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Abstract 16 

Recent advances in omics studies have enabled analysis at the single-cell level; however, 17 

methods for analyzing the whole cell of large organs and tissues remain challenging. Here, we 18 

developed a method named tsChIL to understand the diverse cellular dynamics at the tissue 19 

level using high-depth epigenomic data. tsChIL allowed the analysis of a single tissue section 20 

and could reproducibly acquire epigenomic profiles from several types of tissues, based on the 21 

distribution of target epigenomic states, tissue morphology, and number of cells. The proposed 22 

method enabled the independent evaluation of changes in cell populations and gene activation 23 

of cells in regenerating skeletal muscle tissues, using a statistical model of RNA polymerase II 24 

distribution on gene loci. Thus, the integrative analysis by tsChIL can elucidate in vivo cell-type 25 

dynamics of tissues.  26 

Introduction 27 

Tissues are terminally differentiated cells formed from stem cells, followed by cell-type 28 

conversion and functional arrangement of cell types to the specified spatial localization. 29 

Presently, the composition of the cells playing different functions and the mechanism by which 30 

each type is formed have been elucidated. This allowed us to understand the biological function 31 

of each tissue and the pathogenesis and developmental failure of diseases. Tissue composition 32 

can be determined using known cell-type markers. Immunostaining for cell surface antigens and 33 

other cell-type markers enables visual examination that determines the number and localization 34 

of cells and tissue morphology. Determining the cell types and the size of the population (i.e. 35 

number of cells) in tissues can be done using scRNA-seq, which is based on the transcriptomic 36 

differences of individual cells
1
. Unsupervised clustering

2
 of the gene-expression profiles allowed 37 

the identification of the cell types, including those previously unknown.  38 

 39 

Epigenomic analysis is widely performed at the tissue level, such as in the Encyclopedia of DNA 40 

Elements (ENCODE), the National Institutes of Health Roadmap Epigenomics Project, and 41 

International Human Epigenome Consortium (IHEC) projects that utilize ChIP-seq for bulk-level 42 

tissues. The comprehensive identification of functional elements in genomes, such as promoters, 43 

enhancers, and the binding sites of transcription factors and their regulatory relationships that 44 

characterize the tissues has been achieved
3–5

. However, in epigenomic analysis at tissue-level, 45 

imbalance sampling cannot be avoided because tissues are mixtures of diverse cell types. 46 

Particularly, when the number of target cells (e.g. stem cells) is limited, they are overwhelmed by 47 

the information on the other majority cells. Furthermore, in ChIP-seq, the genome coverage per 48 

cell is limited
6
, i.e. information on minority cells in the bulk tissue is lost. Therefore, it is necessary 49 

to collect a large amount of target cells that meet the requirements of ChIP-seq. As such, after 50 
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defining the target cell types and markers, the sectioning of narrower area, dissection, or 51 

cell-sorting is utilized. Recently, new methods for analyzing a small number of cells with higher 52 

genome coverage at the single-cell level, including our ChIL and others, have been developed
7–53 

14
. In addition, isolating cells causes potential effects to cells owing to the physical separation of 54 

the tissues. Several tissue analysis methods that do not involve enzymatic digestion, have also 55 

been proposed
15–20

. However, obtaining epigenomic information from a limited number of cells 56 

using ChIP-seq based technology remains a challenge. To understand the formation of all cell 57 

types, the use of whole-tissue analysis using single-cell technology is ideal; however, it is very 58 

costly.  59 

 60 

Hence, several transcriptomic analysis approaches that combine the advantages of bulk 61 

RNA-seq and scRNA-seq, which can analyze and identify numerous cells at once, have been 62 

proposed. For example, the changes in the gene expression of cell types in bulk RNA-seq 63 

profiles during embryogenesis have been interpreted using single cell RNA-seq collected 64 

separately
21

. The estimation of the cell-type composition of bulk tissue RNA-seq based on single 65 

cell RNA-seq has also been reported
22

. Because data from different platforms complement each 66 

other, a data integration method has also been proposed, particularly the embedding of single 67 

cell RNA-seq into seqFISH+
23

 data to virtually reconstruct whole gene expression data using 68 

spatial information
24,25

. In addition, a computational approach for epigenomic analysis to 69 

decompose DNA methylation states into cell types has been suggested
26

. However, to date, a 70 

universal solution for the cell-type decomposition of tissue epigenomes has not yet been 71 

established. 72 

 73 

Here, we propose a framework that integrates ChIL into the tissue-slice analysis and uses single, 74 

very small, and thin tissue sections for ChIL-Seq (herein, tsChIL). Our obtained bulk tissue 75 

epigenome data showed dynamic changes in both the number and cell type, and computational 76 

modeling was thus required. We first optimized ChIL for highly sensitive genome-wide analysis 77 

using a single thin section, as well as tissue visualization using immunostaining. The ChIL is 78 

proposed to enable epigenomic analysis at the single-cell level, and the acquired thin-section 79 

tsChIL data are expected to be the sum of the high-depth single-cell epigenomes. Using three 80 

different types of tissues, we confirmed the adequate sensitivity, specificity, and reproducibility of 81 

tsChIL in identifying enhancers, transcription factors, and transcriptionally activated genes in 82 

whole tissues. Thus, we built a statistical model that evaluates the changes in the distribution of 83 

RNA Polymerase II at the gene loci and provides a robust, cell-type resolution transcriptional 84 

regulatory analysis for large changes in population size. 85 

 86 
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Results 87 

 88 

Thin-section ChIL-seq enabled spatial epigenomics with single tissue section 89 

Various cell types exist in tissues, each of which exhibits a unique localization pattern. The 90 

transcriptomic and epigenomic pattern of these cells may be affected by the enzymatic isolation 91 

process. Therefore, we focused on the use of tissue sections that are free from enzymatic 92 

treatment biases for epigenomic analysis and developed an experimental procedure using a 93 

single, very small, and thin tissue sections. We then optimized the ChIL for tissue (Fig. 1A), 94 

based on our previously reported sc-epigenomic analysis tools
7,8

.  95 

 96 

Since the reports on analysis using microtissue sections are limited, and all of them require 97 

multiple tissue slices to obtain the required cell number
15–20

 (Table S1). We therefore focused on 98 

preparing frozen, unfixed tissue sections to equalize the fixation conditions. On plates, unfixed 99 

tissue thin sections are fixed with paraformaldehyde then permeabilized, followed by blocking. 100 

