

Transformed notochordal cells trigger chronic wounds destabilizing the vertebral column and bone homeostasis

Authors: Paco López-Cuevas¹, Luke Deane¹, Yushi Yang^{2, 3, 4}, Chrissy L Hammond⁵ and Erika Kague^{5*}

Affiliations:

¹The School of Biochemistry, Biomedical Sciences, University of Bristol, BS8 1TD, UK.

²School of Physics, HH Wills Physics Laboratory, University of Bristol, BS8 1TL, UK.

³Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, BS8 1FD,

14 UK.

⁴Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1TL, UK.

⁵The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences,

17 University of Bristol, BS8 1TD, UK.

18

*Correspondence to: erika.kague@bristol.ac.uk

20

21 **Summary statement**

22 Zebrafish chordomas resemble unhealed wounds. They compromise the notochord structure,
23 causing chronic inflammation, impairing intervertebral discs patterning and bone
24 homeostasis. By controlling inflammation one can control chordoma development.

25

26 **Keywords**

27 Chordoma, notochord, vertebral column, zebrafish intervertebral disc, inflammation, bone
28 homeostasis

29

30

31

32 **Abstract**

33 Notochordal cells play a pivotal role in vertebral column patterning, contributing to the
34 formation of the inner architecture of intervertebral discs (IVDs). Their disappearance during
35 development has been associated with reduced repair capacity and IVD degeneration.
36 Notochordal remnants are known to cause chordomas, a highly invasive bone cancer
37 associated with late diagnosis. Understanding the impact of neoplastic cells during
38 development and on the surrounding vertebral column could open avenues for earlier
39 intervention and therapeutics. We investigated the impact of transformed notochord cells in
40 the zebrafish skeleton using a RAS expressing line in the notochord under the control of the
41 *Kita* promoter, with the advantage of adulthood endurance. Transformed cells caused damage
42 in the notochord and destabilised the sheath layer triggering a wound repair mechanism, with
43 enrolment of sheath cells (*col9a2+*) and expression of *wt1b*, similar to induced notochord
44 wounds. Moreover, increased recruitment of neutrophils and macrophages, displaying
45 abnormal behaviour in proximity to the notochord sheath and transformed cells, supported
46 parallels between chordomas, wound and inflammation. Cancerous notochordal cells
47 interfere with differentiation of sheath cells to form chordacentra domains leading to fusions
48 and vertebral clefts during development. Adults displayed IVD irregularities reminiscent of
49 degeneration; reduced bone mineral density, increased osteoclast activity; while disorganised
50 osteoblasts and collagen indicate impaired bone homeostasis. By depleting inflammatory
51 cells, we abrogated chordoma development and rescued the skeletal features of the vertebral
52 column. Therefore, we showed that transformed notochord cells alter the skeleton during life,
53 causing a wound-like phenotype and activating chronic wound response, suggesting parallels
54 between chordoma, wound, IVD degeneration and inflammation, highlighting inflammation
55 as a promising target for future therapeutics.

56

57 **Introduction**

58 The vertebral column is the central axis of the skeleton in all vertebrates. It is
59 composed of segments (vertebrae) connected by joint-like structures called intervertebral
60 discs (IVDs). In mammals, the architecture of the IVDs is made by an annulus fibrosus (AF),
61 a collagenous layer surrounding a hydrated and gelatinous nucleus pulposus (NP) core, which
62 contains chondrocyte-like cells derived from embryonic notochord cells (Rodrigues-Pinto et
63 al., 2014). The disappearance of notochordal cells in mammals during development of the
64 vertebral column has been linked to reduction of repair capacity and IVD degeneration
65 (IVDD) (Wang et al., 2017). Occasionally, notochordal remnants are observed (Yamaguchi et
66 al., 2004), causing vertebral malformations and in rare cases cell transformation lead to
67 chordomas (Salisbury, 1993, Choi et al., 2008), a rare bone cancer of the axial skeleton and
68 skull base (McMaster et al., 2011).

69 With an incidence of approximately one in a million, chordomas account for about 1-
70 4% percent of all primary bone malignancies and 20% of primary spinal tumours (Chugh et
71 al., 2007). Chordomas are slow growing and highly resistant to both chemotherapy and
72 radiotherapy, meaning that radical surgery is often the primary choice for treatment modality
73 (McMaster et al., 2011). Unfortunately, in many cases, the proximity of chordomas to vital
74 structures, means that local excision is rarely achieved, resulting in a recurrence rate greater
75 than 50% (Stacchiotti et al., 2017, Barry et al., 2011). Distant metastases to lung, bone, soft
76 tissue, lymph node, liver, and skin have been reported in up to 43% of cases (Stacchiotti et
77 al., 2017, Barry et al., 2011). Interestingly, chordomas lead to changes in bone quality, and
78 often appear on X-rays and computerised tomography (CT) as eroding bone lesions with
79 associated soft tissue calcification (de Bruine and Kroon, 1988), suggesting modifications in
80 the behaviour of the nucleus pulposus cells disrupt disc and bone homeostasis. Impairment of
81 disc homeostasis is a hallmark of IVDD (Novais et al., 2020a), which unlike chordomas is

82 very common, representing the most common cause of back pain (Zheng and Chen, 2015), a
83 symptom that 80% of the adult world population suffer from (GBD et al., 2017). How
84 transformed nucleus pulposus cells affect the IVD and surrounding vertebrae during their
85 development is currently unknown; and no animal models to show how transformed cells
86 dynamically interact with and affect the IVDs and vertebral column *in vivo* have been
87 described. Such models could contribute to our understanding of chordoma development,
88 IVDD, the interaction of the nucleus pulposus with the skeletal tissues and feature possible
89 therapeutic avenues for both conditions.

90 Zebrafish have emerged as an advantageous animal model for a variety of human
91 diseases, including cancer and skeletal diseases, due to their fast development, tractability,
92 flexible genetic manipulation (transgenesis, forward and reverse genetics) and their
93 translucency (Bergen et al., 2019). Reporter lines allow *in vivo* assessment of cell behaviour
94 not only during early development but also during the later stages of skeletal formation in
95 juveniles (Bergen et al., 2019). Zebrafish have high tissue regenerative capacity, with the
96 ability to restore vacuolated cells of the notochord upon injury (Garcia et al., 2017). In
97 zebrafish, notochord cells remain throughout life; they are enveloped by a sheath layer that
98 acts as a sealing basement membrane to isolate the inner notochord vacuolated cells, and
99 carries high potential to mineralise (Fleming et al., 2004, Stemple, 2005). The notochord
100 sheath plays an important role in the segmentation of the vertebral column and centra
101 primordium (chordacentra) formation (Lleras Forero et al., 2018, Pogoda et al., 2018, Wopat
102 et al., 2018). Following genetic manipulation, mechanical injury (needle punctures) or
103 chemical treatment (with nystatin), repair of tissue damage appears to involve a sub-
104 population of notochord sheath cells which become activated, expressing Wilms Tumor 1
105 (*wt1b*), and migrate towards the wound, setting landmarks during notochord repair (Garcia et
106 al., 2017, Lopez-Baez et al., 2018).

107 Chordoma onset has been described in larval zebrafish expressing the oncogene *RAS*
108 in the notochord, using the bimodal Gal4/UAS system and activation of the oncogenic
109 RTK/Ras pathway (Burger et al., 2014). These zebrafish chordoma models become affected
110 within the first 3 days post-fertilisation (dpf), progressively developing notochord hyperplasia
111 , similar to histological features of human chordomas (Burger et al., 2014). Recently, the
112 zebrafish chordoma model was used to test genetic potential to transform the notochord *in*
113 *vivo*, providing suggestive evidence that Brachyury (*TBXT*), a highly expressed gene in
114 human chordomas (Vujovic et al., 2006), is insufficient to initiate chordomas, instead
115 suggesting activation of members of the RTK signalling as potential players in chordoma
116 formation (D'Agati et al., 2019). The behaviour of notochord cancer cells during zebrafish
117 life has not yet been studied, due to early lethality of chordoma models during larval stages.
118 It is unknown whether notochord cancer cells trigger a wound repair mechanism similar to
119 those of notochord injury models, which activate an acute inflammatory response as is seen
120 in other early cancers (Feng et al., 2012, Feng et al., 2010). It is also unclear whether
121 notochord cancer cells exert control as notochordal remnants to interfere with bone formation
122 and, later in life, with bone homeostasis.

123 Here we studied the interactions between the notochord cancer cells within the
124 forming vertebral column and bone homeostasis using a well-characterised transgenic line,
125 *Kita-RAS*, which drives expression of HRASV12 in the notochord (and in melanoblasts, thus
126 modelling melanoma) and survives to adulthood (Santoriello et al., 2010, van den Berg et al.,
127 2019, Feng et al., 2012). We showed that “transformed” notochord cells destabilise the
128 notochord sheath layer, activating a chronic wound repair response similar as those caused by
129 induced notochord wounds previously described (Garcia et al., 2017, Lopez-Baez et al.,
130 2018). These pre-neoplastic cells lead to invagination of the *col9* expressing notochord sheath
131 cells towards the wound and participation of *wt1b* notochord sheath sub-population.

132 Interestingly, macrophages and neutrophils were present in higher numbers and showed
133 prolonged interaction with the wounded notochord sheath layer, as described in other
134 cancers. The metameric pattern of segmentation of the vertebral column was compromised,
135 but not abrogated, leading to vertebral fusions and clefts. Adult bone homeostasis was altered
136 as observed by differences in vertebral bone mineral density and collagen fibre distribution.
137 Transformed cells also compromised the adult zebrafish equivalent intervertebral disc
138 architecture, leading to NP “scar” tissue, NP cellular disorganisation and affecting the
139 structure of the AF, similar to IVDD. Chordoma development and skeletal defects were
140 rescued when we partially depleted neutrophils and macrophages. In conclusion, our results
141 indicate that transformed notochord cells cause chronic wounds leading to inflammation,
142 vertebral abnormalities, disc and bone homeostasis impairment. Chordoma development
143 could be controlled by limiting inflammation, revealing new avenues for therapeutics and
144 highlighting the use of zebrafish as an animal model.

145

146

147

148

149 **Results**

150 ***Kita-RAS* induces wound-like destabilisation of the notochord**

151 Notochord-specific *Gal4* lines crossed to *UAS:EGFP-HRASV12* have been previously
152 described as powerful models for inducing chordomas in zebrafish (Burger et al., 2014). A
153 transgenic line extensively used to induce melanoma, in which *HRASV12* expression is
154 driven by the *Kita* promoter in melanoblasts, goblet cells and in the notochord cells has the
155 advantage over other notochord RAS expressing lines because it survives to adulthood
156 (Santoriello et al., 2010, van den Berg et al., 2019). We used *Kita-RAS-GFP* and *Kita-RAS-*
157 *mCherry* to study the progressive changes of the transformed notochord cells and their
158 interaction with the forming vertebral column. In 5dpf zebrafish larvae, the outer layer of the
159 notochord is formed by an epithelial-like sheath wrapping notochord vacuolated cells (Wopat
160 et al., 2018) (Fig. 1A). Confocal images through the notochord, at 5dpf, showed that *Kita*
161 drives reporter expression in the notochord vacuolated cells, but not in the sheath cells (Fig.
162 1B). As in other chordoma RAS models, *Kita-RAS* led to dramatic destabilisation of the
163 notochord vacuolated cells starting as early as 3dpf and by 5dpf affected 70% of the larvae
164 (>200 larvae analysed). Affected larvae were considered when they displayed more than 3
165 lesions in the notochord. Each lesion was characterised by increased RAS expression and
166 abnormal notochord cell morphology (Fig. 1B). At the same developmental stage (5dpf),
167 notochord cells were interspaced by infiltration of non-vacuolated cells and accumulation of
168 fibrous collagenous tissue (AFOG staining, red colour) (Fig. 1B-C). Furthermore,
169 histological sections suggested local destabilisation of the notochord sheath layer at the
170 region of collapsed vacuolated cells (Fig. 1C). To analyse cell proliferation, we treated larvae
171 with EdU solution to be incorporated into the DNA of proliferating cells from 2 to 4dpf and
172 followed by counting the number of EdU-positive (+) cells at 5dpf from confocal images.
173 Notochord cells and notochord sheath cells in *Kita-RAS* are highly proliferative (p= 0.0002)

174 (Fig. 1D and E). Interestingly, the organisation of the notochord in *Kita-RAS* fish displayed
175 cellular characteristics reminiscent of those observed in notochord wounding models (needle
176 puncture)(Lopez-Baez et al., 2018) (Fig. S1), suggesting that chordoma may recapitulate
177 repair mechanisms, as has been suggested for several other cancers (Feng et al., 2010).

178 **Pre-neoplastic notochord cells trigger the notochord wound repair mechanism in**
179 **zebrafish**

180 Wounds in the notochord induced by needle injury, amputation and chemical damage lead to
181 the collapse of notochord vacuolated cells, sheath cell invasion and expression of Wilms
182 Tumor 1b (*wt1b*) within a cell sub-population of the notochord sheath (Garcia et al., 2017,
183 Lopez-Baez et al., 2018). To investigate whether pre-neoplastic notochord cells mimic a
184 wound-like response, we crossed *Kita-RAS-mCherry* with Tg(*col9a2:GFP**CaaX*), a marker
185 for the notochord sheath layer (Fig. 2A), and to Tg(*wt1b:gfp*) to label the sub-population of
186 sheath cells that standardly respond to damage. We confirmed that at 5dpf *Kita* is not
187 expressed in the notochord sheath layer, and only in the notochord cells (Fig. 2B). We
188 observed *col9a2* expression in regions of damage within the notochord, suggesting sheath
189 cell migration towards the chordoma wounded area (Fig. 2B). Cross sections through the
190 notochord, at 5dpf, showed *col9a2* expressing cells within the notochord in connection with
191 the notochord sheath (Fig. 2B), reinforcing the possible migration of sheath cells to the
192 lesioned region. To check for cell abnormalities in the notochord sheath, we quantified the
193 cell area of the *col9+* cells within two regions of our *Kita-RAS*, wound- proximal and distal
194 (Fig. 2C). *Kita-RAS* showed significant reduction in cell area in wound-proximal regions ($p <$
195 0.0001), but not in wound-distal regions when compared to controls (Fig. 2C). Therefore,
196 wound-like lesions caused by transformed notochord cells lead to local cellular modifications
197 in the sheath layer. Next, we analysed *wt1b* expression in the *Kita-RAS* outcrossed fish.
198 Control fish exhibited no expression of *wt1b* in the notochord, whereas *Kita-RAS* showed

199 strong *wt1b* expression by pre-neoplastic cells located at severe wounded regions in 100% of
200 the cases analysed (20/20) (Fig. 2E). These findings corroborate strong parallels between
201 cancer and wound repair (MacCarthy-Morrogh and Martin, 2020).

202 **Wounded notochord sheath elicits a prolonged recruitment of innate inflammatory cells**

203 Several studies have reported that oncogene-transformed cells trigger an innate inflammatory
204 response, with both neutrophils and macrophages recruited to the pre-cancerous tissue (Chia
205 et al., 2018, Feng et al., 2010, Freisinger and Huttenlocher, 2014, Roh-Johnson et al., 2017).
206 This recruitment of neutrophils and macrophages is responsible for clearing cell debris and to
207 orchestrate tissue repair responses including wound angiogenesis and matrix deposition
208 (Eming et al., 2017). We questioned whether oncogenic RAS expression in the notochord
209 cells and the lesioned notochord sheath might also induce an inflammatory response in our
210 zebrafish chordoma model. During the first weeks of development, zebrafish do not have a
211 functional adaptive immune system, allowing us to investigate the innate immune response
212 on its own (Renshaw and Trede, 2012). We performed time-lapse imaging at 5dpf and
213 analysed the interactions of neutrophils and macrophages with the notochord sheath layer.
214 For neutrophils, we incrossed *Tg(kita:Gal4; UAS:mCherry; UAS:HRASG12V-GFP;lyz:DsRed)*, and selected RAS-/lyz+ larvae, *Tg(kita:mCherry;lyz:DsRed)*, and
215 RAS+/lyz+ larvae, *Tg(kita:HRASG12V-GFP;lyz:DsRed)*, as controls and *Kita-RAS* fish,
216 respectively. While for macrophages, we incrossed *Tg(kita:Gal4;UAS:mCherry;UAS:HRASG12V-GFP;mpeg:FRET)*, selected RAS-/mpeg+
217 larvae, *Tg(kita:mCherry;mpeg:FRET)* and RAS+/mpeg+ larvae, *Tg(kita:HRASG12V-GFP;mpeg:FRET)*, as controls and *Kita-RAS* fish, respectively. Higher numbers of
218 neutrophils and macrophages were recruited, making a prolonged direct contact with the
219 wounded notochord sheath in *Kita-RAS* in comparison with controls (Fig. 3, Fig. S2 and
220 Movies 1 and 2), similarly to the inflammatory response previously reported in the melanoma
221
222
223

224 model (Feng et al., 2010). Remarkably, we also found neutrophils and macrophages
225 infiltrating wounded regions and in direct contact with notochord vacuolated cells (Fig. S2
226 and Movies 1 and 2). Together our results showed that zebrafish chordoma induces a chronic
227 notochord inflammatory wound response with typical wound recruitment of neutrophils and
228 macrophages. Inflammatory cells trespass the notochord sheath layer in wounded regions to
229 form direct contact with transformed notochord cells, a similar behaviour described for other
230 cancers (Feng et al., 2012).

