

1 **KLF17 promotes human naïve pluripotency but is not required for its establishment**

2

3

4 Rebecca A. Lea¹, Afshan McCarthy¹, Stefan Boeing², Kathy K. Niakan^{1,3 *}

5

6 ¹Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1

7 1AT, UK

8 ²Bioinformatics and Biostatistics Service, The Francis Crick Institute, 1 Midland Road, London NW1

9 1AT, UK

10 ³The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience,

11 University of Cambridge, Cambridge CB2 3EG, UK

12 *Correspondence: kkn21@cam.ac.uk

13

14 **Summary statement**

15 Investigating KLF17 in human pluripotency reveals that it is sufficient, but not necessary, to establish

16 naïve hESCs. We posit that KLF17 is a peripheral regulator, like KLF2 in the mouse.

17

18 **Abstract**

19 Current knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of

20 inter-species conservation observed. Single-cell transcriptomics of human embryos previously

21 enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched

22 in the human epiblast and naïve hESCs. Here we show that KLF17 is expressed coincident with the

23 known pluripotency factors NANOG and SOX2 across human blastocyst development. We investigate

24 the function of KLF17 in pluripotency using primed and naïve hESCs for gain- and loss-of-function

25 analyses. We find that ectopic expression of KLF17 in primed hESCs is sufficient to induce a naïve-

26 like transcriptome and that KLF17 can drive transgene-mediated resetting to naïve pluripotency. This

27 implies a role for KLF17 in establishing naïve pluripotency. However, CRISPR-Cas9-mediated

28 knockout studies reveal that KLF17 is not required for naïve pluripotency acquisition *in vitro*.

29 Transcriptome analysis of naïve hESCs identifies subtle effects on metabolism and signalling

30 following KLF17 loss of function, and possible redundancy with the related factor, KLF5. Overall, we

31 show that KLF17 is sufficient, but not necessary, for naïve pluripotency under the given *in vitro*

32 conditions.

33

34 **Key words:**

35 Human embryonic stem cells, naïve pluripotency, epiblast, KLF17, KLF factors

36

37

38

39

40

41 **Introduction**

42 Model organisms such as the mouse have allowed for the identification of molecular mechanisms that
43 regulate early mammalian development (Rossant, 2016), some of which are conserved in humans
44 (Gerri et al., 2020). Despite the continued importance of comparative studies in mouse and other
45 organisms, some aspects of early development such as developmental timing, chromatin accessibility
46 and transcription factor function are distinct compared to humans (Niakan and Eggan, 2013, Fogarty
47 et al., 2017, Gao et al., 2018). In particular, the advent of single-cell sequencing technologies has
48 allowed in-depth transcriptomic analysis of human embryos, revealing a number of molecular
49 differences compared to the mouse (Yan et al., 2013, Blakeley et al., 2015, Petropoulos et al., 2016,
50 Stirparo et al., 2018). Our previous analysis highlighted that a number of genes thought of as
51 canonical pluripotency-associated factors in the mouse, including *KLF2*, *ESRRB* and *BMP4* (Blakeley
52 et al., 2015), are not expressed in the pluripotent epiblast (EPI) of the human pre-implantation
53 embryo, which forms the embryo proper. Conversely, we also highlighted a number of genes that are
54 specifically enriched in the human EPI, but not expressed in the pluripotent cells of the mouse
55 embryo, including transcriptional regulators and signalling components (Blakeley et al., 2015).

56

57 Of these human EPI-enriched genes, the zinc finger DNA-binding protein *KLF17* has drawn
58 considerable interest. *KLF17* is one of 11 human paralogues of the Krüppel-like transcription factor
59 family involved in development, which includes *KLF4*, a commonly used reprogramming factor
60 (Takahashi and Yamanaka, 2006) and *KLF2*, a known pluripotency regulator in the mouse (Hall et al.,
61 2009). Given the lack of *KLF2* expression in the human EPI, it is interesting to speculate that *KLF17*
62 might function in a similar way. Indeed, the expression patterns of *KLF2* and *KLF17* in the human
63 embryo are diametrically opposite to those of *Klf2* and *Klf17* in the mouse embryo (Yan et al., 2013,
64 Blakeley et al., 2015). While *Klf17* appears to be maternally deposited in the mouse zygote and its
65 expression is abolished around the 8-cell stage, *KLF17* is dramatically upregulated in the 8-cell
66 human embryo, following embryonic genome activation (EGA). Conversely, *Klf2* is expressed from
67 the 2-cell stage, corresponding to mouse EGA, and continues through to the blastocyst stage, but
68 human *KLF2* is expressed only pre-EGA, in the zygote to 4-cell embryo. The human *KLF17* and *KLF2*
69 sequences share ~60% homology across the C-terminal region containing the functional C₂H₂-type
70 zinc-finger domains. *KLF17* and mouse *KLF2* also have additional homologous regions (~50%)
71 throughout the protein, including part of a region in mouse *KLF2* annotated as a protein-protein
72 interaction domain, which may contribute to regulation and/or functional specificity. Furthermore, in
73 mouse embryonic stem cells (mESCs), the triple knockout of *Klf2*, *Klf4* and *Klf5* can be rescued by
74 ectopic expression of human *KLF17*, but not mouse *Klf17* (Yamane et al., 2018). Finally, the human
75 and mouse *KLF17* protein sequences have less similarity overall than other pairs of KLF orthologues
76 (van Vliet et al., 2006). This is all suggestive of rapid, divergent evolution of the human and mouse
77 KLF genes and a potential switching of their function between species.

78

79 To date, *KLF17* has primarily been studied in the context of cancer, where it has been implicated as a
80 tumour suppressor by interacting with TGF β /SMAD signalling (Ali et al., 2015b) and p53 (Ali et al.,

81 2015a) and inhibiting epithelial-to-mesenchymal transition (Gumireddy et al., 2009, Zhou et al., 2016).
82 Since the recognition of its human EPI-specific expression, KLF17 has been widely used as a marker
83 of pluripotency in the human embryo (Blakeley et al., 2015, Guo et al., 2016, Shahbazi et al., 2017,
84 Kilens et al., 2018). The expression of *KLF17* throughout pre-implantation development, and in
85 particular in pluripotent cells, is also conserved in a number of other organisms, including non-human
86 primates (rhesus monkey, *Macaca mulatta* (Wang et al., 2017); common marmoset, *Callithrix jacchus*
87 (Boroviak et al., 2015); and cynomolgus monkey, *Macaca fascicularis* (Nakamura et al., 2016)), and
88 pig (*Sus scrofa* (Bernardo et al., 2018, Ramos-Ibeas et al., 2019)). Intriguingly, KLF17 expression is
89 not detectable in conventionally derived “primed” human embryonic stem cells (hESCs) (Blakeley et
90 al., 2015, Stirparo et al., 2018), indicating that expression from EPI cells is lost during the derivation
91 process. However, newer methods for deriving and/or culturing hESCs and human induced
92 pluripotent stem cells (hiPSCs) in a naïve pluripotent state result in the maintenance or reinstatement
93 of *KLF17* gene activity (Theunissen et al., 2014, Guo et al., 2017, Guo et al., 2016, Liu et al., 2017,
94 Kilens et al., 2018). This pattern of expression suggests the intriguing possibility that KLF17 acts as a
95 transcriptional regulator of human naïve pluripotency, as exhibited in the *bona fide* state of the pre-
96 implantation EPI and approximated in the *in vitro* naïve hESC models. This hypothesis has also been
97 explored by independent transcriptome analysis (Stirparo et al., 2018).

98
99 Studies to date have only conclusively shown that KLF17 is a marker of human pluripotency. Here,
100 we set out to determine the function of KLF17, finding that its induced expression in conventional
101 hESCs is sufficient, alongside naïve-permissive pluripotency conditions, to induce a complete change
102 in phenotype from primed to naïve pluripotency. RNA-seq during the early stages of induction in
103 primed conditions suggests that KLF17 induces this change by regulating genes involved in important
104 signalling pathways. However, we also find that the null mutation of KLF17 in conventional hESCs is
105 not detrimental to naïve resetting or to the growth and survival of the resulting naïve hESCs.
106 Altogether, this suggests that KLF17 functions to regulate genes associated with human naïve
107 pluripotency, but that there is a degree of redundancy *in vitro*, such that KLF17 itself is not strictly
108 necessary for the acquisition and maintenance of naïve hESCs.

109

110 Results

111 ***KLF17 expression in the human embryo is gradually restricted to the epiblast***

112 Detailed single-cell RNA sequencing studies highlight *KLF17* as a molecular marker that is expressed
113 in the human embryonic EPI. First, we reassessed the protein expression dynamics of KLF17 in
114 human embryos, to investigate its distribution across the developing blastocyst. We performed
115 immunofluorescence (IF) analysis of KLF17 alongside the canonical pluripotency factors SOX2 and
116 NANOG in human embryos from the early to late blastocyst stage (FIG.1, S1). NANOG is the earliest
117 known EPI-specific factor in human embryos (Kimber et al., 2008, Niakan and Eggan, 2013), while
118 the SOX2 expression dynamic closely resembles that of *KLF17* (Blakeley et al., 2015). In keeping
119 with previous data (Kilens et al., 2018), we found that in the earliest stage examined (early day 5 post-
120 fertilisation (dpf)), KLF17 protein was detectable in every cell of the embryo (FIG.1, S1). Though the

121 expression levels across all nuclei were heterogeneous, this widespread staining of KLF17 was
122 largely coincident with SOX2, which is also present in both the inner cell mass (ICM) and
123 trophoectoderm (TE) populations at this stage (FIG.1, S1). As blastocyst development progressed,
124 KLF17 expression was gradually restricted, with ICM enrichment by late day 5 dpf (FIG.1, S1). In
125 early day 7 dpf blastocysts, KLF17 was detectable only in the presumptive EPI cells, delineated by
126 exclusive co-staining with both SOX2 and NANOG (FIG.1, S1). Interestingly, the restriction of KLF17
127 appeared to progress more slowly than that of SOX2. By late day 5 dpf, SOX2 was only appreciably
128 expressed in the ICM and to a lesser extent in polar TE and it was completely restricted to the EPI in
129 early day 6 dpf embryos (FIG.1, S1). In contrast, there remained appreciable KLF17 protein across
130 cells of the TE in most (3 of 5) of the late day 6 dpf blastocysts analysed (FIG.1, S1). This suggests
131 that the half-life of KLF17 protein may be longer than that of SOX2, given the absence of *KLF17*
132 transcripts in the extraembryonic lineages of human blastocysts by single cell RNA-sequencing
133 (scRNA-seq) analysis (Blakeley et al., 2015). As reported previously, NANOG is detected only in the
134 ICM at all stages of blastocyst development (Niakan and Eggan, 2013). Despite the initial widespread
135 expression pattern of KLF17, its gradual restriction to the NANOG/SOX2 dual-positive EPI suggests
136 that it is specifically retained in the pluripotent EPI, perhaps to perform an unappreciated role in
137 pluripotency regulation or EPI development.

138

139 ***Induction of KLF17 promotes a naïve pluripotency-like phenotype in conventional hESCs***

140 Given that KLF17 is not expressed when hESCs are cultured in the conventional, primed state, we
141 investigated the effect of ectopic overexpression of *KLF17* in hESCs. We hypothesised that KLF17,
142 as a transcriptional regulator that is enriched in the naïve state (Blakeley et al., 2015, Guo et al.,
143 2016, Messmer et al., 2019), might be sufficient to regulate other naïve hESC-enriched genes when
144 ectopically expressed in primed pluripotent hESCs.

145

146 A doxycycline (Dox)-inducible, 3' HA-tagged *KLF17* transgene was introduced into hESCs by lentiviral
147 transduction (FIG.2A). Initial tests of the transduced line showed that 5 days treatment with 1 µg/ml
148 Dox was sufficient for robust expression of KLF17 protein in almost every cell of the population
149 (FIG.2B). We therefore examined the possibility of gene expression changes in response to ectopic
150 KLF17 in primed culture conditions. Using quantitative reverse transcriptase-polymerase chain
151 reaction (qRT-PCR), we analysed the expression of a number of genes identified as either naïve- or
152 primed-enriched through previous differential gene expression analyses (Stirparo et al., 2018,
153 Messmer et al., 2019) after 5 days Dox induction (FIG.2C). We identified naïve-enriched factors that
154 were significantly upregulated in response to KLF17 induction: *ARGFX* (upregulated ~65-fold
155 average; p~0.03), *REX1/ZFP42* (upregulated ~180-fold average; p~0.02) *DPPA5* (upregulated ~3.9-
156 fold average; p~0.04), *DNMT3L* (upregulated ~300-fold average; p~0.003) and *TFAP2C* (upregulated
157 ~2-fold average; p~0.03). Of these genes, our recent scRNA-seq analysis revealed that under
158 equivalent conditions (H9 cells in mTeSR1 on matrigel) only *REX1/ZFP42* is appreciably expressed in
159 primed hESCs (Wamaitha et al., 2020). Therefore, expression of KLF17 alone is sufficient not only to
160 upregulate a gene already active in conventional hESCs, but also to initiate expression of genes that

161 are otherwise transcriptionally silent. On the other hand, expression of *NANOG* remained
162 transcriptionally unchanged, as did expression of the endogenous *KLF17* gene (FIG.2C).
163
164 In order to understand the full extent of the gene expression changes following *KLF17*
165 overexpression, we performed mRNA-seq across a 5-day time course of induction. Dimensionality
166 reduction by principal component analysis (PCA) separated the samples by treatment (uninduced (UI))
167 or induced (+Dox)), as well as by timepoint (FIG.3A). Thus, ectopic expression of *KLF17* in primed
168 hESCs was sufficient to bring about considerable transcriptome-wide changes.
169
170 To determine the nature of the genes impacted upon by *KLF17*, we performed differential gene
171 expression analysis between UI and +Dox samples at each timepoint. At day 5, we uncovered 1760
172 and 1315 up- and downregulated genes, respectively ($p_{adj}<0.05$) (FIG.3B; Supp Table 1). Intriguingly,
173 of the upregulated genes at day 5, 505 (29%) have been previously identified as enriched in naïve
174 hESCs (Stirparo et al., 2018, Messmer et al., 2019) and/or the human EPI itself (Blakeley et al.,
175 2015), including 46 genes that are EPI-enriched but not differentially expressed between naïve and
176 primed hESCs (e.g. *LEFTY1*, *CALB1*, *ETV5*, *ETV4* and *PFKP*) (FIG.3C). In contrast, of the
177 downregulated genes, 465 (35%) were previously identified as enriched in primed versus naïve
178 hESCs. The negatively regulated, hESC-associated genes included *ITGA2* and *ITGA4*, *MAPK10*,
179 *IGFBPL1* and *IDO1* (FIG.3D). This suggests that expression of *KLF17* in hESCs cultured under
180 primed culture conditions promotes a shift toward a more naïve pluripotent transcriptome.
181
182 It thus appears that *KLF17* alone is sufficient to induce significant transcriptional change in primed
183 hESCs over 5 days. To identify those genes most likely to be directly regulated by *KLF17*, we
184 performed a time course correlation analysis. Using a cut-off for the correlation coefficient of 0.85, we
185 found 70 genes whose expression over time closely mimicked that of *KLF17* itself (FIG.S2A; Supp
186 Table 2). Of these genes, two-thirds (47) were classified as significantly enriched from day 1
187 ($p_{adj}<0.05$) and almost all (69) were classified as significantly enriched from day 2 onwards ($p_{adj}<0.05$)
188 (FIG.S2B-C), highlighting that these putative *KLF17* targets were both rapidly and strongly
189 upregulated following *KLF17* induction. These genes included a number of components of the PI3K-
190 AKT-mTOR signalling pathway (*PIK3AP1*, *TSC2*, *NOS3*, *FGF18*, *FGFR3*, *ITGB7* and *LAMC2*;
191 FIG.3E), which we recently showed to be active in both primed and naïve hESCs and a driver of
192 primed hESC and human EPI proliferation (Wamaitha et al., 2020). Following *KLF17* overexpression,
193 hESCs significantly upregulated ligands and receptors feeding in to PI3K and the downstream
194 components *NOS3* and *TSC2* (FIG.S3A-G). Of note, all seven such genes are enriched in the human
195 EPI compared to primed hESCs in mTeSR1 on matrigel (Wamaitha et al., 2020), as used in the
196 current experiment. PI3K-AKT-mTOR signalling has also been previously suggested to support an
197 alternative state of naïve pluripotency (Duggal et al., 2015). This suggests that *KLF17* induction may
198 modulate signalling through PI3K to a more naïve or EPI-like state.
199

200 We investigated this possibility by western blotting, to determine the activation state of the PI3K
201 pathway in UI and +Dox hESCs (FIG.S3Q). We find that phosphorylation of AKT at Serine473 is
202 reduced following 5 days of *KLF17* induction, indicating that the change in expression of PI3K-AKT
203 signalling components in response to *KLF17* overexpression is sufficient to adjust the activity of this
204 signalling pathway. In particular, phosphorylation of AKT at Serine473 is usually mediated by the
205 activity of mTOR and stimulates full AKT activity (Alessi et al., 1996, Sarbassov et al., 2005), thereby
206 regulating functions including metabolism, growth and proliferation. A reduction in the levels of Ser473
207 phosphorylation following upregulation of genes associated with PI3K-AKT-mTOR signalling might
208 indicate negative feedback, acting to keep the *KLF17*-induced hESCs in a signalling steady state.
209

210 Other signalling factors were also highly correlated with *KLF17*, including *JAKMIP2*, *FGFRL1* and
211 *TNFRSF8* and the TGF β signalling pathway components *LEFTY2* and *TGFB1I1*. A number of cell
212 adhesion-related and cytoskeletal proteins were also included in this list: *LAMC2*, *MUC4*, *COL5A1*,
213 *ITGB7* and *MXRA5* (FIG.S3H-O). It is intriguing that the overexpression of *KLF17* alone can influence
214 genes involved in such diverse processes, especially given the importance of changes in morphology
215 and signalling for the conversion of primed to naïve pluripotency. It therefore appears that *KLF17* is
216 inducing some of these same resetting-associated changes without any external stimulation.
217

218 Of note is the strong expression correlation of *KLF17* and the long non-coding RNA *LINC-ROR*
219 (correlation coefficient 0.921), which is upregulated ~2.4-fold after 24hrs induction (FIG.S3P). *LINC-*
220 *ROR* has been identified as a regulator of iPSC reprogramming (Loewer et al., 2010) and hESC self-
221 renewal (Wang et al., 2013). *LINC-ROR* expression is regulated by the core pluripotency transcription
222 factors OCT4, SOX2 and NANOG (Loewer et al., 2010) and in turn, acts as a sink for pluripotency
223 destabilising microRNAs (miRNAs) that target the mRNA of these core factors for degradation (Wang
224 et al., 2013). Thus, *LINC-ROR* appears to constitute an important feedback loop for pluripotency
225 maintenance in hESCs. The observed upregulation of *LINC-ROR* expression may therefore protect
226 the *KLF17*-induced hESCs from differentiation cues, as *LINC-ROR* overexpression has been shown
227 to have a protective effect (Wang et al., 2013).
228

229 Finally, we noted that of the 1711 genes downregulated following just 24 hours of Dox induction, there
230 is enrichment for terms related to WNT signalling. Activity of the WNT pathway has been suggested to
231 promote differentiation of hESCs, in both the primed and naïve pluripotent states (Davidson et al.,
232 2012, Singh et al., 2012, Bredenkamp et al., 2019b) and to be suppressed through cross-talk with the
233 PI3K-AKT signalling pathway (Singh et al., 2012). Therefore, downregulation of genes associated with
234 WNT signalling may suggest a further mechanism through which *KLF17*-overexpressing hESCs
235 would be refractory to differentiation cues. Interestingly, the inability to immediately undergo
236 differentiation in response to established protocols is a feature of naïve hESCs (Rostovskaya et al.,
237 2019).
238

239 We confirmed the expression patterns of a number of DEGs by qRT-PCR, as well as validating their
240 upregulation at the protein level, including DNMT3L, VENTX, GP130/IL6ST and TFAP2C, the latter of
241 which is an essential regulator of naïve hESCs (Pastor et al., 2018) (FIG.3F, S4). Altogether this
242 supports our hypothesis that KLF17 acts to transcriptionally regulate genes associated with naïve
243 human pluripotency.

244

245 ***KLF17 expression drives hESCs to naïve pluripotency alongside signalling modulation***

246 Given that KLF17 is sufficient to upregulate naïve pluripotency-associated factors under conventional
247 primed hESC conditions, we hypothesised that KLF17 induction would be sufficient to reset primed
248 hESCs to a naïve pluripotent state under the appropriate culture regime. The use of ectopic gene
249 expression to drive resetting is common, with deployment of transgenes including *OCT4*, *KLF4*,
250 *SOX2*, *YAP*, *NANOG* and/or *KLF2* (Hanna et al., 2010, Theunissen et al., 2014, Takashima et al.,
251 2014, Qin et al., 2016), with various media compositions.

252

253 Initial testing of KLF17 induction for 5 days under two naïve hESC culture conditions, tt2iL+Gö (Guo
254 et al., 2017) and PXGL (Bredenkamp et al., 2019a, Bredenkamp et al., 2019b), revealed considerably
255 stronger expression of the naïve markers DNMT3L and SUSD2, compared to cells treated
256 equivalently in conventional mTeSR1 medium and untreated controls (FIG.4A, S5A). The
257 upregulation of SUSD2 expression is particularly important to note, as it has been recently identified
258 as a highly specific cell surface marker of naïve hESCs that can be used to enrich for naïve
259 pluripotent cells from a heterogeneous population during resetting (Bredenkamp et al., 2019a). We
260 therefore attempted to propagate the cells, by single cell passaging with MEFs, in both naïve and
261 primed conditions after 5 days of KLF17 induction. Intriguingly, rounded and highly refractile colonies
262 showing typical naïve hESC morphology began to appear only in cells treated with Dox in PXGL
263 medium (FIG.4B, S5B). Conversely, the uninduced cells in PXGL had largely died. In all remaining
264 conditions (mTeSR1 and tt2iL+Gö, +Dox and UI), the *KLF17*-inducible cells survived with either
265 typical primed hESC morphology, that is, flattened, epithelial-like colonies, or evidence of
266 differentiation (data not shown). This suggested that the ectopic expression of KLF17 is sufficient to
267 reset conventional hESCs to a naïve-like pluripotent phenotype when supported by PXGL medium,
268 with modulation of signalling via MEK/ERK (PD0325901), WNT (XAV939, Tankyrase inhibitor), PKC
269 (Gö6983) and LIF/STAT3 (hLIF) (Guo et al., 2017). The unique ability of the PXGL formulation to
270 support this primed-to-naïve transition may reflect its use in the early stages of chemical/epigenetic
271 resetting (Guo et al., 2017), where it appears to perform better than tt2iL+Gö. Additionally, it suggests
272 a particular importance of WNT signalling inhibition (by XAV939), which may relate to the observed
273 downregulation of WNT signalling components in KLF17-induced primed hESCs.

