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Abstract

Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets Cyclin B1 for degradation
is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20
through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by
Cyclin B1-Cdkl1 independently inhibits APC/C-Cdc20 activation. This creates a conundrum
for how Cdc20 gets activated prior to Cyclin B1 degradation. Here we show that the MCC
component BubR 1 harbours both Cdc20 inhibition and activation activities, allowing for cross-
talk between the two Cdc20 inhibition pathways. Specifically BubR1 acts as a substrate
specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant
Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest arguing that
restricting Cdc20 dephosphorylation to the MCC is important. Collectively our work reveals
how Cdc20 can be dephosphorylated in the presence of Cyclin B1-Cdkl activity without

causing premature anaphase onset.
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Introduction

Proper progression through mitosis depends on tight regulation of the Cdc20 protein, which is
an activator of the Anaphase Promoting Complex/Cyclosome (APC/C), a large E3 ubiquitin
ligase (Alfieri et al., 2017; Barford, 2020). The APC/C-Cdc20 complex targets several proteins
for proteasomal degradation, including Cyclin B1 and Securin, which initiates anaphase by
lowering Cdk1 kinase activity and release of centromere cohesion, respectively (Pines, 2011).
Cdc20 activity is regulated by the spindle assembly checkpoint (SAC), which in response to
unattached kinetochores delays anaphase onset by sequestering Cdc20 in the mitotic
checkpoint complex (MCC)(Lara-Gonzalez et al., 2012; Musacchio, 2011; Varetti and
Musacchio, 2008). The MCC is composed of Mad2-Cdc20-BubR1-Bub3, where Cdc20 is
tightly bound and critical surface areas responsible for APC/C activation are blocked (Chao et
al., 2012; Di Fiore et al., 2015; Di Fiore et al., 2016; Herzog et al., 2009; Sudakin et al., 2001).
The kinetochore generated MCC complex binds stably to the APC/C-Cdc20 complex to
generate an APC/C-MCC complex containing two Cdc20 molecules (Alfieri et al., 2016; Hein
and Nilsson, 2014; Izawa and Pines, 2015; Primorac and Musacchio, 2013; Yamaguchi et al.,
2016).

In addition to SAC regulation of Cdc20, we and others have shown that Cyclin B1-Cdk1 can
phosphorylate a number of Thr-Pro (TP) sites in the N-terminal region of Cdc20 to block its
activity (Hein et al., 2017; Hein and Nilsson, 2016; Labit et al., 2012; Yudkovsky et al., 2000).
These phosphorylation sites cluster around the C-box of Cdc20, a motif that binds and activates
the APC/C (Chang et al., 2014; Kimata et al., 2008). For activation of Cdc20, the TP sites must
be dephosphorylated (Labit et al., 2012). We previously showed that the PP2A-B55
phosphatase is able to do so in vitro and in human cells (Hein et al., 2017). PP2A-B55 is a
Ser/Thr phosphatase which is specifically activated at the metaphase-anaphase transition to

dephosphorylate thousands of Cdk1 targets hereby driving the anaphase transition (Cundell et
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al., 2016; Godfrey et al., 2017; Holder et al., 2019; Kruse et al., 2020; McCloy et al., 2015;
Nilsson, 2019). PP2A-B55 activity is regulated by the Cdk1-MASTL-ARPP19 pathway in
which Cdk1 activates the MASTL kinase that then phosphorylates ARPP19/ENSA proteins
which bind and inactivate PP2A-B55 (Gharbi-Ayachi et al., 2010; Mochida et al., 2010;
Vigneron et al., 2009). The activation of PP2A-B5S5 is initiated by a decrease of Cdk1 activity
which activates PP1 to initiate dephosphorylation and inactivation of the MASTL kinase (Heim
et al., 2015; Ma et al., 2016; Rogers et al., 2016).