231 **Depletion of neutrophils and macrophages abolishes chordoma development**

232 To further test whether the increased innate inflammatory response triggers the proliferation
233 of neoplastic cells leading to wounds in the notochord, we transiently delayed innate immune
234 cell development by injecting *pu.1* and *gcsfr* morpholinos (MO) (double knockdown), at the
235 one cell stage embryos generated by incrosses of *Kita-RAS-GFP* fish (Fig. S3). Combined
236 *pu.1* and *gcsfr* MO injections are used to transiently arrest myeloid lineage development in
237 larval zebrafish until at least 4dpf, therefore generating larvae lacking neutrophils and
238 macrophages (Feng et al., 2012, Liougue et al., 2009, Rhodes et al., 2005). We confirmed the
239 efficiency of our morpholino experiment by injecting fish carrying labelled neutrophils and
240 macrophages at 3dpf (Tg(*lyz:DsRed;mpeg:FRET*))(Fig. S3B). Blocking the development of
241 inflammatory cells in *Kita-RAS* resulted in a reduction of larvae exhibiting wounded (> 5
242 lesions) notochordal phenotype from 44.37 % (control MO) to 8.56 % (*pu.1* + *gcsfr* MO) (p<
243 0.0001) at 3dpf (Fig. S3C and D). In addition, fish with affected notochord (8.56%) in the
244 *pu.1* + *gcsfr* MO group showed a less severe (≤ 5 lesions) phenotype in comparison to the
245 control MO group, suggesting that incomplete ablation of inflammatory cells can ameliorate
246 chordoma. To complement our morpholino experiment, we used CRISPR/Cas9 system to
247 target *pu.1* and *gcsfr* simultaneously. We were able to cause mutations with an efficiency rate

248 of 80%, validated by fragment length analysis, for each individual genes, at 5dpf. We
249 analysed *Kita-RAS* larvae from morpholinos (MO) and CRISPR injections side-by-side at
250 5dpf (Fig. 4A). CRISPR injections led to a significant reduction in numbers of neutrophils
251 ($p= 0.0012$) and macrophages ($p= 0.0478$), but this reduction was not as pronounced as that
252 observed from MO injections ($p<0.0001$) (Fig. 4B-D). Morpholinos also led to a significant
253 reduction in proliferation of notochord and notochord epithelium cells in *Kita-RAS* (Fig. 4E
254 and F). While CRISPR injections reduced cell proliferation, they did not show statistical
255 difference from *Kita-RAS* ($p= 0.2422$)(Fig. 4E and F). In comparison with non-affected
256 notochords from controls, fluorescent stereomicroscopy pictures from *Kita-RAS* wounded
257 notochords displayed different profiles of average pixel intensity. Notochordal lesions are
258 detected by increased pixel intensity and enlargement of peak areas (Fig. 4G). This unbiased
259 method allowed us to quantify the severity of notochordal wounds among the studied groups
260 and to analyse whether we could rescue the affected notochordal phenotype upon MO and
261 CRISPR injections. We compared *Kita* (control), *Kita-RAS* and *Kita-RAS* injected with either
262 MO or CRISPRs. Similar to our cell proliferation experiment, we detected a partial
263 notochordal rescue with CRISPR injections and significant rescue with MO (Fig. 4H).
264 Therefore, we have shown that the increase in neutrophils and macrophages contribute to
265 proliferation of cancer cells in the notochord and modulation of inflammatory cells could
266 prevent clonal expansion and chordoma development, similar to what has been previously
267 shown for melanomas (Feng et al., 2012).

268 **Abnormal pattern of vertebral segmentation and mineralisation in *Kita-RAS* fish**

269 It has been demonstrated that notochord damage can lead to defective patterning of the
270 vertebral column (Lopez-Baez et al., 2018, Fleming et al., 2004, Nguyen-Chi et al., 2014).
271 Given that *Kita-RAS* cause cellular changes and a wound-like response in the notochord we

272 questioned whether these events might have a downstream impact in the vertebral column
273 segmentation. We crossed *Kita-RAS* to Tg(*entpd5:kaeda*), an early marker of the notochord
274 segmentation and biomineralizing activity. *Entpd5* hydrolyses nucleoside triphosphates,
275 providing local inorganic monophosphate for biomineralization (Dallas and Bonewald, 2010,
276 Huitema et al., 2012). During development of the vertebral column, *entpd5* is expressed in
277 alternating segments of the sheath, which will form the mineralised chordacentra; while the
278 interdomains will develop into intervertebral discs (IVDs) (Fig. 5A and D) (Wopat et al.,
279 2018). We analysed larvae at 8dpf, at a stage when segmentation has started but is not yet
280 finalised. A delay in chordacentra formation was observed in *Kita-RAS*, compared to control
281 of similar range of length (3.8 to 4.1 mm) (Fig. 5B). Regions in which the notochord cells
282 were compromised in *Kita-RAS* coincided with mis-patterning and ectopic expression of
283 *entpd5:kaeda* (Fig. 5C). Expansion of the domain of each segment was observed ectopically
284 in the future IVD area. These results indicate that cellular abnormalities of the notochord
285 sheath compromise the differentiation of *col9+* sheath cells towards expression of *entpd5* in
286 predetermined chordacentra domains during segmentation. Moreover, our findings suggest a
287 role of the sheath layer and notochordal cells in domain specification. A major advantage of
288 our *Kita-RAS* model in comparison with other notochord induced RAS models (Burger et al.,
289 2014, D'Agati et al., 2019, Distel et al., 2009) is the fish survival to adult stages, beyond the
290 stages of development that have been previously reported. This allowed us to study the effect
291 of pre-neoplastic cells on the skeletal formation and homeostasis. To check for abnormalities
292 in mineralized vertebral column segments, we used *in vivo* and *ex vivo* Alizarin Red S
293 staining in 14dpf fish. We detected abnormal and uneven mineralization of the chordacentra
294 along the whole notochord, compromising length and shape of the segments and the future
295 IVD domains (Fig. 5E-G). We measured the length of the first seven mineralised vertebral
296 segments from fish displaying similar sizes (5 ≤ fish length < 6 mm) (Fig. 5G). *Kita-RAS*

297 showed high variability and overall reduced length of segments (Fig. 5E). Our results
298 indicate that the presence of notochord cancer cells leads to a wounded notochord sheath
299 which modifies vertebral column segmentation pattern through ectopic activation of *entpd5*
300 and subsequent mineralization, which ultimately may cause vertebral fusions.

301 **Transformed notochord cells lead to vertebral column fusions and clefts**

302 Next, we sought to investigate the impact of pre-neoplastic cells in the vertebral column
303 architecture. For that, we analysed the adult vertebral column, looking for resulting bone
304 abnormalities. We used Alizarin Red staining (controls n = 10; *Kita-RAS* n = 10; 6 months
305 post-fertilisation - 6mpf), X-rays (controls n = 40; *Kita-RAS* n = 78; 1 year old fish) and
306 micro-computerised tomography (μ CT) (controls n = 5; *Kita-RAS* n = 5; 6mpf) to compare
307 *Kita-RAS* with control fish of the same age. Vertebrae fusions were found in 100% of *Kita-*
308 *RAS* and in 0% of controls (controls n = 40; *Kita-RAS* n = 78) (Fig. 6 and Fig. S4). Fusions
309 involved two or more vertebrae along the vertebral column leading to shortening of the total
310 fish length. Those fish with most fusions had the most reduced lengths (Fig. 6A, E and Fig.
311 S4). The ribs were the most severely affected region of the vertebral column. We calculated
312 the length of six consecutive mineralised segments of the vertebral column, separated by
313 well-defined IVDs (Fig. 6A, dashed region). Besides uncovering increased length of
314 segments due to vertebral fusions ($p= 0.0411$), it highlighted high variability within the same
315 vertebral column region of *Kita-RAS* fish, demonstrating that there was no common
316 developmental pattern of fusions (Fig. 6C and D). Analysis of fish length from X-ray images
317 reinforced the length reduction observed in *Kita-RAS* ($p< 0.0001$) (Fig. 6E and F). *Kita-RAS*
318 also displayed shape abnormalities of vertebrae and arches, including enlarged regions,
319 broadening of arches and ectopic bone growth (Fig. S4). Enlarged areas were found in 40%
320 of *Kita-RAS* (Fig. S4B). Ectopic bone growth can be better visualised with higher resolution
321 μ CT (5 μ m) (Fig. 6G) and Alizarin Red staining (Fig. S4C). Clefts through the centra and

322 hemicentrae were found in 70% of fish analysed. These resembled butterfly abnormalities as
323 occasionally described in human vertebral columns (Katsuura and Kim, 2019), and those
324 malformations involving notochordal remnants (Fig. 6G'') (Oner et al., 2006). When
325 staining 1 month old (1mpf) *Kita-RAS* with Alizarin Red, we detected hyperplastic cells
326 contributing to a chaotic notochord cell arrangement along the vertebral column, and failure
327 to organise in IVDs domains, revealing regions of incomplete mineralisation, originating
328 clefts (Fig. 6H). To visualise osteoblasts, we crossed *Kita-RAS* fish to Tg(*osx:NTR-mCherry*),
329 an osteoblast reporter line, and analysed the vertebral column at 1mpf. While in controls the
330 osteoblasts were distributed evenly through the arches and centra, *Kita-RAS* showed
331 increased osteoblast signal and patchy distribution, with some regions displaying dense
332 concentrations of osteoblasts while others lacked these cells. Quantification of osteoblasts
333 was performed for two consecutive vertebrae in each fish (n= 3), confirming increase in
334 osteoblasts in *Kita-RAS* (p= 0.0028) (Fig. S5D). Moreover, we detected irregular recruitment
335 of osteoblasts to the chordacentra throughout the vertebral column. Thus, changes in the
336 notochord lead to abnormal osteoblast recruitment and behaviour. Next, we asked whether
337 reduction of inflammatory cells could rescue the bone phenotype. We looked at the vertebral
338 column of controls and *Kita-RAS* + CRISPR (*pu.1* + *gcsfr*) fish at 1mpf by Alizarin Red
339 staining. The severity of the vertebral column phenotype was scored depending on the
340 number of fusions and clefts observed. *Kita-RAS* + CRISPR (*pu.1* + *gcsfr*) partially rescue
341 the vertebral column phenotype (Fig. 6J and K), with a subset of fish showing no fusions or
342 clefts (Fig. 6K). Therefore, modulation of innate immune cells in our chordoma model
343 prevents vertebral fusions and clefts.

344 **Compromised intervertebral discs and impaired bone quality in adult *Kita-RAS***

345 Embryonic notochordal cells contribute to the formation of the intervertebral disc nucleus
346 pulposus (NP), which plays an important role in regulating disc homeostasis (Choi et al.,

347 2008). We sought to understand the impact of transformed notochord cells in the adult
348 zebrafish intervertebral disc equivalent regions and vertebral bone. By calculating bone
349 mineral density, we detected a significant TMD decrease in *Kita-RAS* ($p= 0.0015$) (Fig. 6A
350 and B), indicative of impaired bone quality. We performed histological sections of the adult
351 vertebral column and observed highly fibrotic NP, similar to IVD degeneration (IVDD), with
352 disorganised cellularity found in enlarged vertebrae (Fig. 7A and B). Fibrosis was detected in
353 proximity with the notochord sheath layer. AFOG and Picro-sirius red staining confirmed
354 fibrosis and connectivity with the notochord sheath, showing increased collagen content and
355 increased collagen fibre thickness (Fig. 7B and C). In contrast to IVDD, dehydration did not
356 describe the phenotype of *Kita-RAS* NP, as an increase in glycosaminoglycans was detected
357 (Fig. S5). Additionally, despite fibrosis and disorganisation of the NP, due to cell
358 transformation, we did not observe intervertebral disc calcification, a feature commonly
359 found during IVDD and ageing (Novais et al., 2020b). The outermost component of the discs,
360 the annulus fibrosus (AF), was replaced by bone in IVDs that were compromised by fusions.
361 The structured layers of collagen and elastin that form the zebrafish AF were completely lost
362 in some of the IVDs (Fig. 7D). Interestingly, disorganised and increased number of
363 osteoblasts were detected in the IVD region, corroborating altered osteoblast activity at the
364 endplates of adult fish. The balance between osteoblasts and osteoclasts is key in bone
365 homeostasis and control of bone density. Moreover, osteoclasts are derived from the same
366 cell lineage of macrophages. We performed whole-mount TRAP staining to visualise
367 osteoclast activity. Quantification of TRAP staining revealed exacerbated bone resorption in
368 *Kita-RAS* ($p= 0.0026$), especially in affected areas of the vertebral column (Fig. S5B and C).
369 Picro-sirius red staining suggested a reduction in collagen fibre thickness in the bone (centra).
370 We quantified the mean intensity of red, green and blue pixels from pictures stained with
371 Picro-sirius red. We detected a significant reduction in red ($p= 0.0004$) and blue ($p= 0.0016$)

372 pixels, indicating an abnormal fibre organisation and confirming bone quality impairment in
373 *Kita-RAS* (Fig. 7C). We conclude that transformed cells in the notochord lead to vertebral
374 column and intervertebral disc abnormalities affecting the NP and AF, impairing osteoblasts
375 and osteoclasts activity, consequently altering bone homeostasis in zebrafish.

376

377 **Discussion**

378 “Tumours are wounds that do not heal” was postulated in a classic work published by
379 Harold Dvorak in 1986 (Dvorak, 1986). Dvorak recognized that the composition of the
380 tumour stroma strongly resembled healing skin wounds, suggesting activation of the wound-
381 healing response in the host. Moreover, cancer is frequently the consequence of chronic
382 inflammatory disease (Schafer and Werner, 2008). Given the confined nature of notochordal
383 cells during development of the vertebral column, would pre-neoplastic notochordal cells
384 trigger chronic inflammation as other cancers do? And what is the impact of transformed
385 cells in disc and bone homeostasis? By demonstrating that transformed notochord cells,
386 provoke chronic notochordal wounds and activate wound response mechanisms in zebrafish,
387 leading to inflammation, vertebral column abnormalities and impairment of disc and bone
388 homeostasis, we demonstrated parallels between wound repair, cancer and IVDD in a
389 zebrafish chordoma model.

390 The *UAS:EGFP-HRASV12* transgene has been successfully used to transform
391 notochordal cells and melanoblasts, contributing to *in vivo* modelling of chordomas and
392 melanomas (Burger et al., 2014, Feng et al., 2010, Santoriello et al., 2010, D'Agati et al.,
393 2019). Here, we made use of the robustness of RAS expression systems to efficiently induce
394 chordomas, using the stable line *Kita-RAS*, an adult melanoma model with notochordal RAS
395 expression. *Kita-RAS* caused similar larval notochord morpho-pathological changes as
396 previously described for *twhh:Gal;UAS:HRASV12* and *4465:Gal;UAS:HRASV12* (Burger et
397 al., 2014), serving as tools to investigate neoplastic notochord cells in adults. While *Kita-RAS*
398 has been extensively used to study melanomas, the vertebral column can still be studied in
399 adult fish without complications of skin tumour, as only around 20% of adult fish develop
400 melanomas (Anelli et al., 2009). Alternatively, *Kita-RAS* when crossed with a pigment free
401 line, such as *casper* (complete lack of melanophores and iridophores) or *nacre* (mutation in

402 *mitfa*) (White et al., 2008) can prevent melanoma development. As for *UAS:EGFP-HRASV12*
403 chordoma models, a limitation of the melanoma model is the fact that mutations of RAS
404 members are not common in chordoma. However, RAS-transformed cells lead to activation
405 of downstream signalling driven by EGFR, a cell surface receptor highly involved in
406 chordomas, and mimics upstream receptor tyrosine kinase (RTK) activation (Burger et al.,
407 2014). D'Agati et al, recently demonstrated that while *Brachyury* (*tbxt*) overexpression did
408 not have a tumour-initiating potential to transform notochord cells, when the authors tested
409 RTK, including EGFR, they were able to trigger notochord hyperplasia, suggesting RTK
410 signalling as a possible initiating event in chordoma (D'Agati et al., 2019).

411 Although human chordomas are thought to originate from hyperplasia of notochordal
412 remnants, benign notochordal remnants are occasionally found and are associated with
413 vertebral abnormalities, such as vertebral clefts and bifurcations (Oner et al., 2006). When we
414 looked at the adult *Kita-RAS* we observed vertebral clefts and hemivertebra that recapitulate
415 human notochordal remnants. However, vertebral malformations might not be a direct effect
416 from pre-neoplastic notochordal cells, but a result from abnormal notochordal cell behaviour.
417 Recent studies have shown that notochord vacuoles function as a hydrostatic scaffold that
418 guides symmetrical growth of vertebrae and spine formation. Vacuole fragmentation caused
419 by mutations in *dstyk* (*spzl* mutant) resulted in vertebral centra malformation and scoliosis
420 (Bagwell et al., 2020, Sun et al., 2020). Similar to our observations, these studies evidenced
421 that abnormal behaviour of notochord vacuolated cells are associated with vertebral
422 malformations like to those of notochordal remnants in human. Furthermore, hemivertebra
423 and clefts were systematically found in another mutant, *spondio*, carrying a mutation in *cnn*
424 (Calimmin, a teleost-specific extracellular matrix protein with weak similarity to Elastin, and
425 expressed in the notochord sheath), due to abnormalities in the notochord sheath layer
426 (Peskin et al., 2020). Here, we demonstrated that destabilisation of the notochord vacuolated

427 cells also triggered cellular changes in the notochord sheath layer (Fig. 8). Hence, revealing
428 double and overlapping routes in which notochord neoplastic cells compromise the formation
429 of the vertebral column: the inner vacuolated cells and the outer notochord sheath cells.

