurate methods for downstream statistical analysis (e.g., Bayesian finemapping and
39 colocalization analysis) from summary statistics in meta-analysis, and integrative methods to utilize prior
40 knowledge of genome function. We developed APEX, a toolkit for scalable xQTL association analysis and
41 meta-analysis, to address these challenges.

42 Molecular trait data suffers from a high degree of technical and biological variation, which can both
43 mask and confound *cis* and *trans* genetic associations (14-17). Latent variable models such as PEER (16) and
44 dimension reduction techniques such as principal component analysis (PCA) (18, 19) are often used to infer
45 unobserved common sources of technical and biological variation in xQTL studies. PEER is particularly
46 effective in xQTL analysis, but computationally demanding. In APEX, we implemented simple, efficient
47 algorithms for high-dimensional factor analysis using early stopping for regularization (20, 21). We found that
48 this approach is nearly as fast as PCA and far faster than PEER, while yielding equal or greater numbers of *cis*
49 discoveries than either method.

50 Linear mixed models (LMM) are widely used to account for population structure and cryptic familial
51 relatedness in genome-wide association studies (GWAS), and can additionally account for shared technical
52 and biological variation across molecular traits in xQTL studies (18). However, despite multiple existing LMM
53 methods for xQTL analysis (18, 22), ordinary least squares (OLS) is often used in practice for its greater
1

54 computational efficiency. Even family-based eQTL studies often use a two-stage approach in which LMM
55 residuals are used as response variables in OLS (23, 24), which may reduce statistical power (25). In APEX,
56 we developed efficient algorithms for LMM association analysis to account for population structure,
57 relatedness, and technical variation with tens of thousands of traits, which are accurate for small samples and
58 scale linearly in sample size.

59 Permutation tests are the current standard to calculate trait-level xQTL omnibus tests and account for
60 correlations between tests statistics across variants and traits in xQTL discovery (19, 26, 27). This approach is
61 burdensome for large sample sizes, and does not readily capitalize prior knowledge of variant functionality.
62 The aggregated Cauchy association test (ACAT) is a recently-developed method to combine p-values under
63 arbitrary dependence structures (28, 29). We applied ACAT to aggregate xQTL test statistics for each
64 molecular trait, which scales linearly in the number of variants and independent of sample size. Unlike
65 permutation tests, which implicitly assign equal prior weight to all variants, ACAT can incorporate functional
66 prior weights between variants and molecular traits. We found that simply weighting by the chromosomal
67 distance between each variant and transcription start site (TSS) (30) substantially increased xQTL discoveries.

68 While dozens of xQTL studies have been conducted (2), meta-analysis is hampered by difficulties
69 sharing human genomic data. Marginal variant-trait associations can be meta-analyzed using regression
70 slopes and standard errors or z-scores alone. However, these statistics are not sufficient for analyses that
71 involve the joint effects of multiple variants, such as joint and conditional analysis (31, 32), Bayesian
72 finemapping (33-37), aggregation tests (31, 38, 39), and colocalization analysis (40). Multiple-variant analysis
73 further requires variance-covariance or linkage disequilibrium (LD) matrices, which characterize the joint
74 distribution of single-variant xQTL association statistics. In GWAS, proxy LD from a genotype reference panel
75 is often used for multiple-variant analysis from summary statistics, but this is problematic for small or
76 ancestrally heterogenous samples (32, 35), both of which are common in omics studies (2, 3, 17, 41). Indeed,
77 previous xQTL meta-analyses have generally analyzed only marginal variant-trait associations (42-44). In
78 APEX, we developed compact xQTL summary association data formats for accurate multiple-variant analysis
79 in meta-analysis without individual-level data.

80 Results

81 Software development

82 We developed APEX (All-in-one Package for Efficient Xqtl analysis), a software toolkit for scalable
83 xQTL mapping and meta-analysis. Core running modes for molecular trait preprocessing, *cis* and *trans*
84 association analysis, and xQTL meta-analysis are summarized in Figure 1 (see Methods and Supplementary
85 Materials for further details). APEX is a command-line tool implemented in C++, supports multithreading to
86 expedite linear algebra, and provides flexible sub-setting options to facilitate parallelization across genomic
87 regions. It uses the Eigen (45) and Spectra (46) C++ libraries for linear algebra, and HTSlib to process
88 indexed BED, BCF, and VCF files (47). Precompiled Linux binaries and source code are available online.

89 Application to 3 lymphoblastoid cell line (LCL) eQTL data sets

90 We analyzed LCL eQTLs using genotype, expression, and technical covariate data from the GTEx
91 project v8 (41), Geuvadis project (5), and HapMap project (3, 48, 49) (Table 1). GTEx (n = 147) and Geuvadis
92 (n = 454) have RNA-seq LCL expression measurements and whole genome sequencing (WGS) based
93 genotype calls. HapMap (n = 518) has array-based LCL expression measurements and array-based genotype
94 calls, from which we imputed genotypes using the 1000 Genomes Project reference panel (50). Data and
95 processing procedures for each study are further described in Methods.

96 Rapid factor analysis of molecular traits for xQTL analysis

97 We inferred hidden covariates from gene expression measurements in each study using PEER (16),
98 expression principal component (ePC) analysis (19), and expression factor analysis (eFA) (20, 21). For each
99 method, we varied the number of hidden covariates from 1 to 100. eFA and PEER explicitly model shared and
100 unique variances for each trait, whereas ePCs capture maximal variance across all traits (51). Conceptually,
101 ePC can be viewed as a special case of eFA in which all traits are assumed to have equal unique variance
102 (unexplained by common factors). Further details are given in Methods and Supplementary Materials.

103 We used APEX to perform *cis*-eQTL analysis in each study modeling the hidden factor covariates as
104 either fixed effects using ordinary least squares (OLS) or random effects using restricted maximum likelihood
105 (REML) (14) (Figure 2). ePC and eFA covariates were calculated directly in APEX, and PEER factors were
106 calculated using the PEER R package (16). For each method and data set, we varied the number of inferred
107 covariates between 1 and 100. Across the studies, APEX eFA was 86 to 5033 times faster than PEER for
3

108 models with >50 common factors (and 30 to 779 times faster for 20 to 50 factors), and provided equal or
109 greater numbers of *cis* discoveries in each of the 3 data sets (Figure 2, panel A). Random-effect eFA provided
110 the greatest number of discoveries in each of the 3 data sets, and fixed-effect or random-effect ePCs generally
111 yielded the smallest numbers of discoveries.

112 To assess Type I error rates for fixed-effect and random-effect models with ePC or eFA covariates, we
113 simulated 100 expression data sets under the null hypothesis in the Geuvadis study. We used the empirical
114 covariance between expression and observed covariates (not inferred from expression) and empirical variance
115 matrix of expression residuals (projecting out observed covariates) to simulate expression under the null
116 hypothesis matching the observed covariance structure (Supplementary Figures 1-2). With each simulated
117 expression matrix, we re-calculated the inferred covariates (eFA or ePC) and performed *cis*-eQTL analysis
118 modeling the inferred covariates as either fixed or random effects. Association tests from all configurations
119 (fixed-effect or random-effect models with between 1 and 100 inferred covariates) showed well-calibrated Type
120 I error rates (Supplementary Figure 3).

121 **Fast, scalable linear mixed models with tens of thousands of molecular traits**

122 We assessed the computational performance and numerical concordance of APEX and standard tools
123 for linear mixed model (LMM) association analysis: FastGWA (52), BOLT-LMM (53), GMMAT (54), and
124 GENESIS (55). APEX uses a 3-stage approach to efficiently estimate LMM null models and association
125 statistics with tens of thousands of traits (Supplementary Figure 4), whereas the other tools are intended for
126 single-trait analysis. We note that each of these tools supports a variety of features not considered in our
127 analysis here—for example, GMMAT and GENESIS support flexible generalized LMM (GLMM) for binary and
128 other non-normal traits, and BOLT-LMM supports flexible variance partitioning. For LMM association analysis,
129 FastGWA and BOLT-LMM use approximations for efficient analysis in large cohorts, which may be less
130 accurate with smaller sample sizes (e.g., < 5000 (56)). GENESIS, GMMAT, and APEX do not use such
131 approximations, and APEX further uses small-sample LMM association tests (Supplementary Materials). To
132 assess computational performance for LMM association analysis in large cohorts, we used genotype data and
133 a sparse GRM for 10,000 individuals from the UK Biobank study, and simulated expression data for 16,329
134 traits with heritability drawn from a uniform distribution (Methods). Variant component estimates and single-
135 variant association test statistics were nearly numerically equivalent between APEX, GMMAT, and GENESIS,

136 as expected; FastGWA test statistics showed lower concordance with other methods (Supplementary Figure
137 5). LMM association analysis using APEX was >200-fold faster than GENESIS and GMMAT, 51.4-fold faster
138 than BOLT-LMM, and 2.5-fold faster than FastGWA (Supplementary Table 1).