This generates a conundrum because Cdc20 needs to be dephosphorylated before PP2A-B55
can become active. One solution to this problem could be that another protein phosphatase
activates Cdc20 prior to PP2A-B55, but this would potentially lead to premature activation of
Cdc20 and deregulation of cell division. Here we provide a solution by showing that both
PP2A-B55 and PP2A-B56 are phosphatases for Cdc20. PP2A-B56 is active in prometaphase
and through binding to BubR1, it selectively dephosphorylates Cdc20 within the MCC thereby

priming the inhibited pool of Cdc20 for APC/C activation prior to PP2A-BS55 activation.
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Results and discussion

A screen for PP2A-B56 mitotic substrates identifies Cdc20

We recently developed a method to identify substrates of specific protein phosphatases during
mitosis (Fig. 1A)(Kruse et al., 2020). Briefly, nocodazole arrested cells are harvested and lysed
in the presence of a specific inhibitor of a protein phosphatase. As ATP is rapidly depleted this
inactivates kinases while protein phosphatases are still active unless an inhibitor is present. The
lysis reaction is then incubated at 30 degrees for 5 minutes and the reaction is stopped. Proteins
are precipitated, digested with trypsin followed by phosphopeptide enrichment and analysis by
LC-MS/MS. For specific inhibition of PP2A-B56, we employed a high affinity LxxIXE motif
containing peptide that prevents the phosphatase from binding to all its substrates (Hertz et al.,
2016; Kruse et al., 2018; Kruse et al., 2020). As a control, we used an AxxAXE peptide that
does not bind the phosphatase. This screen identified 54 phosphorylation sites that significantly
increased (log2 ratio LxxIXE/AxxAXE > 0.7, p-value <0.05) in lysates treated with LxxIxE
peptide versus AxxAXE peptide (Fig 1B-C, Supplemental Table 1). Several of the regulated
sites were in proteins already known to be PP2A-B56 substrates that contain validated LxxIxE
motifs (Fig. 1D). As an example, Kif4A T799 and ADAM17 T735 are known targets of PP2A-
B56 and these two proteins contain validated LxxIXE motifs (Bastos et al., 2014; Kruse et al.,
2020; Wang et al., 2020). Furthermore, RacGAP1 S203, BubR1 T508 and ESPL1 S1475 are
close to validated LxxIXE motifs supporting the strength of the screening approach. In addition,
we identified PP2A-B56 regulated phosphorylation sites in proteins containing
bioinformatically predicted LxxIXE motifs as well as proteins with no motifs (Fig. 1E). One
phosphorylation site that caught our attention was Cdc20 T70, which is a Cdk1 phosphorylation
site known to block Cdc20 activation of the APC/C. We have previously found this
phosphorylation site to be a substrate of PP2A-B55 so we decided to investigate the role of

PP2A-B56 in regulating this site in more detail.
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Two distinct mitotic PP2A complexes can dephosphorylate Cdc20

We first confirmed that PP2A-B56 can regulate Cdc20 T70 phosphorylation in cells. We
depleted all B56 regulatory subunits,arrested cells in nocodazole, immunopurified Cdc20 and
analysed T70 phosphorylation levels by quantitative western blotting (LiCor) (Fig. 2A).
Indeed, we observed increased levels of Cdc20 T70 in nocodazole arrested cells when B56
subunits were depleted. The level of co-purifying APC3 and its phosphorylation on T447, a
Cdk1 site, was not affected by B56 depletion. We then treated cells with the Cdk1 inhibitor
RO3306 to determine if PP2A-B56 was required for Cdc20 T70 dephosphorylation when cells
exit mitosis. However, we observed efficient dephosphorylation in the absence of PP2A-B56
arguing that other protein phosphatases can dephosphorylate Cdc20 T70 (Fig. 2A).

To investigate this, we turned to the lysate system, where we can add specific phosphatase
inhibitors for a short time avoiding indirect effects from long-term perturbation by siRNA
depletion. We analysed Cdc20 T70 phosphorylation and compared this to APC3 T447
phosphorylation in the presence of specific phosphatase inhibitors. We used
thiophosphorylated Arpp19 to inhibit PP2A-B55, Nippl to inhibit PP1 (Winkler et al., 2015)
and the LxxIXE peptide to inhibit PP2A-B56. This experiment revealed that both Arpp19 and
LxxIXE but not the corresponding controls delayed Cdc20 T70 dephosphorylation (Fig. 2B).
In contrast, APC3 T447 dephosphorylation was only inhibited by Arpp19 (Fig. 2C). Strikingly
addition of both Arppl9 and LxxIXE peptide was required to strongly block Cdc20 T70
dephosphorylation. This shows that both PP2A-B55 and PP2A-B56 are able to
dephosphorylate Cdc20 T70, explaining how Cdc20 gets dephosphorylated in cells depleted of
PP2A-B56 upon addition of a Cdk1 inhibitor.