274

275 Bulk, single-cell passaging of these naïve-like colonies allowed for stable propagation of *KLF17*-
276 inducible naïve hESCs for a minimum of 5 passages, without requiring additional transgene activation
277 beyond the initial 5-day period of Dox treatment (FIG.4B). We were able to confirm protein expression
278 of a number of naïve hESC markers and factors identified above as upregulated following KLF17

279 induction in primed culture conditions (FIG.4C). We therefore demonstrated that KLF17 is a potent
280 inducer of the naïve pluripotent state in hESCs.

281

282 ***Designing a strategy for KLF17 mutation in hESCs***

283 The above investigations revealed that KLF17 is sufficient to induce the naïve pluripotent state in
284 hESCs. Next, we sought to determine whether KLF17 expression is required for resetting of primed
285 hESCs to naïve pluripotency. For this, we designed and optimised a protocol for CRISPR-Cas9-
286 mediated mutation of *KLF17*.

287

288 Using *in silico* tools, we designed five guide RNAs (gRNAs) against *KLF17* (FIG.5A, S6A). We
289 considered two strategies to achieve functional knockout of KLF17. First, by targeting the initiating
290 methionine, we aimed to disrupt the entire coding sequence, leading to a complete loss of KLF17
291 expression. Alternatively, by targeting the functional domain, the DNA-binding ability could be directly
292 disrupted, or a premature termination codon could be introduced, leading to production of a non-
293 functional protein. We introduced Cas9 and each gRNA in turn into primed hESCs and harvested
294 genomic DNA for deep sequencing of the *KLF17* on-target locus by MiSeq analysis. Analysing the
295 proportion of detected insertion and deletion (indel) mutations revealed that the introduction of Cas9
296 and each of the gRNAs led to indels, with an average mutation efficiency of ~60% (FIG.5B). However,
297 gRNA KLF17(3_3) was clearly inferior and therefore we did not consider it any further.

298

299 In order to decide upon the optimal gRNA for generating KLF17 null mutant (*KLF17*^{-/-}) hESCs, we
300 investigated the nature of the indels resulting from CRISPR-Cas9 targeting in each case. Firstly, it
301 was clear that both KLF17(1_1) and KLF17(1_2) were biased towards the introduction of very small
302 indel mutations, with the vast majority of indels less than 10 bp in size (FIG.S6B). Targeting with
303 either of the exon 1-targeted gRNAs would thus leave the possibility of *KLF17* expression from an
304 identified alternative initiating methionine, with the possibility of generating either an essentially wild-
305 type protein or a dominant-negative KLF17 mutant, which could have unexpected consequences. We
306 therefore focussed on the exon 3-targeting gRNAs, KLF17(3_1) and KLF17(3_2). The overall
307 efficiency of these two gRNAs was very similar, but sequence analysis revealed a stronger propensity
308 for the introduction of larger frameshift alleles by KLF17(3_1) (FIG.5C). By disrupting a larger stretch
309 of sequence within the region encoding the KLF17 DNA-binding domain, longer frameshift indels
310 would be expected to be more highly mutagenic. We therefore determined to generate *KLF17*^{-/-} hESC
311 lines using gRNA KLF17(3_1).

312

313 ***KLF17*^{-/-} hESCs are not impaired in their ability to adopt naïve pluripotency**

314 Following nucleofection and single-cell amplification of wild-type, primed hESCs, we generated 8
315 *KLF17*-targeted clones (FIG.S7A). Initial genotyping by short-range PCR and next-generation MiSeq
316 suggested a high proportion of homozygous editing (5 of 8 edited clones; FIG.S7A-B). However,
317 analysis of a ~950 bp region surrounding the on-target site revealed that these apparent homozygous
318 clones had actually undergone an unexpected, long-range editing event on one allele (FIG.S7A-B).

319 This was apparent from the lack of amplification of both alleles, as determined by the presence of only
320 one variant-type at a highly polymorphic site in the human genome, while the remaining wild-type and
321 heterozygous clones confirmed that this variant is heterozygous in the parental cells (FIG.S7A-C).
322 The extent of the damage was only determined in one clone, #9, where a 163 bp deletion could be
323 detected in the sequence. For the remaining 4 clones, the damage apparently completely prevented
324 amplification of the second allele. This highlights the importance of in-depth genotyping following
325 CRISPR-Cas9-mediated mutagenesis, as previously noted (Kosicki et al., 2018, Cullot et al., 2019,
326 Rayner et al., 2019, Przewrocka et al., 2020, Alanis-Lobato et al., 2020). We therefore sought to test
327 whether clones #18 and #19, compound mutants with two frameshifted alleles predicted to introduce
328 premature stop codons in the sequence encoding the third zinc fingers (FIG.S7D-F), were null for
329 KLF17 expression.
330

331 We subjected three wild-type control clones and clones #18 and #19 to chemical resetting (Guo et al.,
332 2017) for eight days and observed robust coexpression of KLF17 and OCT4 in control cells, while the
333 compound mutants lacked detectable KLF17 protein (FIG.5D). To determine whether *KLF17*^{-/-} hESCs
334 were able to adopt a naïve pluripotent phenotype, we repeated the chemical resetting and found that
335 both the wild-type controls and *KLF17*^{-/-} hESCs could be propagated in tt2iL+Gö conditions for at least
336 10 passages, maintaining typical naïve morphology (FIG.6A). To identify molecular differences arising
337 in *KLF17*^{-/-} hESCs, we performed mRNA-seq at various timepoints throughout the chemical resetting
338 process. This confirmed lack of *KLF17* expression in the compound mutant clones (FIG.6C). The lack
339 of appreciable *KLF17* RNA expression (TPM<5) suggests that the presence of premature termination
340 codons following the CRISPR-Cas9 target site induced nonsense-mediated decay of the mRNA
341 during translation (Nickless et al., 2017). Clones #18 and #19 are therefore *bona fide* *KLF17*-null
342 mutant hESCs. Despite this, PCA analysis of all samples revealed tight clustering of wild-type and
343 *KLF17*^{-/-} hESCs at all timepoints, suggesting that the lack of KLF17 expression did not significantly
344 affect global gene expression (FIG.6B), consistent with the fact that the *KLF17*^{-/-} cells were able to
345 reset and survive long-term under naïve culture conditions. This may indicate that KLF17 expression
346 is not required for resetting under the given conditions, or there may be redundancy with other genes
347 that compensate for null mutations in *KLF17*.
348

349 Interestingly, analysis by DESeq2 identified the *KLF17* parologue *KLF5* as an early differentially
350 expressed gene, being significantly upregulated in *KLF17*^{-/-} versus wild-type naïve hESCs at day 2 of
351 the resetting process (FIG.6D), whereas *KLF2* and *KLF4* are expressed equivalently (FIG.6E-F). It is
352 therefore possible that during the early stage of resetting, where hESCs are undergoing global
353 epigenetic “opening” in response to histone deacetylase inhibition (Guo et al., 2017) and therefore
354 may be in a more phenotypically flexible state than usual, the brief upregulation of *KLF5* is sufficient
355 to compensate for a function carried out by KLF17 in the wild-type state.

356
357 Despite this possible redundancy, further analysis revealed a considerable increase in the number of
358 DEGs between wild-type and mutant hESCs at naïve passage 5 (p5), by which point the naïve

359 pluripotent phenotype is suggested to become more stable (Guo et al., 2017). At p5, 316 genes were
360 significantly upregulated and 311 genes were significantly downregulated ($p_{adj}<0.05$) (FIG.6G; Supp
361 Table 3). Enrichment analysis identified significantly downregulated terms related to
362 “Glycolysis/Gluconeogenesis”, “Fructose and mannose metabolism” and “Translation” among others,
363 while upregulated terms included “Signalling by WNT”, “Proteasome” and “Protein processing in
364 endoplasmic reticulum”. Some of the most important, rate limiting enzymes of glycolysis are included
365 in the list of significantly downregulated DEGs, including *HK2*, *PFKL*, *ENO1* and *ENO2*, *PGK1* and
366 *PKM* (FIG.S8A-F). If energy production through glycolytic metabolism is limited, proteasomal
367 degradation might be upregulated as a means to compensate, promoting metabolism of non-essential
368 proteins.

369

370 The enrichment terms for downregulated genes at p5 in *KLF17*-null naïve hESCs in fact overlap with
371 those of mRNAs identified as direct targets of the RNA-binding protein LIN28A (Peng et al., 2011),
372 which is itself significantly downregulated from p5 onwards (FIG.6H). LIN28A has been implicated in
373 pluripotency regulation in numerous studies (Heo et al., 2008, Kim et al., 2014, Viswanathan et al.,
374 2008, Yu et al., 2007), though a potential role specifically in naïve hESCs has not been explored.
375 Nevertheless, its significant and maintained downregulation may suggest that its expression depends
376 either directly or indirectly on KLF17 in tt2iL+Gö conditions.

377

378 Finally, upregulation of genes associated with WNT signalling in *KLF17*^{-/-} naïve hESCs is particularly
379 interesting, given the proposed role of WNT signalling in promoting hESC differentiation (Guo et al.,
380 2017). WNT ligands, receptors and scaffolding proteins are upregulated in the mutant cells (FIG.6I,
381 S8G-H), an effect that might only be observed at such a late timepoint due to the withdrawal of WNT
382 inhibition by XAV939. As stated earlier, KLF17 overexpression in primed hESCs also led to rapid
383 downregulation of a number of WNT components, such that it is an enriched term in the
384 downregulated DEGs at day 1 post-induction (Supp Table 4). This may suggest that WNT signalling is
385 either directly or indirectly regulated by KLF17 transcriptional activity and the continued inhibition of
386 WNT during the early stages of resetting may account for the ability of *KLF17*-null hESCs to adapt to
387 naïve culture.

388

389 Altogether this suggests that while KLF5 and KLF17 may display some redundant functions during the
390 establishment of naïve from primed pluripotency in hESCs, *KLF17*^{-/-} naïve hESCs are not as
391 phenotypically stable as their wild-type counterparts, since KLF17 function appears to regulate
392 important metabolic and signalling pathways.

393

394 **Discussion**

395 In this study, we investigate the human EPI-enriched transcription factor KLF17. By IF analysis of
396 developing human blastocysts, we show that the protein dynamics of KLF17 are remarkably similar to
397 those of the known pluripotency factor SOX2. Both transcription factors display widespread
398 expression across all cells in the early blastocyst, with gradual restriction to the pluripotent EPI,

399 marked by NANOG expression. Therefore, the expression pattern of KLF17 during pre-implantation
400 human development is suggestive of a role in pluripotency regulation.

401
402 Indeed, we show that KLF17 is able to induce the expression of a naïve hESC-like transcriptome in
403 primed hESCs and is furthermore sufficient to drive conventional primed to naïve hESC pluripotency.
404 This implies that KLF17 is a powerful inducer of the human naïve pluripotent state *in vitro* and, given
405 its *in vivo* expression, it is interesting to speculate that it may have a role in pluripotency
406 establishment in the human embryo.

407
408 From transcriptome analysis of KLF17-overexpressing cells, we suggest that KLF17 may be involved
409 in modulating the expression of components involved in various signalling pathways, primarily the
410 PI3K-AKT and WNT pathways. Of note, the various signalling effectors that are differentially
411 expressed following KLF17 induction are often the most highly correlated with KLF17 expression, as
412 well as being some of the earliest DEGs. In contrast to this, known markers of naïve pluripotency like
413 DNMT3L and SUSD2 are induced much later. This is suggestive of an indirect relationship between
414 KLF17 induction and the expression of naïve pluripotency marker genes, which may well involve the
415 direct action of KLF17 upon signalling effectors to promote naïve pluripotency and inhibit pro-
416 differentiation cues. This is particularly interesting, given the roles of PI3K-AKT (Wamaitha et al.,
417 2020) and WNT signalling in human pluripotency and differentiation (Singh et al., 2012, Bredenkamp
418 et al., 2019b, Mathieu et al., 2019), and the apparent importance of WNT inhibition for recent methods
419 of naïve pluripotency establishment (Zimmerlin et al., 2016, Guo et al., 2017, Bredenkamp et al.,
420 2019b). In naïve hESCs, KLF17 might act to endogenously dampen WNT signalling by impinging
421 upon the expression of components of the WNT pathway, thereby reinforcing the naïve state.

422
423 Nevertheless, we also find that loss of KLF17 function is not detrimental to hESC resetting, such that
424 primed *KLF17*^{-/-} hESCs are still able to adopt and maintain naïve pluripotency under the conditions
425 investigated herein. This is surprising, given the rapid upregulation of KLF17 expression that has
426 been reported during chemical resetting (Guo et al., 2017) and raises the possibility of genetic
427 compensation. Indeed, *KLF2*, *KLF4* and *KLF5*, which have all been implicated in pluripotency
428 regulation and to have redundant functions with human *KLF17* in mESCs (Yamane et al., 2018), are
429 also rapidly upregulated in the early stages of resetting in both wild-type and *KLF17*^{-/-} hESCs.

430 Furthermore, we observe that *KLF5* is transiently upregulated in *KLF17*-null cells versus wild-type
431 controls at day 2, and again at p5. While *KLF5* transcripts are more abundant in the TE of the human
432 blastocyst (Blakeley et al., 2015), they are still appreciably expressed in both the EPI and PrE. This
433 suggests that *in vitro*, and perhaps *in vivo*, *KLF5* may fulfil overlapping functions with *KLF17* in the
434 establishment and/or maintenance of naïve pluripotency. Further work could address this question of
435 compensation by performing dual knockout of both *KLF17* and *KLF5* in hESCs and investigating the
436 cells' competency to undergo chemical resetting. However, the technology for genetic manipulation of
437 human embryos is still in its infancy and so it may unfortunately not be possible to test this hypothesis
438 *in vivo*.

439
440 Alternatively, it is feasible that no single factor acts to compensate for KLF17 knockout and instead, a
441 combinatorial action of transcription factors with overlapping targets is able to maintain *KLF17*-null
442 naïve hESCs. This situation would be reminiscent of that observed by manipulating the expression of
443 “peripheral” pluripotency regulators in mouse embryos and mESCs, including KLF2 and KLF4, where
444 individual peripheral factors are mostly dispensable, but together act to reinforce the stability of the
445 pluripotent state mediated by the core factors, OCT4 and SOX2 (Nichols and Smith, 2012). For
446 instance, knockdown of either *Klf2*, *Klf4* or *Klf5* in naïve mESCs does not appear detrimental (Jiang et
447 al., 2008, Yamane et al., 2018) and *Klf2*- or *Klf4*-null mutant embryos are viable through
448 preimplantation development (Wani et al., 1998, Ehlermann et al., 2003). Despite this, all three factors
449 have validated roles in pluripotency (Parisi et al., 2008, Hall et al., 2009, Jiang et al., 2008).
450
451 While *KLF17*^{-/-} naïve hESCs did not overtly differ from wild-type counterparts, we did find interesting
452 trends by differential gene expression at p5 of naïve culture, when WNT inhibition by XAV939 is
453 withdrawn. We observe significant downregulation of metabolism and translation, concomitant with
454 upregulation of protein degradation, in *KLF17*^{-/-} naïve hESCs. This is reminiscent of the transcriptome
455 changes observed in primed hESCs treated with proteasome inhibition (Saez et al., 2018), which
456 induces cells to enter a state of stress, reflected in their transcriptome. Thus, this overlap of the
457 response of *KLF17*^{-/-} hESCs during naïve resetting and proteasome inhibition in primed cells may
458 indicate an induction of the cellular stress response. In particular, the transcriptome changes are
459 suggestive of metabolic stress at a key point during the stabilisation of the naïve pluripotent state, as
460 we observe downregulation of key glycolytic enzymes. This may imply that without exogenous WNT
461 inhibition to stabilise the naïve pluripotent state, and indeed with the observed upregulation of WNT
462 signalling components, KLF17-null naïve hESCs become temporarily unstable.
463
464 This could also be reflected in the observed and consistent downregulation of LIN28A, as LIN28A has
465 been directly implicated in the growth and survival of hESCs (Peng et al., 2011). By binding RNA,
466 LIN28A regulates expression primarily at the post-transcriptional level. Thus, there may be further
467 effects in *KLF17*^{-/-} naïve hESCs at the protein level, not reflected in the current transcriptome analysis.
468 At p5, *LIN28B* is also significantly downregulated. Interestingly, LIN28 has been recently identified as
469 a naïve-specific marker in porcine ESCs (Chen et al., 2020), at both the RNA and protein level,
470 suggesting that its downregulation may be somewhat detrimental also in naïve hESCs.
471
472 Overall, our overexpression studies show that KLF17 may typically have a role in regulating naïve
473 pluripotency *in vitro*. However, it is clear from our data that KLF17 expression is not necessary for
474 establishing naïve hESCs, although our current work does not exclude the possibility that established
475 naïve hESCs are sensitive to loss of KLF17, as recently suggested (Bayerl et al., 2020). We theorise
476 that in a wild-type situation KLF17 may act as a peripheral pluripotency factor in human naïve
477 pluripotency, acting alongside a core pluripotency network of OCT4 and SOX2 to maintain robustness
478 of the pluripotent state and help to limit premature differentiation. This is borne out by its

479 downregulation of the differentiation-promoting WNT signalling pathway and its upregulation of factors
480 like LINC-ROR, which are known to limit differentiation.

481

482 However, we also note that the lack of KLF17 necessity in naïve hESC establishment does not rule
483 out a more central role in pluripotency in the human embryo. To date, there have been no systematic
484 comparisons of the outcomes of specific gene modulation in naïve hESCs versus the human
485 pluripotent epiblast, but evidence suggests that they would not necessarily be conserved. For
486 instance, *Nanog*-null naïve mESCs, while prone to differentiation, are still functionally pluripotent, with
487 the capability for chimaera formation (Chambers et al., 2007). In contrast, a *Nanog*-null mouse
488 embryo is unable to form a functional blastocyst or continue development from the peri-implantation
489 stage onward (Mitsui et al., 2003, Chambers et al., 2003, Messerschmidt and Kemler, 2010,
490 Frankenberg et al., 2011). This shows that the *in vivo* phenotype of genetic knockouts can be more
491 severe than that observed *in vitro*. Furthermore, while knockdown of *POU5F1* in hESCs causes the
492 expected differentiation phenotype (Wang et al., 2012), even partial loss of *OCT4* function in the
493 human embryo had a much more drastic phenotype, with non-cell-autonomous effects across all
494 three lineages at the blastocyst stage (Fogarty et al., 2017). For this reason, future investigation of the
495 function of KLF17 in human *in vivo* pluripotency is an important next step.

496

497

498 **Materials and methods**

499 *Human embryo thaw and culture conditions*

500 Human embryos at various developmental stages that were surplus to family building desires were
501 donated to the Francis Crick Institute for use in research projects under the UK Human Fertilisation
502 and Embryology Authority License number R0162. Slow-frozen blastocysts (day 5 and day 6) were
503 thawed using the BlastThaw (Origio; 10542010A) kit using the manufacturer's instructions. Vitrified
504 blastocysts (day 5 and day 6) were thawed using the vitrification thaw kit (Irvine Scientific; 90137-SO)
505 following the manufacturer's instructions. Human embryos were cultured in pre-equilibrated Global
506 Media (Life Global) supplemented with 5 mg/ml Life Global HSA (LifeGlobal; LGPS-605) and overlaid
507 with mineral oil (Origio; ART-4008-5P and incubated in Embryoscope+ time lapse incubator (Vitrolife).
508

509 *Maintenance of standard hESC cultures*

510 Human embryonic stem cells (hESCs) were routinely cultured in mTeSR1 medium (Stem Cell
511 Technologies) on growth factor-reduced Matrigel-coated dishes (BD Biosciences) and passaged as
512 clumps at ~1:20 ratio using ReLeSR (Stem Cell Technologies). Cells were maintained in humidified
513 incubators at 37°C, 5% CO₂.