139 **Powerful and efficient *cis*-xQTL omnibus tests**

140 We performed single-variant and gene-level *cis*-eQTL analysis in each study using APEX, FastQTL,
141 and QTLtools (Figure 3). APEX and FastQTL use multiple linear regression (MLR) to adjust for covariates by
142 default, whereas QTLtools uses simple linear regression with expression residuals (SLR-resid). We note that
143 QTLtools can also perform MLR by regressing out covariates from genotype files prior to association analysis.
144 Gene-level p-values from QTLtools and FastQTL use a Beta-approximated permutation test (Beta), whereas
145 APEX uses either ACAT with constant weights (ACAT) or ACAT with distance-to-TSS weights between each
146 variant and gene (ACAT-dTSS). FastQTL was run using adaptive p-values with 100 to 1000 permutations;
147 QTLtools was run with 1000 permutations.

148 We compared the numbers of *cis*-eQTL discoveries at 1% false discover rate (FDR) in each study from
149 Beta permutation tests using FastQTL (27) or QTLtools (19), and from ACAT (28, 29) using APEX (Figure 3
150 panel A). Each method calculates gene-level omnibus *cis*-eQTL p-values (*cis*-eGene p-values) based on
151 single-variant association test statistics within a 1 megabase (Mbp) window of the transcription start site (TSS).
152 QTLtools and FastQTL use permutation tests of the minimum p-value across variants, and expedite
153 computation by modeling the null distribution as a beta density using a fixed number of permutations (27). In
154 each of the three studies, ACAT and permutation-based p-values were generally concordant (Supplementary
155 Figure 6), but ACAT yielded more *cis*-eGene discoveries overall and was >30x faster (Figure 3, panels A and
156 D). We also calculated weighted ACAT test statistics, in which each variant received a weight proportional to
157 $e^{-\gamma/d}$ where d is the number of base pairs between the variant and TSS and $\gamma = 1e-5$ (30). dTSS weighting
158 further increased the number of *cis*-eGene discoveries by 14 to 30% across single studies (Figure 3, panel A).

159 We assessed p-value calibration for ACAT (implemented in APEX) and permutation-based p-values
160 (implemented in FastQTL and QTLtools) by simulating expression data under the null hypothesis using
161 genotype and expression data from the Geuvadis study (Figure 3 panel B). We used the sample covariance
162 matrices of expression and observed covariates to simulate expression traits under the observed covariance
163 structure (Methods). Empirical Type I error rates were well-controlled for both ACAT and Beta p-values, and

164 SLR-resid p-values were conservative (shown previously in (57)). Permutation test p-values from SLR-resid
165 were also notably conservative, which is expected because while trait residuals and genotype residuals are
166 orthogonal to covariates, permuted trait residuals and unadjusted genotypes are not.

167 **Accurate multiple-variant xQTL meta-analysis from summary statistics**

168 We assessed CPU time, memory, and storage required to create summary files for xQTL meta-analysis
169 using APEX. We generated single-variant association summary statistics (sumstat files) and adjusted LD
170 matrices (vcov files, which store the variance-covariance of association test statistics) for each of the 3 studies
171 using APEX (Supplementary Figures 7-8). Summary statistics files were generated across all autosomes in
172 0.17 to 0.33 CPU hours and required 0.42 to 0.49 Gb storage per study (Supplementary Table 2). Adjusted LD
173 files, which included LD for all pairs of variants within sliding 2 Mbp windows, were generated across all
174 autosomes in 32.1 to 75.3 CPU hours and required 21.5, 34.3, 119.7 GB storage for GTEx, Geuvadis, and
175 HapMap respectively (Supplementary Table 2). HapMap, which used imputed genotype dosages, required
176 notably more time and storage than the other studies, which used WGS-based hard-call genotypes. We also
177 compared adjusted LD storage using RareMetalWorker (RMW) (31), a tool for rare-variant association meta-
178 analysis, across the 3 studies. APEX was 1.5 to 2.2-fold faster and required 4.5 to 21.5-fold less storage than
179 RMW (Supplementary Table 3).

180 Score statistics and adjusted LD (stored in APEX sumstat and vcov files) are sufficient for a wide range
181 of analyses involving the joint effects of multiple variants, including joint and conditional analysis, Bayesian
182 finemapping, and penalized linear regression. We used APEX sumstat and vcov files from each LCL study to
183 perform stepwise regression analysis using APEX-meta (Figure 4 and Supplementary Figure 9) and Bayesian
184 finemapping using the *susieR* R package (33) (Figure 5) in individual studies and meta-analysis. To assess
185 the accuracy of summary-based analyses, we also performed these analyses from individual-level data.
186 Stepwise regression slopes and p-values and finemapping posterior inclusion probabilities (PIPs) were nearly
187 numerically equivalent between individual-level vs sumstat data (Pearson $R^2 > 0.999$; Figure 5 panel C).

188 To assess the accuracy of joint analysis from association summary statistics using proxy LD or

189 unadjusted LD rather than APEX vcov files (which store adjusted LD), we performed finemapping with

190 association summary statistics from HapMap and either (a) unadjusted LD (the correlation matrix of genotypes

191 in HapMap, not adjusted for PCs and other covariates), or (b) proxy LD (adjusted LD from Geuvadis as a proxy

192 for adjusted LD from HapMap). Unadjusted LD is often used for multiple-variant analysis from GWAS

193 summary statistics (e.g., (32)), and differs from adjusted LD when genotypes are correlated with covariates

194 (e.g., genotype PCs in multi-ethnic studies). PIPs using proxy LD or unadjusted LD yielded substantially lower

195 concordance with the exact PIPs that adjusted LD (Figure 5 panel C), which is expected due to the relatively

196 small sample sizes and differences in ancestry composition between HapMap and Geuvadis. Notably, many

197 other xQTL studies have relatively small sample size and heterogeneous ancestry composition

198 (Supplementary Figure 10).

199 **Functional characterization of LCL eQTL variants and genes**

200 We hypothesized that mRNA expression heritability is lower for genes that are more evolutionarily

201 constrained, and that therefore eGenes detected only in meta-analysis are more constrained on average than

202 those detected in single studies. To assess this hypothesis, we compared the loss-of-function

203 observed/expected upper bound fraction (LOEUF), a recently developed metric of genetic constraint (smaller

204 LOEUF suggests greater constraint) (58), across genes that were tested in all 3 studies (11,750 genes). Novel

205 LCL eGenes (eQTL associations detected by meta-analysis, but not by individual studies) and genes with no

206 significant signal had significantly lower LOEUF than previously-identified eGenes (Mann–Whitney $p = 2.1e-7$

207 and $2.2e-16$ respectively), while the difference in LOEUF was less pronounced for novel eGenes vs genes with

208 no detected eQTLs ($p = 0.0096$) (Figure 4 panel C). Moreover, genes with larger numbers of significant *cis*-

209 eQTL signals (identified in stepwise regression; Methods) tend to have larger LOEUF values ($p < 2.2e-16$)

210 (Figure 4 panel D). While gene length is associated with LOEUF, we observed no significant trends between

211 gene length and eQTL signals. These results suggest that larger samples sizes will be required to detect

212 xQTLs for more biologically important genes, highlighting the utility of meta-analysis.

213 We assessed functional enrichment of primary and secondary LCL eQTL variants identified in meta-

214 analysis across the 3 studies. We used binomial logistic regression to identify features associated with LCL

215 eQTL variants controlling for distance to nearest TSS and minor allele frequency (MAF) (Methods). First, we

216 assessed enrichment of LCL eQTL variants in tissue-specific DNase I hypersensitive sites (DHSs) across 16
217 tissue groups (59). LCL eQTLs showed striking enrichment in lymphoid-specific DHS compared to other tissue
218 groups (Supplementary Figure 11). Next, we assessed overlap enrichment of LCL eQTL variants overlapping
219 GWAS variants identified using the NHGRI-EBI GWAS Catalog (60). Among 15 categories of GWAS traits,
220 LCL eQTL variants showed strongest enrichment with GWAS variants for immune diseases (Supplementary
221 Figure 12). These results suggest that LCL eQTL variants capture cell-type specific functionality, and highlight
222 the utility of xQTL analysis in diverse tissues and cell types.

223 Discussion

224 Future xQTL studies will be conducted in increasingly large and diverse cohorts, and are poised to
225 capitalize on growing knowledge of functional elements in the human genome. We developed APEX to
226 empower these studies by providing a flexible, scalable framework for *cis* and *trans* xQTL analysis and meta-
227 analysis. APEX provides rapid high-dimensional factor analysis to infer latent technical and biological factors,
228 efficient linear mixed model (LMM) association analysis for *cis* and *trans* xQTL mapping, procedures to
229 incorporate prior weights in primary and secondary xQTL signal discovery, and a framework for accurate joint
230 analysis of multiple variant effects from xQTL summary data.

231 Our LMM framework for molecular traits extends upon previous work (14, 22) by optimizing association
232 analysis with high-dimensional traits and structured random-effect covariance matrices. In particular, we
233 precompute and recycle computationally expensive terms for each molecular trait and each variant, and exploit
234 the structure of random-effect covariance matrices (low-rank or block-diagonal) to expedite linear algebra.
235 With these optimizations, LMM association analysis scales linearly in sample size and the number of traits,
236 enabling rapid analysis with large xQTL cohorts. APEX also uses small-sample adjustment and avoids large-
237 sample approximations to provide accurate p-values for smaller cohorts.