The results show that two distinct PP2A complexes can dephosphorylate Cdc20 with PP2A-

B56 likely acting during prometaphase and PP2A-BS55 during anaphase.
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BubR1 acts as a substrate specifier for PP2A-B56 to dephosphorylate Cdc20

Our data argue that Cdc20 T70 dephosphorylation is dependent on PP2A-B56 binding to an
LxxIxE motif. This is consistent with the in vitro dephosphorylation data we recently published
where we showed that Cdc20 inhibitory Cdk1 phosphorylation’s can be dephosphorylated by
PP2A-B56 when an LxxIXE motif is fused to Cdc20 (Kruse et al., 2020). Although PP2A-B56
works inefficiently on Cdkl sites, the presence of LxxIXE motifs can overcome this
inefficiency by positioning the phosphatase in the proximity of the Cdk1 sites.

To establish the relevant LxxIxE motif for PP2A-B56 mediated Cdc20 dephosphorylation in
cells, we focused on proteins known to bind Cdc20. BubR 1 contains a functional LxxIxE motif
(L669-E674) and through its N-terminus, BubR1 binds tightly to the C-terminal WD40 domain
of Cdc20. We therefore investigated if PP2A-B56 bound to BubR1 could be responsible for
Cdc20 T70 dephosphorylation. We used stable HeLa cell lines expressing siRNA resistant
Venus tagged BubR1 WT and L669A/1672A (BubR1 2A) and immunopurified Cdc20 from
these (Kruse et al., 2013). The parental cell line or the cell lines expressing exogenous
BubR 1were treated with BubR1 RNAi and arrested in mitosis using nocodazole (note that there
is some slippage from the mitotic arrest in the samples expressing exogenous BubR1). The
level of Cdc20 T70 and APC3 T447 phosphorylation was then determined by quantitative
immunoblotting (Fig. 3A). In the purifications from Venus BubR1 2A expressing cells, we
observed a specific increase in Cdc20 T70 levels while APC3 T447 levels were similar to
BubR1 WT. This experiment shows that binding of PP2A-B56 to BubR1 is important for
Cdc20 dephosphorylation.

The results raised the possibility that Cdc20 as part of the MCC would be specifically
dephosphorylated by PP2A-B56. To test this model, we immunopurified different Cdc20 pools

from nocodazole arrested cells (Fig. 3B). We purified total Cdc20 using two different
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antibodies (reflecting free Cdc20 + MCC bound Cdc20) as well as Cdc20 associated with
BubR1 and APC/C (reflecting MCC and APC/C-MCC complexes). Compared to total Cdc20,
we observed less Cdc20 T70 phosphorylation in BubR1 and APC4 purifications in line with
our results on Venus BubR1 2A. The degree of APC3 T447 phosphorylation was similar in all
samples arguing for a specific effect on Cdc20.

Collectively these results show that BubR1 bound PP2A-B56 can dephosphorylate Cdc20
T70. This selective dephosphorylation leads to lower Cdc20 T70 phosphorylation in MCC and

APC/C-MCC complexes.

Cdk1 phosphorylation of Cdc20 is required for a prolonged mitotic arrest.

