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Abstract

Recent advances in omics studies have enabled analysis at the single-cell level; however,
methods for analyzing the whole cell of large organs and tissues remain challenging. Here, we
developed a method named tsChiL to understand the diverse cellular dynamics at the tissue
level using high-depth epigenomic data. tsChiL allowed the analysis of a single tissue section
and could reproducibly acquire epigenomic profiles from several types of tissues, based on the
distribution of target epigenomic states, tissue morphology, and number of cells. The proposed
method enabled the independent evaluation of changes in cell populations and gene activation
of cells in regenerating skeletal muscle tissues, using a statistical model of RNA polymerase I
distribution on gene loci. Thus, the integrative analysis by tsChiL can elucidate in vivo cell-type

dynamics of tissues.

Introduction

Tissues are terminally differentiated cells formed from stem cells, followed by cell-type
conversion and functional arrangement of cell types to the specified spatial localization.
Presently, the composition of the cells playing different functions and the mechanism by which
each type is formed have been elucidated. This allowed us to understand the biological function
of each tissue and the pathogenesis and developmental failure of diseases. Tissue composition
can be determined using known cell-type markers. Immunostaining for cell surface antigens and
other cell-type markers enables visual examination that determines the number and localization
of cells and tissue morphology. Determining the cell types and the size of the population (i.e.
number of cells) in tissues can be done using scRNA-seq, which is based on the transcriptomic
differences of individual cells'. Unsupervised clustering® of the gene-expression profiles allowed

the identification of the cell types, including those previously unknown.

Epigenomic analysis is widely performed at the tissue level, such as in the Encyclopedia of DNA
Elements (ENCODE), the National Institutes of Health Roadmap Epigenomics Project, and
International Human Epigenome Consortium (IHEC) projects that utilize ChiP-seq for bulk-level
tissues. The comprehensive identification of functional elements in genomes, such as promoters,
enhancers, and the binding sites of transcription factors and their regulatory relationships that
characterize the tissues has been achieved®™. However, in epigenomic analysis at tissue-level,
imbalance sampling cannot be avoided because tissues are mixtures of diverse cell types.
Particularly, when the number of target cells (e.g. stem cells) is limited, they are overwhelmed by
the information on the other majority cells. Furthermore, in ChlP-seq, the genome coverage per
cellis limited®, i.e. information on minority cells in the bulk tissue is lost. Therefore, it is necessary

to collect a large amount of target cells that meet the requirements of ChlP-seq. As such, after
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defining the target cell types and markers, the sectioning of narrower area, dissection, or
cell-sorting is utilized. Recently, new methods for analyzing a small number of cells with higher
genome coverage at the single-cell level, including our ChlIL and others, have been developed7‘
4 In addition, isolating cells causes potential effects to cells owing to the physical separation of
the tissues. Several tissue analysis methods that do not involve enzymatic digestion, have also

been proposed™>?°

. However, obtaining epigenomic information from a limited number of cells
using ChlP-seq based technology remains a challenge. To understand the formation of all cell
types, the use of whole-tissue analysis using single-cell technology is ideal; however, it is very

costly.

Hence, several transcriptomic analysis approaches that combine the advantages of bulk
RNA-seq and scRNA-seq, which can analyze and identify numerous cells at once, have been
proposed. For example, the changes in the gene expression of cell types in bulk RNA-seq
profiles during embryogenesis have been interpreted using single cell RNA-seq collected
separaterZl. The estimation of the cell-type composition of bulk tissue RNA-seq based on single
cell RNA-seq has also been reportedzz. Because data from different platforms complement each
other, a data integration method has also been proposed, particularly the embedding of single
cell RNA-seq into seqFISH+23 data to virtually reconstruct whole gene expression data using

spatial information*%*

. In addition, a computational approach for epigenomic analysis to
decompose DNA methylation states into cell types has been suggestedza. However, to date, a
universal solution for the cell-type decomposition of tissue epigenomes has not yet been

established.