514

515 *Naïve hESC culture*

516 All naïve hESCs were cultured under hypoxia (5% O₂, 5% CO₂), according to recently published
517 protocols (Guo et al., 2017, Bredenkamp et al., 2019b) on mitotically-inactivated DR4 MEFs (prepared
518 in-house) plated at a density of 1x10⁶ per well of a 6-well plate 12-16hrs prior to hESC seeding. Naïve

519 hESCs were passaged as single cells by 4 minutes treatment with Accutase (Thermo Fisher) at 37°C,
520 at split ratios between 1:3 and 1:6, every 3 to 6 days. For culture in (t)t2iL+Gö, 10 µM ROCK inhibitor
521 (Y-27632, Tocris Bioscience) was added overnight before and after passaging, to aid survival.
522 In-house generated, chemically reset, naïve H9 cells were maintained in tt2iL+Gö, with 0.3 µM
523 CHIR99021 (Guo et al., 2017), and XAV supplementation until naïve passage 5.
524

525 *Generation and culture of overexpression hESC lines*

526 Doxycycline-inducible overexpression of HA-tagged proteins was achieved using the Lenti-X Tet-On
527 3G Inducible Expression System (Clontech) following the manufacturer's protocol, and as outlined
528 previously (Wamaitha et al., 2015). Lentiviral packaging was achieved using 7 µg of transgene-
529 containing plasmid and the Lenti-X Packaging Single Shot reagents. Lentiviral supernatant was
530 harvested after 48hrs and concentrated by ultracentrifugation. To produce stably-transduced cells,
531 hESCs were plated under standard conditions and changed into fresh medium the following morning.
532 24hrs post-plating, 10 µl concentrated virus was added to hESCs for transduction overnight (~16hrs).
533 hESCs were dual selected with 150 µg/ml G418 and 0.5 µg/ml puromycin 48hrs post-transduction.
534 For induction of transgene expression, doxycycline was added to mTeSR1 medium at 1 µg/ml. For
535 the RNA-seq experiments, *KLF17*-inducible hESCs were plated as normal and induction initiated after
536 24 hours by addition of 1 µg/ml Dox to the culture medium (mTeSR1). At ~30 hours, a day 0 (pre-
537 induction) control sample was collected, then both induced (+Dox) and uninduced (UI) samples were
538 collected at 24hr intervals from 48hrs (day 1 post-induction) until 144hrs (day 5 post-induction). RNA
539 was extracted from the samples and subjected to bulk RNA sequencing.
540

541 *KLF17-driven resetting of primed to naïve hESCs*

542 H9 KLF17-HA inducible hESCs were pre-treated overnight with 10 µM ROCKi, then harvested from
543 standard culture (mTeSR1 on matrigel) by 5 minutes incubation at 37°C with accutase, resuspended
544 in culture medium supplemented with 10 µM ROCKi and counted. 2x10⁵ hESCs were plated per 6-
545 well pre-coated in DR4 MEFs and the cells placed at hypoxia (5% O₂, 5% CO₂) for ~24hrs. The
546 following day (day 0), medium was changed to PXGL supplemented with 1 µg/ml Dox. From day 2,
547 medium was replenished each day with PXGL freshly supplemented with 1 µg/ml Dox. On day 5, cells
548 were passaged by 4min incubation in accutase and plated in PXGL with 10 µM ROCKi at a split ratio
549 between 1:5 and 1:20, dependent upon density. Within 24hrs, the cells adopted a domed morphology
550 with highly-refractile colony edges. Cells were passaged again on day 7 or 8 and could subsequently
551 be maintained similarly to chemically-reset cells (Guo et al., 2017), with passaging every 3-4 days at
552 split ratios of between 1:3 and 1:6.
553

554 *Design of gRNAs*

555 Guide RNAs (gRNAs) were designed in a non-biased manner against the whole cDNA sequence
556 using a standard design tool (Hsu et al., 2013). For initial screening, gRNAs were selected on the
557 following criteria: (i) *in silico* score is ≥60; (ii) identified off-target sites have ≥3 mismatches; (iii) there

558 are no (or very low frequency, $\leq 0.1\%$) single nucleotide polymorphisms (SNPs) occurring in the target
559 sequence; (iv) the gRNA target site falls across an annotated DNA-binding domain.

560

561 *Transient nucleofection of hESCs*

562 For cell line testing of CRISPR-Cas9 efficiency, gRNAs were individually cloned into pSpCas9(BB)-
563 2A-Puro (PX459) V2.0 (Addgene plasmid #62988) (Ran et al., 2013), using the BbsI restriction sites.
564 Nucleofection was carried out on an Amaxa 4D-Nucleofector (Lonza) with 4 μg plasmid. 24 hours
565 prior to nucleofection, H9 hESCs were treated with 10 μM Y-27632 (Tocris Bioscience). hESCs were
566 harvested as single cells by Accutase treatment (5min, 37°C) and counted with an automatic cell
567 counter (Nucleocounter NC-200, ChemoMetec). For each gRNA, 2×10^6 cells were resuspended in
568 100 μl P3 Primary Cell 4D-Nucleofector X Solution and transferred to nucleocuvettes with 4 μg
569 plasmid. Nucleofection was performed with the pre-set H9 hESC programme (CB-150), then cells
570 resuspended in antibiotic-free mTeSR1 medium supplemented with 10 μM Y-27632 and plated
571 across half of a 6-well plate coated with DR4 MEFs to aid attachment and survival. After 24hrs,
572 medium was changed to mTeSR1 supplemented with 0.5 $\mu\text{g/ml}$ puromycin for 48hrs. Cells were
573 allowed to recover for 8 days prior to harvesting for DNA extraction and assessment of CRISPR-Cas9
574 editing efficiency by MiSeq analysis. On-target editing was assessed by next-generation sequencing
575 on the MiSeq platform (Illumina), and editing efficiency determined by analysing the FastQ files using
576 both the Cas-Analyzer tool from CRISPR RGEN Tools (Park et al., 2017) and the CrispRVariants
577 package in R (Lindsay et al., 2016).

578

579 *Generation of clonal knockout hESCs*

580 H9 hESCs were first nucleofected with 4 μg pSpCas9(BB)-2A-Puro (PX459) V2.0 containing the
581 gRNA KLF17(3_1) as described above. Following 48hrs treatment with 0.5 $\mu\text{g/ml}$ puromycin, cells
582 were allowed to recover on DR4 MEFs for ~ 10 days, then manually passaged as single cells following
583 treatment with Accutase (5 minutes, 37°C) or Accumax (10 minutes, 37°C; Sigma Aldrich) at clonal
584 density into Matrigel-coated 24-well tissue culture plates (Corning). Cells were sub-cloned once more
585 by manual picking and single-cell dissociation into 12-well plates, then 24 clones passaged in
586 duplicate and assessed for KLF17 mutation by on-target Sanger sequencing and MiSeq analysis.

587

588 *Immunofluorescence analysis*

589 Cultured cells were fixed with 4% paraformaldehyde (PFA) in PBS for 1hr at 4°C, then permeabilised
590 in PBS containing 0.5% Tween-20 (PBS-T(0.5%)) for 20 minutes at room temperature. Blocking was
591 carried out for 1hr at RT in PBS-T(0.1%) with 10% donkey serum. Primary antibodies were diluted as
592 listed in TABLE 1 in blocking solution, and incubated overnight at 4°C. Cells were washed several
593 times in PBS-T(0.1%), then incubated in secondary antibodies in blocking solution for 1hr at RT.
594 Following repeated washing, cells were treated with DAPI-Vectashield mounting medium (Vector
595 Labs) at 1 in 30 in PBS-T(0.1%), prior to imaging on an Olympus IX73 (Olympus Corporation).
596 For human embryos, fixation was performed in 4% PFA in PBS for 1hr at 4°C, then the embryos
597 permeabilised in PBS containing 0.5% Triton-X100 (PBS-Tx(0.5%)) for 20 minutes at RT. Blocking

598 was performed for 1hr at RT in PBS-Tx(0.2%) containing 10% donkey serum and 3% bovine serum
599 albumin (BSA). Primary antibodies were diluted as listed in TABLE 1 in blocking solution, and
600 incubated overnight at 4°C. Embryos were washed several times, then incubated in secondary
601 antibodies in blocking solution for 1hr at RT. Following repeated washing, embryos were transferred
602 into DAPI-Vectashield mounting medium (Vector Labs) at 1 in 30 in PBS-T(0.1%) on coverslip dishes
603 (MatTek), and imaged on a Leica SP8 inverted confocal microscope (Leica Microsystems).

604

605 *RNA isolation from hESCs and qRT-PCR*

606 RNA was isolated using TRI reagent (Sigma) and DNase I-treated (Ambion). cDNA was synthesized
607 using a Maxima first strand cDNA synthesis kit (Fermentas). qRT-PCR was performed using SensiMix
608 SYBR low-ROX kit (Bioline) on a QuantStudio5 machine (Thermo Fisher). Primers pairs used are
609 listed in TABLE 2. Each sample was run in triplicate. Gene expression was normalized using *GAPDH*
610 as the housekeeping gene, and the results analysed using the $\Delta\Delta Ct$ method.

611

612 *RNA sequencing*

613 For RNA-seq, RNA was isolated and DNase-treated as above, and libraries were prepared using the
614 polyA KAPA mRNA HyperPrep Kit (Roche). Quality of submitted RNA samples and the resulting
615 cDNA libraries was determined by ScreenTape Assay on a 4200 TapeStation (Agilent). Prepared
616 libraries were submitted for single-ended 75 bp sequencing on an Illumina HiSeq 4000 (Illumina).

617

618 *Genomic DNA extraction*

619 Total genomic DNA was extracted from hESCs using the DNeasy Blood and Tissue Kit (Qiagen)
620 following manufacturer's instructions. The concentration and purity of extracted DNA was measured
621 using a nanodrop (DeNovix).

622

623 *Protein extraction and quantification*

624 hESCs were harvested for protein extraction by addition of CellLytic M lysis buffer (Merck), freshly
625 supplemented with protease inhibitors (PIC, cOmplete, EDTA-free protease inhibitor cocktail, Roche)
626 and phosphatase inhibitors (PhIC, phosSTOP phosphatase inhibitor, Roche), directly onto plated
627 cells. Cells were scraped, then incubated in lysis buffer for 15min at 4°C. The lysate was collected
628 and clarified by centrifugation at 20,000xg for 15min at 4°C. Protein concentration in the lysates was
629 determined using the BCA assay, then proteins denatured by addition of 4x Laemmli sample buffer
630 (Thermo Fisher) and heating at 90°C for 5 minutes.

631

632 *Protein detection by western blotting*

633 Denatured proteins were thawed at 65°C for 5 minutes and vortexed to ensure homogeneity. 20 µg
634 protein per lane was loaded onto 10% Mini-PROTEAN TGX Stain-free protein gels (BIORAD),
635 alongside 5 µl PageRuler Prestained Protein Ladder (Thermo Scientific), and electrophoresed at 100-
636 200 V for one to two hours in a Mini-PROTEAN Tetra Vertical Electrophoresis Cell (BIORAD).
637 Proteins were transferred onto PVDF membranes (TransBlot Turbo Mini PVDF Transfer Packs,

638 BIORAD) using a Trans-Blot Turbo Transfer System (BIORAD). PVDF membranes were blocked for
639 one hour in TBS-T(0.1%) containing 5% non-fat milk and incubated with primary antibodies diluted in
640 either 5% milk or 5% BSA in TBST-T(0.1%) as shown in TABLE 3 overnight at 4°C. Following washes
641 with TBS-T(0.1%), membranes were incubated with secondary antibodies in 5% milk for one hour at
642 room temperature. Proteins of interest were visualised using the SuperSignal West Dura Extended
643 Duration Substrate or SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific)
644 and imaged on an Amersham Imager 600RGB (GE Healthcare).

645

646 *Bulk RNA-sequencing analysis*

647 The 'Trim Galore!' utility version 0.4.2 was used to remove sequencing adaptors and to quality trim
648 individual reads with the q-parameter set to 20
649 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (retrieved 03-05-2017)). Then
650 sequencing reads were aligned to the human genome and transcriptome (Ensembl GRCh38 release-
651 89) using RSEM version 1.3.0 (Li and Dewey, 2011) in conjunction with the STAR aligner version
652 2.5.2 (Dobin et al., 2013). Sequencing quality of individual samples was assessed using FASTQC
653 version 0.11.5 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/> (retrieved 03-05-2017))
654 and RNA-SeQC version 1.1.8 (DeLuca et al., 2012). Differential gene expression was determined
655 using the R-bioconductor package DESeq2 version 1.24.0 (Love et al., 2014). Within the DESeq2
656 package, adjusted p values for log-fold changes were calculated using the Benjamini-Hochberg
657 method and the betaPrior parameter was set to "TRUE". For the *KLF17*^{-/-} hESCs in naïve conditions,
658 each timepoint was normalised individually, to account for the significant cell-state changes occurring
659 across the long time course of the experiment (~60 days).

660

661

662 Acknowledgements

663 We thank the donors of human embryos whose contributions enable this research. Further, we thank
664 all members of the Niakan lab for their technical assistance and for help and comments on the paper,
665 and James Briscoe, Robin Lovell-Badge and Jonathan Chubb for advice throughout the project. We
666 are grateful to the Francis Crick Institute's Science Technology Platforms: Robert Goldstone and Deb
667 Jackson from the Advanced Sequencing Facility; Advanced Light Microscopy; and the Genomics
668 Equipment Park.

669

670 Competing Interests

671 No competing interests declared.

672

673 Author Contributions

674 R.A.L. performed the experiments with assistance from A.M. S.B. performed major bioinformatics
675 analysis with assistance from R.A.L. K.K.N. and R.A.L. conceived the study and analysed data. R.A.L.
676 wrote the manuscript with feedback from all authors.

677

678 **Funding**
679 This research was funded in whole, or in part, by the Wellcome Trust FC001120. For the purpose of
680 Open Access, the author has applied a CC BY public copyright licence to any Author Accepted
681 Manuscript version arising from this submission. The Francis Crick Institute receives its core funding
682 from Cancer Research UK (FC001120, FC001193 and FC001070), the UK Medical Research Council
683 (FC001120, FC001193 and FC001070), and the Wellcome Trust (FC001120, FC001193 and
684 FC001070).
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

717	Target	Species	Dilution	Supplier	Catalogue Number
719	Anti-DNMT3L	Mouse	1 in 500	Abcam	ab93613
720	Anti-GP130	Rabbit	1 in 250	Thermo Fisher	PA5-80735
721	Anti-HA (3F10)	Rat	1 in 500	Sigma Aldrich (Roche)	11867423001
722	Anti-KLF17	Rabbit	1 in 500 (hESCs) 1 in 200 (embryo)	Atlas Antibodies	HPA024629
723	Anti-NANOG	Goat	1 in 200	R&D Systems	AF1997
724	Anti-OCT4	Mouse	1 in 100	Santa Cruz Biotechnology	SC-5279
725	Anti-SOX2	Rat	1 in 100	Invitrogen	14-9811-82
726	Anti-SUSD2	Mouse	1 in 250	Biolegend	327401
727	Anti-TFAP2C	Goat	1 in 200	R&D Systems	AF5059
728	Anti-VENTX	Rabbit	1 in 500	Cambridge Bioscience	HPA050955
729	Alexa Fluor anti-mouse IgG	Donkey	1 in 300	Invitrogen	A21202 (488 nm) A21203 (594 nm) A31571 (647 nm)
730	Alexa Fluor anti-rabbit IgG	Donkey	1 in 300	Invitrogen	A21206 (488 nm) A21207 (594 nm) A31573 (647 nm)
731	Alexa Fluor anti-goat IgG	Donkey	1 in 300	Invitrogen	A11055 (488 nm) A11058 (594 nm) A21447 (647 nm)
732	Alexa Fluor anti-rat IgG	Donkey	1 in 300	Invitrogen	A21208 (488 nm) A21209 (594 nm)

745 **Table 1 – Primary and secondary antibodies used in immunofluorescence**

Target	Forward primer sequence	Reverse primer sequence
ARGFX	CCAGTTCACTCTGTTATCCAAG	CGTTCTTATGCCTCTCCG
DNMT3L	GGACCCTCGATCTTGTGA	ACCAGATTGTCCACGAACAT
DPPA5	GTGGTTACGGCTCCTATT	TCATCCAAGGGCCTAGTT
GAPDH	GATGACATCAAGAAGGTGGT	GTCTACATGGCAACTGTGAGG
KLF17	ACCCAGTCTCATGTACGGC	GCACTCCAGAGCTTCCAGAA
KLF17_HA	ACACCAGAAGACTCATCGGC	ACATCGTATGGTAAGGACCAG
NANOG	CATGAGTGTGGATCCAGCTT	CCTGAATAAGCAGATCCATGG
REX1/ZFP42	GGAATGTGGAAAGCGTTCGT	CCGTGTGGATGCGCACGT
TFCP2L1	AGCACATCCACCGAGTCTAC	TGAGGACAAAACAGGATTCT
VENTX	CAGCTCTCAGAGGTCCAGATA	AGACGTTGAGTAGAAAGCTGG

757

758

759 **Table 2 – Primers used for qRT-PCR**

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779	Target	Species	Dilution	Supplier	Catalogue Number
780	Anti-alpha tubulin	Mouse	1 in 1000	Sigma Aldrich	T9026
781	Anti-pan AKT	Rabbit	1 in 1000	Cell Signaling Technologies	9272
782	Anti-phospho AKT (Ser473)	Rabbit	1 in 1000	Cell Signaling Technologies	9271
783	Anti-KLF17	Rabbit	1 in 500	Atlas Antibodies	HPA024629
784	Anti-pan S6	Mouse	1 in 1000	Cell Signaling Technologies	(54D2) #2317
785	Anti-phospho S6	Rabbit	1 in 1000	Cell Signaling Technologies	#2211
786	Anti-mouse IgG (H+L), HRP-conjugated	Goat	1 in 20000	Cell Signaling Technologies	7076
787	Anti-rabbit IgG (H+L), HRP-conjugated	Goat	1 in 20000	Cell Signaling Technologies	7074
788	Anti-goat IgG (H+L), HRP-conjugated	Donkey	1 in 20000	Santa Cruz Biotechnology	SC-2020
789	Anti-rat IgG (H+L), HRP-conjugated	Goat	1 in 20000	Cell Signaling Technologies	7077
790					
791					
792					
793					
794					
795					
796					
797					
798					

800 **Table 3 – Primary and secondary antibodies used in western blot**

819 **References**

820 ALANIS-LOBATO, G., ZOHREN, J., MCCARTHY, A., FOGARTY, N. M. E., KUBIKOVA, N.,
821 HARDMAN, E., GRECO, M., WELLS, D., TURNER, J. M. A. & NIAKAN, K. K. 2020.
822 Frequent loss-of-heterozygosity in CRISPR-Cas9-edited early human embryos.
823 *bioRxiv*, 2020.06.05.135913.

824 ALESSI, D. R., ANDJELKOVIC, M., CAUDWELL, B., CRON, P., MORRICE, N., COHEN, P. &
825 HEMMINGS, B. A. 1996. Mechanism of activation of protein kinase B by insulin and
826 IGF-1. *EMBO J*, 15, 6541-51.

827 ALI, A., BHATTI, M. Z., SHAH, A. S., DUONG, H. Q., ALKREATHY, H. M., MOHAMMAD, S. F.,
828 KHAN, R. A. & AHMAD, A. 2015a. Tumor-suppressive p53 Signaling Empowers
829 Metastatic Inhibitor KLF17-dependent Transcription to Overcome Tumorigenesis in
830 Non-small Cell Lung Cancer. *J Biol Chem*, 290, 21336-51.

831 ALI, A., ZHANG, P., LIANGFANG, Y., WENSHE, S., WANG, H., LIN, X., DAI, Y., FENG, X. H.,
832 MOSES, R., WANG, D., LI, X. & XIAO, J. 2015b. KLF17 empowers TGF-beta/Smad
833 signaling by targeting Smad3-dependent pathway to suppress tumor growth and
834 metastasis during cancer progression. *Cell Death Dis*, 6, e1681.

835 BAYERL, J., AYYASH, M., SHANI, T., MANOR, Y., GAFNI, O., KALMA, Y., AGUILERA-CASTREJON,
836 A., ZERBIB, M., AMIR, H., SHEBAN, D., GEULA, S., MOR, N., WEINBERGER, L.,
837 KRUPALNIK, V., OLDAK, B., LIVNAT, N., TARAZI, S., TAWIL, S., LASMAN, L., HANNA, S.,
838 NOVERSHTERN, N., BEN-YOSEF, D., VIUKOV, S. & HANNA, J. H. 2020. Tripartite
839 Inhibition of SRC-WNT-PKC Signalling Consolidates Human Naïve Pluripotency.
840 *bioRxiv*, 2020.05.23.112433.

841 BERNARDO, A. S., JOUNEAU, A., MARKS, H., KENSCHE, P., KOBOLAK, J., FREUDE, K., HALL, V.,
842 FEHER, A., POLGAR, Z., SARTORI, C., BOCK, I., LOUET, C., FAIAL, T., KERSTENS, H. H.
843 D., BOUSSIOUT, C., PARSONAGE, G., MASHAYEKHI, K., SMITH, J. C., LAZZARI, G.,
844 HYTEL, P., STUNNENBERG, H. G., HUYNEN, M., PEDERSEN, R. A. & DINNYES, A. 2018.
845 Mammalian embryo comparison identifies novel pluripotency genes associated with
846 the naive or primed state. *Biol Open*, 7.

847 BLAKELEY, P., FOGARTY, N. M., DEL VALLE, I., WAMAITHA, S. E., HU, T. X., ELDER, K., SNELL,
848 P., CHRISTIE, L., ROBSON, P. & NIAKAN, K. K. 2015. Defining the three cell lineages of
849 the human blastocyst by single-cell RNA-seq. *Development*, 142, 3613.

850 BOROVIAK, T., LOOS, R., LOMBARD, P., OKAHARA, J., BEHR, R., SASAKI, E., NICHOLS, J.,
851 SMITH, A. & BERTONE, P. 2015. Lineage-Specific Profiling Delineates the Emergence
852 and Progression of Naive Pluripotency in Mammalian Embryogenesis. *Dev Cell*, 35,
853 366-82.

854 BREDENKAMP, N., STIRPARO, G. G., NICHOLS, J., SMITH, A. & GUO, G. 2019a. The Cell-
855 Surface Marker Sushi Containing Domain 2 Facilitates Establishment of Human Naive
856 Pluripotent Stem Cells. *Stem Cell Reports*.

857 BREDENKAMP, N., YANG, J., CLARKE, J., STIRPARO, G. G., VON MEYENN, F., DIETMANN, S.,
858 BAKER, D., DRUMMOND, R., REN, Y., LI, D., WU, C., ROSTOVSKAYA, M., EMINLI-
859 MEISSNER, S., SMITH, A. & GUO, G. 2019b. Wnt Inhibition Facilitates RNA-Mediated
860 Reprogramming of Human Somatic Cells to Naive Pluripotency. *Stem Cell Reports*,
861 13, 1083-1098.

862 CHAMBERS, I., COLBY, D., ROBERTSON, M., NICHOLS, J., LEE, S., TWEEDIE, S. & SMITH, A.
863 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in
864 embryonic stem cells. *Cell*, 113, 643-55.

865 CHAMBERS, I., SILVA, J., COLBY, D., NICHOLS, J., NIJMEIJER, B., ROBERTSON, M., VRANA, J.,
866 JONES, K., GROTEWOLD, L. & SMITH, A. 2007. Nanog safeguards pluripotency and
867 mediates germline development. *Nature*, 450, 1230-4.