Our results support a model in which Cdc20 is selectively dephosphorylated as part of MCC
complexes. This raised the question of whether dephosphorylation of Cdc20 not inhibited by
the MCC would result in premature activation of APC/C-Cdc20. To investigate this, we
analysed the effect of expressing a variant of Cdc20 (Cdc20 3AA —T70, T59 and T55 mutated
to AA) that cannot be phosphorylated by Cdk1 on a nocodazole induced mitotic arrest (Hein
et al., 2017). Cells stably expressing YFP-tagged or untagged Cdc20 variants and depleted of
endogenous Cdc20 were followed by time-lapse microscopy and escape from the arrest
recorded (Fig. 4A-B, Supplemental Fig.1). Strikingly a large fraction of Cdc20 AA expressing
cells escaped the mitotic arrest while Cdc20 WT and Cdc20 3DD stayed arrested. We further
analysed the effect of Cdk1 phosphorylation of Cdc20 using mutants of Cdc20 that cannot form
the MCC (Cdc20 R132A and 4A)(Lischetti et al., 2014). With both these Cdc20 mutants, we
observed a faster exit when Cdk1 phosphorylation was prevented (Fig. 4C-D). This argues that
Cdk1 phosphorylation of Cdc20 contributes to maintaining a mitotic arrest independently of

the SAC.
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In summary, our work explains how Cdc20 can be dephosphorylated even in the presence of
high levels of Cyclin B1-Cdk1. By coupling Cdc20 dephosphorylation to an MCC component,
this ensures that dephosphorylated Cdc20 is kept inactive but ready to activate the APC/C once
the SAC is satisfied. Our data also suggests that Cdc20 phosphorylation prevents unscheduled
activation during a mitotic arrest possibly by inactivating Cdc20 not bound to MCC
components. Recent work from the Yamano lab using X. /aevis embryonic extracts identified
PP2A-B56 as a Cdc20 phosphatase consistent with our work (Fujimitsu and Yamano, 2020).
Their work showed that an LxxIXE motif in APC1 binds to PP2A-B56 to mediate efficient
Cdc20 binding, although the level of Cdc20 phosphorylation was not analysed. We have not
explored this motif, but since the X. laevis extract lacks a functional SAC, BubR1 cannot act
as a substrate specifier for PP2A-B56 in this system. We note that APC1 mutants that cannot
bind PP2A-B56 progress with almost wild type kinetics into anaphase which suggests that
another phosphatase can activate Cdc20. Based on our results, we favour that this is PP2A-
B55. A recent study also implicated PP1 in Cdc20 T70 dephosphorylation in human cells in
line with work from C. elegans showing PP1 as a Cdc20 phosphatase (Bancroft et al., 2020;
Kim et al., 2017). The results from human somatic cells could be an indirect effect of PP1
inhibition leading to delayed PP2A-B55 activation. In our lysate experiment, we see no effect
on Cdc20 T70 phosphorylation upon PP1 inhibition by Nipp1. In agreement with this, depletion
of PPlalpha/gamma showed limited effect on Cdc20 T70 dephosphorylation in cells (Bancroft
et al., 2020). However, further work is needed to clarify if PP1 can dephosphorylate Cdc20 in
cells.

We favour that in the absence of PP2A-B56 mitotic exit through Cdc20 dephosphorylation is
possible and can be driven by PP2A-B55. This redundancy in Cdc20 phosphatases can explain
the limited effect on a forced mitotic exit in cells expressing BubR1 unable to bind PP2A-B56

(Espert et al., 2014; Nijenhuis et al., 2014). However, in unperturbed conditions Cdc20


https://doi.org/10.1101/2020.12.18.423461
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423461,; this version posted December 19, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

dephosphorylation by BubR1-PP2A-B56 is likely required for efficient onset of anaphase
allowing a drop in Cyclin B1 levels and thus PP2A-B55 activation. This activation of PP2A-
B55 would then further activate APC/C-Cdc20 to ensure a rapid metaphase-anaphase
transition.

Collectively our work provides important insight into the regulation of Cdc20 and reveals that

BubR1 integrates both inhibitory and activating activities.
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Figure legends

Figure 1. A screen for mitotic PP2A-B56 substrates identifies Cdc20

A) A schematic of the approach used to identify PP2A-B56 substrates in nocodazole arrested
cells. B) Summary of the screen results categorising sites based on the presence of validated or
predicted LxxIxE motifs C) Log2 ratio of regulated phosphorylation sites versus p-value. Sites
in proteins with validated LxxIxE motifs indicated with protein names as well as Cdc20 T70.
D-E) Examples of identified sites in the screen and whether they contain validated, predicted

or no LxxIXE motifs.