430 Notochord damage also leads to vertebral column abnormalities, including fusions
431 and segmentation mispatterning (Lleras Forero et al., 2018, Wopat et al., 2018, Pogoda et al.,
432 2018). We showed that *Kita-RAS* mimicked notochordal damages and induced repair
433 mechanism as demonstrated by activation and invagination of *col9+* notochord sheath cells
434 and expression of *wt1b* in wounded areas, as previously described for notochordal wounds
435 (Lopez-Baez et al., 2018, Garcia et al., 2017). Our findings suggest a key role of the
436 notochord sheath and wound repair in chordoma. Interestingly, when RAS is activated in the
437 notochord sheath specifically with *col2a1a* driving RAS, it also causes chordomas (D'Agati
438 et al., 2019), sustaining a key role of the sheath layer in zebrafish chordomas. As neoplastic
439 cells are continuously modifying the notochord, this causes wounds that seem to progress and
440 remain chronic or unresolved. We showed for the first time that wounding provoked by
441 transformed notochord cells triggers the recruitment of neutrophils and macrophages. Innate
442 immune cells not only were present in higher number but changed their behaviour by
443 prolonging their interaction time with the notochord sheath in wounded regions; in some
444 cases they were able to breach the sealing membrane and achieve direct contact with cancer
445 cells. It has been recently described that inflammatory cells make use of pre-existing holes in
446 the basement membrane to gain access and reach pre-neoplastic cells in a melanoma model
447 (van den Berg et al., 2019). In our chordoma model, inflammatory cells were observed in
448 direct contact with pre-neoplastic cells in regions of severe notochord sheath wounds, which
449 similarly, may serve as breaches in the notochord sheath to allow neutrophils and
450 macrophages to reach pre-neoplastic cells. The interaction between neutrophils/macrophages
451 and transformed cells have been beautifully described for melanoma in zebrafish, with

452 formation of cytoplasmic tether linking the two cell types and engulfment of transformed
453 cells by neutrophils and macrophages (Feng et al., 2010). H₂O₂, a key damage signal directing
454 recruitment of neutrophils to a wound, was also identified as the major component drawing
455 recruitment of leukocytes to the transformed cells (Feng et al., 2010). Remarkably, when we
456 depleted innate immune cells using morpholinos or CRISPR, we could rescue the notochord
457 phenotype by inhibiting the aberrant proliferation of transformed cells, as demonstrated for
458 melanoma (Feng et al., 2010), and partially rescuing the skeletal phenotype, by showing
459 reduction of vertebral fusions. Thus, highlighting parallels between cancer and wound, and
460 suggesting that immunomodulation might be a promising treatment for chordomas. When
461 zebrafish notochord is infected with *E.coli*, Nguyen-Chi et al showed strong and persistent
462 recruitment of neutrophils and macrophages (Nguyen-Chi et al., 2014). The authors also
463 showed that *illb* is partially required for recruitment of neutrophils but not macrophages.
464 Fascinatingly, degranulation of neutrophils led to destruction of the host tissues and adult
465 vertebral column defects, involving clefts and fusions. *illb* morphants reduced neutrophil
466 recruitment and prevented anterior notochord lesions. Altogether, inflammation appears to
467 play an important role in controlling notochord damage and adult bone phenotype (Nguyen-
468 Chi et al., 2014). By showing that mosaic ablation of innate immune cells by CRISPR
469 ameliorate chordoma and the vertebral column phenotype we highlighted potential
470 opportunities for early intervention in the treatment of chordomas and vertebral column
471 fusions.

472 *Kita-RAS* fish displayed adult IVDs abnormalities that resembled ageing zebrafish
473 IVDD (unpublished data) with fibrotic NP and disorganised AF. Without parallel in
474 zebrafish, we demonstrated that abnormalities in the early notochord cells and nucleus
475 pulposus prime IVDD. Adult discs showed compromised notochord sheath, visualised by
476 increased thickening of collagen fibres and fibre invasion towards the NP, hence a likely

477 involvement of wound repair mechanisms in adult discs and IVDD. Indeed, human
478 orthologues encoding collagen type IX and collagen type XI are expressed in the notochord
479 sheath and have been associated with IVDD in populational studies (Feng et al., 2016), which
480 supports the involvement of the notochord sheath in IVDD in zebrafish. The inflammatory
481 processes exacerbated by cytokines TNF- α and IL-1 β are key events in IVDD (Risbud and
482 Shapiro, 2014), they contribute to IVDD through degradation of extracellular matrix,
483 likewise they are implicated in wounds and cancer. NP fibrosis during degeneration mimics
484 wounds and fibrosis in other tissues (Novais et al., 2020b). *Kita-RAS* also developed bone
485 quality impairment, emphasising nucleus pulposus modifications in regulation of bone
486 homeostasis, suggesting changes in bone metabolic markers during chordomas. We detected
487 increased osteoclast activity and chaotic osteoblasts at the endplates, in addition to osteoblast
488 behaviour abnormalities and abnormal bone homeostasis. Osteoclasts share a common cell
489 lineage with macrophages, and transdifferentiation of macrophages to osteoclasts has been
490 reported (Pereira et al., 2018), suggesting opportunities to treat the bone phenotype through
491 modulation of inflammation. In conclusion, using zebrafish we raised equivalences between
492 chordomas, IVDD and wound repair, highlighting inflammation as a common event for
493 potential therapeutic intervention.

494

495 **Material and Methods**

496 **Zebrafish husbandry and lines**

497 Zebrafish were housed as described (Westerfield, 2000). Transgenic lines included:
498 *Tg(kita:Gal4;UAS:mCherry;UAS:HRASG12V-GFP)* (Feng et al. 2010; Santoriello et al.
499 2010) and *Tg(kita:Gal4;UAS:mCherry;UAS:mCherry-HRASG12V)*(van den Berg et al.,
500 2019) were incrossed to obtain *Tg(kita:Gal4;UAS:HRASG12V-GFP)* and
501 *Tg(kita:Gal4;UAS:mCherry-HRASG12V)*, here referred as “*Kita-RAS*”, and
502 *Tg(kita:Gal4;UAS:mCherry)* as controls. *Tg(lyz:DsRed)* (Hall et al. 2007); *Tg(mpeg:FRET)*
503 (a gift from Stephen Renshaw at the University of Sheffield); *Tg(col9a2:GFPCaaX)*(Garcia
504 et al., 2017); *Tg(wt1b:GFP)* (Perner et al., 2007); *Tg(entpd5:kaeda)*(Huitema et al., 2012);
505 *Tg(osx:NTR-mCherry)*(Singh et al., 2012). Animal experiments were ethically approved by
506 the University of Bristol Animal Welfare and Ethical Review Body (AWERB) and conducted
507 under UK Home Office project licence.

508 **Cellular proliferation assay**

509 Cellular proliferation was quantified using the Click-iT Plus EdU Alexa Fluor 647 Imaging
510 Kit (Life Technologies, C10640). Larvae were immersed in Danieau’s solution containing
511 100 µM EdU solution and were incubated for 24 h or 48 h at 28.5°C before termination of the
512 experiment at 5 days post-fertilisation (dpf). Larvae were then fixed in 4% paraformaldehyde
513 (PFA) for 2 h at room temperature with gentle shaking, washed with PBS solution containing
514 0.5% Triton X-100 (PBST) and 3% (w/v) Bovine Serum Albumin (BSA), and permeabilised
515 in PBST solution containing 1% DMSO for 1 h at room temperature. For EdU detection,
516 larvae were washed in PBST 3% BSA and incubated with the Click-iT Plus reaction cocktail
517 containing Alexa Fluor-647 azide for 30 minutes at room temperature, in accordance with the
518 manufacturers protocol. For quantification, EdU positive cells within and in proximity of the

519 notochord were counted manually through the z stacks from confocal images and similar
520 areas of interest.

521 **Confocal imaging**

522 Live zebrafish were mounted ventrally on coverslips in 1% low-melting point agarose
523 containing MS222 (for live samples) and imaged using a Leica TCS SP8 AOBS confocal
524 laser scanning microscope attached to a Leica DMi8 inverted epifluorescence microscope
525 using 10x dry lens or 20x glycerol lens. The temperature in the chamber covering the
526 microscope was maintained at 28°C. Movies were recorded at an interval time of 5.45 min or
527 3.75 min per frame and a total time of 60 min or 120 min for neutrophils and macrophages,
528 respectively.

529 **Confocal post-image analysis**

530 Image processing was performed using Fiji (Schneider et al., 2012). 1- Analysis of number
531 and time of neutrophil/macrophage interactions with notochord sheath: neutrophils and
532 macrophages were considered to be interacting with the notochord sheath when they were in
533 direct surface contact with the sheath layer. The number of these interactions and their
534 duration were manually quantified from time-lapse movies in a pre-defined region of the
535 flank above the caudal hematopoietic tissue in the zebrafish larva, from the total field of
536 view. Neutrophils, macrophages and notochord were identified by visualisation of their
537 fluorescence in the fluorescent channel while the notochord sheath was more accurately
538 distinguished by visualisation in the brightfield channel. Movies were exported from Fiji as
539 QuickTime movies to play at 3 frames per sec. 2- Analysis of osteoblasts: images were
540 converted to 32-bit, applied LUT (16 colours), flattened and then saved as tiff images. The
541 tiff files were imported to Fiji, two consecutive vertebrae were selected using the freehand
542 selection tool, from which the mean pixel intensity values were calculated. 3- Analysis of the

543 area of notochord sheath cells (*col9a2*+): *Kita-RAS* notochord was divided in wound-
544 proximal and wound-distal regions. Using the freehand selection tool in Fiji, the area of 10
545 cells were analysed per region, using 10 fish for controls and *Kita-RAS*.

546 **Morpholino (MO) injections**

547 Previously described morpholinos including *pu.1* MO (5'-
548 GATATACTGATACTCCATTGGTGGT-3') (0.2 mM) (Rhodes et al., 2005), *gcsfr* MO (5'-
549 GAAGCACAAAGCGAGACGGATGCCAT-3') (0.3 mM) (Liongue et al., 2009) and a
550 scrambled MO (5'- CCTCTTACCTCAGTTACAATTATA- 3') (0.5 mM) (GeneTools
551 LLC, USA) were injected into 1-cell stage embryos, as previously described (Liongue et al.,
552 2009, Rhodes et al., 2005, van den Berg et al., 2019).

553 **CRISPR/Cas9 injections**

554 We used three synthetic gRNAs targeting each of the genes, *pu.1*(*spi1b*) and *csf3r*(*gcsfr*),
555 ordered as crRNAs (Sigma). We used the same target sites for *gcsfr* as previously described
556 (Yang et al., 2020), while for *pu.1* we targeted the same genomic region as previously
557 described in a *pu.1* mutant (chr7:32655153-32655197) (Yang et al., 2020). *Pu.1* target
558 sequences: *pu.1* cr1 GAGGGATGTGATGGCTACCC, *pu.1* cr2
559 AGCTCTGTAAAGTGGCTCTC and *pu.1* cr3 GCCTGGGTCCATGAAATGGC). All six
560 crRNAs (2pg) were incubated with tracrRNA (10pg) and GeneArt Platinum Cas9 nuclease
561 (Invitrogen) prior to injections. Injections were performed into 1-cell stage embryos as
562 previously described (Brunt et al., 2017). To validate CRISPR efficiency, DNA was extracted
563 from 12 individual injected larvae at 5dpf, followed by PCR amplification with FAM-M13F
564 primer and gene-specific primers, with each forward primer containing an M13 tail (*pu.1* F:
565 TGTAAAACGACGCCAGTCCGTGTAGATCACTCTTGGG; *pu.1* R:
566 AAACCAAACCATAATGATTGTTTT; *csf3r* F:
567 TGTAAAACGACGCCAGTGTGACTGACGTAACATTGTAC; *csf3r* R:

568 CTCACATTAAAGTCTTATCAG). PCRs were submitted to fragment length analysis
569 (ABI 3500)(Carrington et al., 2015). Controls were injected with Cas9 protein and SygRNA®
570 SpCas9 tracrRNA (10pg) (Merck). Images of the notochord were acquired at 5dpf using a
571 Leica fluorescent stereomicroscopy (MZ10F), followed by analysis of notochord lesions.

572 **Analysis of notochord lesions**

573 Notochord images of 5dpf larvae previously injected with MO or CRISPR were analysed
574 using custom Python scripts and by implementing three steps. First, we detected pixels of the
575 notochord through manually setting the value of the intensity threshold. Second, we fit the
576 pixels with a 6th order polynomial function to obtain the intensity profile along the
577 notochord. Specifically, the intensity profile was measured along the polynomial fit inside the
578 image, using the algorithm adapted from the scikit-image package (van der Walt et al., 2014),
579 where we modified the function “profile line” to work with a polynomial line. The average
580 value of the intensity profile was used as a measurement of the severity of lesions within the
581 notochord. Finally, the average intensity from the notochord was compared among different
582 groups. For statistical analysis we used ANOVA and Kruskal-Wallis H-test, implemented in
583 scipy (Virtanen et al., 2020). Dunn’s method was used for multiple comparison test,
584 implemented in scikit-posthocs (Terpilowski, 2019), p values were adjusted with Bonferroni.

585 **Alizarin Red and Calcein staining**

586 Alizarin Red S staining was performed in fixed fish to label calcified tissues and carried
587 out using standard protocols (Walker and Kimmel, 2007). Live Calcein or Alizarin Red S
588 staining was carried out as previously described (Bensimon-Brito et al., 2016). 14dpf fish
589 were fixed in 4%PFA and undergone Alizarin Red staining. Pictures of the entire fish were
590 taken under a Leica stereomicroscope. Total fish length and the length of the first seven
591 vertebral segments were measured using Leica LAS X Software.

592 **Vertebral column severity scoring system**

593 Alizarin Red S staining was performed in fixed samples of 1 month old fish (1mpf) (*Kita*
594 control n= 47 ; *Kita-RAS* n = 61; and *Kita-RAS +CRISPR* n= 97), and pictures taken with a
595 Leica stereomicroscope (MZ10F). The length of each fish was measured from the nose to
596 the most posterior extremity of the vertebral column, the tail fin was not included in the
597 measurement. Those fish in which the vertebral columns were not completely formed
598 were excluded from our severity score analysis. The vertebral column severity scoring
599 system was based on numbers of fusions and clefts identified in each fish. Fusions and
600 clefts were scored independently. Score of 3: n \geq 5; score of 2: 3< n < 5; score of 1: n \leq 3;
601 score of 0: n=0 (n= number of fusions and clefts).

602 **Radiographs (X-ray)**

603 Live 1 year old fish (1y) were anaesthetised with MS222 and radiographed using a
604 MultiFocus digital radiography system (Faxitron) under 2x zoom and using the settings: 45
605 kv, 5 seconds of exposure and 0.46. A total of 118 fish were X-rayed (controls, n = 40; *Kita-*
606 *RAS*, n = 78). Fish lengths were measured using Fiji (Schindelin et al., 2012) (in pixels),
607 using images that were acquired under the same conditions.

608 **Micro-computed tomography (μ CT)**

609 Six month old fish (6mpf) were fixed in 4% PFA for 14 days, followed by sequential washes
610 in ethanol and maintained in a 70% ethanol solution. Micro-computed tomography (μ CT)
611 was performed using a Nikon X-TEK 225 HT CT scanner under an X-ray source of 130 kV,
612 53 μ A without additional filters. Whole fish were scanned at voxel size of 20 μ m, and
613 selected spine regions rescanned at 5 μ m. Images were reconstructed using CT Pro 3D
614 software (Nikon). Amira 6.0 (FEI) was used to generate 3D volume and surface renders for
615 image acquisition. For calculations of tissue mineral density (TMD), defined as measurement

616 restricted to within the volume of calcified bone tissue (Bouxsein et al., 2010), the centrae
617 were segmented and the mean grey values retrieved. Grey values were calibrated with
618 phantoms of known densities (0.25 and 0.75 g.cm³ of CaHA), and used for density
619 calculations, as previously described (Kague et al., 2019). Three fish from each group were
620 used for TMD calculation.

621 **Histology**

622 Adult fish (3mpf, control, n = 3; *Kita-RAS*, n = 3) were fixed in 4% PFA for 14 days, then
623 decalcified in 1M EDTA solution for 20 days at room temperature. Larvae (control, n = 3;
624 *Kita-RAS*, n = 4) were fixed for 2 hours. Samples were dehydrated in ethanol, embedded in
625 paraffin and sagittal sections were taken at 8 µm thickness. Selected slides were de-waxed
626 and stained with Toluidine Blue (Kague et al., 2018), Alcian Blue, AFOG or Picro-sirius red,
627 as performed elsewhere (Hayes et al., 2013). Images were acquired on a Leica DMI600
628 inverted microscope, using 20X and 40X oil objectives, LAS software and a DFC420C
629 colour camera. Quantification of thickness of collagen fibre was performed using Fiji
630 (Schindelin et al., 2012), by selecting an area of interest within the bone, followed by
631 measurement of mean intensity of red, blue and green pixels.