Immunostaining is then performed by reacting with primary antibodies against the target 101 

molecules on chromatin. Then, a fluorescent-labeled ChIL-probe attached with secondary 102 

antibodies was used to obtain the tissue localization of the target by imaging at the subcellular 103 

level. Subsequently, Tn5 transposase inserts an artificial sequence containing a T7 promoter 104 

into the genomic region near the target. In vitro transcription of the genome sequence near the 105 

target protein, starting from the T7 promoter, was performed, and the reverse-transcribed DNA 106 

was sequenced using a next-generation sequencer. Compared with conventional epigenomic 107 

analysis methods for FFPE and fresh frozen tissue slices, this method enabled uniform fixation 108 

conditions for the analysis of micro-thin slices. Therefore, using the highly efficient ChIL method, 109 

we attempted to analyze tissues with an input size of 3 mm × 3 mm × 10 μm. Thus, we designed 110 

tsChIL as a high-precision method for analyzing the epigenetic information of a group of cells on 111 

a tissue section of the target, following the spatial distribution of the specific epigenetic status. 112 

 113 

To evaluate the designed tsChIL experimental procedure, the levels of the enhancer marker of 114 

histone modification H3K27ac and the recruitment of RNA Polymerase II (RNAPII), an indicator 115 

of transcription, were detected in three different tissues: liver, heart (left ventricle), and testis. 116 

Most of the cells were hepatocytes, comprising 70–80% of the liver. The H3K27ac signal 117 

visualized by the ChIL-probe was uniformly distributed across cells on the sections. 118 

Subcellularly, the co-localization of H3K27ac and RNAPII in euchromatin regions 119 

(Hoechst-negative) was observed (Fig. 1B). In the testis, which consists of cells at multiple 120 

differentiation stages, the RNAPII signal was strongly distributed and localized in cells with high 121 

transcriptional activity, especially near the outer periphery of the seminiferous tubule
27

 (Fig. 1C), 122 
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a region where cells in the early stages of sperm differentiation are located (Fig. 1C). Meanwhile, 123 

the heart was co-stained using laminin and the ChIL probe to distinguish the cell boundary 124 

regions and visualize the basement membrane (Fig. 1D). S5P signal showed a localization to 125 

the low Hoechst-dense region of the cell nucleus in which transcription may active, suggesting 126 

that immunostaining with ChIL probe was a valid histological staining method at the subcellular 127 

level (Fig. 1B-D, Fig. S1). 128 

 129 

To validate the feasibility of tsChIL for sensitive and accurate epigenomic analysis, we performed 130 

tsChIL-seq using a single thin section containing 1,000–10,000 cells (Table 1), which was 131 

generally assumed as a low number of cells in culture
7,8

. The number of cells used was less than 132 

that of conventional epigenomic methods used especially for tissue analysis (Table S1). 133 

Furthermore, the genome-wide analysis was performed by ChIL reaction on single sections of 134 

the sections that showed in Figure 1B-D. In the representative visualized epigenomic data in 135 

liver (Fig. 1E), the accumulation of H3K27ac and RNAPII at the Alb locus, a hepatocyte marker, 136 

was observed. The former showed an activated upstream enhancer region, whereas the latter 137 

was highly transcriptional activity at the locus. The transcription of Alb was also confirmed using 138 

RNA-seq with different serial slices. These results indicate that tsChIL enables the simultaneous 139 

acquisition of both the tissue distribution of the epigenomic status and the genome-wide 140 

epigenomic data using a single tissue section containing a small number of cells (10
3
 to 10

4
 cells 141 

in 10 mm
2
 area). 142 

 143 

Next, to evaluate the genome-wide distribution of the signals obtained using the tsChIL 144 

procedure proposed above, we examined the specificity of the signal localization among different 145 

tissues and antibodies and the reproducibility of signal localization of the same tissue and 146 

antibody. First, to estimate the appropriate number of reads for ChIL-seq with tissues, we 147 

obtained 480 M reads from RNAPII ChIL-seq in muscle tissue and evaluated the library 148 

complexity
28

 (i.e. the prediction curve of usable reads). As seen in Figure 1F, the number of total 149 

usable reads was starting to move away from the black line at approximately 10
7
, indicating a 150 

decreasing percentage of usable reads. Therefore, we determined that approximately 10
7
 reads 151 

is a good cost-balanced number of the required reads in the case wherein the number of cells 152 

per section is < 10
4
. To obtain a ChIL signal with sufficiently high signal-to-noise ratio, we 153 

acquired an average of approximately 14 M reads (Table S2), which is comparable to the 154 

number of reads in the ENCODE tissue ChIP-seq (10 M–20 M)
3
. 155 

 156 

With this number of reads, the tsChIL-seq data from the liver, heart, and testis were obtained, 157 

and the genome-wide localization of each data set is shown in Figure 1G. In all tissues and 158 
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H3K27ac and RNAPII S5P antibodies, signals were concentrated around the coding regions 159 

(promoters and gene body) compared with the no-antibody (herein, No Ab; without primary 160 

antibody) controls (53%-59% and 41%-48%, respectively). The results showed that the genomic 161 

sequences were selectively extracted from the transcriptionally activated regions of the genome. 162 

In Figure 1H, we describe the correlation matrix of the signal levels on the whole genome to 163 

confirm the high reproducibility of the replicates. The dendrogram shows the hierarchical 164 

structure of the highest correlation among the replicates (Liver-H3K2ac: 0.90, Liver-PolII: 0.90, 165 

Heart-H3K27ac: 0.87, Heart-PolII: 0.92, Testis-H3K27ac: 0.91, Testis-PolII: 0.94 in average of 166 

triplicates), and the correlation within the same tissue (e.g., Liver-PolII vs. Liver-K27ac: 0.87; 167 

Heart-H3K27ac vs. Heart-PolII: 0.88; and Testis-H3K27ac vs. Testis-PolII: 0.88; the list of all 168 

correlation coefficients are summarized in Table S3). These results suggest that tsChIL-seq can 169 

capture the epigenomic differences between different tissues and is technically reproducible. 170 

 171 

Identification of regulatory factors in the formation of tissue-specific enhancers 172 

We next assessed the ability of tsChIL for low-input epigenomic analysis of tissues. First, we 173 

performed tsChIL using thinly sectioned tissues from the liver, heart, and testis, and the identified 174 

enhancers were compared by matching references
3
 (Fig. 2A). According to the odds ratio (i.e., 175 

specificity, the detailed definition is described in Method), each H3K27ac ChIL-seq signal 176 

preferentially captured the corresponding tissues-specific enhancer (Liver: 33.5, Heart: 27.1, 177 