238 In GWAS, random effects are typically used to account for infinitesimal genetic effects or familial
239 relatedness in LMM association analysis. In xQTL studies, random effects can also be used to model shared
240 technical and biological variation across traits (14, 22). Our results suggest that this strategy outperforms
241 ordinary least squares (OLS) when using expression factor analysis covariates, but underperforms OLS when
242 using expression PC covariates. A variety of other methods can be applied to infer hidden covariates from
8

243 molecular trait data, and various other strategies (e.g., penalized regression) can be used to include these
244 covariates in xQTL analysis. We believe this is a worthy area for further research. Here, our work provides
245 rapid inference of latent technical and biological covariates from molecular trait data, and a flexible LMM
246 framework to include these covariates as fixed or random effects in xQTL association analysis.

247 Our meta-analysis framework extends from previous eQTL meta-analysis tools (61) by enabling
248 accurate multiple-variant analysis, including joint/conditional analysis (using APEX mode meta), Bayesian
249 finemapping (using *susieR* (33) or DAP (34)), and colocalization analysis (using external software), from xQTL
250 summary statistics. These methods are fundamental in a variety of applications, including predictive weight
251 estimation (e.g., for TWAS) and integrative analysis of GWAS loci. Methods that use LD from a reference
252 panel as a proxy for meta-analysis LD may be inaccurate when reference or meta-analysis sample size is
253 limited (e.g., < 5000), ancestry composition differs between reference vs meta-analysis samples, or genotypes
254 are correlated with covariates in meta-analysis. In APEX, we provide exact study-specific adjusted LD
255 matrices (vcov files); similar strategies have been used for rare-variant association meta-analysis (31, 38), but
256 not to our knowledge for genome-wide xQTL or finemapping meta-analysis. The proposed xQTL meta-
257 analysis framework enables flexible and highly accurate multiple-variant modeling with arbitrary sample sizes,
258 ancestry compositions, and sets of covariates.

259 While our applications focused on eQTL studies, APEX sumstat and vcov formats are also well-suited
260 for GWAS of quantitative traits, which can be used, for example, in colocalization analysis of GWAS and xQTL
261 signals. More broadly, we encourage GWAS and xQTL studies to publicly release adjusted LD data in addition
262 to single-variant association summary statistics when possible. With streamlined tools for the analysis of such
263 data, greater availability of sufficient statistics including LD would increase reproducibility, enhance meta-
264 analysis, and accelerate discovery.

265 The statistical methods in APEX can be extended in a variety of ways, such as by (a) leveraging
266 correlations between molecular traits across multiple tissues or cell-types, (b) modeling genetic correlations
267 between traits of the same tissue or cell-type, or (c) supporting generalized linear models for non-normal traits.
268 Multivariate LMMs can be used to account for the correlation structure of genetic and environmental
269 components of molecular traits across and within tissues or cell-types. Also, zero-inflated Poisson or negative
270 binomial generalized linear mixed models (GLMMs) may be desirable for some types of molecular trait data.

271 Our data applications have several limitations, including (a) analysis of only LCL eQTLs, (b) relatively

272 small eQTL sample sizes, and (c) limited *trans*-eQTL analysis. Our LCL eQTL analysis revealed striking

273 enrichment with relevant tissue-specific DHS, highlighting the utility of xQTL analysis across diverse tissues

274 and cell types. Moreover, APEX is well suited for analysis of mRNA expression and other molecular traits

275 across broader sets of tissues or cell types due to its computational efficiency. While the three LCL eQTL had

276 limited sample sizes, our simulation studies using UK Biobank genotype data demonstrated that APEX is

277 scalable to larger cohorts, with >100-fold improvement in CPU time relative to standard tools. Finally, we note

278 that APEX fully supports *trans*-eQTL analysis, as illustrated in simulation studies.

279 In summary, APEX provides an efficient and comprehensive framework for *cis* and *trans* xQTL mapping

280 and meta-analysis. For xQTL studies of a single cohort, APEX provides efficient inference of latent technical

281 and biological factors from molecular trait data (20), which performs competitively with state-of-the-art methods

282 in *cis*-eQTL analysis and orders of magnitude faster; rapid LMM association analysis with tens of thousands of

283 molecular traits; powerful, efficient trait-level xQTL omnibus tests; and accurate multiple-variant analysis. For

284 xQTL meta-analysis, APEX provides accurate single-variant and joint multiple-variant regression analysis, and

285 compact summary data formats for flexible and accurate multiple-variant modeling (e.g., Bayesian

286 finemapping) without individual-level data across multiple studies.

287 Online Methods

288 Statistical methods implemented in APEX

289 *Principal components and factor analysis of molecular traits*

290 APEX provides efficient algorithms to calculate principal components (PCA) and factor analysis (FA) of

291 molecular traits. For PCA, we calculate k PC covariates as the first k left singular vectors of the truncated

292 singular value decomposition (SVD) of the $n \times p$ normalized expression matrix \mathbf{Y} , which is scaled and centered

293 so that each column (trait) has mean 0 and variance 1. The SVD is $\mathbf{Y} = \mathbf{UDV}^T$, and $\mathbf{U}_{(k)} = (\mathbf{U}_1, \mathbf{U}_2, \dots, \mathbf{U}_k)$ are

294 the PC covariates. When the number of traits is larger than the number of samples, we calculate $\mathbf{U}_{(k)}$ from the

295 truncated SVD (or eigendecomposition) of \mathbf{YY}^T , as $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T$. Otherwise, we calculate $\mathbf{U}_{(k)} = \mathbf{YV}_{(k)}\mathbf{D}_{(k)}^{-1}$,

296 where the right singular vectors $\mathbf{V}_{(k)}$ are calculated from $\mathbf{Y}^T\mathbf{Y} = \mathbf{VD}^2\mathbf{V}^T$.

297 The FA model is $\mathbf{Y} = \mathbf{ZB} + \mathbf{E}$ where \mathbf{Z} is the $n \times k$ matrix of common factors, \mathbf{B} is the $k \times p$ matrix of

298 factor loadings, and \mathbf{E} is the $n \times p$ matrix of unique factors. The rows of \mathbf{E} are independent, and each row

299 vector is multivariate normal with covariance matrix $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_p^2)$. In APEX, we estimate the common

300 factors \mathbf{Z} using an SVD of $\mathbf{Y}\hat{\Sigma}^{-1/2}$, which we initialize with constant variances $\hat{\sigma}_j^2 = 1$ for all $j = 1, 2, \dots, p$. Given

301 the first k left singular vectors $\tilde{\mathbf{U}}_{(k)}$ of $\mathbf{Y}\hat{\Sigma}^{-1/2}$, we update the estimates as $\hat{\sigma}_j^2 = \frac{1}{n-1} \left\| (\mathbf{I} - \tilde{\mathbf{U}}_{(k)} \tilde{\mathbf{U}}_{(k)}^T) \mathbf{Y}_j \right\|_2^2$ for each

302 trait $j = 1, 2, \dots, p$, and repeat. A similar algorithm was suggested by (62), but the underlying likelihood is

303 unbounded if $\hat{\sigma}_j^{-1} \rightarrow 0$, and convergence generally fails in practice. As proposed by (20, 21), we perform

304 regularization by halting after a fixed number of iterations. If the number of samples is greater than the number

305 of traits ($n > p$), we modify this approach using the $p \times k$ right singular vectors rather than the $n \times k$ left

306 singular vectors of $\mathbf{Y}\hat{\Sigma}^{-1/2}$. The time complexity of this procedure is $O(\min(n, p)^2 k + pnk)$, where n is the

307 sample size, p is the number of traits, and k is the number of factors. Further details are given in

308 Supplementary Materials.

309 **Statistical methods for cis and trans LMM association analysis**

310 APEX provides a scalable linear mixed model (LMM) framework to account for familial relatedness (14,

311 63) or technical variation (18, 22) (Supplementary Figure 4). For traits $t = 1, 2, \dots, p$, we assume the model

312
$$\mathbf{Y}_t = \mathbf{C}\boldsymbol{\alpha}_t + \mathbf{G}\boldsymbol{\beta}_t + \mathbf{Z}\mathbf{b}_t + \boldsymbol{\varepsilon}_t$$

313 where \mathbf{Y}_t is the observed trait, \mathbf{C} is the matrix of fixed-effect covariates, \mathbf{G} is the matrix of genotypes, and \mathbf{Z} is

314 the matrix of random-effect covariates. To account for relatedness, $\mathbf{Z}\mathbf{Z}^T = \mathbf{K}$ where \mathbf{K} is a genetic relatedness

315 matrix (GRM); and to account for technical and biological variation, \mathbf{Z} is comprised of inferred factor covariates.

316 We assume the residual $\boldsymbol{\varepsilon}_t$ is multivariate normal distributed with mean $\mathbf{0}$ and variance $\mathbf{I}\sigma_t^2$, and the random

317 effects are multivariate normally distributed with mean $\mathbf{0}$ and variance $\mathbf{I}\tau_t^2$.