632 **Tartrate-resistant acid phosphatase (TRAP) staining**

633 TRAP staining was performed in whole-mount 3 month old fish (3mpf) (control, n = 4; *Kita-*
634 *RAS*, n = 5) using Acid Phosphatase, Leukocyte (TRAP) kit (Merck, cat 387A) and
635 following the instructions provided by the manufacture. Fish were fixed overnight in fixative
636 solution (provided). Samples were washed for 15 min in distilled water, followed by
637 permeabilization using 1% trypsin in 30% borate solution at 37°C overnight. Fish were
638 incubated in TRAP staining solution (provided) at 37°C for 6h in the dark, followed by two
639 washes of 10 min each in distilled water. Pigmentation was removed by incubating the
640 specimens in 3% H₂O₂. Pictures were taken from dissected spines placed in 70% glycerol

641 under a Leica stereomicroscope. Quantification of TRAP signal was performed using Fiji
642 (Schindelin et al., 2012). Images were converted to 32-bit, and LUT (physics) applied. We
643 inverted the LUT, flattened the images and calculated the mean of red pixels, correspondent
644 to high TRAP signal.

645 **Statistical Analysis**

646 GraphPad Prism 8 was used for statistical analyses. The statistical test used for each panel
647 can be found in the correspondent figure legend. Statistical significance is indicated on
648 graphs with the p value.

649

650 **Acknowledgements**

651 Thank you to Prof Stefan Schulte-Merker and his lab for sharing the lines:
652 *Tg(col9a2:GFPcaaX)* and *Tg(wt1b:GFP)* used in this work. We thank all members of the
653 Wolfson Bioimaging Facility at the University of Bristol for support and assistance in this
654 work. We are grateful to all members of the Histology Service Unit and the Zebrafish Facility
655 of the University of Bristol for their services and contribution. Faxitron for kindly lending us
656 the X-ray machine. Finally, we thank Prof Paul Martin for proofreading the manuscript and
657 his support.

658 **Conflicts of interest**

659 We declare no competing interests.

660 **Funding**

661 EK and CH were funded by Versus Arthritis (21937, 21211). PL was funded by the
662 Spanish Rafael del Pino Foundation. YY was funded by the China Scholarship Council.
663 This work was supported by grant MR/N0137941/1 for the GW4 BIOMED DTP, awarded
664 to the Universities of Bath, Bristol, Cardiff and Exeter from the Medical Research Council
665 (MRC)/UKRI.

666 **Data availability**

667 Data will be available via a DOI at data.bris. Code will be provided upon request.

668 **Author contributions**

669 PL, LD, and EK performed experiments. PL, LD, YY and EK analysed data. The project was
670 designed by EK. YY developed computational analysis for quantification of notochord
671 lesions. All authors contributed to drafting and reviewing the manuscript.

672

673 **References**

674 ANELLI, V., SANTORIELLO, C., DISTEL, M., KOSTER, R. W., CICCARELLI, F. D. & MIONE, M. 2009. Global
675 repression of cancer gene expression in a zebrafish model of melanoma is linked to
676 epigenetic regulation. *Zebrafish*, 6, 417-24.

677 BAGWELL, J., NORMAN, J., ELLIS, K., PESKIN, B., HWANG, J., GE, X., NGUYEN, S. V., MCMENAMIN, S.
678 K., STAINIER, D. Y. & BAGNAT, M. 2020. Notochord vacuoles absorb compressive bone
679 growth during zebrafish spine formation. *Elife*, 9.

680 BARRY, J. J., JIAN, B. J., SUGHRUE, M. E., KANE, A. J., MILLS, S. A., TIHAN, T. & PARSA, A. T. 2011. The
681 next step: innovative molecular targeted therapies for treatment of intracranial chordoma
682 patients. *Neurosurgery*, 68, 231-40; discussion 240-1.

683 BENSIMON-BRITO, A., CARDEIRA, J., DIONISIO, G., HUYSSEUNE, A., CANCELA, M. L. & WITTEN, P. E.
684 2016. Revisiting in vivo staining with alizarin red S--a valuable approach to analyse zebrafish
685 skeletal mineralization during development and regeneration. *BMC Dev Biol*, 16, 2.

686 BERGEN, D. J. M., KAGUE, E. & HAMMOND, C. L. 2019. Zebrafish as an Emerging Model for
687 Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. *Front
688 Endocrinol (Lausanne)*, 10, 6.

689 BOUXSEIN, M. L., BOYD, S. K., CHRISTIANSEN, B. A., GULDBERG, R. E., JEPSEN, K. J. & MULLER, R.
690 2010. Guidelines for assessment of bone microstructure in rodents using micro-computed
691 tomography. *J Bone Miner Res*, 25, 1468-86.

692 BRUNT, L. H., BEGG, K., KAGUE, E., CROSS, S. & HAMMOND, C. L. 2017. Wnt signalling controls the
693 response to mechanical loading during zebrafish joint development. *Development*, 144,
694 2798-2809.

695 BURGER, A., VASILYEV, A., TOMAR, R., SELIG, M. K., NIELSEN, G. P., PETERSON, R. T., DRUMMOND, I.
696 A. & HABER, D. A. 2014. A zebrafish model of chordoma initiated by notochord-driven
697 expression of HRASV12. *Dis Model Mech*, 7, 907-13.

698 CARRINGTON, B., VARSHNEY, G. K., BURGESS, S. M. & SOOD, R. 2015. CRISPR-STAT: an easy and
699 reliable PCR-based method to evaluate target-specific sgRNA activity. *Nucleic Acids Res*, 43,
700 e157.

701 CHIA, K., MAZZOLINI, J., MIONE, M. & SIEGER, D. 2018. Tumor initiating cells induce Cxcr4-mediated
702 infiltration of pro-tumoral macrophages into the brain. *Elife*, 7.

703 CHOI, K. S., COHN, M. J. & HARFE, B. D. 2008. Identification of nucleus pulposus precursor cells and
704 notochordal remnants in the mouse: implications for disk degeneration and chordoma
705 formation. *Dev Dyn*, 237, 3953-8.

706 CHUGH, R., TAWBI, H., LUCAS, D. R., BIERMANN, J. S., SCHUETZE, S. M. & BAKER, L. H. 2007.
707 Chordoma: the nonsarcoma primary bone tumor. *Oncologist*, 12, 1344-50.

708 D'AGATI, G., CABELO, E. M., FRONTZEK, K., RUSHING, E. J., KLEMM, R., ROBINSON, M. D., WHITE, R.
709 M., MOSIMANN, C. & BURGER, A. 2019. Active receptor tyrosine kinases, but not Brachyury,
710 are sufficient to trigger chordoma in zebrafish. *Dis Model Mech*, 12.

711 DALLAS, S. L. & BONEWALD, L. F. 2010. Dynamics of the transition from osteoblast to osteocyte. *Ann
712 N Y Acad Sci*, 1192, 437-43.

713 DE BRUINE, F. T. & KROON, H. M. 1988. Spinal chordoma: radiologic features in 14 cases. *AJR Am J
714 Roentgenol*, 150, 861-3.

715 DISTEL, M., WULLIMANN, M. F. & KOSTER, R. W. 2009. Optimized Gal4 genetics for permanent gene
716 expression mapping in zebrafish. *Proc Natl Acad Sci U S A*, 106, 13365-70.

717 DVORAK, H. F. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma
718 generation and wound healing. *N Engl J Med*, 315, 1650-9.

719 EMING, S. A., WYNN, T. A. & MARTIN, P. 2017. Inflammation and metabolism in tissue repair and
720 regeneration. *Science*, 356, 1026-1030.

721 FENG, Y., EGAN, B. & WANG, J. 2016. Genetic Factors in Intervertebral Disc Degeneration. *Genes Dis*,
722 3, 178-185.

723 FENG, Y., RENSHAW, S. & MARTIN, P. 2012. Live imaging of tumor initiation in zebrafish larvae
724 reveals a trophic role for leukocyte-derived PGE(2). *Curr Biol*, 22, 1253-9.

725 FENG, Y., SANTORIELLO, C., MIONE, M., HURLSTONE, A. & MARTIN, P. 2010. Live imaging of innate
726 immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor
727 initiation and wound inflammation. *PLoS Biol*, 8, e1000562.

728 FLEMING, A., KEYNES, R. & TANNAHILL, D. 2004. A central role for the notochord in vertebral
729 patterning. *Development*, 131, 873-80.

730 FREISINGER, C. M. & HUTTENLOCHER, A. 2014. Live imaging and gene expression analysis in
731 zebrafish identifies a link between neutrophils and epithelial to mesenchymal transition.
732 *PLoS One*, 9, e112183.

733 GARCIA, J., BAGWELL, J., NJAINE, B., NORMAN, J., LEVIC, D. S., WOPAT, S., MILLER, S. E., LIU, X.,
734 LOCASALE, J. W., STAINIER, D. Y. R. & BAGNAT, M. 2017. Sheath Cell Invasion and Trans-
735 differentiatation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish
736 Notochord. *Curr Biol*, 27, 1982-1989 e3.

737 GBD, INJURY, I. & PREVALENCE, C. 2017. Global, regional, and national incidence, prevalence, and
738 years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a
739 systematic analysis for the Global Burden of Disease Study 2016. *Lancet*, 390, 1211-1259.

740 HAYES, A. J., REYNOLDS, S., NOWELL, M. A., MEAKIN, L. B., HABICHER, J., LEDIN, J., BASHFORD, A.,
741 CATERSON, B. & HAMMOND, C. L. 2013. Spinal deformity in aged zebrafish is accompanied
742 by degenerative changes to their vertebrae that resemble osteoarthritis. *PLoS One*, 8,
743 e75787.

744 HUITEMA, L. F., APSCHNER, A., LOGISTER, I., SPOORENDONK, K. M., BUSSMANN, J., HAMMOND, C. L.
745 & SCHULTE-MERKER, S. 2012. Entpd5 is essential for skeletal mineralization and regulates
746 phosphate homeostasis in zebrafish. *Proc Natl Acad Sci U S A*, 109, 21372-7.

747 KAGUE, E., HUGHES, S. M., LAWRENCE, E. A., CROSS, S., MARTIN-SILVERSTONE, E., HAMMOND, C. L.
748 & HINTS, Y. 2019. Scleraxis genes are required for normal musculoskeletal development and
749 for rib growth and mineralization in zebrafish. *FASEB J*, 33, 9116-9130.

750 KAGUE, E., WITTEN, P. E., SOENENS, M., CAMPOS, C. L., LUBIANA, T., FISHER, S., HAMMOND, C.,
751 BROWN, K. R., PASSOS-BUENO, M. R. & HUYSEUNE, A. 2018. Zebrafish sp7 mutants show
752 tooth cycling independent of attachment, eruption and poor differentiation of teeth. *Dev
753 Biol*, 435, 176-184.

754 KATSUURA, Y. & KIM, H. J. 2019. Butterfly Vertebrae: A Systematic Review of the Literature and
755 Analysis. *Global Spine J*, 9, 666-679.

756 LIONGUE, C., HALL, C. J., O'CONNELL, B. A., CROISIER, P. & WARD, A. C. 2009. Zebrafish granulocyte
757 colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell
758 migration. *Blood*, 113, 2535-46.

759 LLERAS FORERO, L., NARAYANAN, R., HUITEMA, L. F., VANBERGEN, M., APSCHNER, A., PETERSON-
760 MADURO, J., LOGISTER, I., VALENTIN, G., MORELLI, L. G., OATES, A. C. & SCHULTE-MERKER,
761 S. 2018. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and
762 not on the segmentation clock. *Elife*, 7.

763 LOPEZ-BAEZ, J. C., SIMPSON, D. J., L, L. L. F., ZENG, Z., BRUNSDON, H., SALZANO, A., BROMBIN, A.,
764 WYATT, C., RYBSKI, W., HUITEMA, L. F. A., DALE, R. M., KAWAKAMI, K., ENGLERT, C.,
765 CHANDRA, T., SCHULTE-MERKER, S., HASTIE, N. D. & PATTON, E. E. 2018. Wilms Tumor 1b
766 defines a wound-specific sheath cell subpopulation associated with notochord repair. *Elife*,
767 7.

768 MACCARTHY-MORROGH, L. & MARTIN, P. 2020. The hallmarks of cancer are also the hallmarks of
769 wound healing. *Sci Signal*, 13.

770 MCMASTER, M. L., GOLDSTEIN, A. M. & PARRY, D. M. 2011. Clinical features distinguish childhood
771 chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general
772 paediatric population. *J Med Genet*, 48, 444-9.

773 NGUYEN-CHI, M., PHAN, Q. T., GONZALEZ, C., DUBREMETZ, J. F., LEVRAUD, J. P. & LUTFALLA, G.
774 2014. Transient infection of the zebrafish notochord with *E. coli* induces chronic
775 inflammation. *Dis Model Mech*, 7, 871-82.

776 NOVAIS, E. J., TRAN, V. A., MIAO, J., SLAVER, K., SINENSKY, A., DYMENT, N. A., ADDYA, S., SZERI, F.,
777 VAN DE WETERING, K., SHAPIRO, I. M. & RISBUD, M. V. 2020a. Comparison of inbred mouse
778 strains shows diverse phenotypic outcomes of intervertebral disc aging. *Aging Cell*,
779 NOVAIS, E. J., TRAN, V. A., MIAO, J., SLAVER, K., SINENSKY, A., DYMENT, N. A., ADDYA, S., SZERI, F.,
780 VAN DE WETERING, K., SHAPIRO, I. M. & RISBUD, M. V. 2020b. Comparison of inbred mouse
781 strains shows diverse phenotypic outcomes of intervertebral disc aging. *Aging Cell*, 19,
782 e13148.

783 ONER, A. Y., AKPEK, S. & TOKGOZ, N. 2006. Persistent notochordal canal mimicking compression
784 fracture: a case report. *Acta Radiol*, 47, 875-7.

785 PEREIRA, M., PETRETTI, E., GORDON, S., BASSETT, J. H. D., WILLIAMS, G. R. & BEHMOARAS, J. 2018.
786 Common signalling pathways in macrophage and osteoclast multi nucleation. *J Cell Sci*, 131.

787 PERNER, B., ENGLERT, C. & BOLLIG, F. 2007. The Wilms tumor genes *wt1a* and *wt1b* control different
788 steps during formation of the zebrafish pronephros. *Dev Biol*, 309, 87-96.

789 PESKIN, B., HENKE, K., CUMPLIDO, N., TREASTER, S., HARRIS, M. P., BAGNAT, M. & ARRATIA, G. 2020.
790 Notochordal Signals Establish Phylogenetic Identity of the Teleost Spine. *Curr Biol*.

791 POGODA, H. M., RIEDL-QUINKERTZ, I., LOHR, H., WAXMAN, J. S., DALE, R. M., TOPCZEWSKI, J.,
792 SCHULTE-MERKER, S. & HAMMERSCHMIDT, M. 2018. Direct activation of chordoblasts by
793 retinoic acid is required for segmented centra mineralization during zebrafish spine
794 development. *Development*, 145.

795 RENSHAW, S. A. & TREDE, N. S. 2012. A model 450 million years in the making: zebrafish and
796 vertebrate immunity. *Dis Model Mech*, 5, 38-47.

797 RHODES, J., HAGEN, A., HSU, K., DENG, M., LIU, T. X., LOOK, A. T. & KANKI, J. P. 2005. Interplay of
798 *pu.1* and *gata1* determines myelo-erythroid progenitor cell fate in zebrafish. *Dev Cell*, 8, 97-
799 108.

800 RISBUD, M. V. & SHAPIRO, I. M. 2014. Role of cytokines in intervertebral disc degeneration: pain and
801 disc content. *Nat Rev Rheumatol*, 10, 44-56.

802 RODRIGUES-PINTO, R., RICHARDSON, S. M. & HOYLAND, J. A. 2014. An understanding of
803 intervertebral disc development, maturation and cell phenotype provides clues to direct
804 cell-based tissue regeneration therapies for disc degeneration. *Eur Spine J*, 23, 1803-14.

805 ROH-JOHNSON, M., SHAH, A. N., STONICK, J. A., POUDEL, K. R., KARGL, J., YANG, G. H., DI MARTINO,
806 J., HERNANDEZ, R. E., GAST, C. E., ZAROUR, L. R., ANTOKU, S., HOUGHTON, A. M., BRAVO-
807 CORDERO, J. J., WONG, M. H., CONDEELIS, J. & MOENS, C. B. 2017. Macrophage-Dependent
808 Cytoplasmic Transfer during Melanoma Invasion In Vivo. *Dev Cell*, 43, 549-562 e6.