Testis: 4.1; The other odd ratios are listed in Table S4). Therefore, we successfully detected 178 

tissue-specific enhancers using tsChIL with lower input compared to the previous reports that 179 

utilized 500 µg chromatin equivalent to 10
7
−10

8
 cells.  180 

 181 

Next, we examined the enrichment of the H3K27ac signal on representative tissue-specific 182 

enhancers, including the liver, heart, and testis. We focused on the enhancer region of Rxra 183 

genes
29

 specifically expressed in liver tissues, Gnat3 cardiac muscle-specific gene retinoic acid 184 

receptor, and  Eps8 expressed in the blood–testis barrier (BTB)
30

. H3K27ac signal enrichments 185 

on each tissue-specific enhancer were observed on the IGV screen shot (Fig. 2B). In contrast, 186 

all Actb-expressing tissues showed the ubiquitous enrichment of H3K27ac.  187 

 188 

We further evaluated the enrichment of the regulatory sequence in extracted enhancers using 189 

tsChIL based on the enrichment of the TF-binding motif (only the top scoring motifs are shown in 190 

Fig. 2C; all others are in Table S5). The enrichment of known liver-specific TF-binding motifs, 191 

Rxra, Hnf4a, Nr2f6, and others were observed in the H3K27ac tsChIL-seq data obtained from 192 

the liver. This data is consistent with the liver-specific regulatory sequences registered as open 193 

chromatin regions detected using ATAC-seq with mouse liver tissues in the database
31

. 194 
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Meanwhile, the H3K27ac signal obtained from the heart showed relatively higher enrichment at 195 

Klf12 than others; Sox5 and androgen receptor (AR) binding motifs were enriched in the 196 

testis-H3K27ac signal, which was consistent with previous studies reporting that AR binds to the 197 

androgen responsible element (ARE) on regulatory sequences with histone acetyltransferase to 198 

regulate gene expression
32,33

. These data support that H3K27ac tsChIL can identify 199 

cis-regulatory elements following the extraction of tissue-specific enhancers. 200 

 201 

Because the enrichment of the tsChIL signal should reflect the quantitative H3K27ac levels as 202 

demonstrated by the identification of super enhancers (SEs) using ChIP-seq, we next 203 

quantitatively determined the H3K27ac level based on the read counts. Then, SE formation upon 204 

TF binding on the extracted cis-regulatory elements was evaluated. First, we listed the highly 205 

enriched regions of the H3K27ac tsChIL signal as SE
34,35

 from each liver, heart, and testis data 206 

set. The labeled genes in Figure 2D are representative protein-coding genes near the identified 207 

top ranked SEs, which have the highest read counts in peaks (see Fig. S2 for all replicates). In 208 

the liver, known hepatocyte marker genes, Alb, and albumin family, Gc are also detected in 209 

motif-enrichment analysis performed in Figure 2C. In addition, the core transcription factor 210 

Hnf4α
36

, which activates the genes by itself, was included in the top rank (1.6 to 3.5%). 211 

Furthermore, the SEs featuring each tissue were identified. In the heart (left ventricle), Ablim1 212 

expressed in the left ventricle and involved in left–right axis formation
37

, was detected, whereas 213 

in the testis, SEs were identified in the vicinity of Crem, which is involved in spermatogenesis
38

.  214 

 215 

Finally, to validate the function of the SEs identified in the liver using this method, we performed 216 

tsChIL targeting Hnf4α, which showed a high specificity score (deviation-Z) in liver SEs. Hnf4α is 217 

known to be an important nuclear receptor during hepatocyte differentiation
39

, and has been 218 

shown to contribute to SE formation as a core transcription factor, along with RXRα
29

. 219 

Immunostaining with the ChIL Probe showed that the HNF4 was distributed throughout most 220 

cells in the liver tissue and detected in the open chromatin region of the nucleus in each cell (Fig. 221 

2E). A pronounced accumulation of Hnf4α signals in the SEs in the region was observed (Fig. 222 

2F, see Fig. S3 for the motif enrichment analysis on Hnf4α peaks). We next evaluated the 223 

selective binding of Hnf4α to the genes in the liver SEs (Fig. 2G; Fig. S4 for the replicates). 224 

Using the gene sets of SEs and TEs neighboring genes obtained in Figure 2D, gene sets 225 

enrichment analysis (GSEA)
40

 demonstrated that the hits of the ChIL-Hnf4α peaks against liver 226 

enhancers scored as high as 0.72 in the enrichment score (Fig. 2G, top). Particularly, Hnf4α was 227 

bound to 76.4–78.8% of the SEs (Fig. 2G bottom). In contrast, in the negative controls of the 228 

heart- and testis-specific SEs, the number of SEs bound by Hnf4α was approximately 0.5 in the 229 
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enrichment score and the percentage of Hnf4α bound to the heart- and testis-specific SEs was at 230 

a random chance level (24.4–34.2%). 231 

 232 

In summary, the data from tsChIL-H3K27ac demonstrated that the regulatory candidate 233 

transcription factor Hnf4α obtained from the cis-element refinement selectively binds to the 234 

liver-specific SE region of the Hnf4a locus. Hnf4α could be validated to provide positive feedback 235 

that binds to the SE region of its own Hnf4a locus. Our data indicated that tsChIL is useful for the 236 

regulatory analysis of enhancers, including transcription factors and SEs, using low number of 237 

cells. 238 

 239 

tsChIL-RNAPII peaks detected the majority of active genes in tissue 240 

Transcriptome information is obtained by evaluating the binding position of RNAPII using 241 

epigenomic analysis. Here, we detected the active genes based on the binding of RNAPII on the 242 

genome using tsChIL. In Figure 3A, we plotted the cumulative number of consumed reads of the 243 

detected genes in RNA-seq and RNAPII tsChIL in the order of their read counts. Due to the wide 244 

dynamic range of RNA-seq data, high copy-number mitochondrial-derived RNAs (e.g., 245 

mitochondrial ribosomal RNAs) and highly expressed genes that characterize each tissue (Alb in 246 

liver, Myh6 in the heart, Prm1 in testes), consumed 80% reads on a small number of highly 247 

expressed genes (whose expression can be confirmed; Liver 5%, Heart 1%, Testis 11%). The 248 

identification of weakly expressed genes and rare populations in bulk tissue RNA-seq is 249 

generally hard to obtain because the top 10% genes spends 80% of its reads in even at the 250 

single-cell level
41,42

.  251 

 252 

In contrast, ChIL-RNAPII did not exhibit an exponential increase in the number of consumed 253 

reads required to detect gene expression from RNA-seq. It also efficiently detected more genes 254 

as the number of reads increased. The dynamic range of RNA-seq depends on the product of 255 

the cell number and the concentration of RNA in each gene, whereas that of the RNAPII signals, 256 

in essence, depends on the product of the presence or absence of gene expression (0, 1, or 2) 257 

and the cell number. The results are consistent with the fact that highly and ubiquitously 258 

expressed genes occupy a high number of reads in the RNA-seq data. The result suggested that 259 

fewer reads are required for gene expression profiling using tsChIL RNAP2 than RNA-seq.  260 