868 CHEN, Q., ZHANG, H., JIANG, H., ZHANG, M., WANG, J., ZHAO, L., WANG, C., LIU, M. & LI, R.
869 2020. Conversion between porcine naive-like and primed ESCs and specific
870 pluripotency marker identification. *In Vitro Cell Dev Biol Anim*, 56, 412-423.

871 CULLOT, G., BOUTIN, J., TOUTAIN, J., PRAT, F., PENNAMEN, P., ROORYCK, C., TEICHMANN,
872 M., ROUSSEAU, E., LAMRISSI-GARCIA, I., GUYONNET-DUPERAT, V., BIBEYRAN, A.,
873 LALANNE, M., PROUZET-MAULÉON, V., TURCQ, B., GED, C., BLOUIN, J.-M., RICHARD,
874 E., DABERNAT, S., MOREAU-GAUDRY, F. & BEDEL, A. 2019. CRISPR-Cas9 genome
875 editing induces megabase-scale chromosomal truncations. *Nature Communications*,
876 10.

877 DAVIDSON, K. C., ADAMS, A. M., GOODSON, J. M., MCDONALD, C. E., POTTER, J. C., BERNDT,
878 J. D., BIECHELE, T. L., TAYLOR, R. J. & MOON, R. T. 2012. Wnt/beta-catenin signaling
879 promotes differentiation, not self-renewal, of human embryonic stem cells and is
880 repressed by Oct4. *Proc Natl Acad Sci U S A*, 109, 4485-90.

881 DELUCA, D. S., LEVIN, J. Z., SIVACHENKO, A., FENNELL, T., NAZaire, M. D., WILLIAMS, C.,
882 REICH, M., WINCKLER, W. & GETZ, G. 2012. RNA-SeQC: RNA-seq metrics for quality
883 control and process optimization. *Bioinformatics*, 28, 1530-2.

884 DOBIN, A., DAVIS, C. A., SCHLESINGER, F., DRENKOW, J., ZALESKI, C., JHA, S., BATUT, P.,
885 CHAISSON, M. & GINGERAS, T. R. 2013. STAR: ultrafast universal RNA-seq aligner.
886 *Bioinformatics*, 29, 15-21.

887 DUGGAL, G., WARRIER, S., GHIMIRE, S., BROEKAERT, D., VAN DER JEUGHT, M., LIERMAN, S.,
888 DEROO, T., PEELMAN, L., VAN SOOM, A., CORNELISSEN, R., MENTEN, B., MESTDAGH,
889 P., VANDESOMPELE, J., ROOST, M., SLIEKER, R. C., HEIJMANS, B. T., DEFORCE, D., DE
890 SUTTER, P., DE SOUSA LOPES, S. C. & HEINDRYCKX, B. 2015. Alternative Routes to
891 Induce Naive Pluripotency in Human Embryonic Stem Cells. *Stem Cells*, 33, 2686-98.

892 EHLERMANN, J., PFISTERER, P. & SCHORLE, H. 2003. Dynamic expression of Kruppel-like
893 factor 4 (Klf4), a target of transcription factor AP-2alpha during murine mid-
894 embryogenesis. *Anat Rec A Discov Mol Cell Evol Biol*, 273, 677-80.

895 FOGARTY, N. M. E., MCCARTHY, A., SNIJDERS, K. E., POWELL, B. E., KUBIKOVA, N., BLAKELEY,
896 P., LEA, R., ELDER, K., WAMAITHA, S. E., KIM, D., MACIULYTE, V., KLEINJUNG, J., KIM,
897 J. S., WELLS, D., VALLIER, L., BERTERO, A., TURNER, J. M. A. & NIAKAN, K. K. 2017.
898 Genome editing reveals a role for OCT4 in human embryogenesis. *Nature*, 550, 67-
899 73.

900 FRANKENBERG, S., GERBE, F., BESSONNARD, S., BELVILLE, C., POUCHIN, P., BARDOT, O. &
901 CHAZAUD, C. 2011. Primitive endoderm differentiates via a three-step mechanism
902 involving Nanog and RTK signaling. *Dev Cell*, 21, 1005-13.

903 GAO, L., WU, K., LIU, Z., YAO, X., YUAN, S., TAO, W., YI, L., YU, G., HOU, Z., FAN, D., TIAN, Y.,
904 LIU, J., CHEN, Z. J. & LIU, J. 2018. Chromatin Accessibility Landscape in Human Early
905 Embryos and Its Association with Evolution. *Cell*, 173, 248-259 e15.

906 GERRI, C., MCCARTHY, A., ALANIS-LOBATO, G., DEMTSCHENKO, A., BRUNEAU, A.,
907 LOUBERSAC, S., FOGARTY, N. M. E., HAMPSHIRE, D., ELDER, K., SNELL, P., CHRISTIE,
908 L., DAVID, L., VAN DE VELDE, H., FOULADI-NASHTA, A. A. & NIAKAN, K. K. 2020.
909 Initiation of a conserved trophectoderm program in human, cow and mouse
910 embryos. *Nature*.

911 GUMIREDDY, K., LI, A., GIMOTTY, P. A., KLEIN-SZANTO, A. J., SHOWE, L. C., KATSAROS, D.,
912 COUKOS, G., ZHANG, L. & HUANG, Q. 2009. KLF17 is a negative regulator of

epithelial-mesenchymal transition and metastasis in breast cancer. *Nat Cell Biol*, 11, 1297-304.

GUO, G., VON MEYENN, F., ROSTOVSKAYA, M., CLARKE, J., DIETMANN, S., BAKER, D., SAHAKYAN, A., MYERS, S., BERTONE, P., REIK, W., PLATH, K. & SMITH, A. 2017. Epigenetic resetting of human pluripotency. *Development*, 144, 2748-2763.

GUO, G., VON MEYENN, F., SANTOS, F., CHEN, Y., REIK, W., BERTONE, P., SMITH, A. & NICHOLS, J. 2016. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. *Stem Cell Reports*, 6, 437-46.

HALL, J., GUO, G., WRAY, J., EYRES, I., NICHOLS, J., GROTEWOLD, L., MORFOPOULOU, S., HUMPHREYS, P., MANSFIELD, W., WALKER, R., TOMLINSON, S. & SMITH, A. 2009. Oct4 and LIF/Stat3 Additively Induce Krüppel Factors to Sustain Embryonic Stem Cell Self-Renewal. *Cell Stem Cell*, 5, 597-609.

HANNA, J., CHENG, A. W., SAHA, K., KIM, J., LENGNER, C. J., SOLDNER, F., CASSADY, J. P., MUFFAT, J., CAREY, B. W. & JAENISCH, R. 2010. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. *Proc Natl Acad Sci U S A*, 107, 9222-7.

HEO, I., JOO, C., CHO, J., HA, M., HAN, J. & KIM, V. N. 2008. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. *Mol Cell*, 32, 276-84.

HSU, P. D., SCOTT, D. A., WEINSTEIN, J. A., RAN, F. A., KONERMANN, S., AGARWALA, V., LI, Y., FINE, E. J., WU, X., SHALEM, O., CRADICK, T. J., MARRAFFINI, L. A., BAO, G. & ZHANG, F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. *Nat Biotechnol*, 31, 827-32.

JIANG, J., CHAN, Y. S., LOH, Y. H., CAI, J., TONG, G. Q., LIM, C. A., ROBSON, P., ZHONG, S. & NG, H. H. 2008. A core Klf circuitry regulates self-renewal of embryonic stem cells. *Nat Cell Biol*, 10, 353-60.

KILENS, S., MEISTERMANN, D., MORENO, D., CHARIAU, C., GAIGNERIE, A., REIGNIER, A., LELIEVRE, Y., CASANOVA, M., VALLOT, C., NEDELLEC, S., FLIPPE, L., FIRMIN, J., SONG, J., CHARPENTIER, E., LAMMERS, J., DONNART, A., MAREC, N., DEB, W., BIHOUEE, A., LE CAIGNEC, C., PECQUEUR, C., REDON, R., BARRIERE, P., BOURDON, J., PASQUE, V., SOUMILLON, M., MIKKELSEN, T. S., ROUGEULLE, C., FREOUR, T., DAVID, L. & MILIEU, INTERIEUR, C. 2018. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. *Nat Commun*, 9, 360.

945 KIM, S. K., LEE, H., HAN, K., KIM, S. C., CHOI, Y., PARK, S. W., BAK, G., LEE, Y., CHOI, J. K., KIM,
946 T. K., HAN, Y. M. & LEE, D. 2014. SET7/9 methylation of the pluripotency factor
947 LIN28A is a nucleolar localization mechanism that blocks let-7 biogenesis in human
948 ESCs. *Cell Stem Cell*, 15, 735-49.

949 KIMBER, S. J., SNEDDON, S. F., BLOOR, D. J., EL-BAREG, A. M., HAWKHEAD, J. A., METCALFE,
950 A. D., HOUGHTON, F. D., LEESE, H. J., RUTHERFORD, A., LIEBERMAN, B. A. & BRISON,
951 D. R. 2008. Expression of genes involved in early cell fate decisions in human
952 embryos and their regulation by growth factors. *Reproduction*, 135, 635-47.

953 KOSICKI, M., TOMBERG, K. & BRADLEY, A. 2018. Repair of double-strand breaks induced by
954 CRISPR-Cas9 leads to large deletions and complex rearrangements. *Nat Biotechnol*,
955 36, 765-771.

956 LI, B. & DEWEY, C. N. 2011. RSEM: accurate transcript quantification from RNA-Seq data
957 with or without a reference genome. *BMC Bioinformatics*, 12, 323.

958 LINDSAY, H., BURGER, A., BIYONG, B., FELKER, A., HESS, C., ZAUGG, J., CHIAVACCI, E.,
959 ANDERS, C., JINEK, M., MOSIMANN, C. & ROBINSON, M. D. 2016. CrispRVariants
960 charts the mutation spectrum of genome engineering experiments. *Nat Biotechnol*,
961 34, 701-2.

962 LIU, X., NEFZGER, C. M., ROSSELLO, F. J., CHEN, J., KNAUPP, A. S., FIRAS, J., FORD, E.,
963 PFLUEGER, J., PAYNTER, J. M., CHY, H. S., O'BRIEN, C. M., HUANG, C., MISHRA, K.,
964 HODGSON-GARMS, M., JANSZ, N., WILLIAMS, S. M., BLEWITT, M. E., NILSSON, S. K.,
965 SCHITTENHELM, R. B., LASLETT, A. L., LISTER, R. & POLO, J. M. 2017. Comprehensive
966 characterization of distinct states of human naive pluripotency generated by
967 reprogramming. *Nat Methods*.

968 LOEWER, S., CABILI, M. N., GUTTMAN, M., LOH, Y. H., THOMAS, K., PARK, I. H., GARBER, M.,
969 CURRAN, M., ONDER, T., AGARWAL, S., MANOS, P. D., DATTA, S., LANDER, E. S.,
970 SCHLAEGER, T. M., DALEY, G. Q. & RINN, J. L. 2010. Large intergenic non-coding RNA-
971 RoR modulates reprogramming of human induced pluripotent stem cells. *Nat Genet*,
972 42, 1113-7.

973 LOVE, M. I., HUBER, W. & ANDERS, S. 2014. Moderated estimation of fold change and
974 dispersion for RNA-seq data with DESeq2. *Genome Biol*, 15, 550.

975 MATHIEU, J., DETRAUX, D., KUPPERS, D., WANG, Y., CAVANAUGH, C., SIDHU, S., LEVY, S.,
976 ROBITAILLE, A. M., FERRECCIO, A., BOTTORFF, T., MCALISTER, A., SOMASUNDARAM,

977 L., ARTONI, F., BATTLE, S., HAWKINS, R. D., MOON, R. T., WARE, C. B., PADDISON, P.
978 J. & RUOHOLA-BAKER, H. 2019. Folliculin regulates mTORC1/2 and WNT pathways in
979 early human pluripotency. *Nat Commun*, 10, 632.

980 MESSERSCHMIDT, D. M. & KEMLER, R. 2010. Nanog is required for primitive endoderm
981 formation through a non-cell autonomous mechanism. *Dev Biol*, 344, 129-37.

982 MESSMER, T., VON MEYENN, F., SAVINO, A., SANTOS, F., MOHAMMED, H., LUN, A. T. L.,
983 MARIONI, J. C. & REIK, W. 2019. Transcriptional Heterogeneity in Naive and Primed
984 Human Pluripotent Stem Cells at Single-Cell Resolution. *Cell Rep*, 26, 815-824 e4.

985 MITSUI, K., TOKUZAWA, Y., ITOH, H., SEGAWA, K., MURAKAMI, M., TAKAHASHI, K.,
986 MARUYAMA, M., MAEDA, M. & YAMANAKA, S. 2003. The homeoprotein Nanog is
987 required for maintenance of pluripotency in mouse epiblast and ES cells. *Cell*, 113,
988 631-42.

989 NAKAMURA, T., OKAMOTO, I., SASAKI, K., YABUTA, Y., IWATANI, C., TSUCHIYA, H., SEITA, Y.,
990 NAKAMURA, S., YAMAMOTO, T. & SAITOU, M. 2016. A developmental coordinate of
991 pluripotency among mice, monkeys and humans. *Nature*, 537, 57-62.

992 NIAKAN, K. K. & EGGAN, K. 2013. Analysis of human embryos from zygote to blastocyst
993 reveals distinct gene expression patterns relative to the mouse. *Dev Biol*, 375, 54-64.

994 NICHOLS, J. & SMITH, A. 2012. Pluripotency in the embryo and in culture. *Cold Spring Harb
995 Perspect Biol*, 4, a008128.

996 NICKLESS, A., BAILIS, J. M. & YOU, Z. 2017. Control of gene expression through the
997 nonsense-mediated RNA decay pathway. *Cell Biosci*, 7, 26.

998 PARISI, S., PASSARO, F., ALOIA, L., MANABE, I., NAGAI, R., PASTORE, L. & RUSSO, T. 2008.
999 Klf5 is involved in self-renewal of mouse embryonic stem cells. *J Cell Sci*, 121, 2629-
1000 34.

1001 PARK, J., LIM, K., KIM, J. S. & BAE, S. 2017. Cas-analyzer: an online tool for assessing genome
1002 editing results using NGS data. *Bioinformatics*, 33, 286-288.

1003 PASTOR, W. A., LIU, W., CHEN, D., HO, J., KIM, R., HUNT, T. J., LUKIANCHIKOV, A., LIU, X.,
1004 POLO, J. M., JACOBSEN, S. E. & CLARK, A. T. 2018. TFAP2C regulates transcription in
1005 human naive pluripotency by opening enhancers. *Nat Cell Biol*, 20, 553-564.

1006 PENG, S., CHEN, L. L., LEI, X. X., YANG, L., LIN, H., CARMICHAEL, G. G. & HUANG, Y. 2011.
1007 Genome-wide studies reveal that Lin28 enhances the translation of genes important
1008 for growth and survival of human embryonic stem cells. *Stem Cells*, 29, 496-504.

1009 PETROPOULOS, S., EDSGARD, D., REINIUS, B., DENG, Q., PANULA, S. P., CODELUPPI, S.,
1010 PLAZA REYES, A., LINNARSSON, S., SANDBERG, R. & LANNER, F. 2016. Single-Cell
1011 RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation
1012 Embryos. *Cell*, 165, 1012-26.

1013 PRZEWROCKA, J., ROWAN, A., ROSENTHAL, R., KANU, N. & SWANTON, C. 2020. Unintended
1014 on-target chromosomal instability following CRISPR/Cas9 single gene targeting. *Ann
1015 Oncol*, 31, 1270-1273.

1016 QIN, H., HEJNA, M., LIU, Y., PERCHARDE, M., WOSSIDLO, M., BLOUIN, L., DURRUTHY-
1017 DURRUTHY, J., WONG, P., QI, Z., YU, J., QI, L. S., SEBASTIANO, V., SONG, J. S. &
1018 RAMALHO-SANTOS, M. 2016. YAP Induces Human Naive Pluripotency. *Cell Rep*, 14,
1019 2301-12.

1020 RAMOS-IBEAS, P., SANG, F., ZHU, Q., TANG, W. W. C., WITHEY, S., KLISCH, D., WOOD, L.,
1021 LOOSE, M., SURANI, M. A. & ALBERIO, R. 2019. Pluripotency and X chromosome
1022 dynamics revealed in pig pre-gastrulating embryos by single cell analysis. *Nat
1023 Commun*, 10, 500.

1024 RAN, F. A., HSU, P. D., WRIGHT, J., AGARWALA, V., SCOTT, D. A. & ZHANG, F. 2013. Genome
1025 engineering using the CRISPR-Cas9 system. *Nat Protoc*, 8, 2281-308.

1026 RAYNER, E., DURIN, M.-A., THOMAS, R., MORALLI, D., O'CATHAIL, S. M., TOMLINSON, I.,
1027 GREEN, C. M. & LEWIS, A. 2019. CRISPR-Cas9 Causes Chromosomal Instability and
1028 Rearrangements in Cancer Cell Lines, Detectable by Cytogenetic Methods. *The
1029 CRISPR Journal*, 2, 406-416.

1030 ROSSANT, J. 2016. Making the Mouse Blastocyst: Past, Present, and Future. *Curr Top Dev
1031 Biol*, 117, 275-88.

1032 ROSTOVSKAYA, M., STIRPARO, G. G. & SMITH, A. 2019. Capacitation of human naive
1033 pluripotent stem cells for multi-lineage differentiation. *Development*, 146.

1034 SAEZ, I., KOYUNCU, S., GUTIERREZ-GARCIA, R., DIETERICH, C. & VILCHEZ, D. 2018. Insights
1035 into the ubiquitin-proteasome system of human embryonic stem cells. *Sci Rep*, 8,
1036 4092.

1037 SARBASSOV, D. D., GUERTIN, D. A., ALI, S. M. & SABATINI, D. M. 2005. Phosphorylation and
1038 regulation of Akt/PKB by the rictor-mTOR complex. *Science*, 307, 1098-101.

1039 SHAHBAZI, M. N., SCIALDONE, A., SKORUPSKA, N., WEBERLING, A., RECHER, G., ZHU, M.,
1040 JEDRUSIK, A., DEVITO, L. G., NOLI, L., MACAULAY, I. C., BUECKER, C., KHALAF, Y., ILIC,

1041 D., VOET, T., MARIONI, J. C. & ZERNICKA-GOETZ, M. 2017. Pluripotent state
1042 transitions coordinate morphogenesis in mouse and human embryos. *Nature*, 552,
1043 239-243.

1044 SINGH, A. M., REYNOLDS, D., CLIFF, T., OHTSUKA, S., MATTHEYES, A. L., SUN, Y.,
1045 MENENDEZ, L., KULIK, M. & DALTON, S. 2012. Signaling network crosstalk in human
1046 pluripotent cells: a Smad2/3-regulated switch that controls the balance between
1047 self-renewal and differentiation. *Cell Stem Cell*, 10, 312-26.

1048 STIRPARO, G. G., BOROVIAK, T., GUO, G., NICHOLS, J., SMITH, A. & BERTONE, P. 2018.
1049 Integrated analysis of single-cell embryo data yields a unified transcriptome
1050 signature for the human preimplantation epiblast. *Development*.

1051 TAKAHASHI, K. & YAMANAKA, S. 2006. Induction of pluripotent stem cells from mouse
1052 embryonic and adult fibroblast cultures by defined factors. *Cell*, 126, 663-76.

1053 TAKASHIMA, Y., GUO, G., LOOS, R., NICHOLS, J., FICZ, G., KRUEGER, F., OXLEY, D., SANTOS,
1054 F., CLARKE, J., MANSFIELD, W., REIK, W., BERTONE, P. & SMITH, A. 2014. Resetting
1055 transcription factor control circuitry toward ground-state pluripotency in human.
1056 *Cell*, 158, 1254-69.

1057 THEUNISSEN, T. W., POWELL, B. E., WANG, H., MITALIPOVA, M., FADDAH, D. A., REDDY, J.,
1058 FAN, Z. P., MAETZEL, D., GANZ, K., SHI, L., LUNGJANGWA, T., IMSOONTHORNRUKSA,
1059 S., STELZER, Y., RANGARAJAN, S., D'ALESSIO, A., ZHANG, J., GAO, Q., DAWLATY, M.
1060 M., YOUNG, R. A., GRAY, N. S. & JAENISCH, R. 2014. Systematic identification of
1061 culture conditions for induction and maintenance of naive human pluripotency. *Cell*
1062 *Stem Cell*, 15, 471-87.

1063 VAN VLIET, J., CROFTS, L. A., QUINLAN, K. G., CZOLIJ, R., PERKINS, A. C. & CROSSLEY, M.
1064 2006. Human KLF17 is a new member of the Sp/KLF family of transcription factors.
1065 *Genomics*, 87, 474-82.

1066 VISWANATHAN, S. R., DALEY, G. Q. & GREGORY, R. I. 2008. Selective blockade of microRNA
1067 processing by Lin28. *Science*, 320, 97-100.

1068 WAMAITHA, S. E., DEL VALLE, I., CHO, L. T., WEI, Y., FOGARTY, N. M., BLAKELEY, P.,
1069 SHERWOOD, R. I., JI, H. & NIAKAN, K. K. 2015. Gata6 potently initiates reprogramming
1070 of pluripotent and differentiated cells to extraembryonic endoderm stem cells.
1071 *Genes Dev*, 29, 1239-55.

1072 WAMAITHA, S. E., GRYBEL, K. J., ALANIS-LOBATO, G., GERRI, C., OGUSHI, S., MCCARTHY, A.,
1073 MAHADEVAIAH, S. K., HEALY, L., LEA, R. A., MOLINA-ARCAS, M., DEVITO, L. G.,
1074 ELDER, K., SNELL, P., CHRISTIE, L., DOWNWARD, J., TURNER, J. M. A. & NIAKAN, K. K.
1075 2020. IGF1-mediated human embryonic stem cell self-renewal recapitulates the
1076 embryonic niche. *Nat Commun*, 11, 764.

1077 WANG, X., LIU, D., HE, D., SUO, S., XIA, X., HE, X., HAN, J. J. & ZHENG, P. 2017. Transcriptome
1078 analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for
1079 DNA double-strand break repair in primate oocytes and early embryos. *Genome Res*,
1080 27, 567-579.