318 By default, variance components are estimated by restricted maximum likelihood (REML) under the null

319 hypothesis of no single-variant associations. APEX supports sparse (64, 65) and low-rank (66) covariance

320 matrices for random effects, and uses specialized optimizations for each structure. We expedite computation

321 by precomputing and saving variance component estimates and LMM residuals for each trait, and residual

322 genotypic variance terms for each variant. While APEX precomputes LMM residuals, we note that it does not

323 use the GRAMMAR-gamma (67) or related approximations. For *trans*-xQTL analysis (considering all variant-

324 trait pairs), the time complexity of LMM estimation and association testing in APEX is $O(pm^2n + npq + nmq)$
325 where n is the sample size, p the number of traits, m the number of covariates, and q the number of variants.
326 Further details are provided in Supplementary Materials.

327 ***Omnibus p-values for cis-xQTL signals***

328 We used the aggregated Cauchy association test (ACAT) (28, 29) to calculate omnibus *cis* region p-
329 values for primary and secondary signals. ACAT omnibus p-values are calculated as $p^0 = F\{\sum_i w_i F^{-1}(p_i)\}$
330 where F is the cumulative density function (CDF) of the standard Cauchy distribution, w_i are non-negative
331 weights with $\sum_i w_i = 1$, and p_i are p-values. ACAT provides valid p-values under arbitrary dependence
332 structures, provided that p_i are valid p-values (calibrated under the null hypothesis). When p_i are single-
333 variant p-values in the *cis* region, we find that ACAT p-values with constant weights are highly concordant with
334 permutation-based p-values (Supplementary Figure 6), but much faster (Figure 3, Panel B).

335 ***Data formats for flexible and accurate xQTL meta-analysis***

336 APEX provides genetic association summary statistics (sumstat) and variance-covariance (vcov) data
337 in an indexed, compressed binary format (Supplementary Figures 7-8). For fixed effects models, APEX
338 sumstat files store the vector of score statistics $\mathbf{U}_t = \mathbf{G}^T \mathbf{P} \mathbf{Y}_t$ and residual sum of squares $\mathbf{Y}_t^T \mathbf{P} \mathbf{Y}_t$ for each trait
339 t , where \mathbf{G} is the genotype matrix, \mathbf{P} is a projection matrix, and \mathbf{Y} is the matrix of molecular traits; APEX vcov
340 files store the variance-covariance matrix of score statistics $\mathbf{V} = \mathbf{G}^T \mathbf{P} \mathbf{G}$ (also called adjusted LD matrix). For *cis*
341 analysis, we store only score statistics for variants within a window of each molecular trait (1 Mbp by default),
342 and adjusted LD for variants within twice the specified window size. These statistics are sufficient for a wide
343 variety of downstream statistical analyses (for example, multiple-variant joint and conditional regression
344 modeling, aggregation tests, Bayesian finemapping, and colocalization analysis), and preserve the genetic
345 privacy of xQTL study participants. Similar strategies have been used to aggregate variants for gene-based
346 tests in rare-variant (RV) GWAS meta-analysis (31, 38), but to our knowledge no existing methods exist for
347 efficiently sharing and combining adjusted LD for genome-wide meta-analysis of common variants in GWAS or
348 xQTL studies. APEX summary data can be combined across multiple studies for meta-analysis in APEX mode
349 *meta* for joint and conditional regression analysis, or accessed and combined through an R interface for use
350 with other packages. Further details are given in Supplementary Materials.

351 **Secondary xQTL signal discovery**

352 We implemented stepwise regression algorithms to detect multiple conditionally independent genetic
353 association signals (Supplementary Figure 9) using either individual-level data or sumstat and vcov files. At
354 each iteration, we evaluate signal-level significance using an omnibus p-value to test the null hypothesis that
355 no remaining variants are associated with the trait, calculated as $p^0 = F\{\sum_{j \in U} w_j F^{-1}(p_{j|S})\}$, where S and U are
356 the current sets of selected and unselected variants, $p_{j|S}$ is the conditional p-value for variant j given selected
357 variants S , w_j is the weight for variant j (normalized so that $\sum_{j \in U} w_j = 1$ at iteration), and F is the CDF of the
358 standard Cauchy distribution. If $p^0 < \alpha$, where α is a specified threshold, we select the most significant variant
359 in U (adding it to S and removing it from U) and continue; otherwise, we retain the current set S and exit.
360 Further details and extensions are given in Supplementary Materials.

361 **Data sources**

362 **LCL eQTL genotype data**

363 Genotype data from the 1000 Genomes Project Phase 3 in NCBI build 38 were obtained from the
364 International Genome Sample Resource (IGSR) webpage (68). WGS-based genotype data for the GTEx
365 project v8 were obtained from dbGaP under accession number (phg 001219.v1); variants and samples with
366 >15% missingness were excluded. Remaining missing genotype calls were imputed as best-guess hard call
367 genotypes using the phasing software Eagle (69). Genotype data from the HapMap project in NCBI build 36
368 from the Broad Institute webpage. This data set included 1,379,607 autosomal variants; to increase the
369 number of variants overlapping the other studies, HapMap genotypes were imputed with the 1000 Genomes
370 Project Phase 3 reference panel using Minimac3 (70); imputed variants were filtered with Mach-Rsq > 0.3. A
371 final list of 10,930,386 variants, the intersection of variants across the three studies, was used for meta-
372 analysis. Kinship matrices and genetic principal component covariates were calculated using PLINK 2 (64).

373 **LCL gene expression data**

374 RNA-seq expression data from the Geuvadis consortium, which performed RNA-seq on LCLs for a
375 subset of samples in the 1000 Genomes Project, were obtained from the IGSR webpage (5). RNA-seq
376 expression data from LCLs for GTEx v8 participants were obtained from dbGaP under accession number
377 (phe000037.v1). LCL expression microarray data for 618 individuals in the HapMap 3 study (17) were

378 obtained from ArrayExpress (71); Illumina probe identifiers were mapped to Ensembl gene identifiers using the
379 illuminaHumanv2 Bioconductor R package. Genes that were lowly expressed (count ≤ 5) in $\geq 25\%$ of
380 individuals were excluded. Expression microarray measurements and RNA-seq TPMs were rank-normal
381 transformed within each study (5).

382 **UK Biobank genotype data**

383 Genotype data from the UK Biobank study were obtained under Application Number 52008. UK
384 Biobank protocols were approved by the National Research Ethics Service Committee and written informed
385 consent were signed by the participants. Marker variants were filtered by including only autosomal SNPs with
386 genotype missingness $< 1\%$ that passed all batch-wise genotype quality control steps (72) (590,606 variants
387 after filtering). We randomly selected a multi-ethnic subset of 10,000 UK Biobank participants for analysis,
388 among which 4,000 were Irish, 3,000 were South Asian (Indian, Pakistani, and Bangladeshi), and 3,000 were
389 African and Caribbean (all self-reported). We generated an ancestry-adjusted sparse genetic relatedness
390 matrix (GRM) using LD-pruned $MAF > 0.01$ variants in R (73) by projecting out genotype PCs from genotypes
391 and setting GRM elements to 0 for >4 th degree estimated relatives (genetic correlation < 0.044). LD pruning
392 used pairwise $r^2 < 0.1$ in sliding windows of 50 SNPs moving 5 SNPs at a time.

393 **Data analysis and simulation procedures**

394 **Molecular trait simulation procedures**

395 To evaluate Type I error rates of association test statistics, we simulated expression data under the null
396 hypothesis of no single-variant genetic associations in the Geuvadis study. We used the empirical covariance
397 between expression and technical covariates and simulate covariance of expression residuals to simulate
398 expression with a realistic correlation structure (Supplementary Figures 1-2). Specifically, in each replicate, we
399 simulated the row vector of expression across genes for participant i as a multivariate normal distribution with
400 mean $(\hat{\alpha}_1, \dots, \hat{\alpha}_p)^T \mathbf{C}_i^T$ and variance $\tilde{\Sigma}$, where \mathbf{C}_i is the i^{th} row vector of from technical covariates \mathbf{C} (genotype
401 PCs, gender, batch, ethnicity indicator), $\hat{\alpha}_j = (\mathbf{C}^T \mathbf{C})^{-1} \mathbf{C}^T \mathbf{Y}_j$ is the estimated effects of technical covariates on
402 gene j expression \mathbf{Y}_j (column vector), and $\tilde{\Sigma} = \frac{1}{n-1} \mathbf{Y} [\mathbf{I} - \mathbf{C} (\mathbf{C}^T \mathbf{C})^{-1} \mathbf{C}^T] \mathbf{Y}^T$ is the sample covariance matrix of
403 expression residuals across genes. In each simulation replicate, we re-calculated the inferred covariates (ePC,
404 eFA, or PEER) from the simulated expression matrix.

405 We simulated expression data in the UK Biobank study to assess the computational performance of

406 linear mixed models (LMMs) for xQTL analysis in large cohorts, which will be critical to identify rare and small-
407 effect xQTL variants and molecular traits that contribute to heritable diseases. In these experiments, we
408 simulated each trait independently from a multivariate normal distribution with mean $\mathbf{C}\boldsymbol{\alpha}$, where \mathbf{C} is the matrix
409 of genotype PCs, and variance $h^2\mathbf{K} + (1 - h^2)\mathbf{I}$ where \mathbf{K} is the sparse genetic relatedness matrix. We
410 simulated the covariate effects $\boldsymbol{\alpha}$ from an independent normal distribution, and pseudo-heritability parameter
411 h^2 from a uniform distribution.