Figure 2. PP2A-B56 and PP2A-BSS are phosphatases for Cdc20 T70

A) Cells treated with a control RNAi oligo or a pool of B56 RNAI oligoes targeting all isoforms
were arrested in nocodazole and Cdc20 immunopurified. Samples were analysed by western
blot for Cdc20 T70p and APC3 T447p as well as APC3 and BubR 1. The degree of Cdc20 T70p
and APC3 T447p was determined by normalising to pan Cdc20 or pan APC3 signals. B-C) A
nocodazole lysate was prepared and treated with the indicated phosphatase inhibitors (see also
Fig.1A) for 5 minutes or 15 minutes as indicated. Cdc20 or APC4 was immunopurified and the
level of Cdc20 T70p and APC3 T447p determined. For all experiments 3 independent

experiments where conducted and quantified.

Figure 3. Cdc20 T70 is dephosphorylated by BubR1 bound PP2A-B56

A) Schematic indicating Cdc20 and PP2A-B56 binding to BubR 1. The mutations in BubR1 2A
is indicated. B) Stable cell lines expressing Venus-BubR1 WT or 2A were depleted of BubR1
by RNAI and arrested in mitosis with nocodazole. Cdc20 was immunopurified from the cells
and the degree of Cdc20 T70p and APC3 T447p determined. The samples were compared to

similar samples from the parental cells not treated with BubR1 RNAi. B) Cdc20, BubR1 and
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APC4 were immunopurified from nocodazole arrested cells and the level of Cdc20 T70p and
APC3 T447p determined. For Cdc20 two different antibodies were used. For all experiments

at least 3 independent experiments where conducted and quantified.

Figure 4. Cdkl phoshorylation of Cdc20 is required for an efficient mitotic arrest in
response to microtubule poisons

A) Live cell imaging of Hela cells depleted of endogenous Cdc20 and transiently expressing
untagged Cdc20 WT, 3DD or 3AA in the presence of nocadazole (30 ng/ml). Percent of cells
that exit mitosis during the course of imaging from three independent experiments (mean and
SD indicated). B) As in A) Time from NEBD to mitotic exit or end of filming from three
independent experiments (each dot represents a single cell, red line indicates mean and SD, n
values are shown in the graph and represent single cells analysed per condition). C) Live cell
imaging of stable cell lines that were depleted of endogenous Cdc20 and expressing indicated
YFP tagged Cdc20 proteins in the presence of nocodazole (30 ng/ml). The R132A mutation
prevents Mad2 binding while the 4A mutations prevent BubR1 binding. Time from NEBD to
mitotic exit (each dot represents a single cell, red line indicates mean and standard deviation,
n values are shown in the graph and represent single cells analysed per condition). D) Model:
MCC bound BubR1 is preferentially dephosphorylated by PP2A-B56, whereas free Cdc20 is

phosphorylated by Cdkl.

Supplementary Figure 1.

A) Representative images of live cell imaging of Hela cells depleted of endogenous Cdc20 and
complemented with indicated forms of YFP tagged Cdc20. B) Quantification of cells that exit
mitosis in the presence of nocodazole (30 ng/ml) during live cell imaging as in A). Percent of

cells from three independent experiments (mean and SD indicated). C) Hela cells depleted of
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endogenous Cdc20 and complemented with indicated forms of YFP-tagged Cdc20 in the
presence of nocodazole (30 ng/ml, when indicated). Time from NEBD to mitotic exit or end of
filming from three independent experiments (each dot represents a single cell, red line indicates

mean and standard deviation).
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Materials and methods

Cloning

As described previously in Hein et al 2017 (Hein et al., 2017) . In short, full length Cdc20 was
amplified by PCR and cloned into the BamHI and Notl sites of pcDNAS/FRT/TO 3*FLAG-
Venus. Synthetic DNA corresponding to the first 344 nucleotides of Cdc20 with T55, T59 and
T70 changed to either alanine (3AA) or aspartic acid (3DD) was ordered from GeneArt and
assembled by two step PCR and cloned into BamHI and Notl sites of pcDNAS/FRT/TO
3*FLAG-Venus. The Cdc20 sequence was made resistant to the Cdc20 RNAi oligo by
introducing silent mutations by quick change PCR. RNA!I resistant Cdc20 WT, 3AA and 3DD
was cloned into Xhol and BamH1 site of pIRES-AcGFP1 (Clonetech).