809 SALISBURY, J. R. 1993. The pathology of the human notochord. *J Pathol*, 171, 253-5.

810 SANTORIELLO, C., GENNARO, E., ANELLI, V., DISTEL, M., KELLY, A., KOSTER, R. W., HURLSTONE, A. &
811 MIONE, M. 2010. Kita driven expression of oncogenic HRAS leads to early onset and highly
812 penetrant melanoma in zebrafish. *PLoS One*, 5, e15170.

813 SCHAFER, M. & WERNER, S. 2008. Cancer as an overhealing wound: an old hypothesis revisited. *Nat
814 Rev Mol Cell Biol*, 9, 628-38.

815 SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR, M., PIETZSCH, T.,
816 PREIBISCH, S., RUEDEN, C., SAALFELD, S., SCHMID, B., TINEVEZ, J. Y., WHITE, D. J.,
817 HARTENSTEIN, V., ELICEIRI, K., TOMANCAK, P. & CARDONA, A. 2012. Fiji: an open-source
818 platform for biological-image analysis. *Nat Methods*, 9, 676-82.

819 SCHNEIDER, C. A., RASBAND, W. S. & ELICEIRI, K. W. 2012. NIH Image to ImageJ: 25 years of image
820 analysis. *Nat Methods*, 9, 671-5.

821 SINGH, S. P., HOLDWAY, J. E. & POSS, K. D. 2012. Regeneration of amputated zebrafish fin rays from
822 de novo osteoblasts. *Dev Cell*, 22, 879-86.

823 STACCHIOTTI, S., GRONCHI, A., FOSSATI, P., AKIYAMA, T., ALAPETITE, C., BAUMANN, M., BLAY, J. Y.,
824 BOLLE, S., BORIANI, S., BRUZZI, P., CAPANNA, R., CARACENI, A., CASADEI, R., COLIA, V.,
825 DEBUS, J., DELANEY, T., DESAI, A., DILEO, P., DIJKSTRA, S., DOGLIETTO, F., FLANAGAN, A.,
826 FROELICH, S., GARDNER, P. A., GELDERBLOM, H., GOKASLAN, Z. L., HAAS, R., HEERY, C.,
827 HINDI, N., HOHENBERGER, P., HORNICEK, F., IMAI, R., JEYS, L., JONES, R. L., KASPER, B.,
828 KAWAI, A., KRENGLI, M., LEITHNER, A., LOGOWSKA, I., MARTIN BROTO, J., MAZZATENTA, D.,
829 MOROSI, C., NICOLAI, P., NORUM, O. J., PATEL, S., PENEL, N., PICCI, P., PILOTTI, S., RADAELLI,
830 S., RICCHINI, F., RUTKOWSKI, P., SCHEIPL, S., SEN, C., TAMBORINI, E., THORNTON, K. A.,
831 TIMMERMANN, B., TORRI, V., TUNN, P. U., UHL, M., YAMADA, Y., WEBER, D. C., VANEL, D.,
832 VARGA, P. P., VLEGGEERT-LANKAMP, C. L. A., CASALI, P. G. & SOMMER, J. 2017. Best
833 practices for the management of local-regional recurrent chordoma: a position paper by the
834 Chordoma Global Consensus Group. *Ann Oncol*, 28, 1230-1242.

835 STEMPLE, D. L. 2005. Structure and function of the notochord: an essential organ for chordate
836 development. *Development*, 132, 2503-12.

837 SUN, X., ZHOU, Y., ZHANG, R., WANG, Z., XU, M., ZHANG, D., HUANG, J., LUO, F., LI, F., NI, Z., ZHOU,
838 S., CHEN, H., CHEN, S., CHEN, L., DU, X., CHEN, B., HUANG, H., LIU, P., YIN, L., QIU, J., CHEN,
839 D., DENG, C., XIE, Y., LUO, L. & CHEN, L. 2020. Dstyk mutation leads to congenital scoliosis-
840 like vertebral malformations in zebrafish via dysregulated mTORC1/TFEB pathway. *Nat
841 Commun*, 11, 479.

842 TERPILOWSKI 2019. scikit-posthocs: Pairwise multiple comparison tests in Python. *Journal of Open
843 Source Software*, 4(36), 1169.

844 VAN DEN BERG, M. C. W., MACCARTHY-MORROGH, L., CARTER, D., MORRIS, J., RIBEIRO BRAVO, I.,
845 FENG, Y. & MARTIN, P. 2019. Proteolytic and Opportunistic Breaching of the Basement
846 Membrane Zone by Immune Cells during Tumor Initiation. *Cell Rep*, 27, 2837-2846 e4.

847 VAN DER WALT, S., SCHONBERGER, J. L., NUNEZ-IGLESIAS, J., BOULOGNE, F., WARNER, J. D., YAGER,
848 N., GOUILLOART, E., YU, T. & SCIKIT-IMAGE, C. 2014. scikit-image: image processing in Python.
849 *PeerJ*, 2, e453.

850 VIRTANEN, P., GOMMERS, R., OLIPHANT, T. E., HABERLAND, M., REDDY, T., COURNAPEAU, D.,
851 BUROVSKI, E., PETERSON, P., WECKESSER, W., BRIGHT, J., VAN DER WALT, S. J., BRETT, M.,
852 WILSON, J., MILLMAN, K. J., MAYOROV, N., NELSON, A. R. J., JONES, E., KERN, R., LARSON, E.,
853 CAREY, C. J., POLAT, I., FENG, Y., MOORE, E. W., VANDERPLAS, J., LAXALDE, D., PERKTOLD, J.,
854 CIMRMAN, R., HENRIKSEN, I., QUINTERO, E. A., HARRIS, C. R., ARCHIBALD, A. M., RIBEIRO, A.
855 H., PEDREGOSA, F., VAN MULBREGT, P. & SCIPY, C. 2020. SciPy 1.0: fundamental algorithms
856 for scientific computing in Python. *Nat Methods*, 17, 261-272.

857 VUJOVIC, S., HENDERSON, S., PRESNEAU, N., ODELL, E., JACQUES, T. S., TIRABOSCO, R., BOSHOFF, C.
858 & FLANAGAN, A. M. 2006. Brachyury, a crucial regulator of notochordal development, is a
859 novel biomarker for chordomas. *J Pathol*, 209, 157-65.

860 WALKER, M. B. & KIMMEL, C. B. 2007. A two-color acid-free cartilage and bone stain for zebrafish
861 larvae. *Biotech Histochem*, 82, 23-8.

862 WANG, F., GAO, Z. X., CAI, F., SINKEMANI, A., XIE, Z. Y., SHI, R., WEI, J. N. & WU, X. T. 2017.
863 Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within
864 intervertebral disc: current understanding and speculation. *Oncotarget*, 8, 57800-57812.

865 WESTERFIELD, M. 2000. *The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio)*.
866 Univ. of Oregon Press, Eugene

867 WHITE, R. M., SESSA, A., BURKE, C., BOWMAN, T., LEBLANC, J., CEOL, C., BOURQUE, C., DOVEY, M.,
868 GOESSLING, W., BURNS, C. E. & ZON, L. I. 2008. Transparent adult zebrafish as a tool for in
869 vivo transplantation analysis. *Cell Stem Cell*, 2, 183-9.

870 WOPAT, S., BAGWELL, J., SUMIGRAY, K. D., DICKSON, A. L., HUITEMA, L. F. A., POSS, K. D., SCHULTE-
871 MERKER, S. & BAGNAT, M. 2018. Spine Patterning Is Guided by Segmentation of the
872 Notochord Sheath. *Cell Rep*, 22, 2026-2038.

873 YAMAGUCHI, T., SUZUKI, S., ISHIIWA, H. & UEDA, Y. 2004. Intraosseous benign notochordal cell
874 tumours: overlooked precursors of classic chordomas? *Histopathology*, 44, 597-602.
875 YANG, L., JIMENEZ, J. A., EARLEY, A. M., HAMLIN, V., KWON, V., DIXON, C. T. & SHIAU, C. E. 2020.
876 Drainage of inflammatory macromolecules from the brain to periphery targets the liver for
877 macrophage infiltration. *Elife*, 9.
878 ZHENG, C. J. & CHEN, J. 2015. Disc degeneration implies low back pain. *Theor Biol Med Model*, 12,
879 24.
880
881

882 **Figure Legends**

883 **Figure 1. *Kita* drives RAS expression in the notochord inducing fibrosis and wound-like**

884 **phenotype.** A) Schematic of the wild-type notochord. The notochord is a rod tube formed by

885 a sealing notochord sheath epithelium (nse) layer that wraps the notochord vacuolated cells

886 (nvc). B) Maximum projection from confocal images of control (*Kita:mCherry*) and *Kita-*

887 *RAS-mCherry* (*Kita-RAS*) at 5dpf. *Kita* drives expression of the reporter and RAS in the

888 notochord cells (magenta arrows), leading to dramatic changes in the notochord. Gaps

889 between vacuolated notochord cells (blue arrows) are filled with small non-vacuolated cells.

890 C) Histological sections of 5dpf control (*Kita-mCherry*) and *Kita-RAS* larvae, stained with

891 Toluidine Blue (T Blue) and AFOG. Control fish show an intact nse. *Kita-RAS* show

892 disruptions of the nse (arrowheads), accumulation of non-vacuolated cells within the

893 notochord (arrow) and fibrous tissue (AFOG, dashed arrow). D) Cross-section from confocal

894 images of *Kita* (control) and *Kita-RAS* at 5dpf, treated for EdU from 2-4dpf to show cell

895 proliferation. Note increased proliferation in the notochord sheath (arrowhead) and within

896 wounded areas of the notochord (arrow). E) Quantification of cell proliferation was

897 performed by counting the number of EdU-positive (+) cells in the control (*Kita*) (n= 8) and

898 *Kita-RAS* (n= 9). Nonparametric t-Test, post hoc Mann-Witney test; data are mean SD. P

899 values are indicated. All scale bars = 50 μ m.

900 **Figure 2. Transformed notochord cells alter the organisation of the sheath layer and**

901 **activate wound repair mechanisms.** A) Schematic of the notochord and notochord sheath

902 epithelium (nse) at 5dpf, formed by cells that highly express collagen type IX. B) Confocal

903 images showing maximum projection (Max proj), and cross sections (C section) of

904 *col9a2:GFP**CaaX* (nse) and *Kita-mCherry* (notochord cells) in control and *Kita-RAS*, at 5dpf.

905 In *Kita-RAS*, a “scar” region within the notochord (arrowhead) express *col9a2*, and shows

906 connectivity with the nse (arrow). C) The area (white dashed line) of notochord sheath cells

907 were analysed in controls and within two regions of *Kita-RAS* expressing *col9a2:GFP**CaaX*:
908 proximal (wp, magenta dashed line) and distal (wd, magenta solid line) to the wound
909 (arrowhead). D) Graph showing cell area quantification of each group (10 cells were
910 measured for each group and region, and n=10 fish per group). Nested One-Way ANOVA
911 and Tukey's multiple comparisons test were used for statistical analysis. Graph shows mean
912 with SD, p are indicated when significant (p<0.05). E) Maximum projection from confocal
913 images showing expression of *wt1b:gfp* in the wounded regions (arrowheads) of *Kita-RAS*.
914 *w1b* is not expressed in controls. All scale bars = 50 μ m.

915 **Figure 3. Increased inflammatory response detected in the notochord sheath of *Kita-***
916 ***RAS*.** A) Maximum projection from confocal images of the notochord at 5dpf in control
917 (*Kita-mCherry*) and *Kita-RAS* showing neutrophils (cyan arrowhead) interacting by contact
918 with the notochord sheath layer. B) Number of neutrophils interacting with the notochord
919 sheath during the time-lapse (controls n= 6 fish, *Kita-RAS* n= 14 fish). C) Interaction time
920 between neutrophils and the notochord sheath during the time-lapse movies. Each
921 dot represents one neutrophil (controls n=8 neutrophils, n = 4 fish; *Kita-RAS* n =39
922 neutrophils, n= 14 fish). D) Maximum projection from confocal images of the notochord of
923 5dpf control (*Kita-mCherry*) and *Kita-RAS* fish showing macrophages (cyan
924 arrowhead) interacting by contact with the notochord sheath. E) Number of macrophages
925 interacting with the notochord sheath during the time-lapse (controls n= 14 fish, *Kita-RAS*
926 n= 15 fish). F) Interaction time between macrophages and the notochord sheath during the
927 time-lapse movies. Each dot represents one macrophage (controls n= 51 macrophages, n= 13
928 fish; *Kita-RAS* n= 95 macrophages and n= 15 fish). Unpaired, nonparametric t-test, and
929 Mann-Whitney test were used for all graphs. Graphs show mean with SD, p values are
930 indicated when significant (p<0.05). All scale bars = 50 μ m.

931 **Figure 4. Modulation of the innate immune response prevents chordoma**

932 A) Schematics of the experiment. *Kita-RAS-GFP* were incrossed, embryos from the same
933 cross were divided in three groups: controls, morpholinos (MO) or CRISPR targeting *pu.I* +
934 *gcsfr* (for depletion of neutrophils and macrophages). Injections were carried out at 1-cel
935 stage. The notochords were subsequently imaged and analysed at 5dpf. B) Graph displaying
936 % of neutrophils per area in *Kita-RAS* (control group n= 26) and *Kita-RAS* injected with
937 either morpholinos (MO) (n = 9) or CRISPRs (n= 15). C) Graph showing numbers of
938 macrophages in *Kita-RAS* (n= 14) and *Kita-RAS* injected with either morpholinos (MO) (n =
939 15) or CRISPRs (n= 19). D) For quantification of neutrophils and macrophages, injections
940 were carried out in *Tg(Lyz:DsRed;mpeg:FRET:Kita:mCherry)*. Percentage of neutrophils
941 was calculated within the selected area (red dashed region), after image binarization.
942 Numbers of macrophages were manually counted in the dorsal fin area (red dashed region).
943 Images are displayed with inverted colour and in black and white for better visualisation.
944 Scale bars= 250 μ m. E) Cell proliferation was quantified from confocal images, by counting
945 numbers of EdU positive (+) cells in *Kita* (control) (n= 9), *Kita-RAS* (control for injections)
946 (n= 12) and *Kita-RAS* injected either with MO (n= 8) or CRISPRs (n= 9). F) Maximum
947 projection from confocal images to show cell proliferation in each of the experimental
948 groups. Scale bars= 50 μ m. G) Computational analysis was performed on images acquired
949 under a stereomicroscope at 5dpf, and was based on the intensity profile derived from the
950 fluorescence of the identified notochord (red line). Peaks along the notochord (red line)
951 represent the intensity profile. Lesions are identified by higher pixel intensity and broader
952 area under the peak. X and Y axis are displayed in number of pixels and serve as scale bars.
953 H) Violin Plot showing quantification of notochord lesions and rescue of notochord
954 phenotype in *Kita-RAS* (control for injections) (n= 140) and *Kita-RAS* injected either with
955 MO (n= 41) or CRISPRs (n= 105) in comparison with *Kita* (control) (n= 52). Note that MO
956 rescued the notochord phenotype, while CRISPR injections only partially rescued the