412 **LCL eQTL enrichment analysis**

413 We used binomial logistic regression models to assess functional enrichment of LCL eQTLs. The

414 mean model was specified $\text{logit}[P(t_j = 1)] = \mathbf{c}_j^\top \boldsymbol{\alpha} + x_j \gamma$, where the outcome was defined as $t_j = 1$ if variant j is
415 in high LD ($r^2 > 0.8$) with a lead LCL eQTL variant for any gene and $t_j = 0$ otherwise, where lead eQTL
416 variants were identified using stepwise regression (described above). The scalar x_j denotes the feature of
417 interest (e.g., $x_j = 1$ if variant j overlaps a lymphoid-specific DHS and $x_j = 0$ otherwise), and the covariate
418 vector \mathbf{c}_j included an intercept and cubic b-spline terms for log-transformed minor allele frequency (MAF) and
419 distance to nearest transcription start site (TSS). We included all variants that were tested for *cis* association
420 (within 1 Mbp of TSS for any tested gene).

421

422 Contributions

423 Conception: CQ
424 Conceptualization: CQ, LG, LS, X Lin
425 Primary software development: CQ, LG
426 Software and data formats: CQ, LG, ZL, X Li
427 Statistical methods: CQ, LG, RD, YL, X Lin
428 Data acquisition and preparation: CQ, LG, RD, X Lin
429 LCL eQTL analysis: CQ, LG
430 UK Biobank analysis: CQ, RD
431 Simulation studies: CQ
432 Figures: CQ
433 Primary manuscript writing: CQ, LG
434 Manuscript editing and review: All authors
435

436 Competing Interests

437 The authors declare no competing interests.
438

439 Acknowledgements

440 We thank Hyun Min Kang for helpful discussions on linear mixed models and factor analysis. We thank Andy Shi for
441 assistance with UK Biobank data, and Sheila Gaynor for helpful discussions on GTEx data.
442 The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the
443 National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses
444 described in this manuscript were obtained from dbGaP accession numbers no. phe000037.v1 and phg 001219.v1 on
445 11/22/2019.
446 This research has been conducted using the UK Biobank Resource under Application Number 52008.

447

References

1. B. Ng *et al.*, An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. *Nature neuroscience* **20**, 1418 (2017).
2. Z. Zheng *et al.*, QTLbase: an integrative resource for quantitative trait loci across multiple human molecular phenotypes. *Nucleic acids research* **48**, D983-D991 (2020).
3. J. T. Bell *et al.*, DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. *Genome biology* **12**, R10 (2011).
4. L. Parts, O. Stegle, J. Winn, R. Durbin, Joint genetic analysis of gene expression data with inferred cellular phenotypes. *PLoS Genet* **7**, e1001276 (2011).
5. T. Lappalainen *et al.*, Transcriptome and genome sequencing uncovers functional variation in humans. *Nature* **501**, 506-511 (2013).
6. E. R. Gamazon *et al.*, Predixcan: Trait mapping using human transcriptome regulation. *BioRxiv*, 020164 (2015).
7. P. Zeng, T. Wang, S. Huang, Cis-SNPs set testing and PrediXcan analysis for gene expression data using linear mixed models. *Scientific reports* **7**, 1-11 (2017).
8. A. Gusev *et al.*, Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. *Nature genetics* **50**, 538-548 (2018).
9. N. Mancuso *et al.*, Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. *Nature communications* **9**, 1-11 (2018).
10. Y. Zhang *et al.*, PTWAS: investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis. *Genome biology* **21**, 1-26 (2020).
11. H. Fang *et al.*, A genetics-led approach defines the drug target landscape of 30 immune-related traits. *Nature genetics* **51**, 1082-1091 (2019).
12. I. Tachmazidou *et al.*, Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. *Nature genetics* **51**, 230-236 (2019).
13. Á. Duffy *et al.*, Tissue-specific genetic features inform prediction of drug side effects in clinical trials. *Science Advances* **6**, eabb6242 (2020).
14. H. M. Kang *et al.*, Variance component model to account for sample structure in genome-wide association studies. *Nature genetics* **42**, 348-354 (2010).
15. O. Stegle, L. Parts, R. Durbin, J. Winn, A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. *PLoS Comput Biol* **6**, e1000770 (2010).
16. O. Stegle, L. Parts, M. Piipari, J. Winn, R. Durbin, Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. *Nature protocols* **7**, 500 (2012).
17. B. E. Stranger *et al.*, Patterns of cis regulatory variation in diverse human populations. *PLoS Genet* **8**, e1002639 (2012).
18. H. M. Kang, C. Ye, E. Eskin, Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots. *Genetics* **180**, 1909-1925 (2008).
19. O. Delaneau *et al.*, A complete tool set for molecular QTL discovery and analysis. *Nature communications* **8**, 1-7 (2017).
20. A. B. Owen, J. Wang, Bi-cross-validation for factor analysis. *Statistical Science* **31**, 119-139 (2016).
21. J. Wang, Ph. D. thesis, Stanford University, (2016).
22. A. Ziyatdinov *et al.*, Ime4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals. *BMC bioinformatics* **19**, 1-5 (2018).
23. A. Buil *et al.*, Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins. *Nature genetics* **47**, 88-91 (2015).
24. E. Grundberg *et al.*, Mapping cis-and trans-regulatory effects across multiple tissues in twins. *Nature genetics* **44**, 1084-1089 (2012).
25. J. Eu-Ahsunthornwattana *et al.*, Comparison of methods to account for relatedness in genome-wide association studies with family-based data. *PLoS Genet* **10**, e1004445 (2014).
26. G. Consortium, The GTEx Consortium atlas of genetic regulatory effects across human tissues. *Science* **369**, 1318-1330 (2020).

500 27. H. Ongen, A. Buil, A. A. Brown, E. T. Dermitzakis, O. Delaneau, Fast and efficient QTL mapper for
501 thousands of molecular phenotypes. *Bioinformatics* **32**, 1479-1485 (2016).

502 28. Y. Liu *et al.*, Acat: A fast and powerful p value combination method for rare-variant analysis in
503 sequencing studies. *The American Journal of Human Genetics* **104**, 410-421 (2019).

504 29. Y. Liu, J. Xie, Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary
505 dependency structures. *Journal of the American Statistical Association* **115**, 393-402 (2020).

506 30. C. Quick, X. Wen, G. Abecasis, M. Boehnke, H. M. Kang, Integrating Comprehensive Functional
507 Annotations to Boost Power and Accuracy in Gene-Based Association Analysis. *BioRxiv*, 732404
508 (2019).

509 31. S. Feng, D. Liu, X. Zhan, M. K. Wing, G. R. Abecasis, RAREMETAL: fast and powerful meta-analysis
510 for rare variants. *Bioinformatics* **30**, 2828-2829 (2014).

511 32. J. Yang *et al.*, Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies
512 additional variants influencing complex traits. *Nature genetics* **44**, 369-375 (2012).

513 33. G. Wang, A. Sarkar, P. Carbonetto, M. Stephens, A simple new approach to variable selection in
514 regression, with application to genetic fine mapping. *Journal of the Royal Statistical Society: Series B*
515 (*Statistical Methodology*), (2020).

516 34. Y. Lee, F. Luca, R. Pique-Regi, X. Wen, Bayesian Multi-SNP Genetic Association Analysis: Control of
517 FDR and Use of Summary Statistics. *BioRxiv*, 316471 (2018).

518 35. C. Benner *et al.*, Prospects of fine-mapping trait-associated genomic regions by using summary
519 statistics from genome-wide association studies. *The American Journal of Human Genetics* **101**, 539-
520 551 (2017).

521 36. X. Wen, Y. Lee, F. Luca, R. Pique-Regi, Efficient integrative multi-SNP association analysis via
522 deterministic approximation of posteriors. *The American Journal of Human Genetics* **98**, 1114-1129
523 (2016).

524 37. C. Benner *et al.*, FINEMAP: efficient variable selection using summary data from genome-wide
525 association studies. *Bioinformatics* **32**, 1493-1501 (2016).

526 38. X. Zhan, Y. Hu, B. Li, G. R. Abecasis, D. J. Liu, RVTESTS: an efficient and comprehensive tool for rare
527 variant association analysis using sequence data. *Bioinformatics* **32**, 1423-1426 (2016).

528 39. X. Li *et al.*, Dynamic incorporation of multiple in silico functional annotations empowers rare variant
529 association analysis of large whole-genome sequencing studies at scale. *Nature genetics* **52**, 969-983
530 (2020).

531 40. X. Wen, R. Pique-Regi, F. Luca, Integrating molecular QTL data into genome-wide genetic association
532 analysis: Probabilistic assessment of enrichment and colocalization. *PLoS genetics* **13**, e1006646
533 (2017).

534 41. F. Aguet *et al.*, The GTEx Consortium atlas of genetic regulatory effects across human tissues.
535 *BioRxiv*, 787903 (2019).

536 42. Y. Kim *et al.*, A meta-analysis of gene expression quantitative trait loci in brain. *Translational psychiatry*
537 **4**, e459-e459 (2014).