BubR1 WT and 2A are described in Kruset et al 2013 (Kruse et al., 2013). Cdc20 R132A and

4A described in Lischetti et al 2014(Lischetti et al., 2014).

Antibodies.

The following antibodies were used at the indicated dilutions for western blot. Cdc20 mouse
monoclonal (sc-13162, 1:1000, Santa Cruz, clone E7, indicated as #1), Cdc20 mouse
monoclonal (MAB3775, Millipore, clone AR12, indicated as #2), Cdc20 T70 phosphorylation
specific antibodies rabbit polyclonal (raised against peptides CSKVQT(Tp)PSKPG; Moravian
Biotechnology, reference 22). APC3 T447p rabbit polyclonal (raised against Peptides
CGKISTI(Tp)PQIQAF ; Moravian Biotechnology), Anti-phospho Histone H3 (Ser 10) rabbit
polyclonal (06-570, 1:1000, Millipore), APC4 mouse monoclonal (Moravian, 1:500, clone CIV
1.1), APC3 mouse monoclonal (Moravian, 1:500). Mad2 rabbit polyclonal (A300-300A,
1:500; Bethyl Laboratories), Bub3 mouse monoclonal (611731, 1:500; BD Biosciences),
BubR1 rabbit polyclonal (A300-995A, 1:1,000; Bethyl Laboratories), BubR1 mouse
monoclonal (raised against TPR domain, 1:500, Biotech Research and Innovation Center,

Copenhagen).
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RNAI and Plasmid transfection.

Endogenous proteins were depleted using RNAi max from Life Technologies according to
manufactures instructions. Cdc20 (5’-CGAAAUGACUAUUACCUGA-3’, Thermo Fischer
siRNA ID s2748), B56 (oligoes as described in Foley et al 2011(Foley et al., 2011) ) , BubR1
(5 GAUGGUGAAUUGUGGAAUAJTAT, Sigma). In more detail, for live cell imaging 50 ul
transfection mix with 1 pl siRNA Max and 0.25 ul siRNA oligo (stock concentration 10 umol)
in Optimem was added to 200 pl Optimem in 8 Well IBIDI dishes with cells at a confluency
of about 80 %. After 2 hours of treatment DMEM containing 20 % FBS was added until

medium was changed the next day.

Live cell imaging.

Cells grown on eight-well slides (Ibidi) were cultured in complete DMEM and subjected to a
double thymidine block. Cells were transfected with siRNA and plasmid between the two
thymidine blocks. Two hours after release from the second thymidine block (or before filming)
the medium was changed to L-15 medium (Life Technologies) supplemented with 10 % fetal
bovine serum (Hyclone) and nocodazole (30 ng/ml) when indicated. The slide was mounted
onto a Delta Vision Elite microscope (GE Healthcare) and cells were filmed for 16 to 24 hours
in 4 to 20 minutes intervals using a 40X, 1.35 NA, WD 0.10 objective. All data analysis was

performed using the softWoRx software (GE Healthcare).

Purification of Cdc20 and APC4
Cdc20 and APC/C complexes were purified from cells after a double thymidine treatment
protocol. HeLa or cells were seeded at 20 % confluency on day 1 treated with siRNA for 5

hours when indicated. After 14 to 18 hours in thymidine cells were released for 8 hours and
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when indicated transfected with plasmids. After a second 24-hour thymidine treatment cells
were released into nocodazole (200 ng/ml) and harvested by mitotic shake-off. When indicated
cells were treated with RO3306 (5 or 10 uM) to force mitotic exit and collected at indicated
times. Cells were lysed in lysis buffer (150 mM NaCl, 50 mM Tris-HCI pH 7.8, ImM DTT,
0.1 % NP40) supplemented with PhosStop and Complete Mini (Roche). Cdc20 or APC/C
complexes were immunoprecipitated using a mouse monoclonal Cdc20 (#1 or #2 as in antibody
section, #1 was used when not further specified) antibody or mouse monoclonal APC4
antibody cross-linked to Protein G-Sepharose 4B (Life Technologies) for 1 hour at 4° C.
Precipitated protein complexes were washed in lysis buffer. Precipitated protein complexes

were eluted with 4xL.SB (Life Technologies).