1081 WANG, Y., XU, Z., JIANG, J., XU, C., KANG, J., XIAO, L., WU, M., XIONG, J., GUO, X. & LIU, H.
1082 2013. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in
1083 human embryonic stem cell self-renewal. *Dev Cell*, 25, 69-80.

1084 WANG, Z., ORON, E., NELSON, B., RAZIS, S. & IVANOVA, N. 2012. Distinct lineage
1085 specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. *Cell*
1086 *Stem Cell*, 10, 440-54.

1087 WANI, M. A., MEANS, R. T., JR. & LINGREL, J. B. 1998. Loss of LKLF function results in
1088 embryonic lethality in mice. *Transgenic Res*, 7, 229-38.

1089 YAMANE, M., OHTSUKA, S., MATSUURA, K., NAKAMURA, A. & NIWA, H. 2018. Overlapping
1090 functions of Kruppel-like factor family members: targeting multiple transcription
1091 factors to maintain the naive pluripotency of mouse embryonic stem cells.
1092 *Development*, 145.

1093 YAN, L., YANG, M., GUO, H., YANG, L., WU, J., LI, R., LIU, P., LIAN, Y., ZHENG, X., YAN, J.,
1094 HUANG, J., LI, M., WU, X., WEN, L., LAO, K., LI, R., QIAO, J. & TANG, F. 2013. Single-
1095 cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells.
1096 *Nat Struct Mol Biol*, 20, 1131-9.

1097 YU, J., VODYANIK, M. A., SMUGA-OTTO, K., ANTOSIEWICZ-BOURGET, J., FRANE, J. L., TIAN,
1098 S., NIE, J., JONSDOTTIR, G. A., RUOTTI, V., STEWART, R., SLUKVIN, II & THOMSON, J.
1099 A. 2007. Induced pluripotent stem cell lines derived from human somatic cells.
1100 *Science*, 318, 1917-20.

1101 ZHOU, S., TANG, X. & TANG, F. 2016. Kruppel-like factor 17, a novel tumor suppressor: its
1102 low expression is involved in cancer metastasis. *Tumour Biol*, 37, 1505-13.

1103 ZIMMERLIN, L., PARK, T. S., HUO, J. S., VERMA, K., PATHER, S. R., TALBOT, C. C., JR.,
1104 AGARWAL, J., STEPPAN, D., ZHANG, Y. W., CONSIDINE, M., GUO, H., ZHONG, X.,
1105 GUTIERREZ, C., COPE, L., CANTO-SOLER, M. V., FRIEDMAN, A. D., BAYLIN, S. B. &
1106 ZAMBIDIS, E. T. 2016. Tankyrase inhibition promotes a stable human naive
1107 pluripotent state with improved functionality. *Development*, 143, 4368-4380.

1108
1109

1110 **Figure Legends**

1111

1112 **Figure 1 – KLF17 expression in the human embryo is coincident with known pluripotency**
1113 **factors.** Representative images of immunofluorescence analysis of blastocyst stage human embryos
1114 at early day 5 (N = 5), late day 5 (N = 7), early day 6 (N = 9), late day 6 (N = 5) and early day 7 (N =
1115 5) post-fertilisation. Scale bars = 50 μ m.

1116

1117 **Figure 2 – Exogenous KLF17 overexpression induces naïve factor expression in conventional**
1118 **hESCs. (A)** Schematic diagram of generating H9 KLF17-HA inducible hESCs via lentiviral
1119 transduction. **(B)** Immunofluorescence analysis of H9 KLF17-HA inducible hESCs following 5 days
1120 uninduced (UI) or 5 days doxycycline (Dox) induction (+Dox). Scale bars = 20 μ m. N \geq 3. **(C)** qRT-
1121 PCR analysis of H9 KLF17-HA inducible hESCs following 5 days with (+Dox) or without (-Dox) Dox
1122 induction of exogenous KLF17. Relative expression is displayed as fold change versus uninduced
1123 cells and normalised to *GAPDH* as a housekeeping gene using the $\Delta\Delta Ct$ method. Individual samples
1124 are shown as dots, lines represent the mean and whiskers the SEM. Welch's *t* test, *** p < 0.005, * p
1125 < 0.05.

1126

1127 **Figure 3 – Exogenous KLF17 overexpression induces widespread transcriptional change in**
1128 **conventional hESCs. (A)** Dimensionality reduction by principal component analysis (PCA) of bulk
1129 RNA-seq data collected across a 5-day time course of H9 KLF17-HA inducible hESC growth with
1130 (+Dox) or without (UI) Dox induction of exogenous KLF17 expression. **(B)** Volcano plot displaying
1131 relative expression of all detected genes in +Dox versus UI H9 KLF17-HA hESCs at day 5
1132 ($\log_{2}(+Dox\ Day5\ vs\ UI\ Day5)$) against the significance of differential expression (- $\log_{10}(p\text{adj})$).
1133 The red dotted line notes $p_{\text{adj}} = 0.05$. Individual genes of interest are displayed as filled circles and
1134 labelled with the gene name. **(C-D)** Normalised expression (transcripts per million, TPM) of individual
1135 genes of interest across the 5-day time course in uninduced control (UI) and KLF17-expressing
1136 (+Dox) H9 KLF17-HA hESCs, showing gene that are significantly upregulated (C) or downregulated
1137 (D) at day 5. **(E)** Heatmap grouped by sample (UI or +Dox) and time point showing the genes that are
1138 highly correlated with *KLF17* across time (Pearson correlation coefficient ≥ 0.85) and fall under the
1139 Kyoto Encyclopaedia of Genes and Genomes (KEGG) category "PI3K-Akt signalling pathway". **(F)**
1140 Immunofluorescence analysis of H9 KLF17-HA inducible hESCs following 5 days uninduced (UI) or 5
1141 days doxycycline induction (+Dox). Scale bars = 20 μ m. N \geq 3.

1142

1143 **Figure 4 – Exogenous KLF17 overexpression is sufficient to drive conventional hESCs to a**
1144 **naïve pluripotent state under PXGL culture. (A)** Immunofluorescence analysis H9 KLF17-HA
1145 inducible hESCs following 5 days uninduced (UI) or 5 days doxycycline induction (+Dox) in the
1146 indicated media. Cells were cultured on a mouse embryonic fibroblast (MEF) feeder layer and at 5%
1147 O₂. Scale bars = 20 µm. N ≥ 3. **(B)** Cells induced for 5 days in PXGL medium were uniquely able to
1148 give rise to typical naïve hESC-like colonies following serial bulk passaging. **(C)** Representative
1149 immunofluorescence analysis of H9 KLF17-HA induced naïve hESCs after 4 or 5 passages in PXGL
1150 medium. Scale bars = 20 µm. N ≥ 3.

1151

1152 **Figure 5 – Generating KLF17-null mutant hESCs by CRISPR-Cas9. (A)** Schematic representation
1153 of the human *KLF17* locus on Chromosome 1, showing the relative position of the DNA-binding zinc
1154 finger domains (filled black rectangles) and the guide RNAs (gRNAs) tested for mutagenic efficiency.
1155 Exons are shown as red rectangles, 3' and 5' UTR are unfilled rectangles and introns are black
1156 chevrons. **(B)** Relative efficiency of each guide shown in (A) measured as a proportion of overall
1157 reads containing indel mutations following on-target amplification by MiSeq of the *KLF17* target site.
1158 Dots represent individual harvested wells of CRISPR-targeted H9 hESCs, lines represent the mean
1159 and whiskers the SEM. **(C)** Pie charts representing the relative proportions of different outcomes of
1160 CRISPR-Cas9 editing of H9 hESCs, based on the sequences detected by MiSeq analysis. **(D)**
1161 Immunofluorescence analysis of H9 hESCs targeted with Cas9 and gRNA KLF17(3_1) by
1162 nucleofection of a plasmid, following subjection to the epigenetic resetting protocol (Guo et al., 2017)
1163 for 8 days. Internal wild-type (WT) controls (#7, #15 and #21) are clones that were subjected to
1164 nucleofection, puromycin selection and clonal expansion, but were unedited, with a wild-type
1165 genotype. Compound null mutant clones (#18 and #19) were verified by MiSeq and IF. N = 3.

1166

1167 **Figure 6 – KLF17-null hESCs are capable of attaining and maintaining naïve pluripotency. (A)**
1168 Representative brightfield images of WT and *KLF17*^{-/-} H9 hESCs following 10 passages under naïve
1169 culture conditions. **(B)** Dimensionality reduction by principal component analysis (PCA) of bulk RNA-
1170 seq data collected at various times during the epigenetic resetting (Guo et al., 2017) of WT and
1171 *KLF17*^{-/-} H9 hESCs. **(C-F)** Normalised expression (TPM) of individual genes of interest across the full
1172 resetting time course showing (C) lack of appreciable *KLF17* transcripts, (D) temporally-limited
1173 upregulation of the parologue *KLF5* in *KLF17*^{-/-} H9 hESCs and (E) equivalent expression of the
1174 paralogues *KLF2* and (F) *KLF4*. **(G)** Volcano plot displaying relative expression of all detected genes
1175 in *KLF17*^{-/-} versus WT naïve H9 hESCs following 5 passages in naïve culture conditions
1176 ($\log_{10}(KLF17^{-/-} \text{ p5 vs WT p5})$) against the significance of differential expression (- $\log_{10}(\text{padjust})$).
1177 The red dotted line notes $p_{\text{adj}} = 0.05$. Individual genes of interest are displayed as filled circles and
1178 labelled with the gene name. **(H-I)** Normalised expression (TPM) of individual genes of interest across
1179 the full resetting time course showing downregulation of (H) the pluripotency-associated factor
1180 *LIN28A* and (I) the WNT signalling receptor *FZD5* in *KLF17*^{-/-} H9 hESCs.

1181

1182 **Figure S1 – KLF17 expression in the human embryo is coincident with known pluripotency**
1183 **factors.** Immunofluorescence analysis of blastocyst stage human embryos at early day 5 (N = 5), late
1184 day 5 (N = 7), early day 6 (N = 9), late day 6 (N = 5) and early day 7 (N = 5) post-fertilisation. Scale
1185 bars = 50 μ m.

1186

1187 **Figure S2 – 70 genes are strongly correlated with KLF17 expression over time. (A)** Heatmap
1188 ordered by sample (UI or +Dox) and time point showing all genes that are highly correlated with
1189 KLF17 across time (Pearson correlation coefficient ≥ 0.85). **(B-C)** Volcano plots displaying relative
1190 expression of all detected genes in +Dox versus UI H9 KLF17-HA hESCs at (B) day 1 (logFC(+Dox
1191 Day1 vs UI Day1)) and (C) day 2 (logFC(+Dox Day1 vs UI Day1)) against the significance of
1192 differential expression (-log10(padjust)). The red dotted line notes $p_{adj} = 0.05$. Individual genes with
1193 correlation coefficient to KLF17 ≥ 0.85 are displayed as filled circles.

1194

1195 **Figure S3 – Genes highly correlated with KLF17 expression include numerous signalling**
1196 **components and cytoskeletal/ECM components. (A-P)** Normalised expression (TPM) of individual
1197 genes of interest across the 5-day time course showing factors involved in (A-G) PI3K-AKT signalling,
1198 (H-I) TGF β signalling, (J-L) other signalling pathways, (F-G,M-O) the cytoskeleton/ICM and (P) the
1199 pluripotency-regulating long non-coding RNA L/NC-ROR. **(Q)** Western blot showing KLF17 induction
1200 following 5 days Dox treatment of H9 KLF17-HA and associated expression of PI3K-AKT signalling
1201 factors.

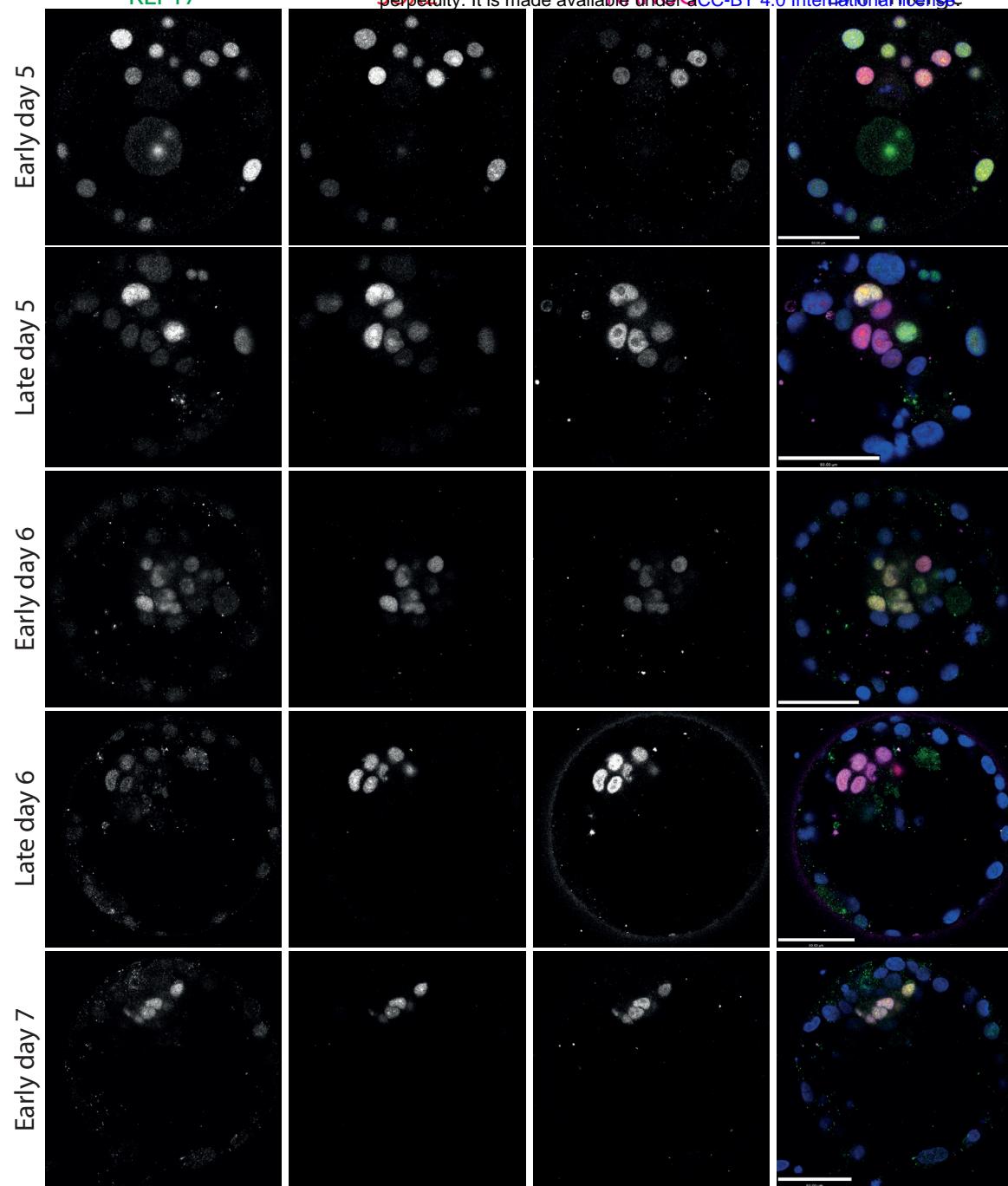
1202

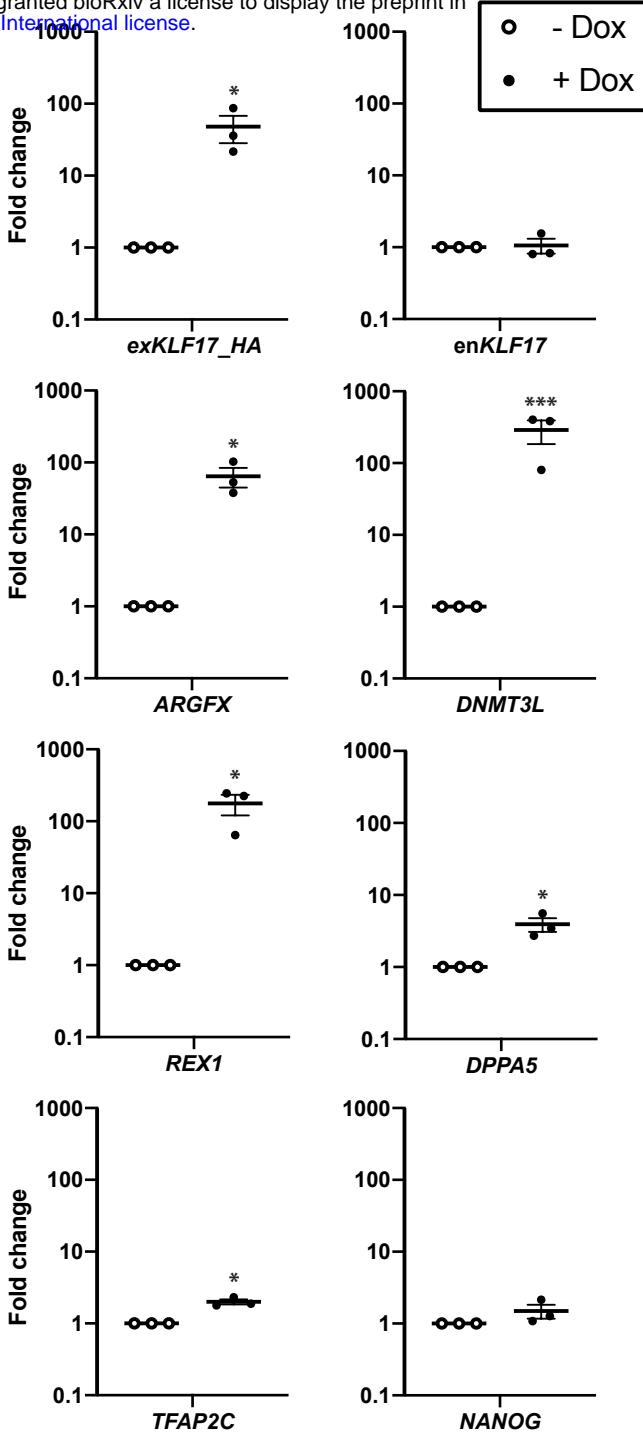
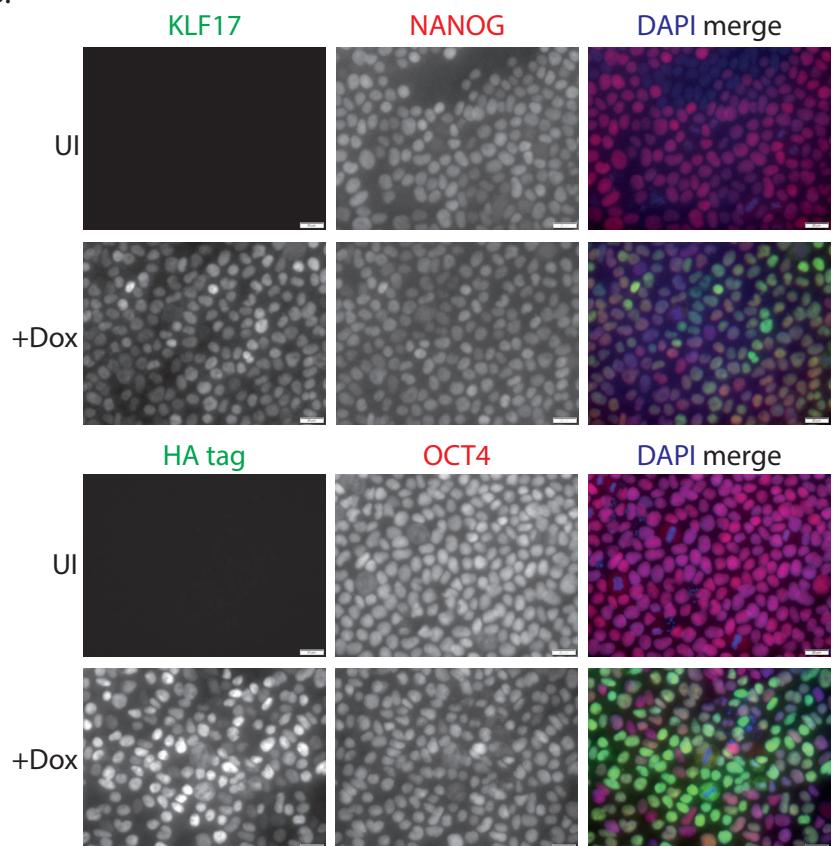
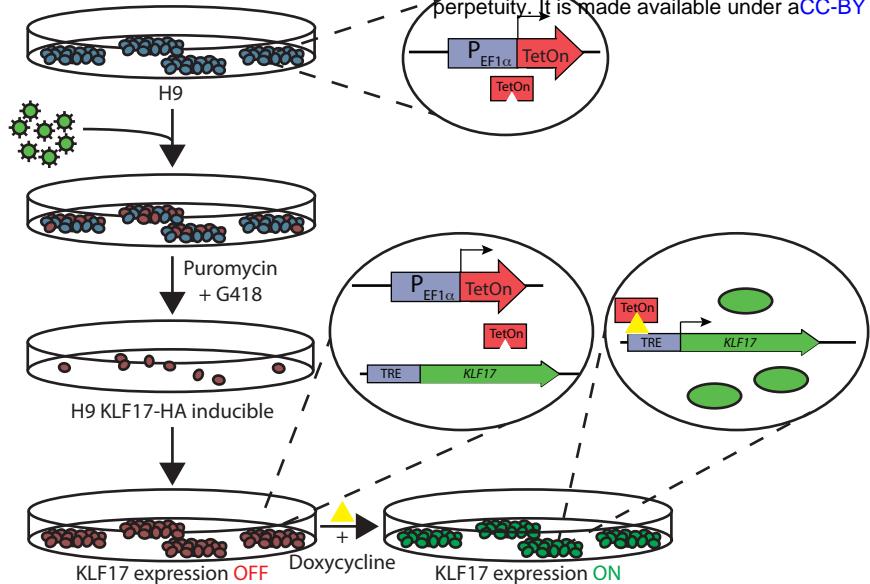
1203 **Figure S4 – Confirming upregulation of naïve-associated factors following 5 days induction of**
1204 **KLF17. (A-F)** qRT-PCR analysis across the 5-day time course of Dox treatment in H9 KLF17-HA
1205 hESCs. Relative expression is displayed as fold change versus uninduced cells and normalised to
1206 GAPDH as a housekeeping gene using the $\Delta\Delta Ct$ method. Dots represent the mean and whiskers the
1207 SEM. Welch's t test, **** $p < 0.001$, *** $p < 0.005$, ** $p < 0.01$, * $p < 0.05$. **(G)** Immunofluorescence
1208 analysis of H9 KLF17-HA inducible hESCs following 5 days uninduced (UI) or 5 days doxycycline
1209 (Dox) induction (+Dox). Scale bars = 20 μ m. N ≥ 3 .