538 43. U. Võsa *et al.*, Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis.
539 *BioRxiv*, 447367 (2018).

540 44. S. K. Sieberts *et al.*, Large eQTL meta-analysis reveals differing patterns between cerebral cortical and
541 cerebellar brain regions. *Scientific data* **7**, 1-11 (2020).

542 45. G. Guennebaud, B. Jacob, Eigen: a c++ linear algebra library. URL <http://eigen.tuxfamily.org>,
543 Accessed **22**, (2014).

544 46. Y. Qiu, Spectra C++ Library For Large Scale Eigenvalue Problems. URL <https://spectralib.org/>, (2020).

545 47. P. Danecek *et al.*, The variant call format and VCFtools. *Bioinformatics* **27**, 2156-2158 (2011).

546 48. R. A. Gibbs *et al.*, The international HapMap project. (2003).

547 49. W. Zhang, M. J. Ratain, M. E. Dolan, The HapMap resource is providing new insights into ourselves
548 and its application to pharmacogenomics. *Bioinformatics and biology insights* **2**, BBI. S455 (2008).

549 50. G. P. Consortium, A global reference for human genetic variation. *Nature* **526**, 68-74 (2015).

550 51. M. E. Tipping, C. M. Bishop, Probabilistic principal component analysis. *Journal of the Royal Statistical*
551 *Society: Series B (Statistical Methodology)* **61**, 611-622 (1999).

552 52. L. Jiang *et al.*, "A resource-efficient tool for mixed model association analysis of large-scale data,"
553 (Nature Publishing Group, 2019).

554 53. P.-R. Loh *et al.*, Efficient Bayesian mixed-model analysis increases association power in large cohorts.
555 *Nature genetics* **47**, 284 (2015).

556 54. H. Chen, M. P. Conomos, GMMAT-package: Generalized Linear Mixed Model Association Tests.
557 (2020).

558 55. S. M. Gogarten *et al.*, Genetic association testing using the GENESIS R/Bioconductor package.
559 *Bioinformatics* **35**, 5346-5348 (2019).

560 56. P.-R. Loh, BOLT-LMM v2.3.4 User Manual. URL https://alkesgroup.broadinstitute.org/BOLT-LMM/downloads/BOLT-LMM_v2.3.4_manual.pdf (2019).

561 57. P. Yajnik, M. Boehnke, Power loss due to testing association between covariate-adjusted traits and
562 genetic variants. *Genetic Epidemiology*, (2020).

563 58. K. J. Karczewski *et al.*, The mutational constraint spectrum quantified from variation in 141,456
564 humans. *Nature* **581**, 434-443 (2020).

565 59. W. Meuleman *et al.*, Index and biological spectrum of human DNase I hypersensitive sites. *Nature*, 1-8
566 (2020).

567 60. A. Buniello *et al.*, The NHGRI-EBI GWAS Catalog of published genome-wide association studies,
568 targeted arrays and summary statistics 2019. *Nucleic acids research* **47**, D1005-D1012 (2019).

569 61. A. F. Di Narzo, H. Cheng, J. Lu, K. Hao, Meta-eQTL: a tool set for flexible eQTL meta-analysis. *BMC
570 bioinformatics* **15**, 392 (2014).

571 62. D. N. Lawley, Vi.—the estimation of factor loadings by the method of maximum likelihood. *Proceedings
572 of the Royal Society of Edinburgh* **60**, 64-82 (1940).

573 63. A. L. Price *et al.*, Principal components analysis corrects for stratification in genome-wide association
574 studies. *Nature genetics* **38**, 904-909 (2006).

575 64. C. C. Chang *et al.*, Second-generation PLINK: rising to the challenge of larger and richer datasets.
576 *Gigascience* **4**, s13742-13015-10047-13748 (2015).

577 65. A. Manichaikul *et al.*, Robust relationship inference in genome-wide association studies. *Bioinformatics*
578 **26**, 2867-2873 (2010).

579 66. C. Lippert *et al.*, FaST linear mixed models for genome-wide association studies. *Nature methods* **8**,
580 833-835 (2011).

581 67. G. R. Svishcheva, T. I. Axenovich, N. M. Belonogova, C. M. van Duijn, Y. S. Aulchenko, Rapid variance
582 components-based method for whole-genome association analysis. *Nature genetics* **44**, 1166-1170
583 (2012).

584 68. S. Fairley, E. Lowy-Gallego, E. Perry, P. Flicek, The international genome sample resource (IGSR)
585 collection of open human genomic variation resources. *Nucleic Acids Research* **48**, D941-D947 (2020).

586 69. P.-R. Loh, P. F. Palamara, A. L. Price, Fast and accurate long-range phasing in a UK Biobank cohort.
587 *Nature genetics* **48**, 811-816 (2016).

588 70. S. Das *et al.*, Next-generation genotype imputation service and methods. *Nature genetics* **48**, 1284-
589 1287 (2016).

590 71. A. Athar *et al.*, ArrayExpress update—from bulk to single-cell expression data. *Nucleic acids research*
591 **47**, D711-D715 (2019).

592 72. C. Bycroft *et al.*, The UK Biobank resource with deep phenotyping and genomic data. *Nature* **562**, 203-
593 209 (2018).

594 73. R. C. Team. (Vienna, Austria, 2013).