Quantitative Infrared Western

All cell lysates and immunoprecipatations were analyzed by Li-Cor quantitative infrared
western technology. Proteins were separated by SDS-PAGE and blotted onto Immobilion FL
membrane (Millipore). Membranes were incubated with indicated primary antibody and
subsequently with IRDye 800 or 680 secondary antibodies (Li-Cor). Membranes were
scannend using the Odyssey Sa imaging system (Li-Cor) and quantification was carried out

using the Odyssey Sa Application software (Li-Cor).

Expression and purification of proteins

Proteins were produced as described previously in Hein et al 2017 (Hein et al., 2017). In short,
full length Arppl19 and derivatives thereof, were cloned into pGEX-4T-1 to generate N-
terminally GST-tagged fusion proteins. Constructs were transformed into BL21 (DE3) cells

and expression was induced by addition of 0.5 mM IPTG at 37°C for 3 hours. Expression for

GST-Arpp19 was induced by addition of 0.5 mM IPTG overnight at 18°C. Bacterial pellets
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were resuspended in ice cold lysis buffer (50 mM Tris-HCI pH 7.4, 300 mM NaCl, 10%
glycerol, 5 mM B-mercaptoethanol, I mM PMSF, and complete EDTA-free Protease Inhibitor
Cocktail tablets (Roche)) and lysed in an EmulsiFlex-C3 High Pressure Homogenizer
(Avestin). Lysates were cleared at 26,200 g for 30 min at 4°C and supernatants incubated with
pre-washed Glutathione Sepharose 4 Fast Flow beads (GE Healthcare) for 90 min at 4°C with
mixing. Beads were washed 6 times in ice cold lysis buffer, and GST-fusion proteins eluted at
22°C for 30 min, 1250 rpm in elution buffer (50 mM Tris pH 8.8, 300 mM NacCl, 10% glycerol,
5 mM B-mercaptoethanol, 20 mM reduced glutathione). Eluates were further purified by
gelfiltration on a Superdex 75 10/300 GL column. . For expression of MASTL ten 15 cm
dishes, seeded with 1x107cells per dish, were transfected with 15 pg FLAG-MASTL plasmid.
Cells were collected 2 days after the transfection and FLAG-MASTL was purified by lysing
cells in buffer L (350 mM NacCl, 50 mM Tris pH 8.0, 0.05% NP40). Following centrifugation
the lysate was incubated with 400 pl anti-FLAG beads (Sigma). The beads were washed with
buffer L and FLAG-MASTL was eluted with buffer L containing 200 ng/ul FLAG peptide by
incubating for 20 minutes at room temperature. 10 % Glycerol was added and FLAG-MASTL

was snap-freezed and stored at -80 °C.

Phosphorylation of GST-Arpp19 with MASTL

Thiophosphorylated GST-Arpp19 was generated as described previously (Hein et al., 2017).
In short, purified GST, GST-Arppl9* or GST-Arpp1956?4 was incubated with purified
3xFLAG-MASTL kinase in protein kinase buffer (50 mM Tris-Hel pH 7.5, 10 mM MgCl2, 0.1

mM EDTA, 2 mM DTT, 0.01% Brij 35) with 500 uM ATP and 1 uCi [y-32P] ATP at 30°C for

30 min, or with 500 uM ATPLIS at 30°C for 60 min for pull-down experiments.