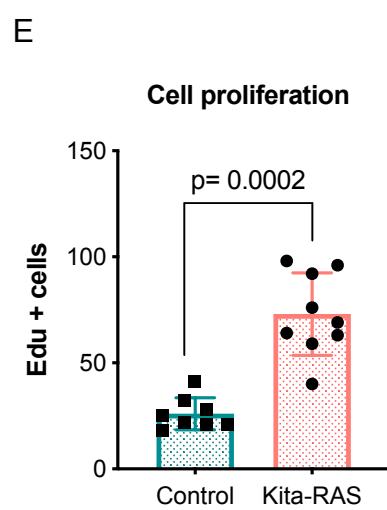
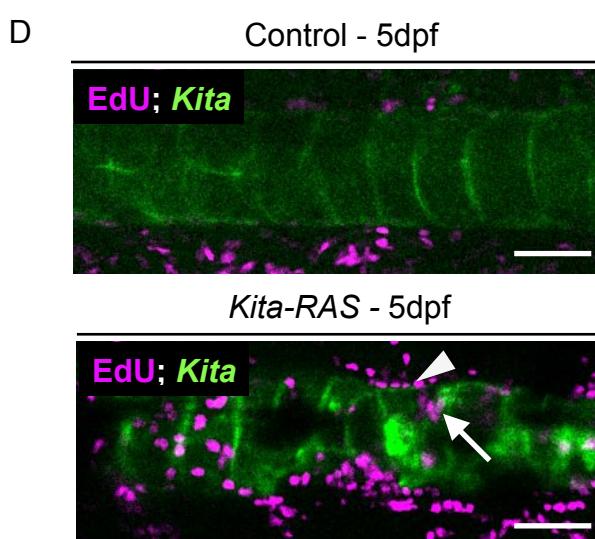
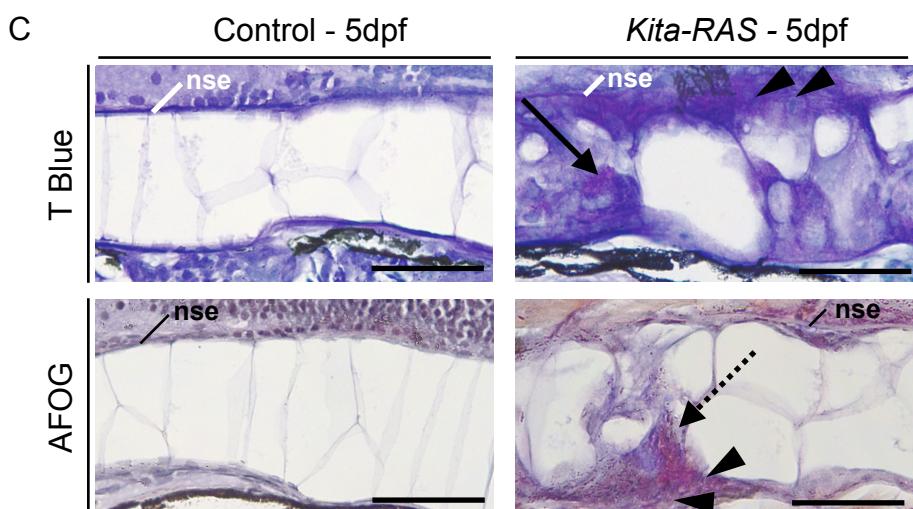
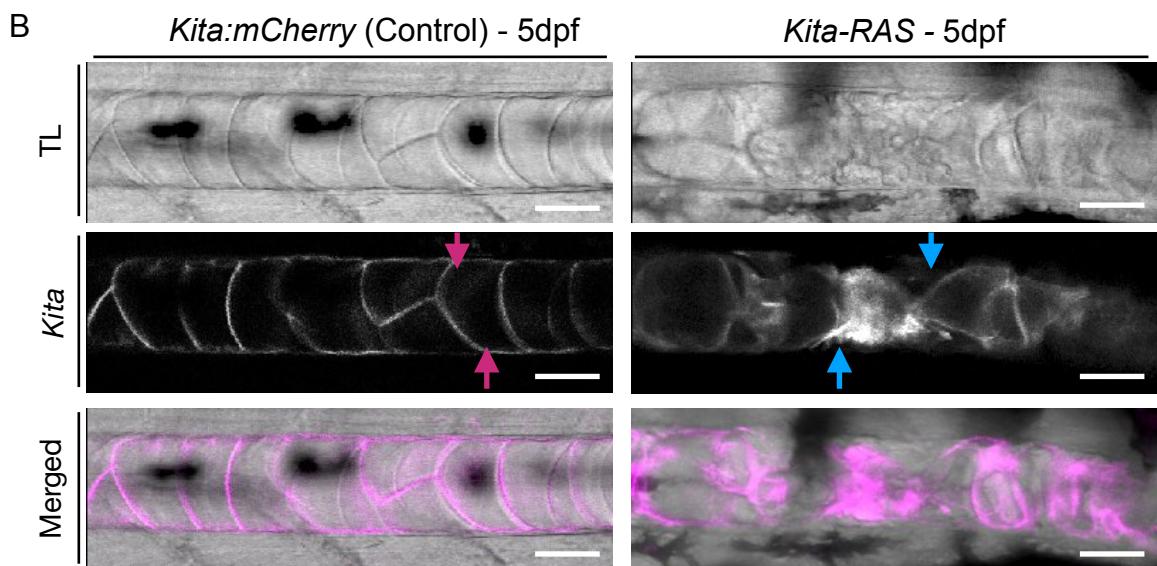
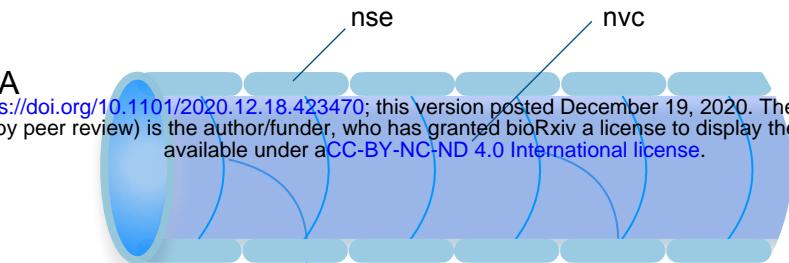
957 notochord. In graphs B), C), E) and H) we used nonparametric, One-way ANOVA, Kruskal-
958 Wallis test, followed by Dunn's multiple comparison test was used, P values are shown when
959 significant (p<0.05). B), C) and E) are mean with SD, generated in Prism 8. H) was generated
960 in Python.

961 **Figure 5. Notochord and sheath destabilisation interfere with vertebral column**
962 **segmentation and mineralisation in *Kita-RAS*.** A) Diagram illustrating the expression of
963 *entpd5(+)* in controls. These domains are interspaced by *entpd5(-)*, which will form the
964 IVDs, under normal situation. B) Graph showing numbers of *entpd5+* segments counted
965 from zebrafish at 5dpf and length between 3.8 to 4.1mm. Note slow formation of segments in
966 *Kita-RAS* (n= 24) in comparison with controls (n=25) Unpaired, nonparametric t-test, and
967 Mann-Whitney test were used. Graph shows mean with SD. C) *entpd5* expression in control
968 (*Kita:mCherry*) and *Kita-RAS* at 8dpf. Max projection from z stacks of notochord (*Kita*) and
969 *entpd5:kaeda* are shown for merged channels. Selected regions (dashed box) are shown in
970 higher magnification. Note abnormal expression pattern of *entpd5* (arrows) coinciding with
971 wounded region (dashed arrow). D) Diagram illustrating where the notochord sheath will
972 mineralise from *entpd5+* regions and form the chordacentra (vertebral primordium). E) The
973 length of the first 7 segments of the vertebral column was measured from controls (n= 24
974 fish) and *Kita-RAS* (n= 23 fish) of similar total length (5 mm ≤ fish length < 6mm) at 14dpf.
975 Graph displays 7 segments and their lengths. Note the high variability in *Kita-RAS*. Unpaired,
976 nonparametric, multiple t-tests were performed for statistical analysis. Line are plotted at
977 mean. P-values are shon when significant (p<0.05). F) Alizarin Red and Calcein (bone
978 staining) were used to visualise the mineralised chordacentra at 14dpf in controls and *Kita-*
979 *RAS*. Max projections from confocal images are shown for merged channels. Selected regions
980 (dashed box) are shown in higher magnification. Incomplete mineralisation of the
981 chordacenta (arrows) and ectopic mineralisation towards the IVD domain (arrowhead) were

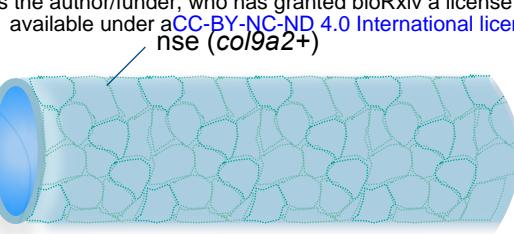
982 detected in *Kita-RAS*. All scale bars = 100 μ m. G) Alizarin Red was performed in 14dpf fixed
983 samples for measurements of segment lengths. Note uneven mineralisation of the segments.
984 Selected regions (dashed box) are shown in higher magnification. The first 7 vertebral
985 segments are indicated with numbers 1-7. Scale bars = 500 μ m.

986 **Figure 6. Transformed notochord cells lead to fusions and vertebral clefts which can be**
987 **rescued by immune cell modulation.** A) μ CT images of adult (6 month old, 6mpf) control
988 (*Kita-mCherry*) and *Kita-RAS*. Note severe fusions and shortening of the fish length in *Kita-*
989 *RAS*. A zoomed region, colour coded for bone mineral density (TMD in g.cm^{-3} . HA), is
990 shown as example. Note the decreased mineral density in *Kita-RAS*. Fusions compromising
991 from two (white dashed line, b) to several vertebrae (white dashed line, a) are shown. The
992 arches are also compromised (white dashed arrow). Scale bars = 500 μ m. B) TMD
993 calculation. Unpaired two-tailed T-test was used as statistical test (two vertebrae per fish
994 were analysed, control n= 3 fish, *Kita-RAS* n=3 fish). C) Frequency distribution of the length
995 of six consecutive segments, separated by defined IVD space, were measured in Amira using
996 3D perspective measurement. The studied region is shown with a dashed line and magenta
997 dots in (A). *Kita-RAS* show high variability in length of segments. D) The average of segment
998 length was increased in *Kita-RAS*. Six vertebrae per fish were analysed, control n= 3 fish,
999 *Kita-RAS* n=3 fish. Unpaired, nonparametric T-test (Mann-Whitney test). E) Frequency
1000 distribution of fish length in controls and *Kita-RAS* measured in pixels, from X-ray images.
1001 F) Fish lengths (measured in pixels) of controls (n= 40) and *Kita-RAS* (n=78). Unpaired,
1002 nonparametric T-test (Mann-Whitney test). G) Higher resolution μ CT images to show
1003 abnormalities in detail. G', fusions of several vertebrae and hemicentra (arrow). G'', lateral
1004 view of a hemicentra (arrow). G''', ventral view of hemicentra (arrows). Scale bars = 500
1005 μ m. H) One month old (1mpf) control (*Kita-mCherry*) and *Kita:RAS-GFP* stained with
1006 Calcein green and Alizarin Red, respectively, to label the bone (magenta). In *Kita-RAS*,

1007 hyperplastic notochord cell is indicated with a white dashed arrow, mineralised IVD with a
1008 white arrow and region of incomplete mineralisation and future cleft is marked with a dashed
1009 line. Note that notochordal cells fail to organise in IVD domains. Scale bars = 50 μ m. I) 1mpf
1010 control and *Kita:RAS-GFP* showing osteoblasts (Tg(*osx:NTR-mCherry*)). Arrows indicate
1011 regions of increased osteoblasts, dashed arrows show regions lacking osteoblasts and
1012 abnormal growth of arches. Pictures were processed to show pixel intensity (blue = low
1013 intensity), to visualise where osteoblasts are highly expressed. Two vertebrae in each fish
1014 were selected for quantification of mean pixel intensity. J) Alizarin red staining of 1mpf *Kita*,
1015 *Kita-RAS* and *Kita-RAS+CRISPR*. Note an intermediate (less severe) phenotype in *Kita-*
1016 *RAS+CRISPR* suggesting rescue of bone phenotype. K) Violin plot to show the distribution
1017 of vertebral column severity scores, from 0 (less severe) to 3 (most severe), in *Kita* (n=47),
1018 *Kita-RAS* (n= 44) and *Kita-RAS+CRISPR* (n= 83). One-Way ANOVA and Tukey's multiple
1019 comparisons test were used, p values are indicated when significant. Scale bars = 50 μ m.






1020 **Figure 7. Fibrotic nucleus pulposus and abnormal annulus fibrosus in *Kita-RAS***
1021 **resemble intervertebral disc degeneration.** A) Schematic of a histological section of the
1022 vertebral column of zebrafish (off from the midline) showing two consecutive IVDs. IVD =
1023 intervertebral disc; NP = nucleus pulposus; AF = annulus fibrosus; co = collagen layers; el =
1024 elastin layer; b = bone; ns = notochord sheath. B) Histological sections of adult control (*Kita-*
1025 *mCherry*) and *Kita-RAS* fish stained for Toluidine Blue (morphology), AFOG (fibrosis), and
1026 Picro-sirius red (fibrosis and collagen fibre thickness). Bone (b) and inner nucleus pulposus
1027 (NP) are indicated on the control Toluidine Blue picture. Abnormal fibrosis (black, orange
1028 and white arrows), cellularity and disorganisation of the NP were detected in *Kita-RAS* fish.
1029 The regions within the dashed box (Picro-sirius red staining) are shown at higher
1030 magnification to show the bone in detail. Asterisks were added to help with orientation, and
1031 they show the same position in lower and higher magnification pictures. Poor quality of bone

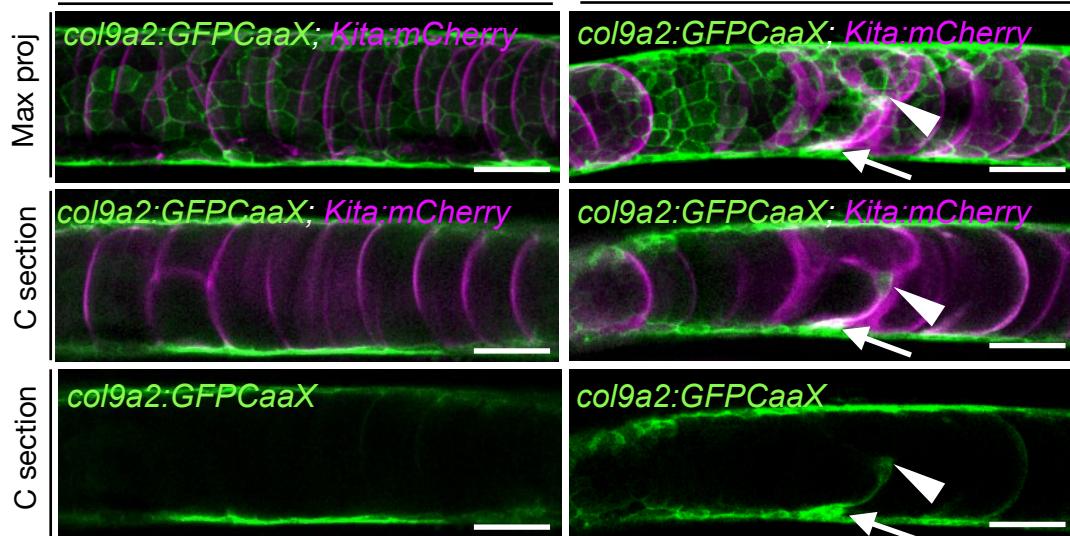
1032 can be measured by the tons of colours from Picro-sirius red staining. Thicker fibres are red
1033 and thinner fibres are blue/green (colour bar). C) Collagen fibre quantification was performed
1034 by determining the means of pixel colours (red, green and blue) in the Picro-sirius red
1035 staining pictures. Note a reduction of thick (red) and very thin (blue) fibres in *Kita-RAS* (n=9
1036 vertebrae, n= 3 fish) in comparison to controls (n= 6 vertebrae, n= 3 fish). Unpaired,
1037 nonparametric t-test, and Mann-Whitney test were used. Graphs show mean with SD, p
1038 values are indicated when significant (p<0.05). D) Toluidine blue staining to show details of
1039 the AF area in control (*Kita-mCherry*) and *Kita-RAS*. Note the loss of the layers of collagen
1040 and elastin in *Kita-RAS* and disorganised and higher number of osteoblasts (arrow). Internal
1041 collagen layer is mixed with abnormal cells (dashed arrow). All scale bars = 50 μ m.


1042 **Figure 8. Pre-neoplastic notochord cells drive abnormal vertebral column development**
1043 **and interfere with bone homeostasis in zebrafish.**

1044 In wild-type zebrafish, the notochord is formed by a notochord sheath epithelium (nse)
1045 wrapping notochord vacuolated cells (nvc) (A). Innate immune cells, in particular neutrophils
1046 (n) and macrophages (m), are not directed to the notochord and they do not trespass the ns
1047 (B). The segmentation of the notochord to form the future vertebrae and IVDs starts with
1048 differentiation of notochord sheath cells to express *entpd5* in interspaced domains (C). These
1049 segments will mineralise (chordacentra) and originate individual vertebra while inter-segment
1050 regions will form the IVDs (D). Osteoblasts (ob) and osteoclasts (oc) are evenly distributed in
1051 the centra and arches (E). When RAS is expressed in the notochord cells, transformed
1052 vacuolated cells collapse and a fibrous “scar” tissue is formed (A'). The notochord sheath
1053 layer is destabilised, triggering a prolonged recruitment of neutrophils and macrophages (B').
1054 The notochord sheath cells fail to differentiate and to express *entpd5* in specific domains,
1055 showing a delay and abnormal pattern of expression (C'). This leads to abnormal
1056 chordacentra formation (D'), consequently leading to fusions, clefts and abnormalities in the

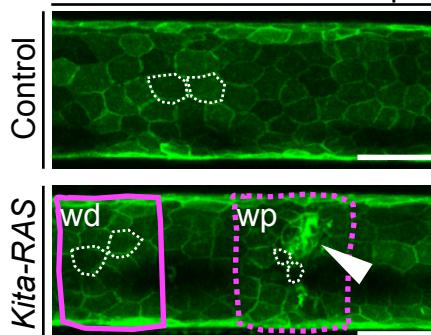
1057 adult vertebral column (E'). IVDs are lost due to fusions. Osteoblasts and osteoclasts are
1058 distributed disorderly in centra and arches and in higher numbers (E'). Moreover, pre-
1059 neoplastic cells continue to adult leading to nucleus pulposus abnormalities and poor bone
1060 quality. Chordoma development and bone phenotype can be controlled by
1061 immunomodulation of neutrophils and macrophages.
1062