1210

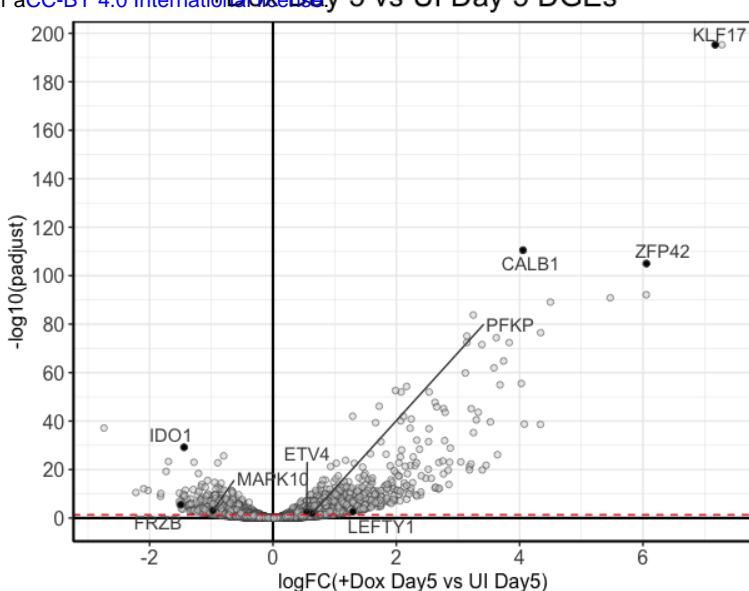
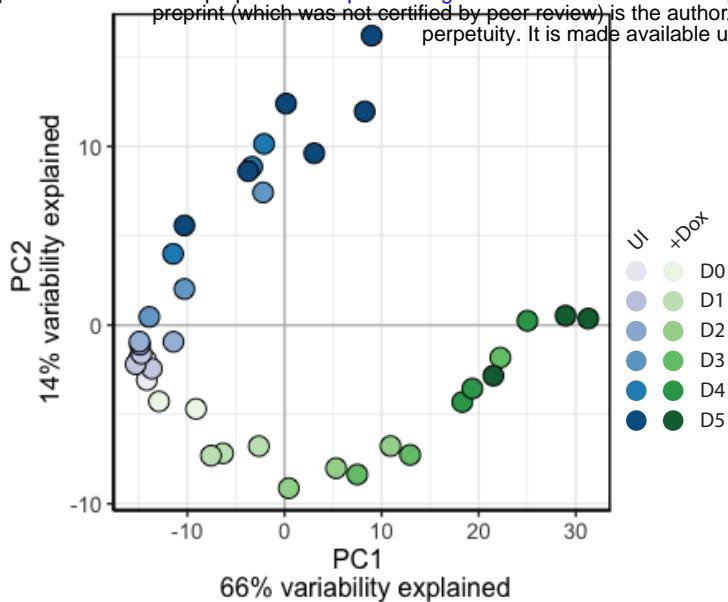
1211 **Figure S5 – PXGL is uniquely able to support KLF17-driven naïve resetting of H9 KLF17-HA**
1212 **hESCs (A)** Immunofluorescence analysis H9 KLF17-HA inducible hESCs following 5 days uninduced
1213 (UI) or 5 days doxycycline induction (+Dox) in the indicated media. Cells were cultured on a mouse
1214 embryonic fibroblast (MEF) feeder layer and at 5% O₂. Scale bars = 20 μ m. N ≥ 3 . **(B)** Unlike induced
1215 cells, uninduced control H9 KLF17-HA (UI) were unable to survive in PXGL medium following the first
1216 passage.

1217

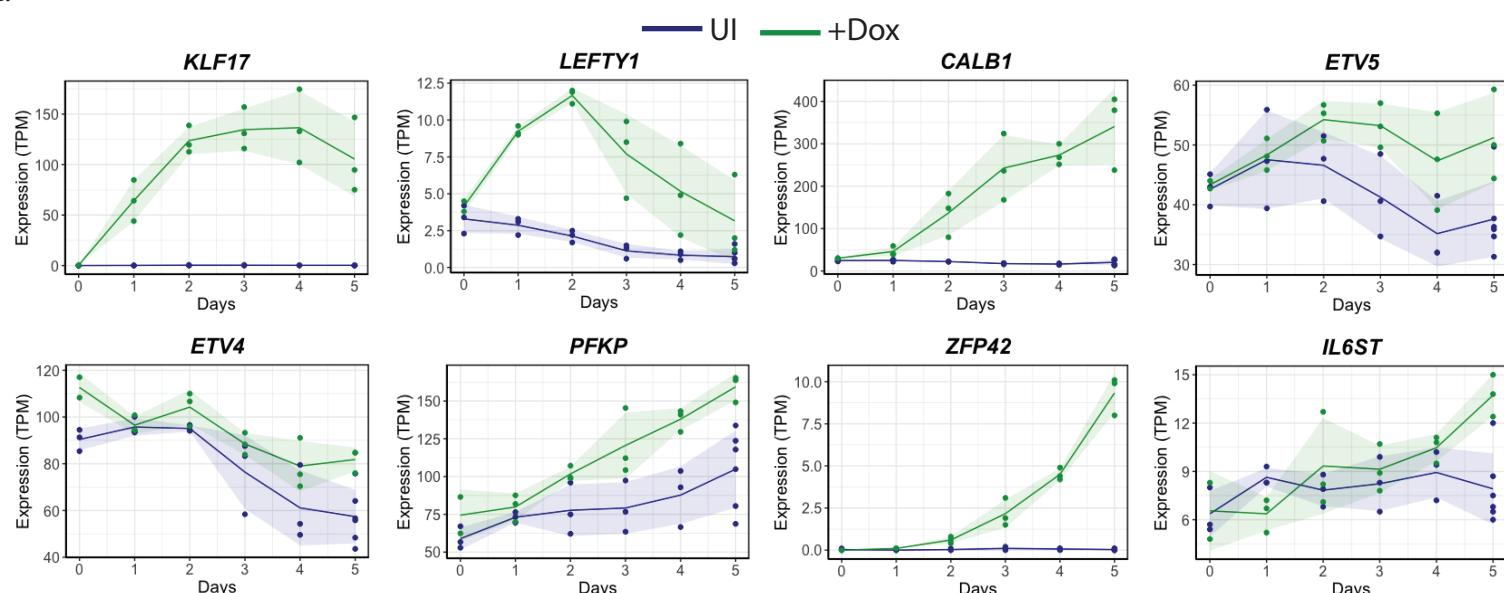

1218 **Figure S6 – Generating KLF17-null hESCs by CRISPR-Cas9. (A)** A table showing the gRNA
1219 sequences tested for mutagenic efficiency. **(B)** Pie charts representing the relative proportions of
1220 different outcomes of CRISPR-Cas9 editing of H9 hESCs, based on the sequences detected by
1221 MiSeq.

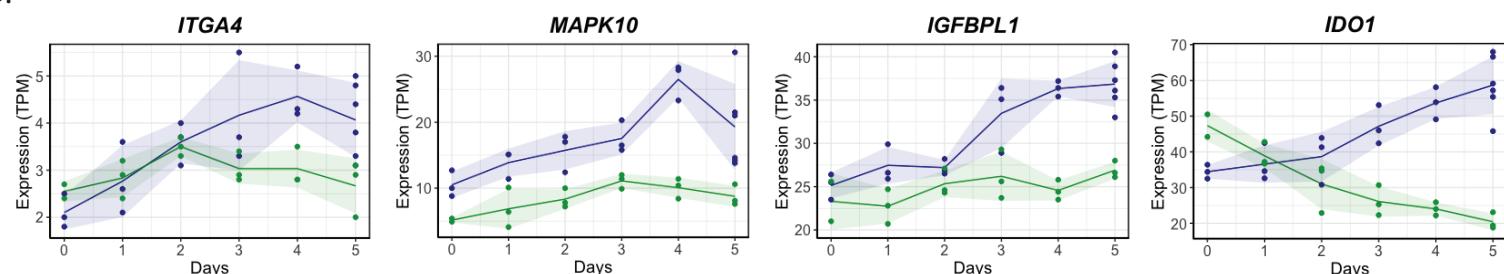



1222

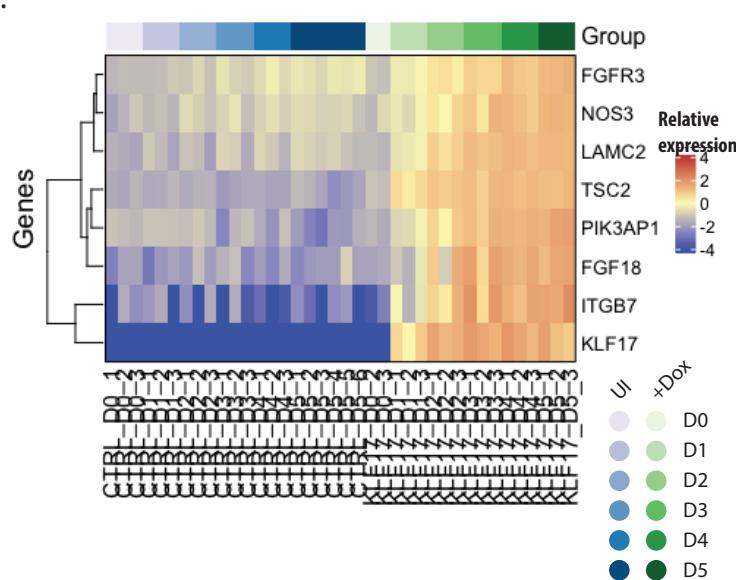
1223 **Figure S7 – Genotyping of H9 hESCs following targeting with gRNA KLF17(3_1) and clonal**
1224 **expansion. (A)** A table showing the results of genotyping 11 clones generated following CRISPR-
1225 Cas9 targeting. Short-range genotype denotes the results of MiSeq of a ~250 bp region surrounding
1226 the KLF17(3_1) cut site. Long-range genotype denotes the results of Sanger sequencing of a ~950 bp
1227 region surrounding the KLF17(3_1) cut site. The red rectangle highlights the verified *KLF17*^{-/-} H9
1228 hESCs that were carried forward. **(B)** Schematic of the short- and long-range genotyping approach
1229 employed on the 11 clones in part (A). **(C)** A table showing the percentage of interpretable reads that
1230 showed one of two possible variant-types at the highly polymorphic regions illustrated in (B) –
1231 rs35084281 and rs34057178. Parental H9 is the unmodified control cell line, #7 is an internal wild-
1232 type control clone generated following nucleofection of KLF17(3_1), #1, #8, #9, 10 and #11 are the
1233 KLF17-targeted H9 clones that appeared to have undergone homozygous editing based on short-
1234 range genotyping. **(D-F)** Illustration of the sequence context surrounding the KLF17(3_1) cut site in
1235 (D) the wild-type reference sequence, (E) the case of an 8 bp deletion and (F) the case of a 1 bp
1236 insertion. Important features of the KLF17 sequence are highlighted. DNA sequence is shown in
1237 regular font, amino acid sequence is bold above or below the DNA.

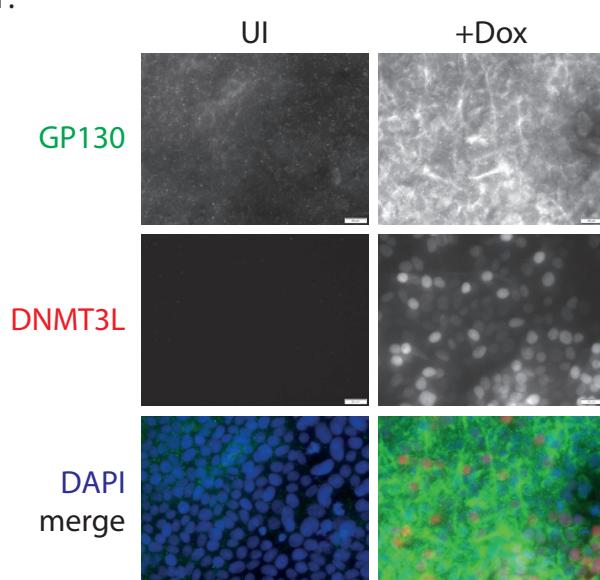


1238

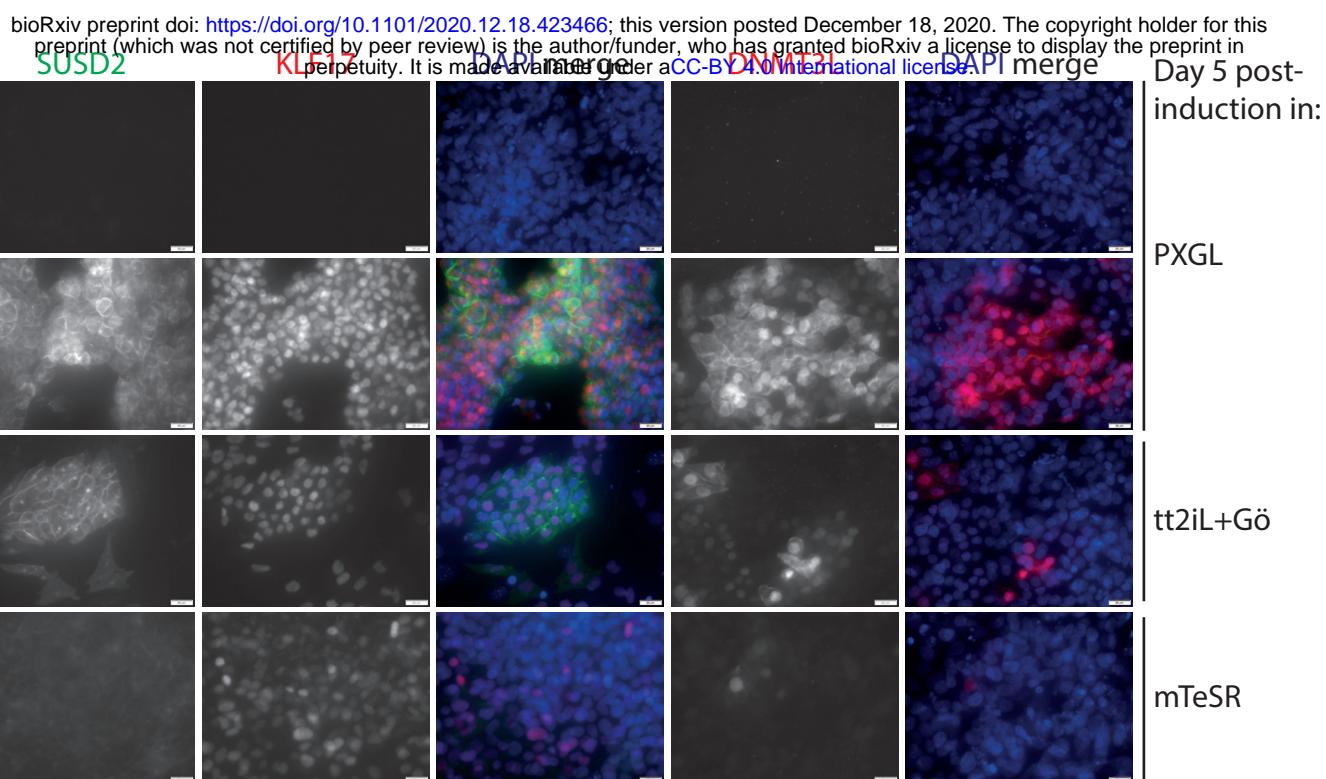
1239 **Figure S8 – *KLF17*-null naïve hESCs at passage 5 display misregulated expression of core**
1240 **glycolytic enzymes and WNT pathway components.** Normalised expression (TPM) of individual
1241 genes of interest across the resetting protocol showing (A-F) downregulation of glycolytic enzymes
1242 and (G-H) upregulation of WNT signalling factors.

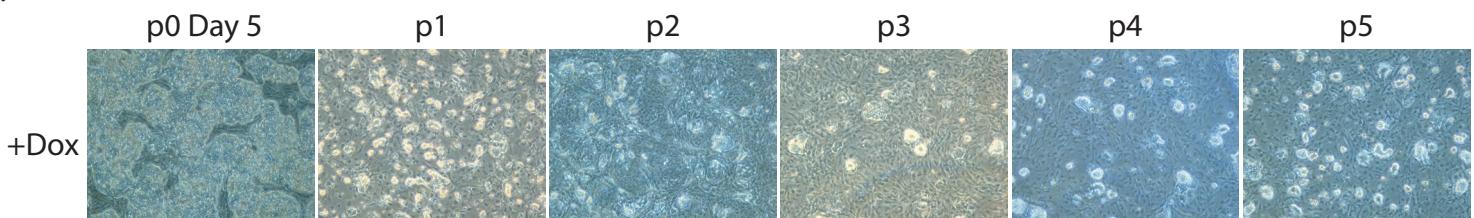


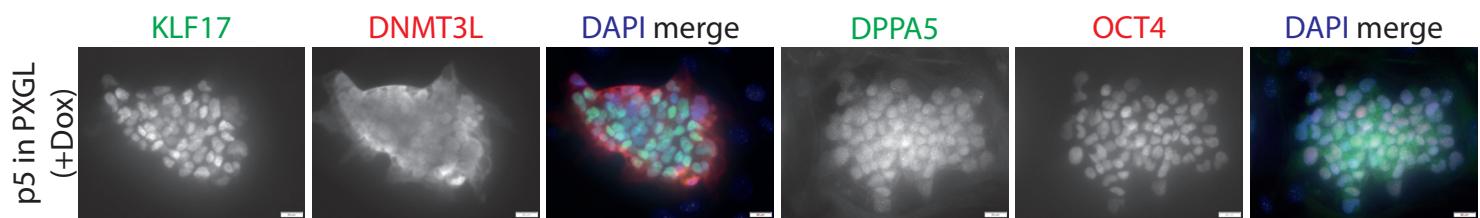

bioRxiv preprint doi: <https://doi.org/10.1101/2020.12.18.423466>; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

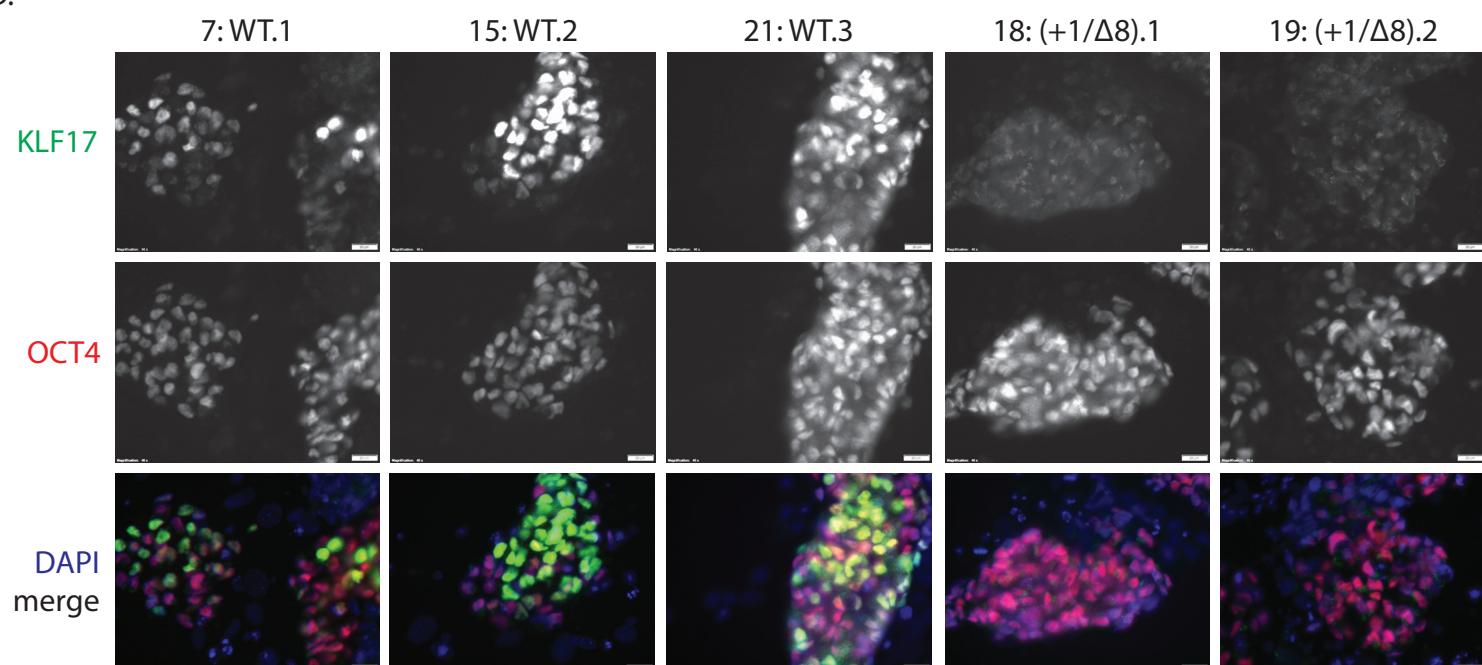
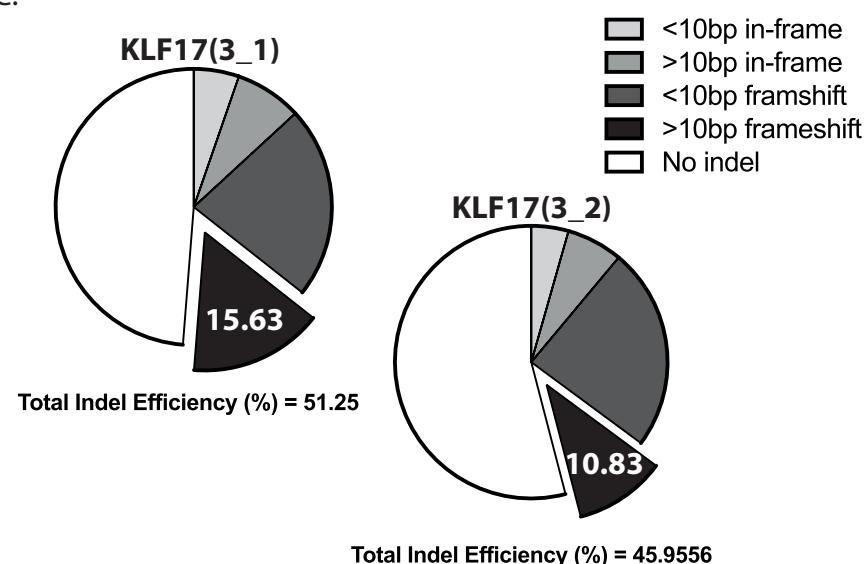
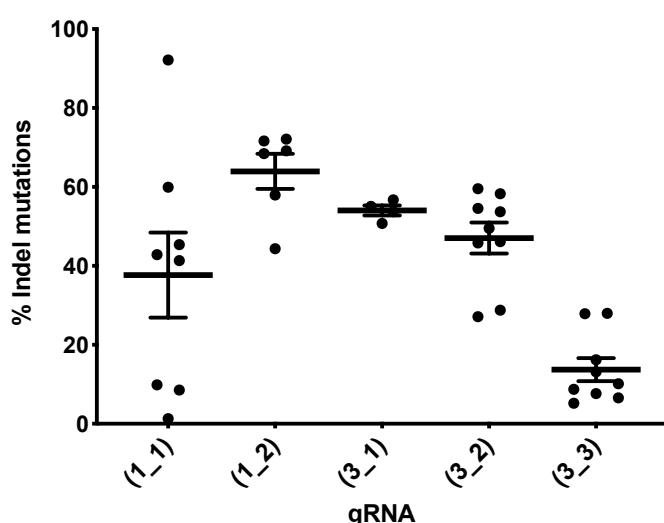
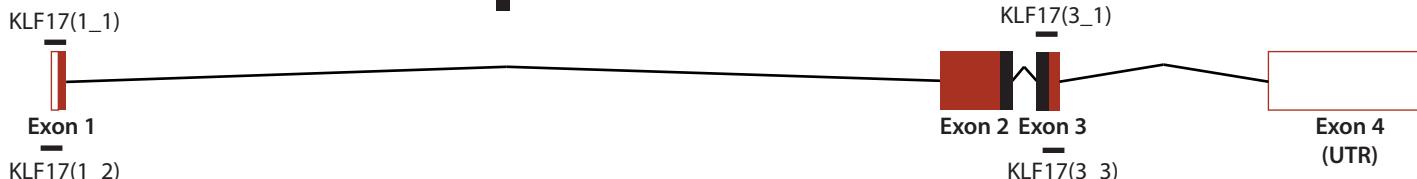

C.