Cell lysate Phosphatase Inhibition Assay
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The phosphatase inhibition assay was performed as described previously (Hein et al., 2017).
In short, HeLa cells were synchronized in mitosis with nocodazole (200 ng/ml) after double
thymidine block. Cells were collected and washed with PBS. Lysis buffer (150 mmol NaCl, 25
mmol Tris, 0.1 % NP40, Complete Protease Inhibitor) containing 1 mmol okadaic acid, 10 ug
GST-Arpp19 or Nippl was added and immediately transferred to thermomixer for indicated
times at 600 rpm and 30 C. Ice cold lysis buffer containing 2x PhosStop inhibitor tablets was
added to stop the reaction. Lysis was cleared at 20000g for 15 min at 4 C and Cdc20 or APC4
was immune precipitated and samples analyzed by western-blot using the indicated antibodies.
For mass spectrometry analysis the lysates were flash frozen in liquid nitrogen after

centrifugation.

Quantitative TMT phosphoproteomics analysis

LxxIxE and AxxAxA peptide treated cell lysates were snap-frozen and proteins were
acetone precipitated (Kruse et al., 2020). The precipitated proteins were digested overnight
with trypsin (1:100 w/w) at 37°C. Digests were desalted using Cig solid-phase extraction
cartridges (ThermoFischer Scientific) and dried by vacuum centrifugation. Phospho-
peptides were enriched in these samples using High-Select™ Fe-NTA Phosphopeptide
Enrichment Kit according to manufacturer’s protocol (ThermoFisher Scientific).
Phosphopeptides were resuspended in 133 mM HEPES (SIGMA) pH 8.5 and TMT reagent
(ThermoFisher Scientific) stored in dry acetonitrile (ACN) (Burdick & Jackson) was added
followed by vortexing to mix reagent and peptides. After 1 hr at room temperature, an
aliquot was withdrawn to check for labeling efficiency while the remaining reaction was
stored at -80°C. Once labeling efficiency was confirmed to be at least 95%, each reaction
was quenched with ammonium bicarbonate for 10 minutes, mixed, acidified with 20% TFA,

and desalted. The desalted multiplex was dried by vacuum centrifugation and separated by
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offline pentafluorophenyl (PFP)-based reversed phase HPLC fractionation as previously
described (Grassetti et al., 2017).

TMT-labeled samples were analyzed on an Orbitrap Fusion (Senko et al., 2013) mass
spectrometer (ThermoScientific) equipped with an Easy-nLC 1000 (ThermoScientific).
Peptides were resuspended in 8% methanol / 1% formic acid across a column (45 cm length,
100 um inner diameter, ReproSil, C1s AQ 1.8 um 120 A pore) pulled in-house across a 2 hr
gradient from 3% acetonitrile/0.0625% formic acid to 37% acetonitrile/0.0625% formic
acid. The Orbitrap Fusion was operated in data-dependent, SPS-MS3 quantification mode
(McAlister et al., 2014; Ting et al., 2011) wherein an Orbitrap MS1 scan was taken (scan
range = 350 — 1200 m/z, R = 120K, AGC target = 3e5, max ion injection time = 100ms).
Followed by data-dependent Orbitrap trap MS2 scans on the most abundant precursors for
3 seconds. lon selection; charge state = 2: minimum intensity 2e5, precursor selection range
650-1200 m/z; charge state 3: minimum intensity 3e5, precursor selection range 525-1200
m/z; charge state 4 and 5: minimum intensity 5e5). Quadrupole isolation = 0.7 m/z, R =
30K, AGC target = 5e4, max ion injection time = 80ms, CID collision energy = 32%)).
Orbitrap MS3 scans for quantification (R = 50K, AGC target = 5e4, max ion injection time
=100ms, HCD collision energy = 65%, scan range = 110 — 750 m/z, synchronous precursors
selected = 5). The raw data files were searched using COMET with a static mass of
229.162932 on peptide N-termini and lysines and 57.02146 Da on cysteines, and a variable
mass of 15.99491 Da on methionines and 79.96633 Da on serines, threonines and tyrosines
against the target-decoy version of the human proteome sequence database (UniProt;
downloaded 2/2020, 40704 entries of forward and reverse protein sequences) and filtered to
a <1% FDR at the peptide level. Quantification of LC-MS/MS spectra was performed using

in house developed software (Kruse et al., 2020). Phosphopeptide intensities were adjusted
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based on total TMT reporter ion intensity in each channel and log; transformed. P-values

were calculated using a two-tailed Student’s t-test assuming unequal variance.
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