 261 

Thus, the genes were divided into five groups based on their expression levels from RNA-seq, 262 

and the correlation of each tsChIL RNAPII signal with their expression levels was examined (Fig. 263 

3B). In the high-expression group in all tissues, the intensity of the RNAPII signal in the TSS was 264 

highly correlated with its expression level. In the 75
th
–100

th
 percentile group, a high accumulation 265 
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of RNAPII in the gene body region was also detected, suggesting a movement of RNAPII to the 266 

locus upon transcriptional activation. Here, we showed that tsChIL-RNAPII demonstrated a 267 

preference for capturing highly expressed genes in tissues. Subsequently, we assessed the 268 

overlap between RNA-seq-confirmed genes (TPM > 0) and tsChIL-RNAPII peaks. tsChIL peaks 269 

captured approximately 30% (Testis slightly lower, approximately 20%) of the active genes (TPM 270 

> 0), whereas false positives were almost absent (Fig. 3C). In addition, tsChIL peaks stably 271 

detected approximately 40–50% of the genes expressed in RNA-seq, independent of the TPM 272 

threshold for defining the expressed genes in RNA-seq (Fig. S5). These results suggest that the 273 

peak region is likely to capture genes with high expression because the region with high signal 274 

counts was judged to be the peak region
43

. In all tissues, the expression levels of the genes in 275 

Common were higher than those in RNA-seq group as expected (Fig. 3D). 276 

 277 

Figure 3E shows an IGV screenshot of the tsChIL RNAPII. The accumulation was detected at 278 

the Trf (transferrin) locus in the liver, Myh6 (cardiac myosin) in the heart, and Meig1 (a 279 

meiosis-expressed gene) in the testes. These are considered representatives of genes 280 

specifically expressed in each tissue. At the Actb locus, a house-keeping gene, the RNAPII 281 

signal was accumulated in all tissues, indicating active transcription. In these highly 282 

transcriptionally active genes, a wide distribution of RNAPII signals was detected on the gene 283 

body, suggesting that the RNAPII binding distribution patterns would enable an in-depth profiling 284 

of the transcriptional programs in tissues. 285 

 286 

Modeling RNAPII traveling reveals transcriptional dynamics in the rapid change of cell 287 

population in skeletal muscle regeneration 288 

We demonstrated that enhancers and transcriptional activity states can be detected with high 289 

sensitivity, specificity, and reproducibility at the whole-tissue level by the optimized ChIL for 290 

tissues. Then, tsChIL-RNAPII data in Figure 3 suggested that, in addition to amount of the signal 291 

at the gene loci, evaluation of the distribution or its elongation across the entire locus would 292 

improve the analysis of the transcriptional activation in various cells in tissue. We thus conceived 293 

a concept the statistical modeling of tsChIL-RNAPII data for the epigenomic analysis of 294 

heterogeneous tissues. 295 

 296 

We used skeletal muscle regeneration as a model case, wherein numerous cell types 297 

dynamically change their composition, particularly that of the mouse tibialis anterior (TA) muscle 298 

after cardiotoxin (CTX)-induced injury. During regeneration, migrating immune cells are 299 

dominate the tissue 2 to 3 days after muscle injury
44

. During this time, the activation of satellite 300 

cells, which are responsible for skeletal muscle regeneration, leads to the regenerated muscle 301 
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fibers observed on day 14. We thus established a model to analyze the gene expression 302 

dynamics in each cell type from day 0 (pre-injured period) and until day 14. tsChIL obtained data 303 

from five biological replicates using the tissue sections of TA muscles at five time points on days 304 

0, 3, 5, 7, and 14 after the CTX-induced muscle injury. As shown in Figure 4A (Fig. S6A for the 305 

entire time-course), the basal lamina separating the muscle fibers observed on day 0 was 306 

destroyed post-injury. The destruction of the cells on the third day can be seen in the image of 307 

laminin co-stained with the ChIL probe. Furthermore, the fluorescence image of the ChIL probe 308 

suggests the presence of multiple cell types, such as the activated muscle satellite cells, muscle 309 

progenitor cells that have started to differentiate, and migrating immune cells associated with the 310 

inflammatory response. On day 14, the structure of the muscle fibers possessing central nuclei 311 

were observed, thus indicating regenerated muscles. 312 

 313 

First, we visualized the distribution of the RNAPII signal by IGV for representative genes in 314 

skeletal muscle and immune cells. Changes in RNAPII distribution are observed at the locus for 315 

Acta1 (which is highly expressed in skeletal muscle) and Cd68 (a surface marker of 316 

macrophages) (Fig. 4B). The Cd68 locus showed an overall increase in the RNAPII signal from 317 

day 0 to day 3, whereas Acta1 showed an overall decrease. These results indicate the rapid 318 

increase in immune cells and the decrease in skeletal muscle cells during the early stages of 319 

injury (days 2–3) as shown in Figure 4C. In Acta1, however, the RNAPII signal is more 320 

concentrated near the transcriptional end site (TES) than the transcriptional start site (TSS). We 321 

thus hypothesized that the shape of the RNAPII distribution contains information on both the 322 

population size of cells and the regulatory state of a gene known as the pause/release of the 323 

RNAPII
45,46

. Therefore, we established a model for two cases (or their combination) as shown in 324 

Figure 4D: one in which a specific gene of resident cells is activated by the induction of muscle 325 

regeneration (i), and the other in which the height of the already activated RNAPII signal 326 

increases due to an increase in the number of cells (e.g., migrated immune cells from outside the 327 

tissue) (ii). The traveling ratio (TR) is often used to evaluate the degree of RNAPII pause/release, 328 

as in Bartman et al.
47

, providing a brief description of the geometry of the distribution of the 329 

RNAPII in the gene loci in terms of the ratio of the signal levels between TSS and TES. 330 

Furthermore, we modeled the estimation of TR as a form of Poisson regression with an offset 331 

term (see details in Methods). For each locus, the signal level (count per million [CPM]) of 332 

RNAPII at the TSS is exp(β0), and that of TES is exp(β1) times the TSS level exp(β0), i.e., 333 

exp(β0+β1). The statistical model allows us to evaluate the confidence intervals for TR and 334 

perform statistical tests for changes in varying conditions and time points.  335 