A

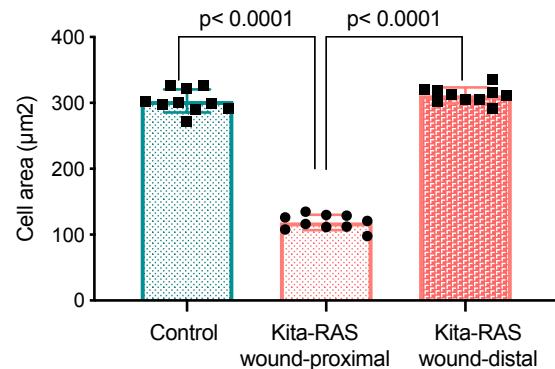


5dpf

B

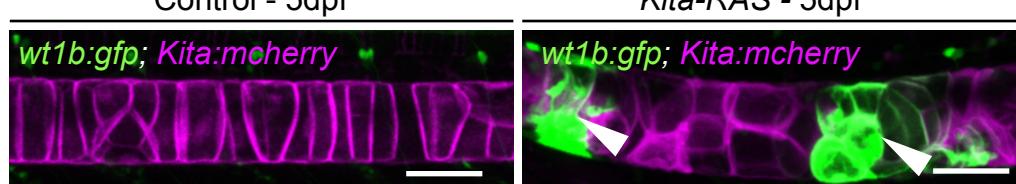

Control - 5dpf

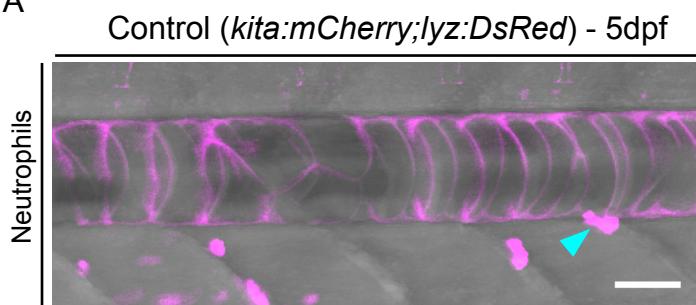
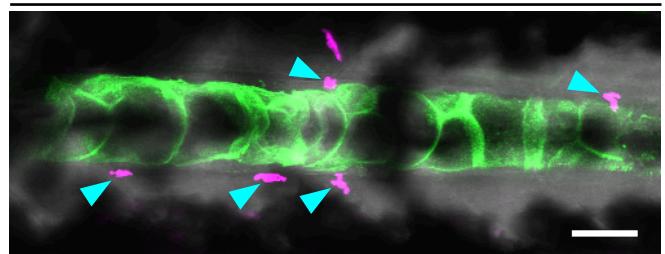
Kita-RAS - 5dpf


C

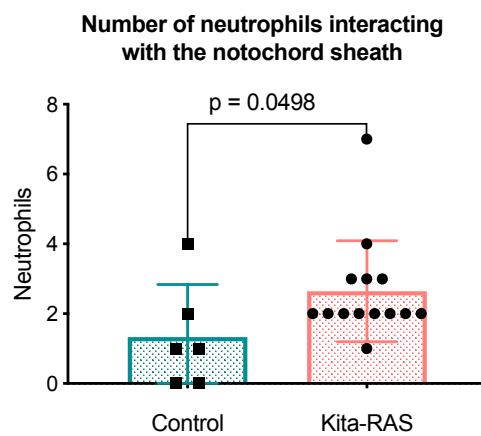
col9a2:GFPCaaX - 5dpf

D

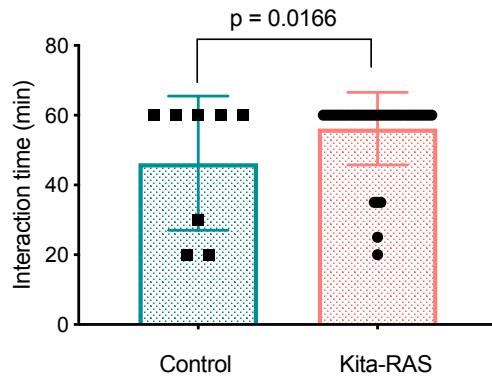

Cell area



E

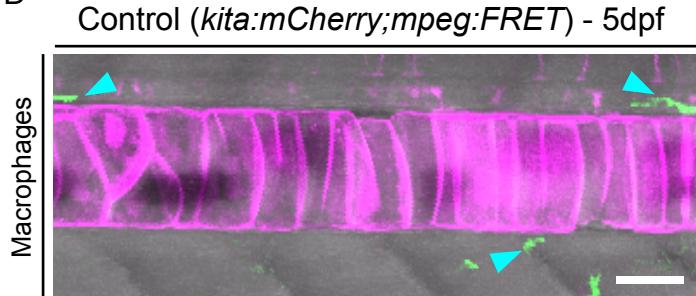
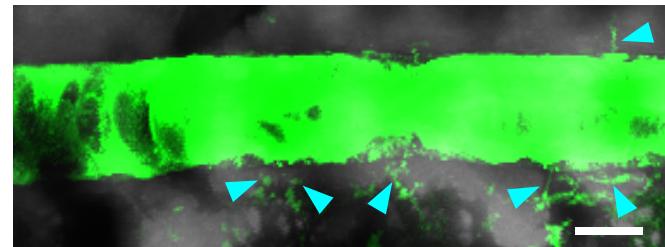
Control - 5dpf


Kita-RAS - 5dpf

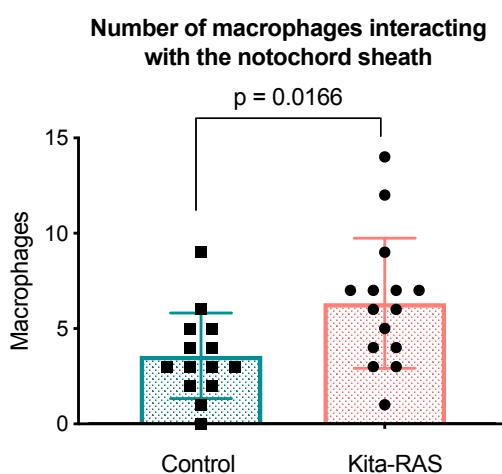
A


Kita-RAS (*kita:RAS-GFP;lyz:DsRed*) - 5dpf

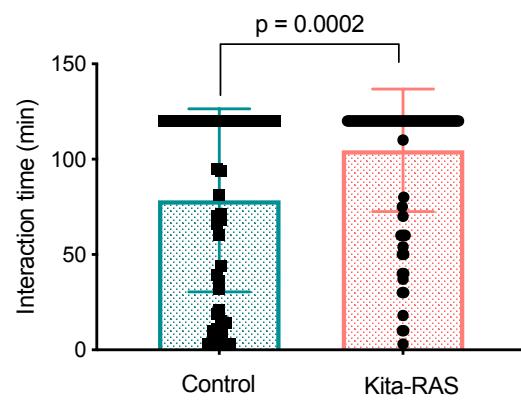
B

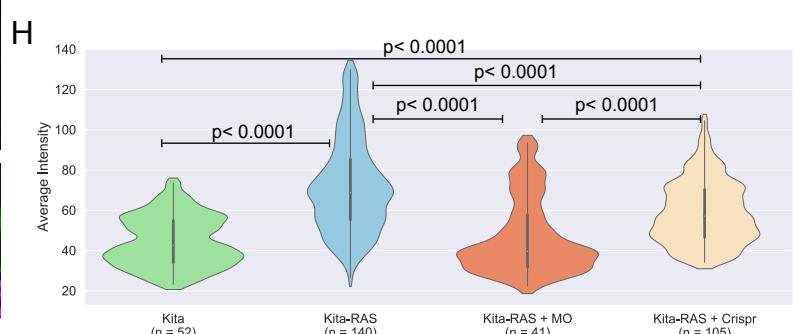
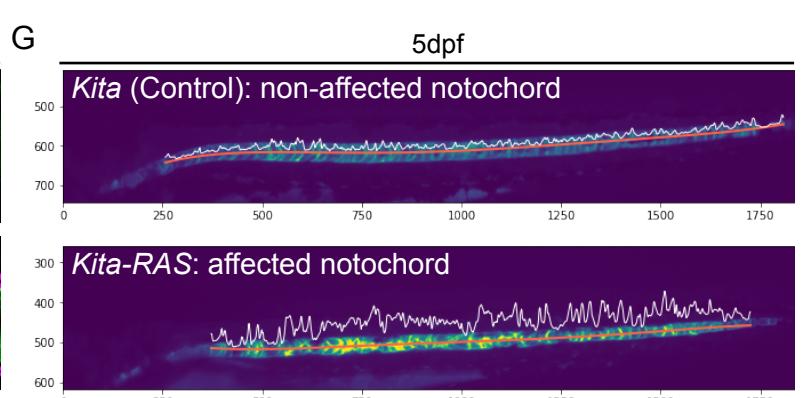
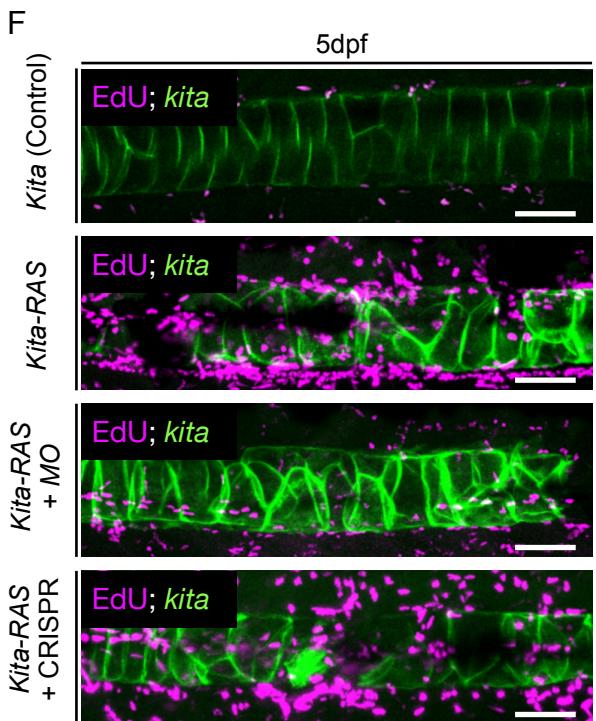
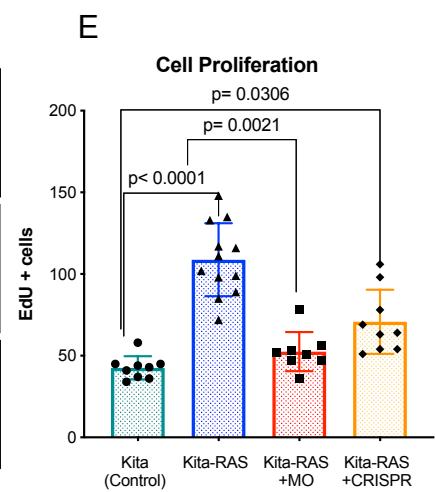
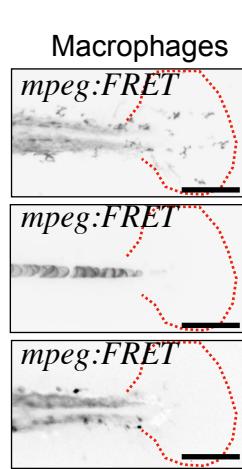
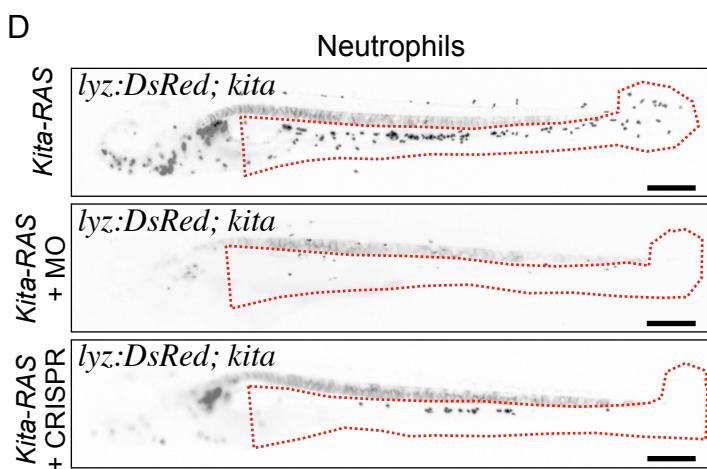
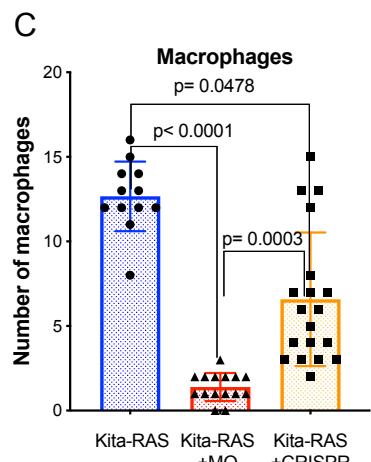
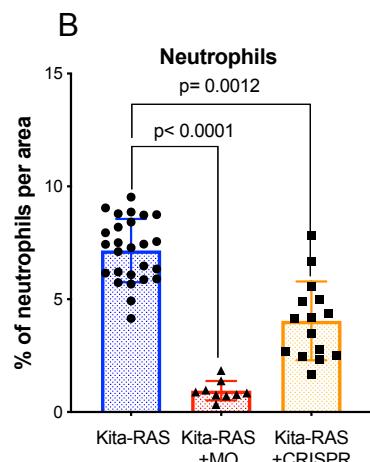
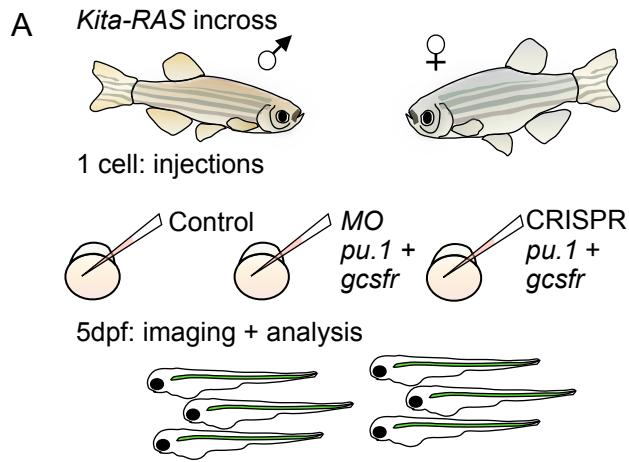



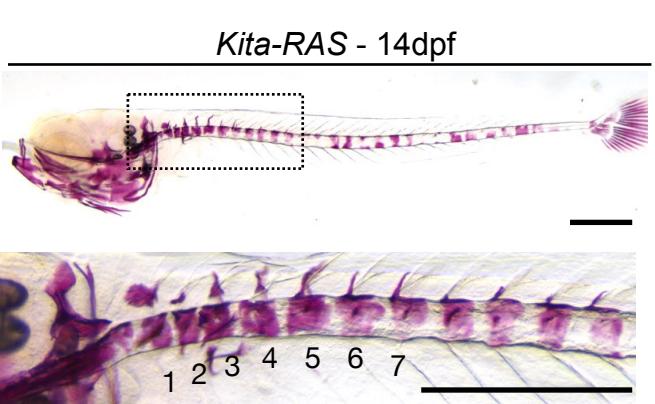
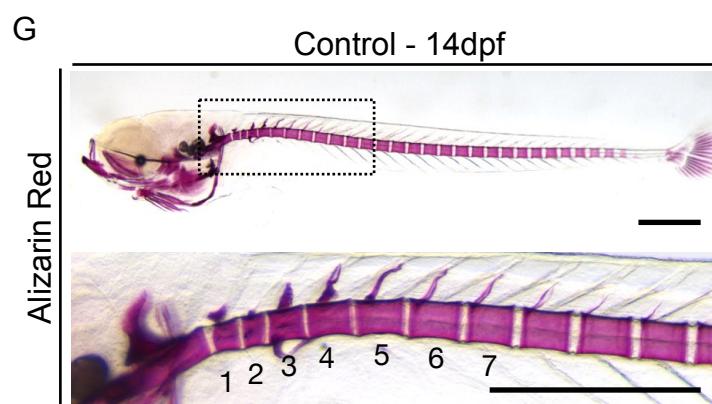
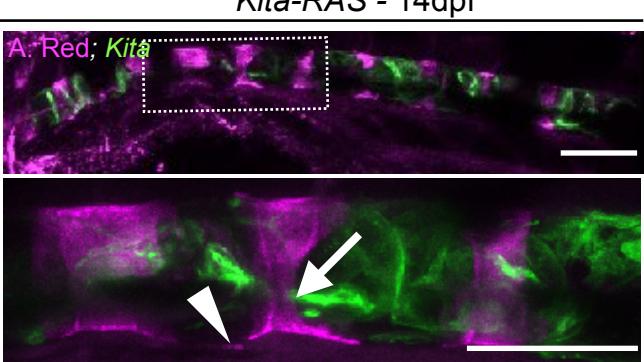
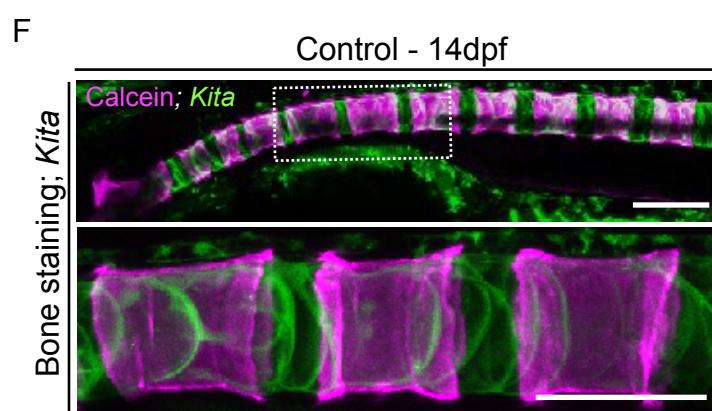
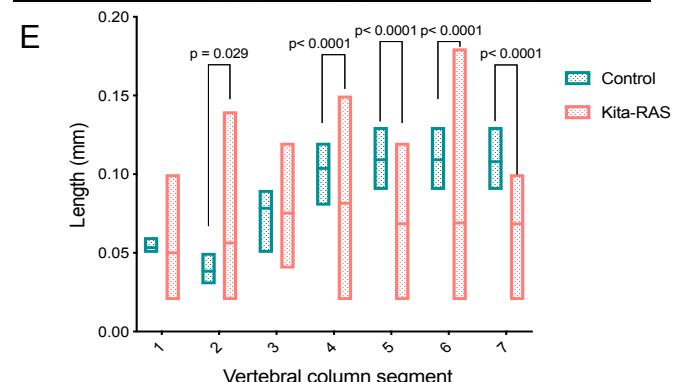
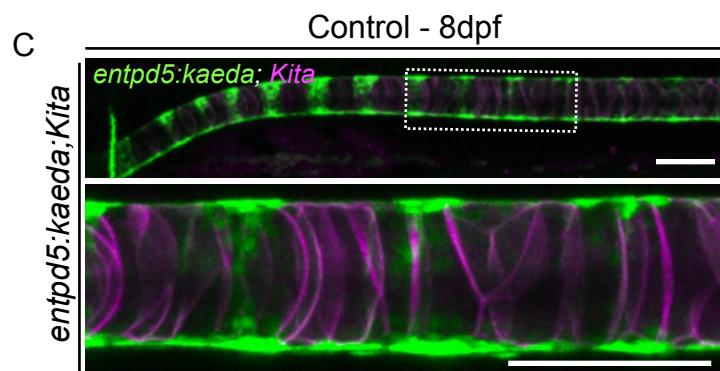
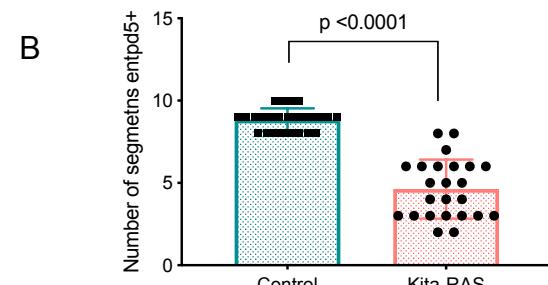
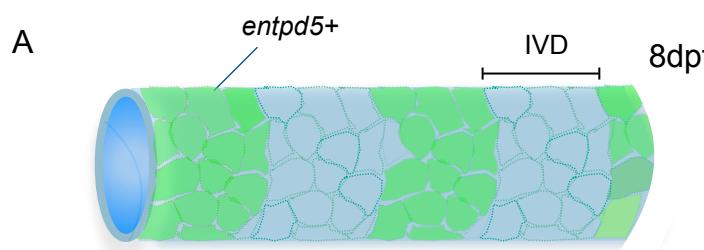
C