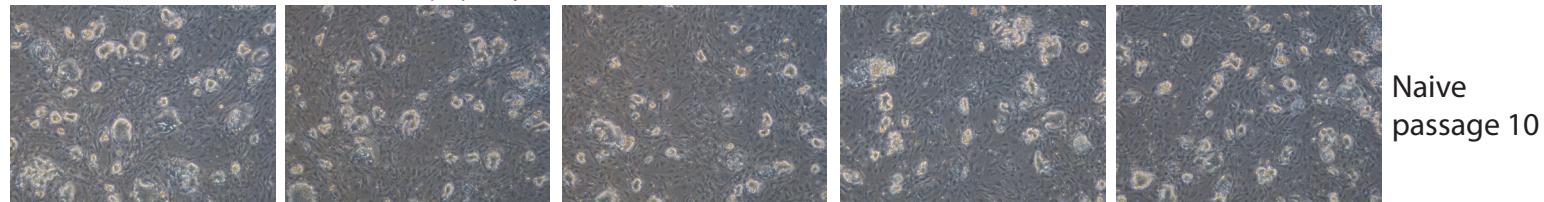

D.

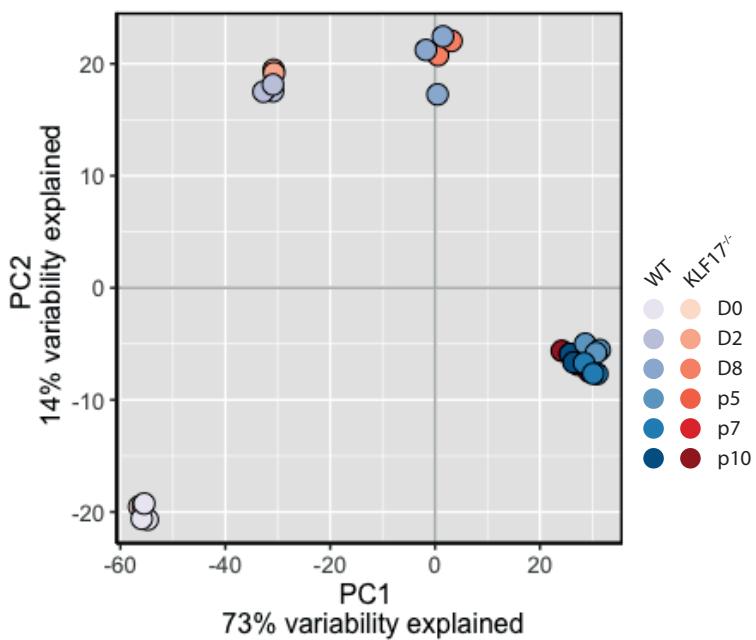

E.

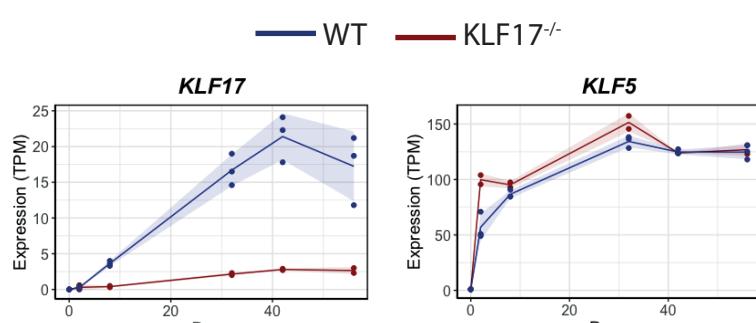

F.

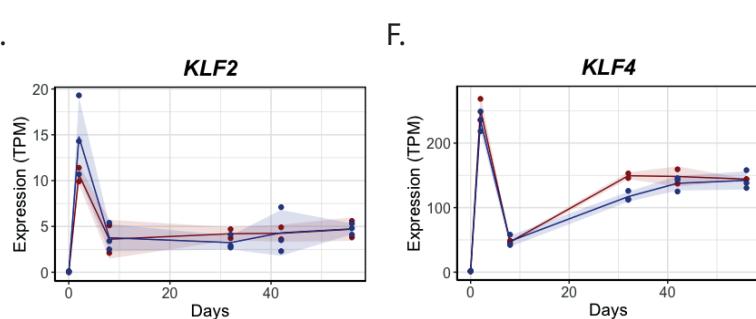

A.

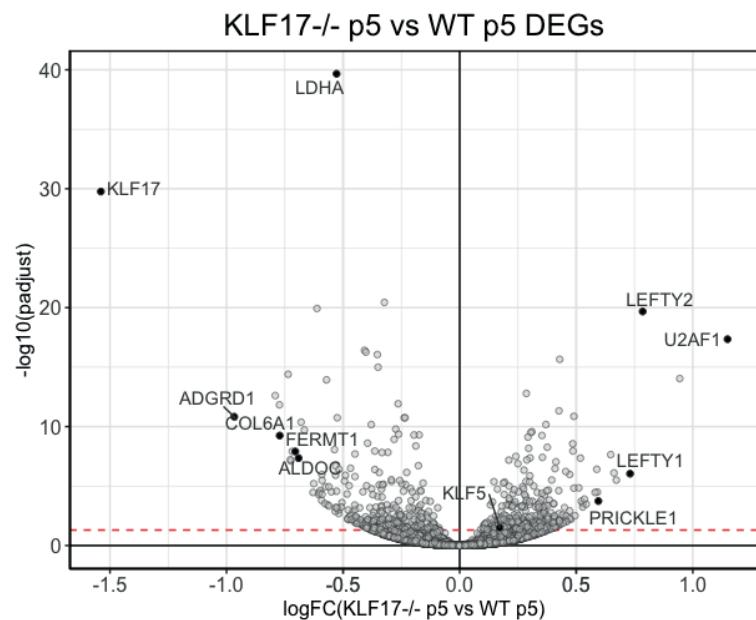





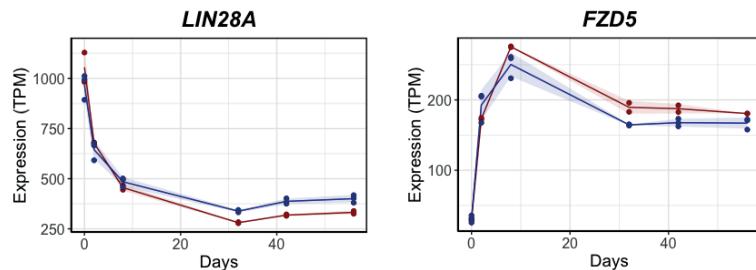

B.

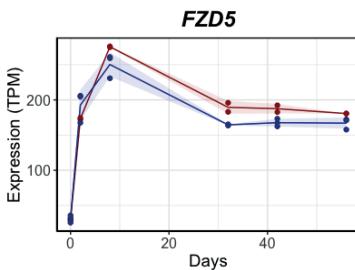

C.

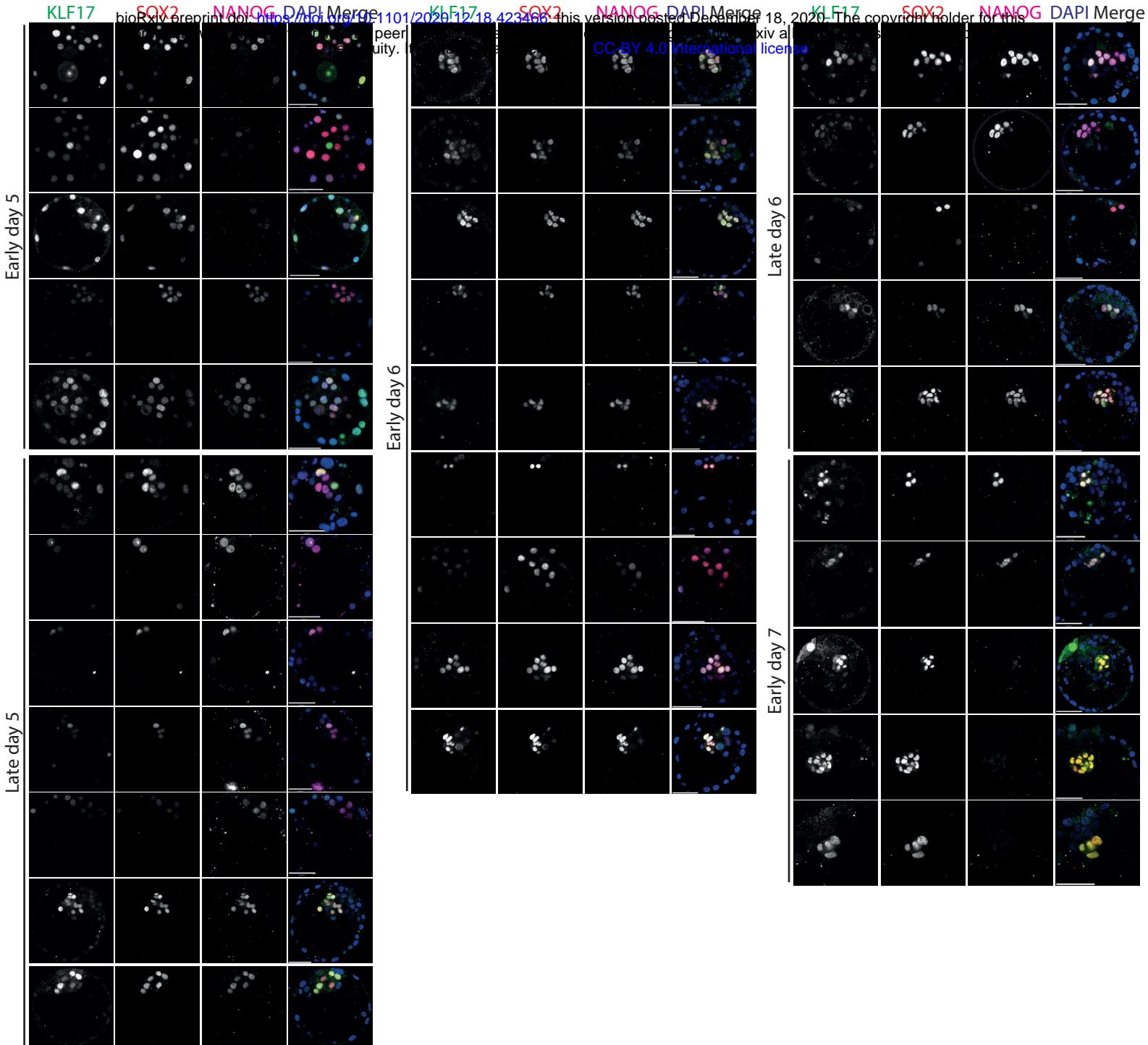


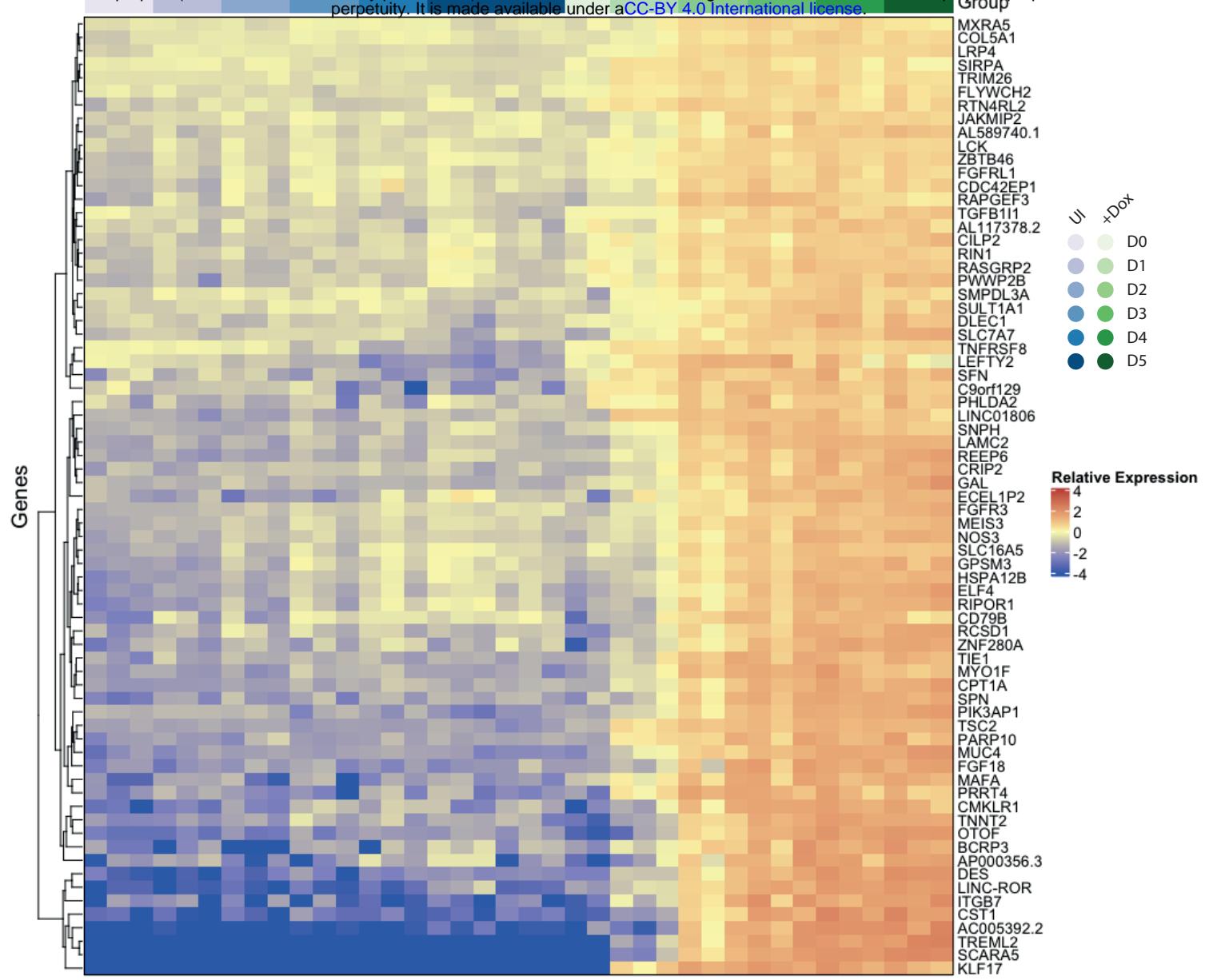

B.


C.

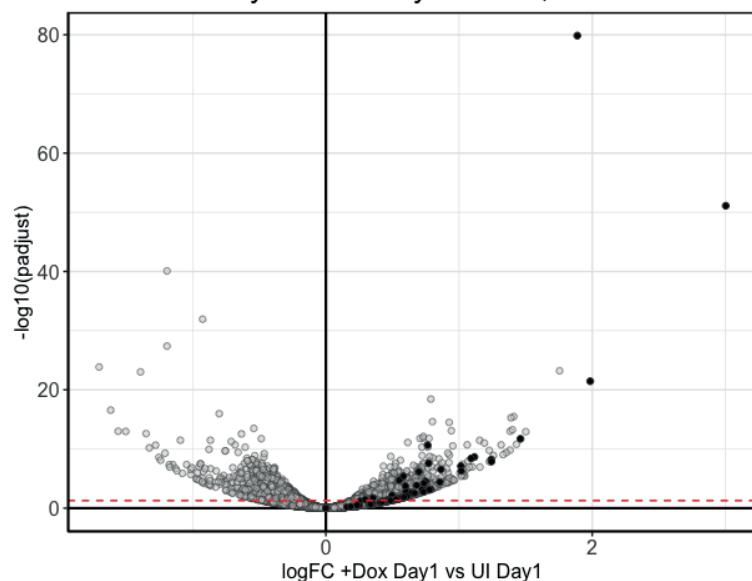

D.

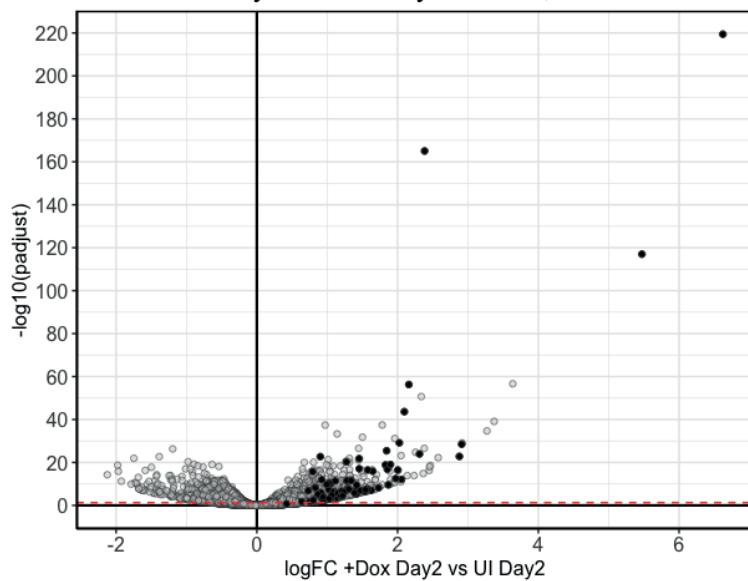

G.

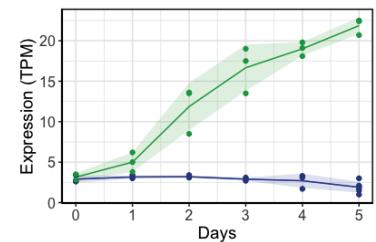
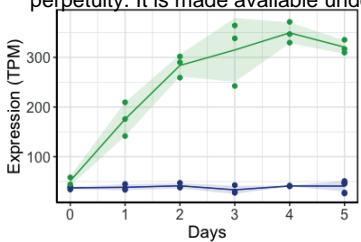
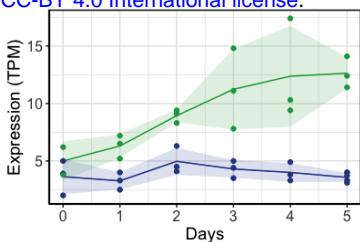


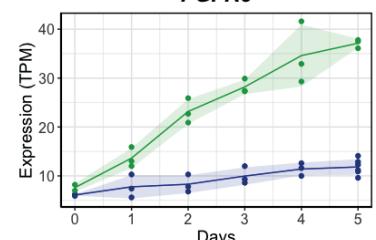
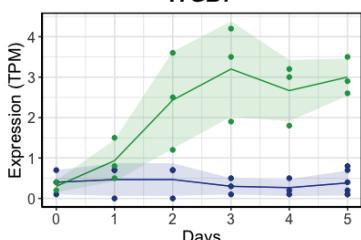
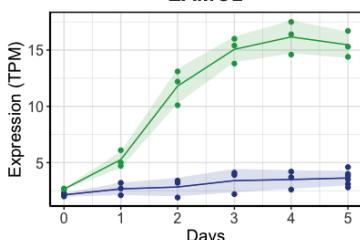
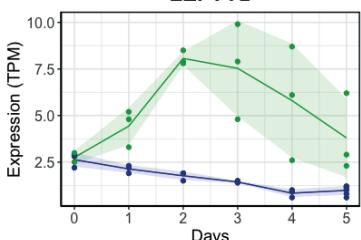

H.