 336 
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Figure 4E shows the estimated values of the mean RNAPII levels at TSS and TR, along with the 337 

confidence intervals. We then compared the tissue-wide expression levels of the corresponding 338 

genes (Fig. 4F). Surprisingly, the tissues-wide expression of Acta1 and Cd68 were synchronized 339 

with the pattern of the RNAPII TSS-level, whereas the transcription factor myogenin (Myog) 340 

expressed in muscle progenitor cells at the differentiation stage has a synchronized pattern to 341 

TR. These results suggest that the tissue bulk RNA-seq is a combination of the cell number and 342 

the changes in the amount of gene expression. 343 

 344 

Therefore, to distinguish the transcriptional activation indicated by the TR, and the population 345 

size indicated by the TSS-level as inferred in Figure 4E-F, we analyzed the changes in the 346 

TSS-levels and TR at day 3 (Fig. 4G and Fig. S6C). Each set of genes was associated with each 347 

'single' cell-type, the definition of which is based on the scRNA-seq analysis of injured muscle by 348 

De Micheli et al.
48

. The population size of the cells that express the skeletal muscle related 349 

genes (Fig. 4G, right) were decreased after injury, whereas the changes in TR revealed the 350 

active transcription of the genes. Meanwhile, in the group of genes associated with immune 351 

cells, TSS-level was increased while TR was less altered (Fig. 4G, left), which can be interpreted 352 

as an increase in the population of cells already possessing active gene loci (i.e. migration). This 353 

interpretation is consistent with the dynamic population changes in muscle regeneration clearly 354 

revealed by recent studies using scRNA-seq
48–50

. In summary, the statistical model of tsChIL 355 

RNAPII allowed us to evaluate the transcriptional activity of genes associated with specific cell 356 

types, independent of increased population of immune cells and decreased skeletal muscle cells 357 

during muscle regeneration. 358 

 359 

Next, we identified the uncharacterized dynamics in muscle regeneration from day 0–14 using 360 

the other cell-type markers defined by De Micheli et al.
48

. First, we selected 66 genes among the 361 

markers that changed the TR (FDR < 0.1) at any time point compared with day 0. The changes 362 

in the TR and TSS level of these genes are shown as a heatmap (Fig. 4H) to visualize the trends 363 

in the transcriptional activation of each gene, as well as the increase or decrease in the number 364 

of cells that harbor the activated genes. From the log2TSS, which indicates the cell number, we 365 

confirmed that mature skeletal muscles (SKMs) decreased once after injury (white to blue); 366 

however, most genes were activated at day 3 and returned to the original population size (white) 367 

at day 14. Many of the cell types, such as mesenchymal progenitors/SMCs, myeloid progenitors, 368 

and resident macrophages/APCs, transiently increased in number after injury but returned to 369 

their pre-injured levels on day 14, indicating association with inflammatory responses  (Ada2, 370 

Rgs2, Coro1a, Lyz2, C1qa)
50,51

. Meanwhile, Myl1, a gene that was transiently increased after 371 
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injury, Tnnc2, and Acta1, showed the same TR pattern, suggesting that these genes also 372 

function in regeneration and not only in muscle fiber formation
52

. 373 

 374 

Next, we describe the muscle regeneration process by classifying gene groups according to the 375 

pattern of TR changes over time. The clusters C1-5 were assigned according to their peaks 376 

(highest point) of TR in the time-course of regeneration, the tissue-wide dynamics were 377 

appeared in Figure 4I, suggesting transcriptional regulation in muscle regeneration. The C1 378 

exhibit the highest TR at day 0, and thus indicates a down regulated biological process after the 379 

injury. The proliferation of the immune cell was repressed, and the major participants are the 380 

resident macrophages and APCs and myeloid progenitors. The C2 which has peak at day 3, 381 

districted the activation of myogenesis mainly orchestrated by MuSC, muscle progenitors and 382 

also by neural cells, which is consistent with previous reports
53

. The C3, which has peak day 5, 383 

does not show strong enrichment. The C4 contained muscle contraction, ion transport and action 384 

potential related GO terms, which suggests the regenerated muscle was formed at day 7. The 385 

C5 (day 14) showed the activation of angiogenesis in the late stage of regeneration
54

. Here, the 386 

statistical modeling that combined RNAPII-mediated transcriptional elongation and population 387 

size changes achieved by our tsChIL provides a strategy for understanding the process of 388 

muscle regeneration that is organized by diverse cell types in tissue. 389 

 390 

Discussion  391 

Here, we established a high-precision method for tissue epigenomic analysis using a single, thin 392 

section samples. We focused on the tsChIL data of RNAPII and established a statistical model to 393 

identify the changes in both population size and transcriptional regulation in the various cell 394 

types. In this analysis, we utilized single-cell analysis transcriptomic data as a reference of 395 

cell-type annotation. The efficient combination of existing single-cell analysis data and bulk but 396 

high-depth tsChIL data may lead to future approaches to analyze large numbers of individuals at 397 

the whole-cell level. 398 

 399 

We demonstrated that the transcriptional regulation of each cell type can be analyzed 400 

independently, even in situations with large-scale variations in tissue cell-type composition, as in 401 

the case of muscle regeneration. tsChIL by itself can also provide a qualitative assessment of the 402 

changes in cell population size. Although we did not identify the cell types in the tissues nor 403 

estimated their compositional ratios, our framework that combined scRNA-seq and epigenomic 404 

analysis provides solid guidance for future tissue analysis.  405 

 406 
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The traveling ratio (or pausing index), a concise measure of RNA polymerase II dynamics, which 407 

was originally introduced in the ChIP-chip as a measure of the degree of transcriptional 408 

elongation
45,46

; and used in GRO-seq
55

 and ChIP-seq
56

. We found that the shape of the 409 

distribution of RNAPII at the genomic locus, as revealed by epigenomic analysis, is indeed a 410 

useful indicator of the transcriptional activity of a gene, and that the RNA-seq of bulk tissue is the 411 

sum of all transcripts of all cells and is always affected by the population size. 412 