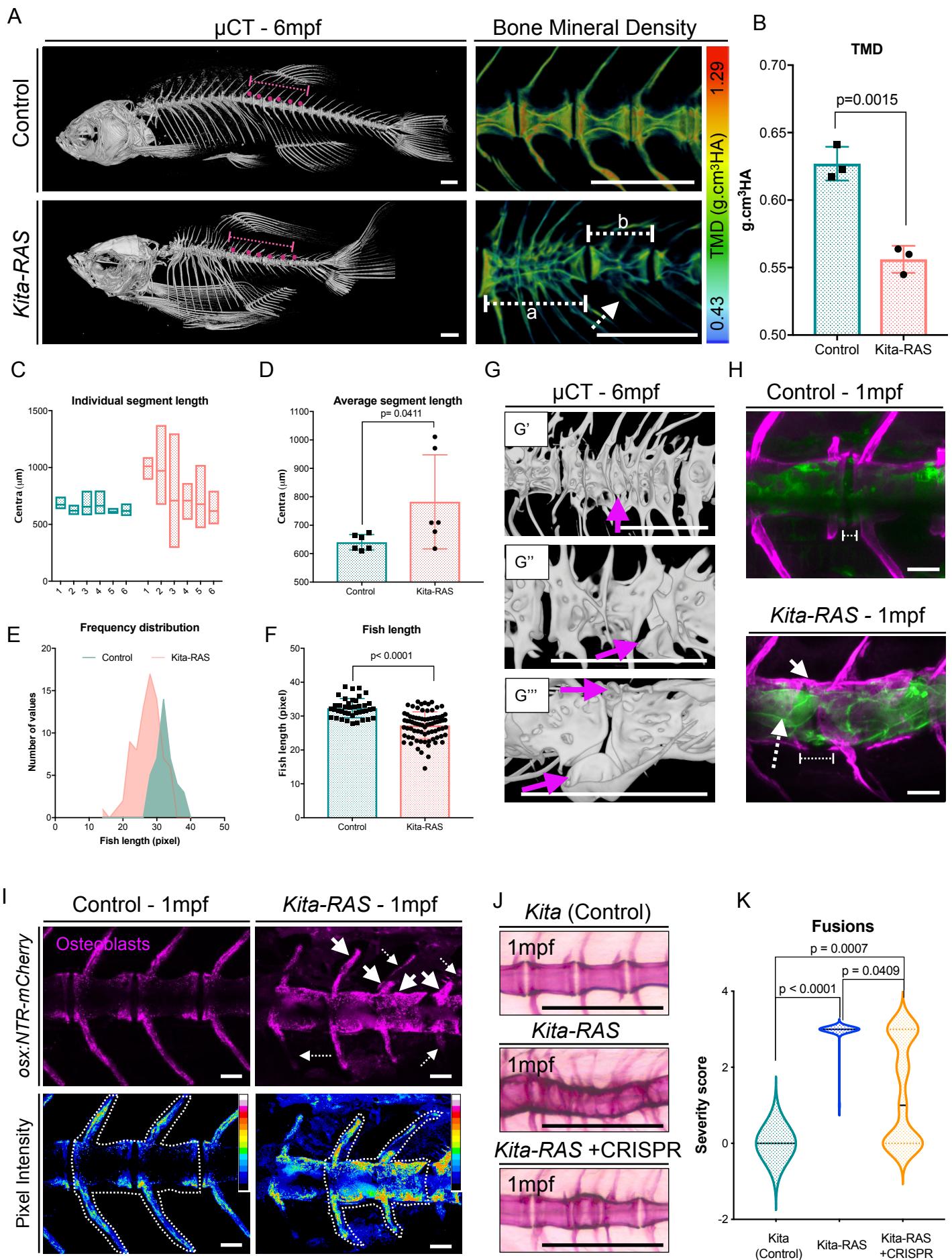

Neutrophils interacting with the notochord sheath

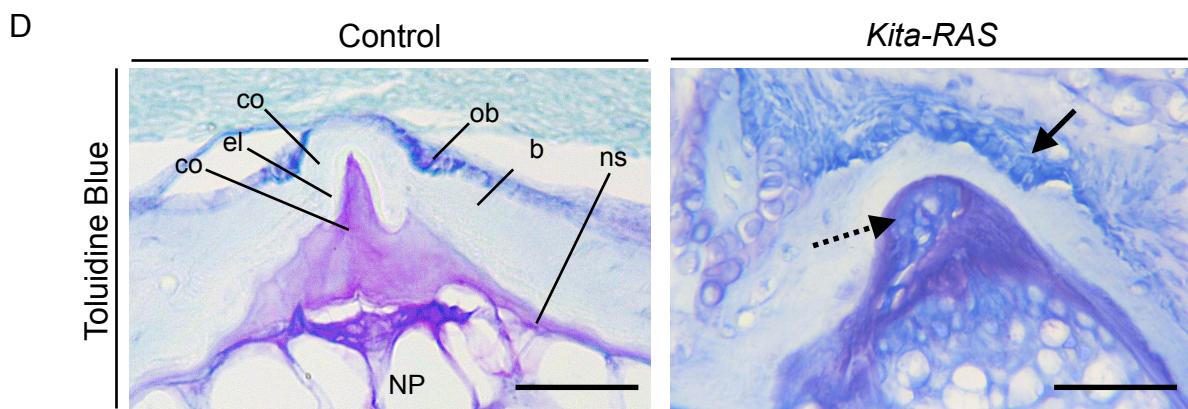
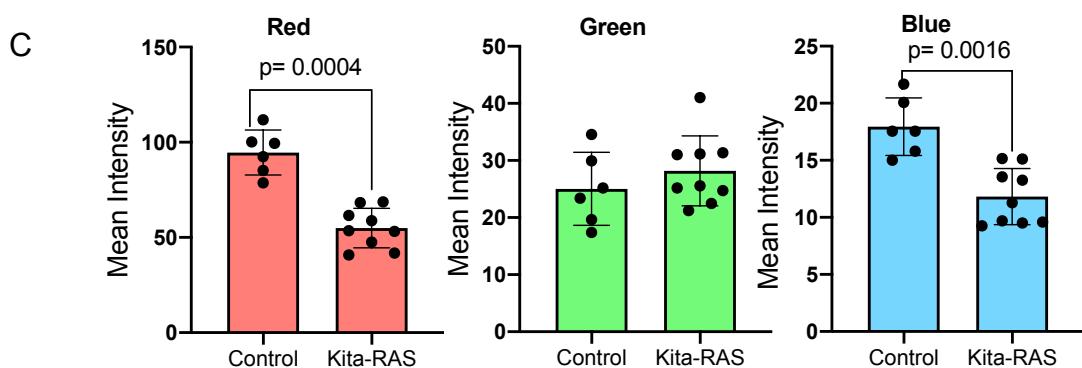
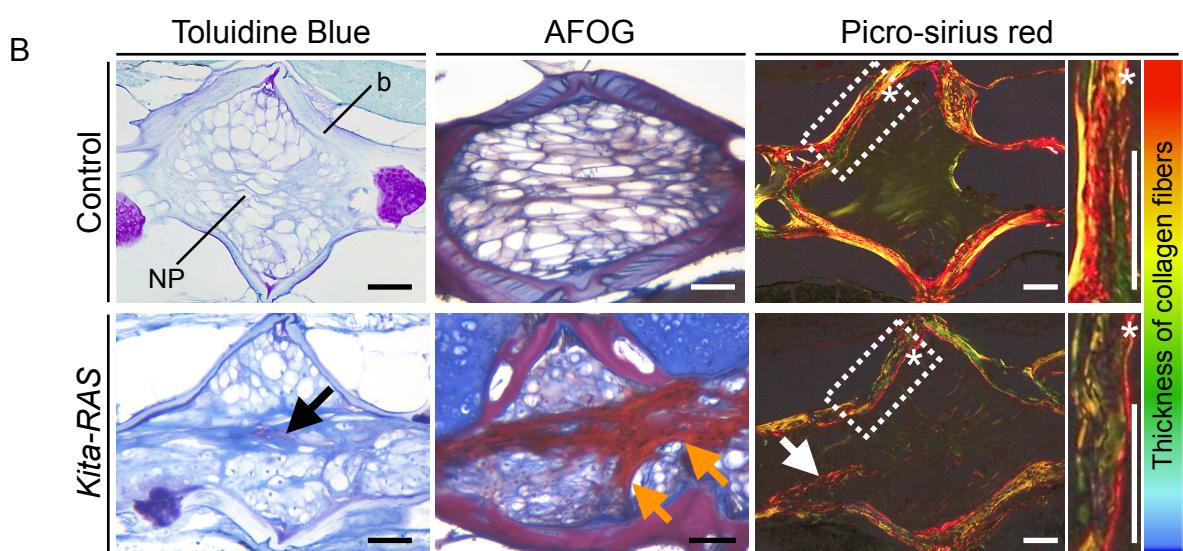
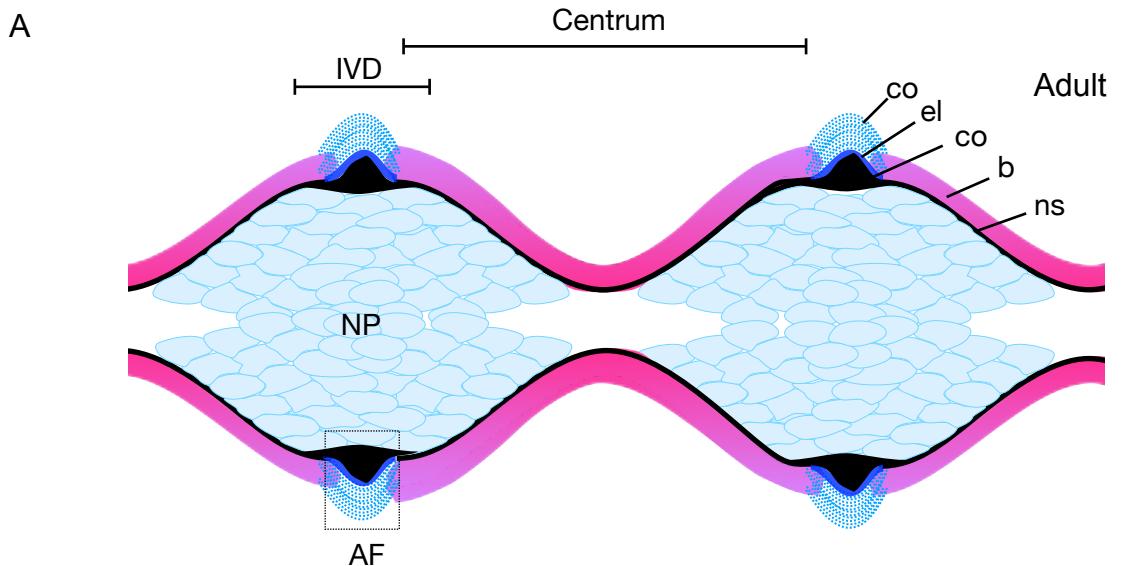
D

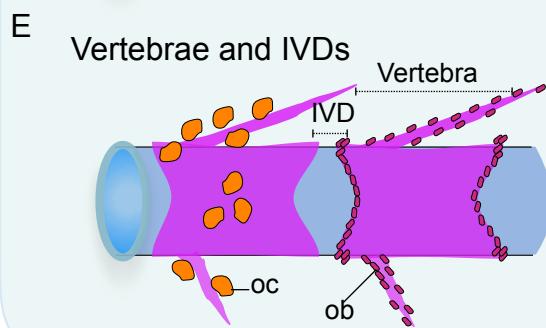
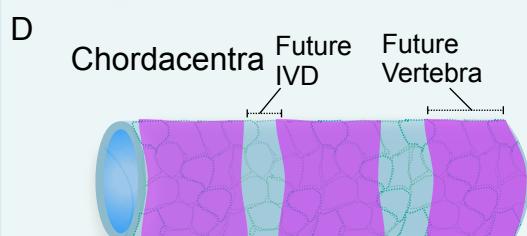
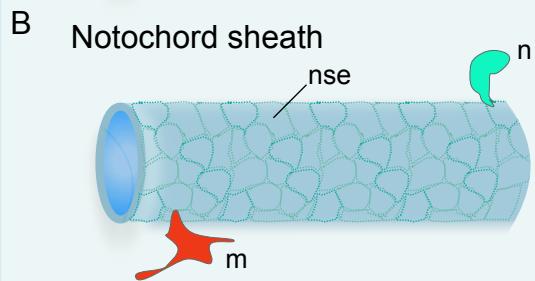
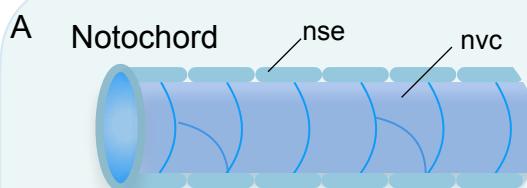

Kita-RAS (*kita:RAS-GFP;mpeg:FRET*) - 5dpf

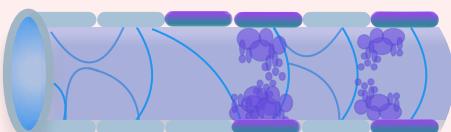









E

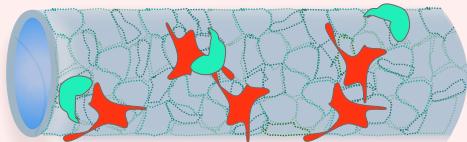

F





Macrophages interacting with the notochord sheath



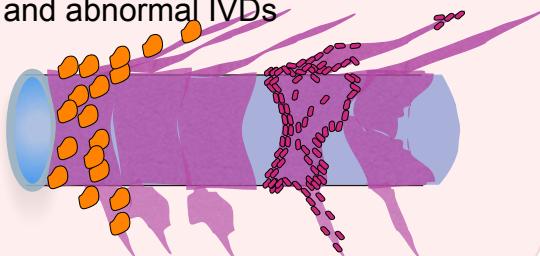
Wild-type



RAS-transformed notochord cells

A' Transformed notochord

B' Wounded notochord sheath + enhanced immune response


C' Abnormal segmentation

D' Abnormal chordacentra

E' Fusions, poor bone quality and abnormal IVDs