I.

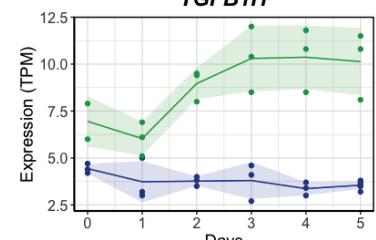
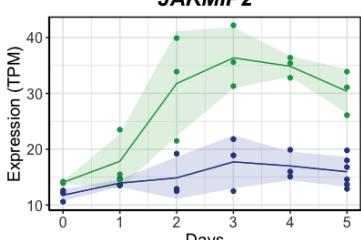



B.

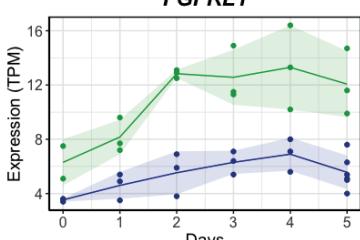
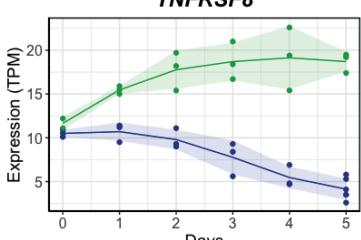



+Dox Day 1 vs UI Day 1 DEGs, Corr>0.85





C.

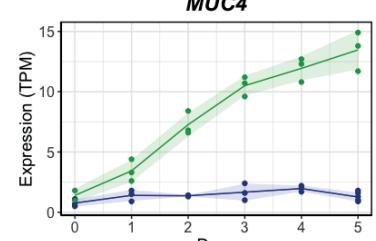
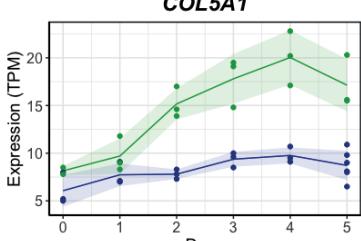
+Dox Day 2 vs UI Day 2 DEGs, Corr>0.85

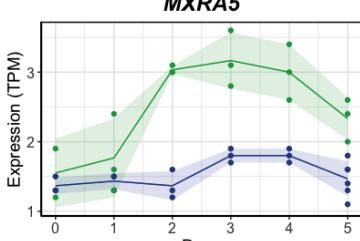
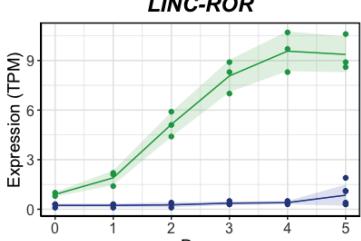
*PIK3AP1**SC2**FGF18*



E.

*FGFR3**ITGB7**LAMC2**LEFTY2*



I.

*TGFB1I1**JAKMIP2*

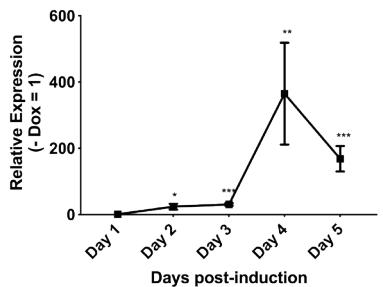
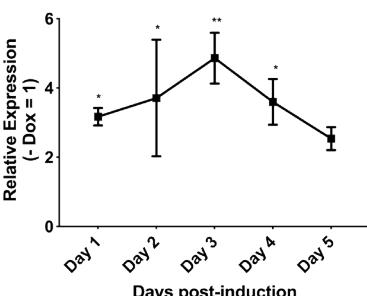
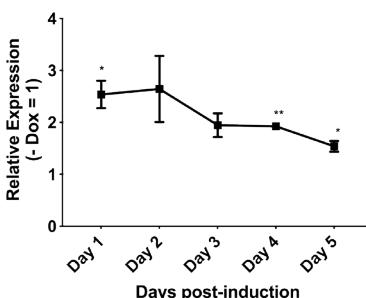
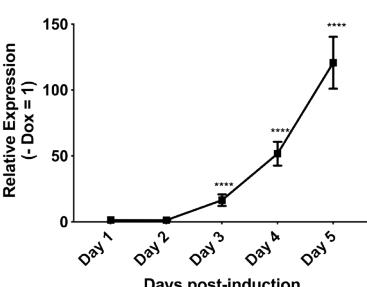
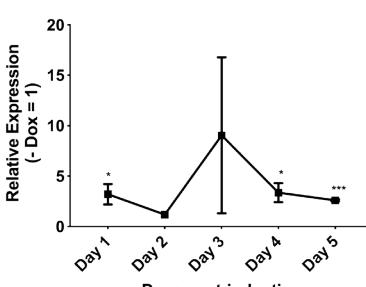


K.

*FGFRL1**TNFRSF8*

M.

*MUC4**COL5A1*

O.

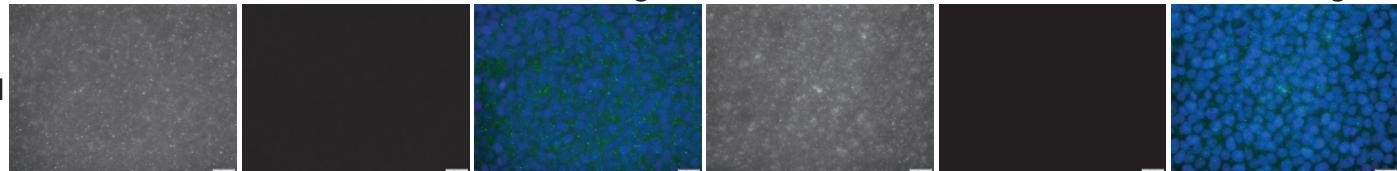





*MXRA5**LINC-ROR*

Q.

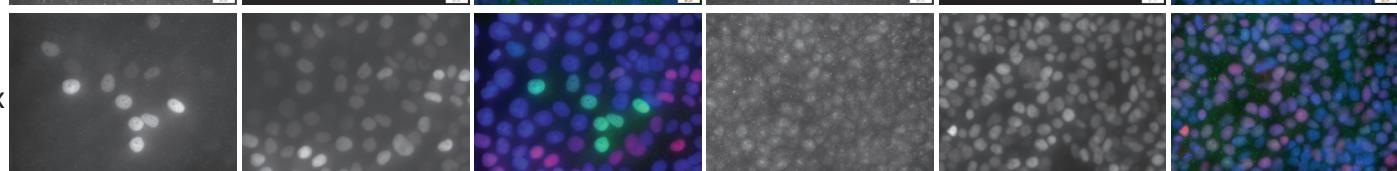
Day 5

Dox - + - + - + - +

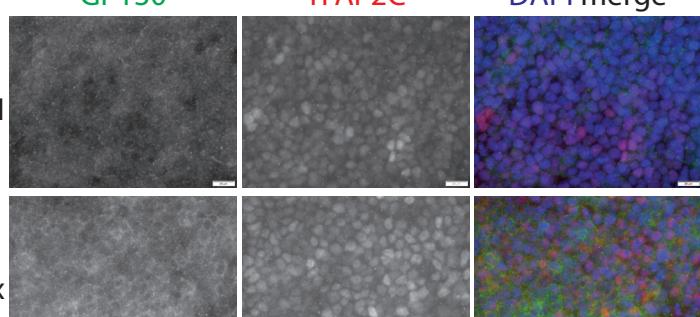
KLF17

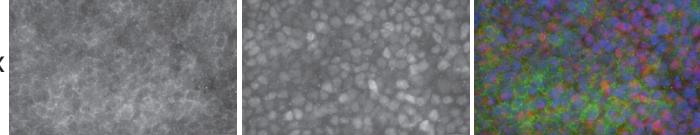

*DNMT3L**VENTX**TFAP2C**ARGFX**REX1**DPPA5**DNMT3L**KLF17*

DAPI merge

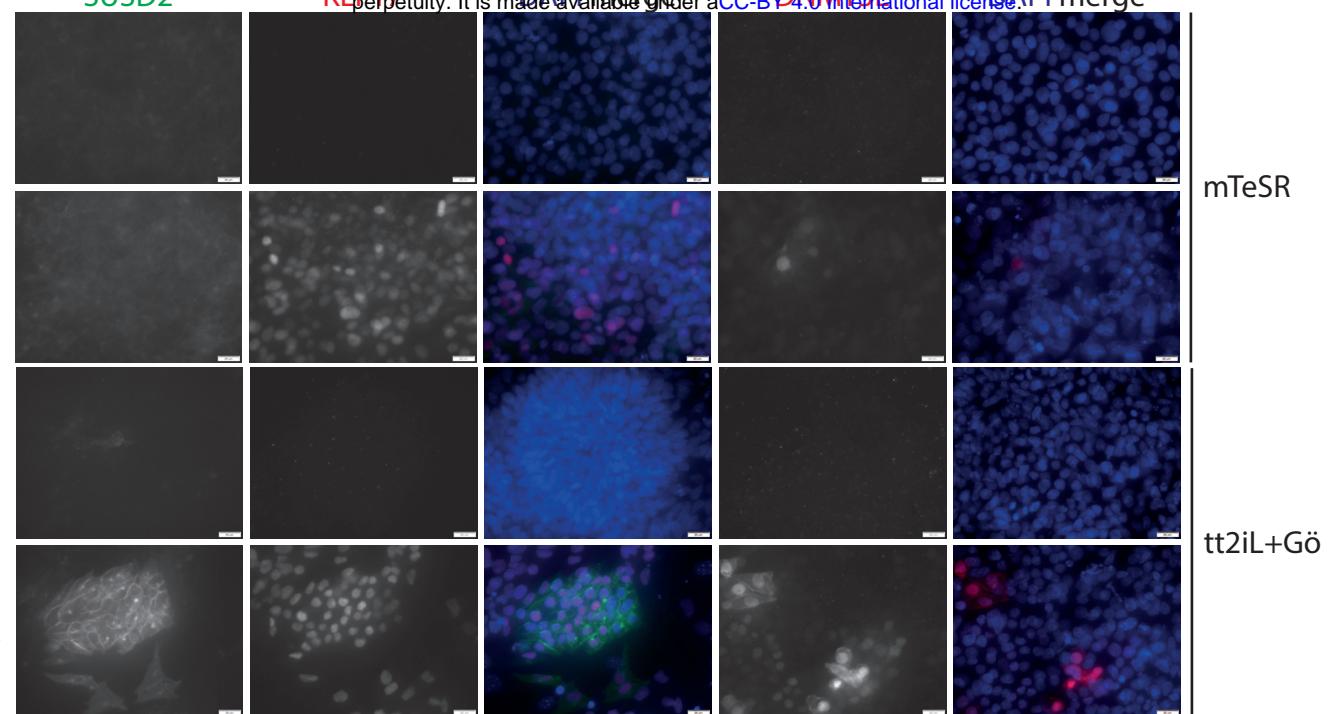

*VENTX**HA*

DAPI merge

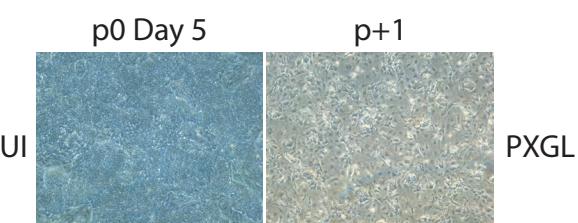

UI


+Dox

UI



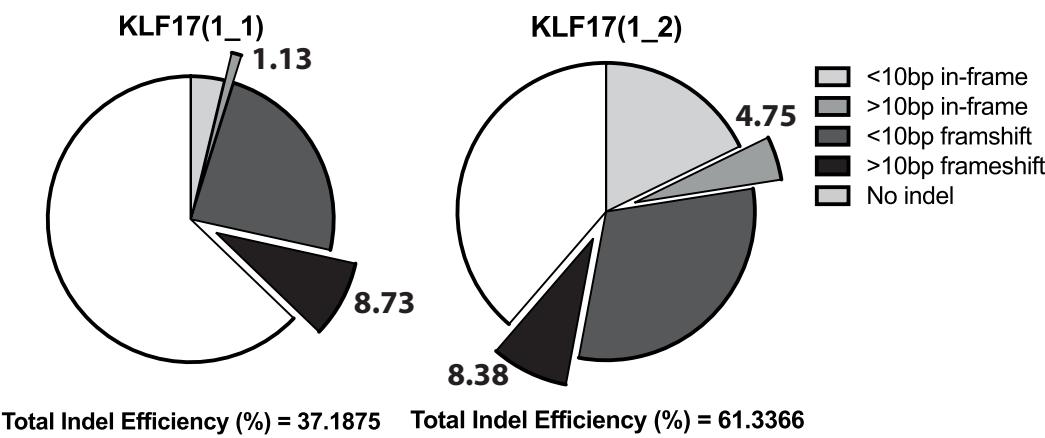
+Dox



A.

bioRxiv preprint doi: <https://doi.org/10.1101/2020.12.18.423466>; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B.

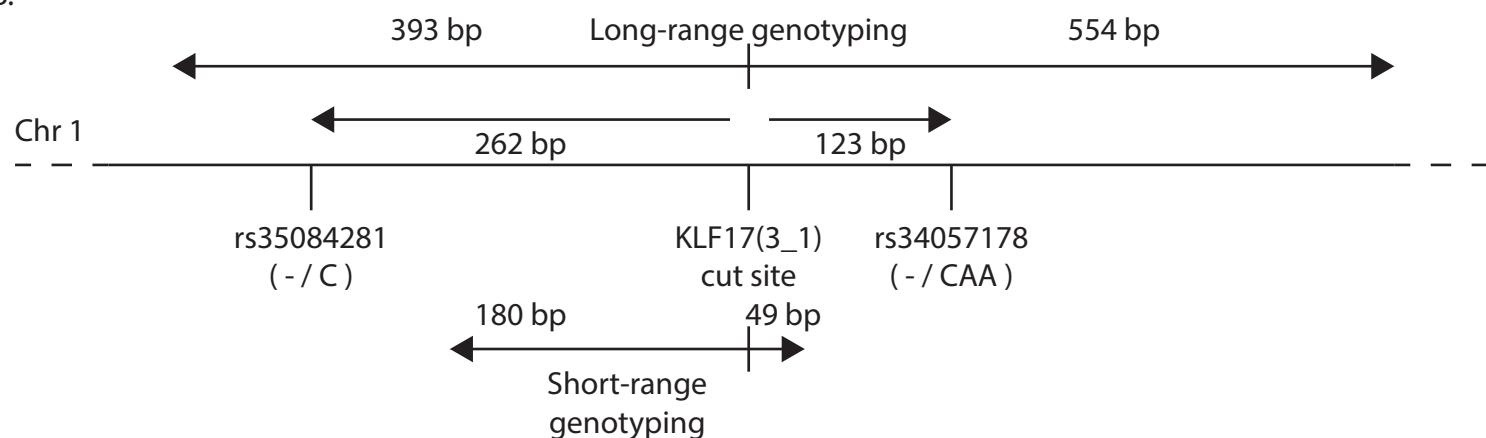

gRNA

Direction

Sequence

gRNA	Direction	Sequence
KLF17(1_1)	Minus	5'-GCCGTACATGAAGACTGGGT-3'
KLF17(1_2)	Minus	5'-GGTCGGCCGTACATGAAGAC-3'
KLF17(2_1)	Minus	5'-TGCCTGGTGGCTACGAGG-3'
KLF17(3_1)	Plus	5'-TGAGCTTAGACGACATATGC-3'
KLF17(3_2)	Plus	5'-ATGAGCTTAGACGACATATG-3'
KLF17(3_3)	Plus	5'-GAGGCCATATTCTTGCAACT-3'

B.

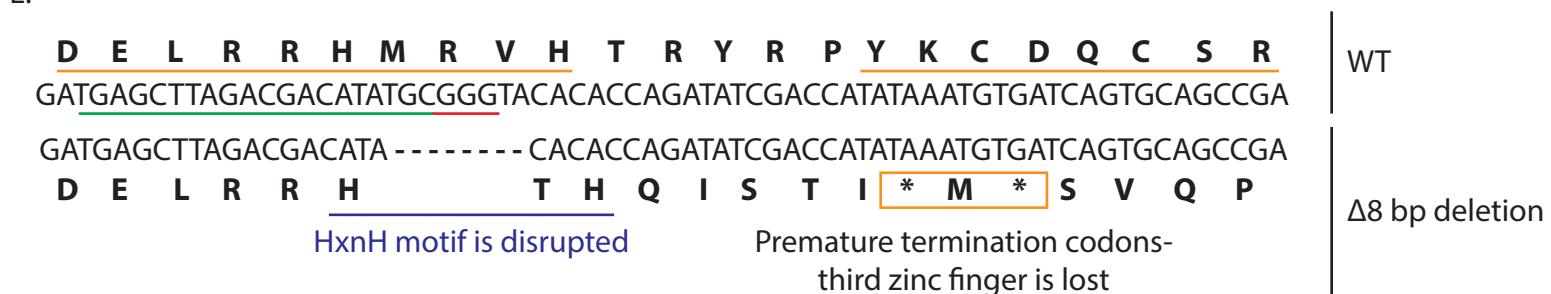


bioRxiv preprint doi: <https://doi.org/10.1101/2020.12.18.423466>; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

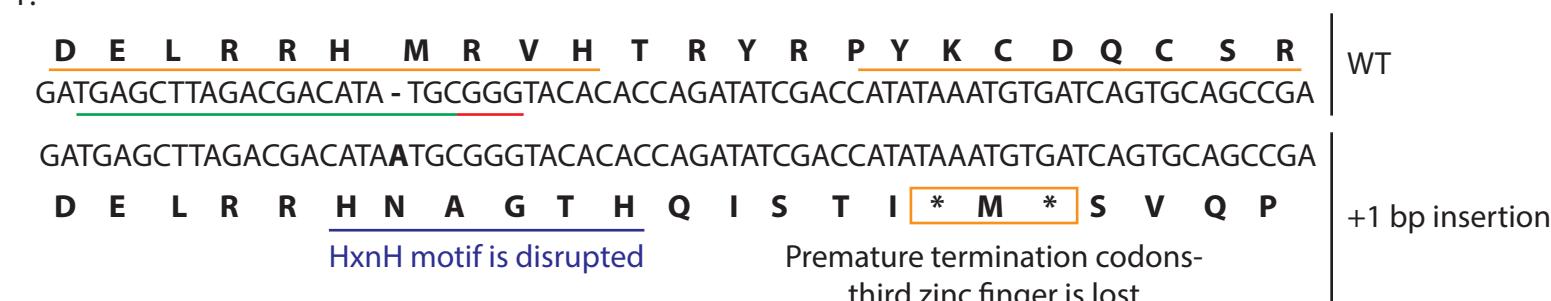
Clone #	1	4	7	8	9	10	11	15	18	19	21
Short-range genotype	Δ8	Δ16/Δ21	WT	Δ2	Δ9	Δ8	Δ8	WT	+1/Δ8	+1/Δ8	WT
Long-range genotype	Δ8/?	Δ16/Δ21	WT	Δ2/?	Δ9/Δ163	Δ8/?	Δ8/?	WT	+1/Δ8	+1/Δ8	WT

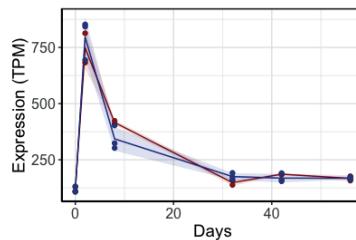
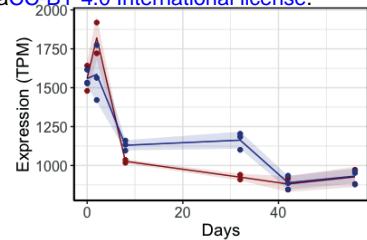
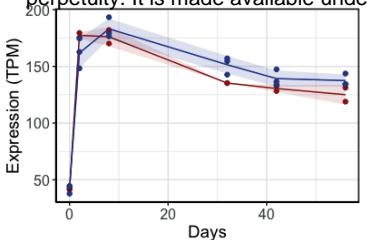
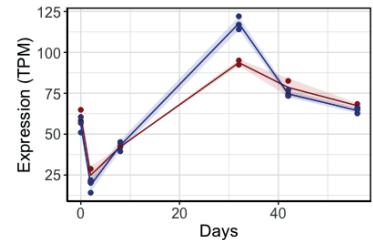
KLF17-null mutants

B.

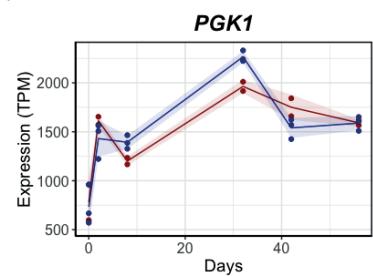

C.

Cell Line	Parental H9	#7	#1	#8	#9	#10	#11
C / CAA	53.85%	37.5%	0%	0%	29.17%	0%	0%
	- / -	46.15%	62.5%	100%	100%	70.83%	100%

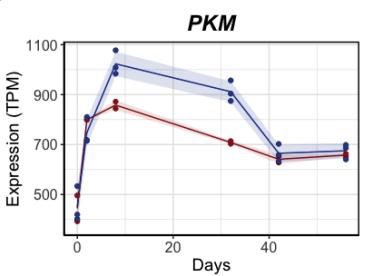

D.

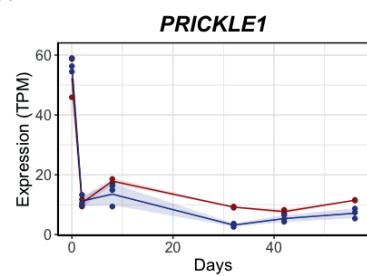





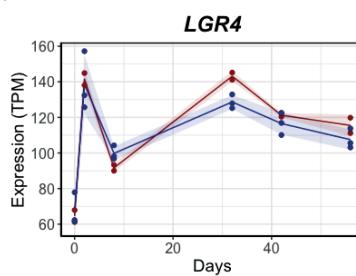
E.



F.




E.


F.

G.

H.

— WT — KLF17^{-/-}