 413 

The statistical modeling of TR provides analogous advantages in the analysis of differentially 414 

expressed genes, such as the screening of genes with altered transcriptional states and 415 

calculation of confidence intervals for TR. Here, we used a simplified model in which the RNAPII 416 

signal at a single locus is the product of the size of the active population and the degree of 417 

activity (traveling ratio). Alternatively, a more realistic model with different transcriptional 418 

activities for different cell types and within the same cell type may be possible as proposed in the 419 

bulk data decomposition methods
22,57,58

. Despite our simplified assumption, our established 420 

model successfully determined transcriptional activities by cell type within a tissue. In addition, 421 

tsChIL RNAPII data can be modeled using a simple Poisson distribution rather than a negative 422 

binomial distribution, which involves a complex dispersion parameter estimation. Furthermore, 423 

the use of CPM normalization with offset terms as a natural way of handling replicates made the 424 

model easier to apply, interpret, and use for tissue epigenome profiling.  425 

 426 

Conventional ChIP-seq has a limited genome coverage of cell owing to the efficiency of 427 

immunoprecipitation. In contrast, ChIL-seq, on which tsChIL is based, achieves a higher genome 428 

coverage of at least 90% for histone modifications at the single-cell level. Accordingly, the 429 

acquired data was assumed to be a sum of the deeply profiled cells. Thus, we believe that the 430 

acquisition of such high-depth epigenome data will continue to be necessary for the modeling 431 

compositions of tissues as shown in our framework. These high-depth data are expected to be 432 

provided not only by ChIL-seq, but also by other single-cell epigenomic analysis methods; thus, 433 

other methods can be integrated to our analysis framework. 434 

 435 

tsChIL showed great potential to replace ChIP-seq, which has been the standard method of 436 

epigenomic analysis for tissues. In this paper, the high reproducibility of tsChIL, both technically 437 

and biologically, was demonstrated. Furthermore, tsChIL achieved comparable performance 438 

while using fewer cells than ChIP-seq (~1/10,000 of required cell), and parameters, such as 439 

fixation conditions, can be monitored based on the quality of immunostaining images. These 440 

advantages can reduce cost. In addition, by combining visualization and genome-wide analysis 441 

the spatial characteristic can be profiled and linked with the genome-wide characteristics of 442 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.18.423434doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423434
http://creativecommons.org/licenses/by/4.0/


epigenomes as shown in the massive wave of RNAPII in the testis. For more advanced 443 

applications, by leveraging the pairing of serial-thin sections of the same mouse, the correlation 444 

between spatial and genome-wide patterns of heterologous proteins, such as histone 445 

modifications and transcription factors, may be reliably estimated. We believe our proposed 446 

method is a useful tool for tissue epigenomic analysis, together with recent scRNA-seq and 447 

microscopy-based spatial transcriptomics. 448 

 449 

Materials and Methods 450 

Ethical statement 451 

All animal procedures were conducted in accordance with the Guidelines for the Care and Use of 452 

Laboratory Animals and were approved by the Institutional Animal Care and Use Committee 453 

(IACUC) at Kyushu University. 454 

 455 

Tissue preparation 456 

Eight-week-old C57BL/6N mice were used as replicates for this study. The liver, left ventricle and 457 

testis were prepared from male, and tibialis anterior (TA) muscles were from female mise. 458 

Tissues were freshly frozen using isopentane chilled with LN2 and stored at −80ºC. Muscle 459 

regeneration studies were performed as previously reported, except for the injection of CTX into 460 

the TA muscle
59

. Injured and intact TA muscles were sampled from five mice at day 0, 3, 5, 7, 461 

and 14 after CTX injury. The day 0 indicates a needle-injured control. 462 

 463 

Immunohistochemistry 464 

Each tissue cryosection (10 µm) was placed on the bottom of 96-well microplate (Ibidi #89626) 465 

and stored at −80°C until use. Each section was fixed with 4% paraformaldehyde in 0.3% 466 

TritonX-100/PBS for 5 min and washed with 0.3% Triton X-100/PBS. Double blocking was 467 

performed using blocking one (Nacalai #03953) and M.O.M blocking reagent (Vector 468 

Laboratories #BMK-2202) following the manufacturer’s protocol. The sections were incubated 469 

overnight at 4 ºC with primary antibodies diluted in M.O.M. protein concentrate/PBS, followed by 470 

incubation with ChIL probe at the same conditions but with the addition of 0.5 M NaCl. Then, the 471 

wells were filled with PBS for imaging. The following antibodies were used: rabbit anti-H3K27ac 472 

(1:500) (CMA309/9E2H10)
60

, rat anti-RNA polymerase II S5P (1:1000) (1H4B6)
61

, and rabbit 473 

anti-HNf4α (1:500) (C11F12, Cell Signaling Technology Cat. #3113), rabbit anti-laminin2α 474 

(Sigma #L-9393). 475 

 476 

tsChIL-seq 477 
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tsChIL-seq was performed according to ChIL
7,8

 with some modifications: longer incubation time 478 

was employed for some steps (1 h extended Tn5 binding and 2 h fill-in step),  Thermo T7 RNA 479 

polymerase (100 U/well; Toyobo), and 15 cycles of polymerase chain reaction (PCR) 480 

amplification. Column purification (Zymo #D4013) and ×0.5 volume of AMpure beads (Beckman 481 

Coulter) selection were performed to obtain 200 to 500 bp average of the library. The single-end 482 

libraries were sequenced using NovaSeq (Illumina). Reads were mapped against the GRCm38 483 

reference genome using Bowtie2
62

 with the default option. Duplicated reads were discarded 484 

using Samtools (rmdup). The uniquely mapped reads were used for further analysis.  485 

 486 

Quality assessments of tsChIL-seq data 487 

The matrix of read counts on the equally sized (10 kb) windows on the mouse genome was 488 

generated using deepTools
63

 (version. 3.4.1) with the command: multiBamSummary bins -bs 489 

10000 --ignoreDuplicates. Pearson correlation coefficients were calculated using the 490 

log-transformed read count (with +0.5 pseudo-counts). The breakdown of mapped reads at the 491 

genomic regions was calculated using HOMER (annotatePeaks.pl). The library complexity was 492 

evaluated by Preseq
28

. The theoretical case assumed uniform probabilities of obtaining reads 493 

from the mouse genome (i.e., a common expected values of the Poisson distribution). 494 

 495 

RNA-seq analysis 496 

Total RNA (10 ng) was extracted for library preparation using a SMART-Seq Stranded Kit 497 

(Takara) according to the manufacturer’s instructions. Libraries were sequenced on Hiseq1500 498 

and NovaSeq (Illumina). Gene expression quantification was performed using Salmon
64

 quant 499 

with the default option. 500 

 501 

Tissue-specific enhancer analysis 502 

Peaks of tsChIL-H3K27ac were called using MACS2
65

 with the option: callpeak --call-summits 503 

--nomodel --nolambda -q 0.05. Tissue specificities of the peaks were evaluated using the odds 504 

ratio in the known tissue-specific enhancer lists
3
. The odds ratio is defined as (p/(1-p))/(q/(1-q)), 505 

where p is the proportion of hits in the target tissue and q is the proportion of hits to the other 506 

tissues in the enhancer lists. ChromVAR
66

 analysis was performed using consensus peaks of 507 

each tissue. The consensus peaks were constructed by taking the intersection of the peaks of 508 

three biological replicates. Typical and super enhancer candidates were called using HOMER
67