595

598

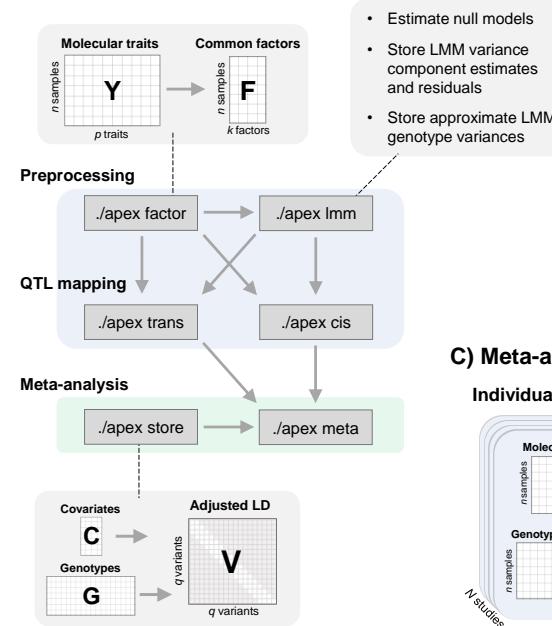
Figures

599

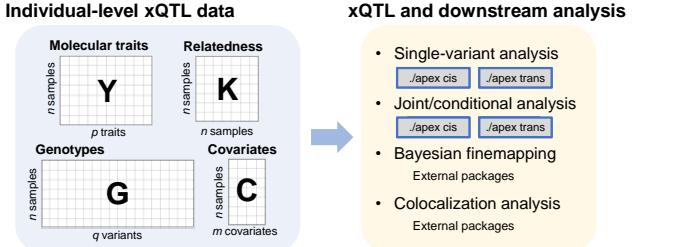
600

Figure 1. APEX toolkit for molecular QTL mapping and meta-analysis

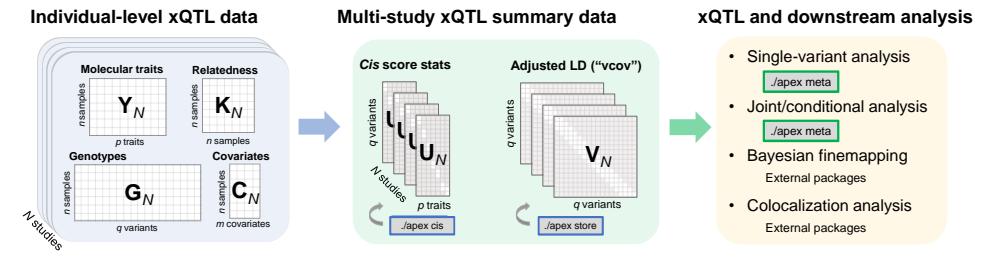
A) APEX core running modes



B) Single-cohort analysis workflow



C) Meta-analysis workflow



601

602

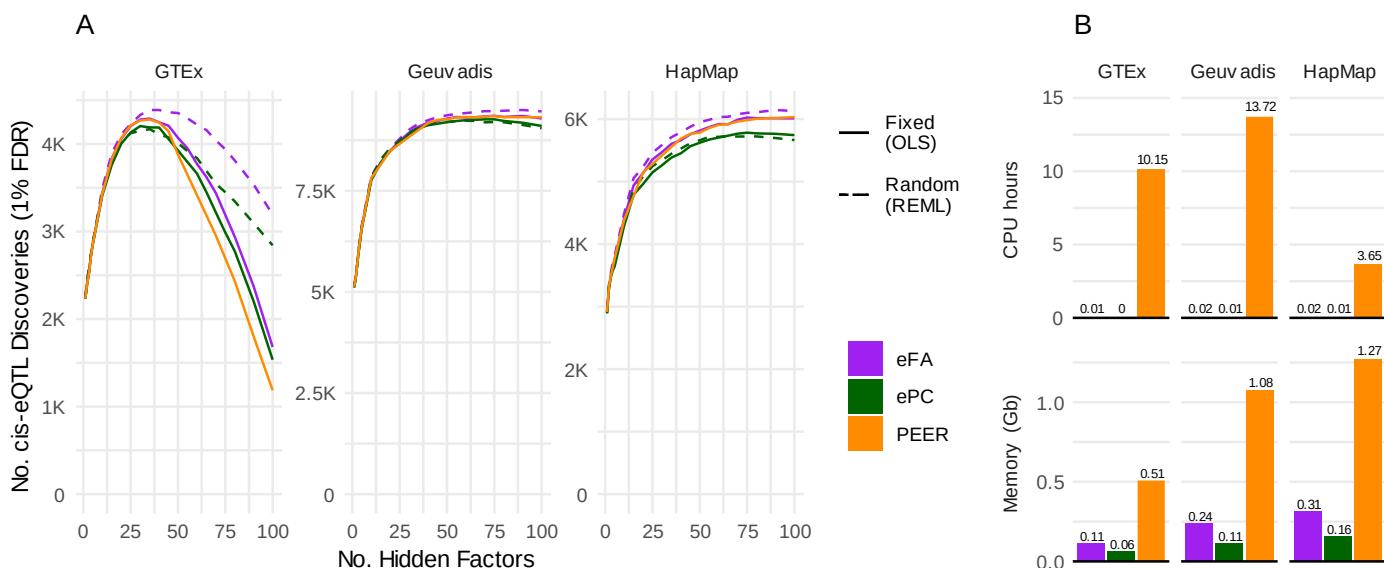
603 **A:** Mode *factor* provides factor analysis to infer shared technical and biological factors across traits. In QTL mapping (modes *cis* and *trans*), inferred factor covariates can be modeled as fixed effects (by appending matrix F to covariate matrix C) or random effects (using mode *lmm*). Mode *lmm* enables rapid linear mixed model (LMM) association analysis (in modes *cis* and *trans*) by precomputing and storing variance component estimates, LMM trait residuals, and approximate LMM genotypic variances. Mode *store* generates compact adjusted LD files for accurate multiple-variant analysis from summary statistics (using mode *meta* for meta-analysis).

604 **B:** Individual-level molecular trait, genotype, and covariate data (and optional genetic relatedness matrix) are used as
605 input for single-variant and joint/conditional association analysis across traits (APEX modes *cis* and *trans*). These data
606 can also be used for Bayesian finemapping and colocalization analysis using external software packages.

607 **C:** Each study generates summary data files (single-variant score statistics using mode *cis* and adjusted LD matrices
608 using mode *store*) from individual-level data. These summary files can be used for single-variant and joint/conditional
609 association meta-analysis in mode *meta*, or combined using the Apex2R interface to create input data for Bayesian
610 finemapping and colocalization analysis using external packages.

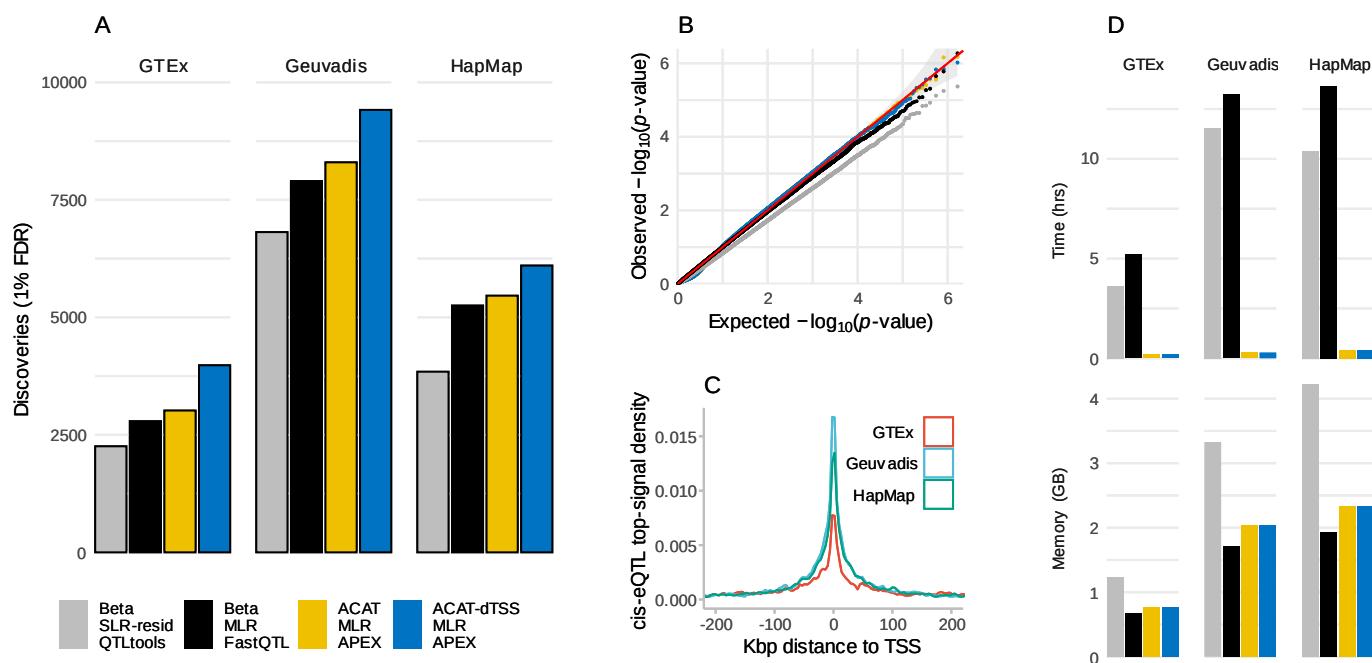
616

Figure 2. Rapid factor analysis and linear mixed models for *cis*-eQTL analysis



628

Figure 3. Fast and powerful *cis*-eQTL omnibus tests



629

630

631 **A: ACAT and dTSS weights increase eGene discoveries.** Gene-level *cis*-eQTL discoveries for each LCL data set at
632 1% FDR. Because all methods maintain calibrated Type I error rates in simulations (panel B), a larger number of
633 discoveries suggests greater statistical power. Note that the number of tested genes varies across the three studies
634 (Figure 4).

635 **B: Calibration of permutation-based and ACAT p-values.** Q-Q plots for each method in simulations under the null
636 hypothesis using genotype and expression data from Geuvadis. Traits were simulated using the observed correlation
637 structure of gene expression, and expression PC covariates were re-calculated from simulated expression values in each
638 replicate (Methods). P-values for all methods maintain calibrated or conservative Type I error rates, and SLR-resid
639 permutation-based p-values are notably conservative.

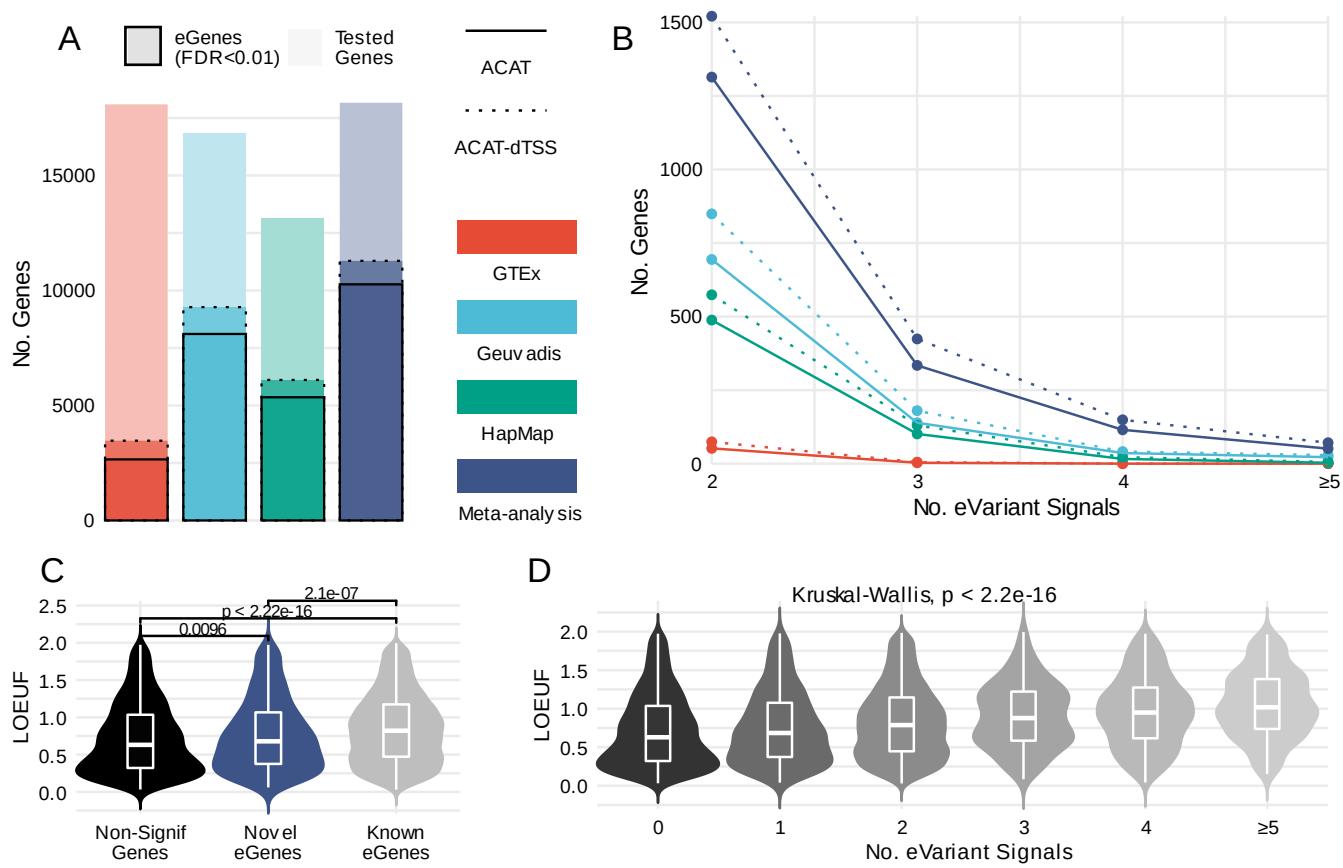
640 **C: eQTL enrichment by dTSS.** Density of chromosomal distance between top *cis*-eVariant and TSS across genes for
641 each study. Cis-eVariants are strongly enriched nearer the TSS.