 509 

finePeaks with the option: -style super -superSlope -1000 -gsize 3e9. The pre-ranked GSEA
40

 510 

was performed using tag (read) count-ordered enhancer peaks. Then, the peaks were marked 511 

by a binary indicator overlapping with tsChIL-Hnf4a peaks (called by MACS2 as described above 512 

with the option: -q 1e-5). 513 
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 514 

Transcriptional activation analysis by tsChIL-RNAPII 515 

Aggregation plots of the gene expression percentile groups were created using agplus
68

. The 516 

gene groups were divided according to the TPM of the bulk RNA-seq analysis of each tissue 517 

(liver, heart, and testis). 518 

 519 

Statistical modeling of traveling ratio 520 

The read counts of RNAPII tsChIL-seq at the TSS-region (−750 to +750 bp) and TES-region (0 521 

to +1,500 bp) at all mouse transcripts were fitted to the following Poisson regression model. For 522 

each gene, assume that the read count yij of the i-th replicate at site j (TSS or TES) follows the 523 

Poisson distribution, where the mean parameter λij satisfies the relation: λij/Mi = exp(β0+β1sij). 524 

The offset term Mi is the total reads (in millions) of the replicate i, and sij is the indicator variable 525 

that the read count yij is either TSS (sij = 0) or TES (sij = 1). Since the offsetting is equivalent to 526 

the CPM normalization of the mean count, exp(β0) and exp(β1) can be referred to as the mean 527 

CPM at TSS and the magnification factor of TES to TSS (i.e., the traveling ratio) of the gene, 528 

respectively. The model evaluates variance and can thus estimate the confidence intervals of the 529 

traveling ratio by utilizing all replicates (5 in our case) that have different total sequenced reads. 530 

We assumed that the contrasts X - Y (e.g., fold-changes of TR between day 3 and day 0) follow a 531 

Gaussian distribution, and the variance was calculated from VX + VY (variances of X and Y) 532 

under the independence assumption of X and Y. p-values were estimated from the model, and 533 

multiple test correction was performed using the Benjamini-Hochberg procedure in the selected 534 

genes of interest. 535 

 536 

Data Availability 537 

The RNA-seq and tsChIL-seq data generated in this study have been deposited in the Gene 538 

Expression Omnibus (GEO) database under the accession code: GSE159024. The codes used 539 

for the statistical modeling of tsChIL-seq data are available at: 540 

https://github.com/kazumits/tissueChIL 541 
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Figures  725 

 726 

Figure 1: Epigenomic profiling using a single tissue section. (A) Schematic diagram of the 727 

tsChIL protocol. (B-D) Immunofluorescent images of mouse liver (B), testis (C) and heart (D). 728 
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H3K27ac, RNAPII-S5P, and laminin were stained with specific primary antibodies and visualized 729 

using fluorescent labeled anti-mouse ChIL-probe (red: H3K27ac and PolIIS5P) and anti-rabbit 730 

IgG (green: laminin). DNA was counterstained with Hoechst 33342. Scale Bar: 20 µm (left 731 

images), 10 µm (right images). (E) Genome browser images of ChIL-seq for H3K27ac and 732 

RNAPII-S5P and bulk tissue RNA-seq data at the Alb locus in liver tissues. (F) Library complexity 733 

of ChIL data. Poisson represents an ideal case of the uniform probability of obtaining reads from 734 

the mouse genome, whereas preseq refers to the future/past predictions of a species discovery 735 

curve of sequenced reads using Preseq
28

. Black circle indicates the read number we sequenced 736 

for this prediction. (G) Breakdown of mapped reads at the annotated genomic regions. Gene 737 

body: 3’-UTR, exon, intron, 5’-UTR; Others: ncRNA, miRNA, snoRNA, and pseudogenes. The 738 

proportions of the annotated region on the mouse genome are shown as “Genome” at the bottom 739 

lane. (H) Genome-wide correlation at 10 kbp bins. Hierarchical clustering of Pearson’s 740 

correlation coefficient of log-transformed tsChIL-seq counts is shown. 741 
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 743 

Figure 2: Upstream factor identification through enhancer analysis using tsChIL-seq. (A) 744 

Tissue specificity of identified enhancers by tsChIL-H3K27ac. The odds ratios of hits in the 745 

reference tissue-specific enhancer list identified by bulk-tissue ChIP-seq data
3
 are shown. Odds 746 
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is defined in Methods. The cells enclosed by black squares indicate the maximal odds ratios (i.e., 747 

maximal specificity) for each row. (B) The IGV tracks of tsChIL-H3K27ac at identified 748 

tissue-specific enhancers of Rxra, Gnat3, Eps8, and a house-keeping gene of Actb loci are 749 

shown with the replicates. (C) Specific motif enrichment analysis was conducted using 750 

chromVAR
66

. Hierarchical clustering of deviation-Z scores of three replicates of each tissue is 751 

shown. (D) Super-enhancer identification. Tissue-specific enhancers are identified, so that they 752 

are listed more than twice (twice: blue, all: red) in the top 5% in all enhancer candidates and are 753 

not in the SEs of other tissues. Grey shades indicate the top 5% of tag count in enhancer 754 

candidates. (E) Immunofluorescent images of mouse liver sections. Tissues were stained with 755 

anti-Hnf4ɑ antibody and visualized by a fluorescent-labeled anti-mouse ChIL probe. DNA was 756 

counterstained with Hoechst 33342. Scale bar: 200 µm (top), 10 µm (bottom). (F) Hnf4ɑ binds to 757 

the SE at Alb gene loci. (G) Gene set enrichment analysis of Hnf4ɑ-bound genes (top), and their 758 

rate of Hnf4ɑ-bound genes in sliding windows of 100 genes (bottom). 759 
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 761 

Figure 3: ChIL-RNAPII detect active genes in tissue. (A) Dynamic ranges of bulk-tissue 762 

RNA-seq and tsChIL RNAPII. The cumulative proportion in total mapped reads at genes (red: 763 

tsChIL, blue: RNA-seq) were compared. Genes are ordered by the read counts on the exons for 764 