642 **D: CPU time and memory for eGene discovery.** Analyses were run sequentially across chromosomes with 1 CPU; we
643 report maximum memory usage and total elapsed running time.

644

645

Figure 4. Meta-analysis identifies novel primary and secondary *cis*-eQTLs



646

647 **A: Meta-analysis and dTSS weights increase eGene discoveries.** eGenes detected in LCL cis-eQTL analysis across
 648 studies and meta-analysis. Colored bars show total numbers of tested genes, and outlined bars show numbers of eGenes
 649 (cis-eQTL genes) detected at 1% FDR using unweighted ACAT (solid line) and or distance to transcription start site
 650 (dTSS) weighted ACAT (dashed line). dTSS weights increased eGene discoveries by 30.6% for GTEx, 14.4% for
 651 Geuvadis, 14.1% for HapMap, and 10.0% for meta-analysis.

652 **B: Meta-analysis and dTSS weights increase secondary eQTL discoveries.** Secondary cis-eQTL variant discoveries
 653 across studies and meta-analysis. Shown are numbers of genes with 2, 3, 4, or ≥5 LCL eQTL eVariant signals detected
 654 at 1% FDR using unweighted (solid line) and dTSS-weighted ACAT. dTSS weights increased secondary signal
 655 discoveries by 43.6% for GTEx, 23.3% for Geuvadis, 20.4% for HapMap, and 19.3% for meta-analysis.

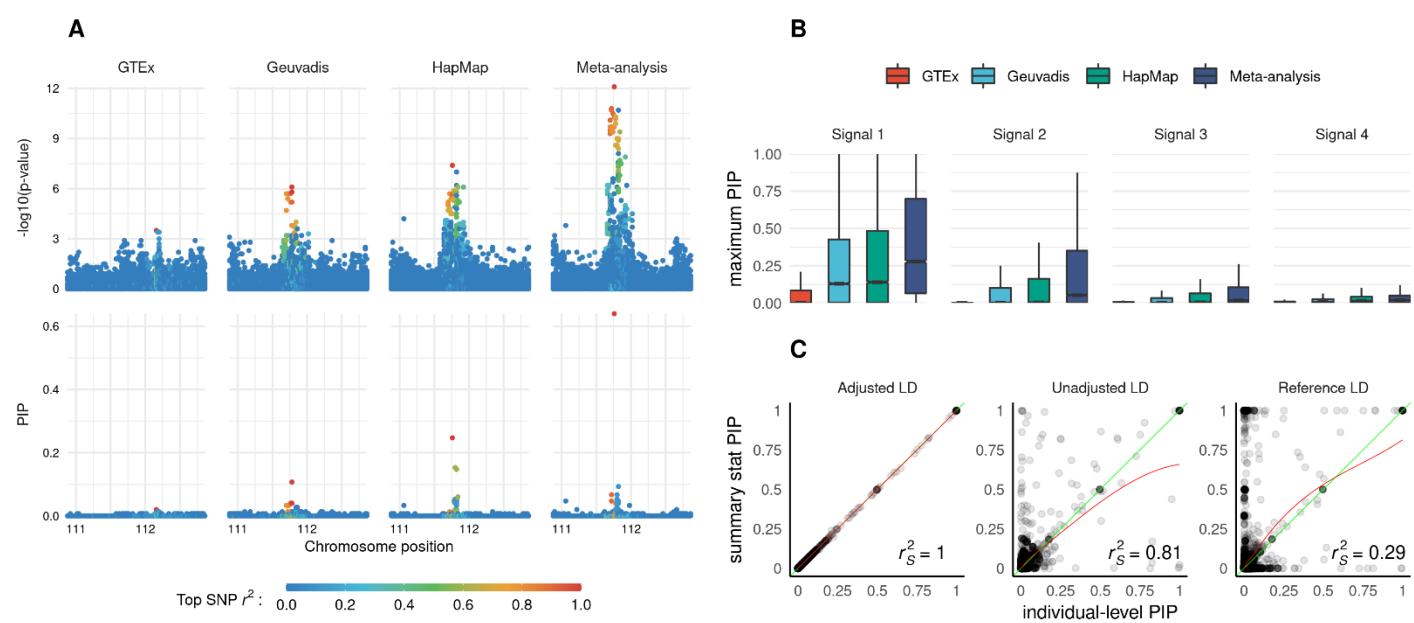
656 **C: Meta-analysis detects cis-eQTLs for constrained genes.** Loss of function (LoF) observed/expected upper bound
 657 fraction (LOEUF) is a metric of genetic constraint; constrained genes have smaller LOEUF. LOEUF densities are shown
 658 for the 11,750 genes present in all (3 out of 3) studies, divided into 3 categories: (a) no cis-eQTLs detected at 1% FDR
 659 (2,659 “non-signif” genes), (b) ≥1 eQTL detected in meta-analysis but not individual studies (693 “novel eGenes”), and (c)
 660 ≥1 eQTL detected by ≥1 individual study (8,398 “known eGenes”). Both novel and non-significant genes have
 661 significantly lower LOEUF than known eGenes, suggesting greater constraint.

662 **D: Fewer secondary cis-eQTLs are detected for constrained genes.** LOEUF densities for genes with 0, 1, ... ≥5
 663 significant eVariants detected by stepwise regression in meta-analysis (1% FDR), shown for genes present in 3 out of 3
 664 studies. Genes with more eVariants tend to have higher LOEUF (less constraint), as expected.

665

666

Figure 5. Accurate QTL finemapping from summary statistics



667

668

669 APEX xQTL sumstat and vcov files enable accurate multiple-variant analyses without individual-level data. Here, we
670 illustrate Bayesian finemapping from APEX summary statistics data using the *susieR* package and *Apex2R* interface to
671 access sumstat and vcov files.

672 **A: Finemapping *cis*-eQTLs from summary statistics.** *cis*-eQTL p-values (upper panel) and posterior inclusion
673 probabilities (PIPs) for *cis* variants at the *FYN* locus (6.p22) are shown across the three studies and meta-analysis.
674 Meta-analysis increases signal strength (upper panels) and precision identifying putative causal variants (lower panels).

675 **B: Meta-analysis increases finemapping precision.** We finemapped 9,787 genes present in each of the 3 studies from
676 APEX sumstat and vcov summary data files using the *susieR* package. For each gene, we assigned each variant to its
677 most likely signal cluster (highest posterior probability), and calculated the maximum PIP across variants within each
678 signal cluster. Boxplots show the distribution of the maximum PIP within the 1st, 2nd, 3rd and 4th signal cluster across
679 genes for each study. Maximum PIPs tend to increase with sample size, as expected.

680 **C: APEX sumstat and vcov files enable accurate finemapping from summary statistics.** Concordance of PIPs
681 across 71 genes using individual-level data (x axis) vs summary statistics (y axis) from HapMap with covariate-adjusted
682 HapMap LD (left), HapMap LD not adjusted for covariates (middle), or proxy LD from Geuvadis (right) adjusted for similar
683 covariates. PIPs from summary statistics using APEX vcov files (adjusted LD) are nearly numerically equivalent with
684 individual-level analysis. PIPs using unadjusted or proxy LD are less concordant with individual-level analysis (Spearman
685 r^2 0.81 or 0.29 respectively).

686

687

688

689

Tables

690

Table 1. Descriptive statistics for LCL eQTL data sets

	Sample size	Genotype data	Total no. variants	Expression data	Total no. transcripts
GTEx v8	147	WGS	12,232,655	RNA-seq	22,759
Geuvadis	454	WGS	31,331,216	RNA-seq	17,815
HapMap	518	Genotyped and imputed	29,539,804	Expression microarray	16,329

691

692 Summary of LCL data sets analyzed. For HapMap, we report the number of imputed variants. For all studies,
693 we report the number of variants before filtering. Processing and filtering procedures for each study are
694 described in Methods.

695