RNA-seq and on +/-750 bp from TSS for tsChIL, respectively. (B) Signal intensities of tsChIL 765 

correlated with the expression levels of genes. The lines indicate the average CPM of each 766 

expression group at TSS. The expression groups were assigned with respect to the expression 767 

levels (TPM) of genes. (C) Coverage of expressed genes by tsChIL-RNAPII peaks. The stacked 768 

bar chart shows the proportions of detected genes in the RNA-seq only (RNA-seq: blue), 769 

tsChIL-Pol2 only (ChIL: red) and both (Common: green). (D) Higher expression levels at 770 

tsChIL-Pol2 peaks. The expression levels of all expressed genes (TPM > 0) are shown. (E) The 771 
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tissue-specific genes identified by tsChIL-RNAPII. The IGV tracks of all replicates of 772 

tsChIL-RNAPII are shown at each specific gene (Trf, Myh6, and Meig for the liver, heart, and 773 

testis, respectively). Actb is also shown as the ubiquitously expressed gene in the three tissues. 774 
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Figure 4: Statistical modeling of the traveling ratio reveals the independent dynamics 776 

between population and transcriptional regulation in regenerating skeletal muscle 777 

tissues. (A) Immunofluorescent images of the mouse tibialis anterior muscle on the indicated 778 

days after CTX treatment. The images of anti-mouse ChIL probe for RNAPII-S5P (red) and 779 

anti-rabbit IgG for laminin (green) are shown. Scale bar: 20 µm. Refer to Figure S6A for more 780 

frequent time points. (B) tsChIL-RNAPII signal of the marker genes of mature skeletal muscle 781 

(Acta1) and macrophages (Cd68). (C) Proportion of sequenced reads (%UMI) occupied by the 782 

representative cell types in muscle regeneration. The single cell data (GSE143437) by De 783 

Micheli et al.
48

 was re-analyzed. See Figure S6B for the detailed cell-type annotations. (D) 784 

Extraction of independent dynamics of the population and transcriptional regulation. Change in 785 

RNAPII distribution at the gene loci: a gene (blue) was transcriptionally activated (red nuclei) 786 

following the stimuli, while population size was unchanged. Change in the height of RNAPII 787 

distribution: a type of cells (yellow) was grown after the stimuli, while the transcriptional activity 788 

was maintained. (E) Estimated mean (95% confidence interval) of TR and the CPM of 789 

tsChIL-RNAPII at TSS. Representative genes of mature skeletal muscle cells and immune cells 790 

are shown. (F) Bulk-tissue expression levels (TPM) of the representative genes. (G) Different 791 

activities of two major cell-types in muscle regeneration. Scatter plots of log2FC of day-3 vs. 792 

day-0 of TR (x-axis) and the TSS-level (y-axis) are shown: immune cell marker genes (left); 793 

myogenic genes: right. Colors indicate significance in TR and TSS-level based on |log2FC| > 1 794 

(two-fold) and FDR < 0.1. (H) Activities of major cell types in muscle regeneration. The colors of 795 

the heatmap show the log2FC to day 0 (uninjured) of TR and TSS levels. Representative genes 796 

with significant changes in TR are shown. (I) The dynamics of the biological process in muscle 797 

regeneration and the participating cell types. Genes were assigned to five groups (C1-5) based 798 

on highest time point of TR. OR indicates the specificity of participation to the biological 799 

processes. 800 

Table 1: Cell numbers in the tissue sections used in this study  801 

Tissue section Cell count (rep.#1-3) Average 

Heart H3K27ac 12,297  14,210  9,090  11,866  

Heart RNAPII-S5P 12,155  13,755  8,847  11,586  

Liver H3K27ac 14,999  7,458  11,551  11,336  

Liver RNAPII-S5P 14,177  14,112  16,330  14,873  

Testis H3K27ac 17,085  16,723  16,931  16,913  

Testis RNAPII-S5P 20,542  17,426  13,634  17,201  

TA muscle RNAPII-S5P 4,104  3,723  4,421  4,083  

 802 
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Supplementary Information 803 

 804 

Figure S1: Immunofluorescent images of whole sections stained with the ChIL-probe. 805 
Immunofluorescent images of the indicated tissues for all replicates (N=3). Tissue sections were 806 
stained with H3K27ac or PolIIS5P antibody and visualized using the fluorescent dye–conjugated 807 
ChIL-probe. DNA was counterstained with Hoechst 33342. Scale bar: 1 mm. 808 
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 809 

Figure S2: Super-enhancer analysis of each replicate. Tissue-specific enhancers are 810 
identified so that they are listed more than twice (twice: blue, all: red) in the top 5% of tag count 811 
among enhancer candidates and are not in the SEs of other tissues. Grey shades indicate the 812 
top 5% of tag count among the enhancer candidates.  813 

 814 

 815 

Figure S3: Motif enrichment analysis of tsChIL-Hnf4a peaks. Enrichment analysis of known 816 
motifs using HOMER. The motifs shown here are the top 5 based on the p-values. Their 817 
enrichment of motifs was evaluated within 250 bp from a summit of MACS2 peaks. The height of 818 
the motif logos corresponds to nucleotide frequencies. 819 
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 821 

Figure S4: Enhancer set enrichment analysis of Hnf4a-bound genes. Gene set enrichment 822 
analysis of Hnf4ɑ-bound genes (A), and the rate of Hnf4ɑ-bound genes in the sliding windows of 823 
100 genes (B) along the ordered enhancers. All possible combinations (3 × 3 combination of 824 
replicates for tsChIL-H3K27ac and tsChIL-Hnf4ɑ) are shown. 825 

 826 

Figure S5: Tolerant definition of “active genes” by RNA-seq. Precision and recall curves for 827 
predicting tsChIL-RNAPII peaks based on TPM values are shown. The recall represents the 828 
proportion of RNAPII peaks covered by the active genes, and the precision is the proportion of 829 
active genes covered by the RNAPII peaks. Active genes are defined at each TPM threshold. 830 
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 831 

Figure S6: Statistical modeling of RNAPII reveals transcriptional dynamics in muscle 832 
regeneration.  (A) The complete immunofluorescent images shown in Figure 4a. Scale bar: 20 833 
µm. (B)  Proportion of sequenced reads (%UMI) occupied by the annotated cell types in muscle 834 
regeneration. The single cell data (GSE143437) by De Micheli et al. was re-analyzed. (C) 835 
Volcano plots of the contrasts (day 3 vs. day 0 after CTX injury) for TR (top) and TSS (bottom). 836 
The x-axis represents log2FC (day 3/day 0), whereas the y-axis represents −log10FDR. 837 
Significant changes that satisfy |log2FC| > 1 (twofold) and FDR < 0.1 are in red. Genes that have 838 
the top 10 p-values are labelled. 839 
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Table S1: Epigenomic analysis methods on tissue sections 841 

 842 
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