Here, we propose a framework that integrates ChlL into the tissue-slice analysis and uses single,
very small, and thin tissue sections for ChIL-Seq (herein, tsChlIL). Our obtained bulk tissue
epigenome data showed dynamic changes in both the number and cell type, and computational
modeling was thus required. We first optimized ChlL for highly sensitive genome-wide analysis
using a single thin section, as well as tissue visualization using immunostaining. The ChliL is
proposed to enable epigenomic analysis at the single-cell level, and the acquired thin-section
tsChiL data are expected to be the sum of the high-depth single-cell epigenomes. Using three
different types of tissues, we confirmed the adequate sensitivity, specificity, and reproducibility of
tsChiL in identifying enhancers, transcription factors, and transcriptionally activated genes in
whole tissues. Thus, we built a statistical model that evaluates the changes in the distribution of
RNA Polymerase Il at the gene loci and provides a robust, cell-type resolution transcriptional

regulatory analysis for large changes in population size.
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87 Results

88

89  Thin-section ChiL-seq enabled spatial epigenomics with single tissue section

90 Vvarious cell types exist in tissues, each of which exhibits a unique localization pattern. The

91 transcriptomic and epigenomic pattern of these cells may be affected by the enzymatic isolation
92 process. Therefore, we focused on the use of tissue sections that are free from enzymatic

93 treatment biases for epigenomic analysis and developed an experimental procedure using a

94  single, very small, and thin tissue sections. We then optimized the ChiL for tissue (Fig. 1A),

95 based on our previously reported sc-epigenomic analysis tools”®,

96

97 Since the reports on analysis using microtissue sections are limited, and all of them require

98  multiple tissue slices to obtain the required cell number*>?°

(Table S1). We therefore focused on
99 preparing frozen, unfixed tissue sections to equalize the fixation conditions. On plates, unfixed
100 tissue thin sections are fixed with paraformaldehyde then permeabilized, followed by blocking.
101 Immunostaining is then performed by reacting with primary antibodies against the target
102 molecules on chromatin. Then, a fluorescent-labeled ChiL-probe attached with secondary
103 antibodies was used to obtain the tissue localization of the target by imaging at the subcellular
104 level. Subsequently, Tn5 transposase inserts an artificial sequence containing a T7 promoter
105 into the genomic region near the target. In vitro transcription of the genome sequence near the
106  target protein, starting from the T7 promoter, was performed, and the reverse-transcribed DNA
107 was sequenced using a next-generation sequencer. Compared with conventional epigenomic
108 analysis methods for FFPE and fresh frozen tissue slices, this method enabled uniform fixation
109 conditions for the analysis of micro-thin slices. Therefore, using the highly efficient ChIL method,
110 we attempted to analyze tissues with an input size of 3 mm x 3 mm x 10 pm. Thus, we designed
111 tsChiL as a high-precision method for analyzing the epigenetic information of a group of cells on
112 a tissue section of the target, following the spatial distribution of the specific epigenetic status.
113
114 To evaluate the designed tsChiL experimental procedure, the levels of the enhancer marker of
115 histone modification H3K27ac and the recruitment of RNA Polymerase Il (RNAPII), an indicator
116 of transcription, were detected in three different tissues: liver, heart (left ventricle), and testis.
117 Most of the cells were hepatocytes, comprising 70-80% of the liver. The H3K27ac signal
118  visualized by the ChlL-probe was uniformly distributed across cells on the sections.
119 Subcellularly, the co-localization of H3K27ac and RNAPII in euchromatin regions
120 (Hoechst-negative) was observed (Fig. 1B). In the testis, which consists of cells at multiple
121 differentiation stages, the RNAPII signal was strongly distributed and localized in cells with high

122 transcriptional activity, especially near the outer periphery of the seminiferous tubule®” (Fig. 1C),
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123 a region where cells in the early stages of sperm differentiation are located (Fig. 1C). Meanwhile,
124 the heart was co-stained using laminin and the ChIL probe to distinguish the cell boundary
125  regions and visualize the basement membrane (Fig. 1D). S5P signal showed a localization to
126 the low Hoechst-dense region of the cell nucleus in which transcription may active, suggesting
127 that immunostaining with ChiIL probe was a valid histological staining method at the subcellular
128  level (Fig. 1B-D, Fig. S1).

129

130  To validate the feasibility of tsChiL for sensitive and accurate epigenomic analysis, we performed
131 tsChiL-seq using a single thin section containing 1,000-10,000 cells (Table 1), which was
132 generally assumed as a low number of cells in culture”®. The number of cells used was less than
133 that of conventional epigenomic methods used especially for tissue analysis (Table S1).
134 Furthermore, the genome-wide analysis was performed by ChlIL reaction on single sections of
135  the sections that showed in Figure 1B-D. In the representative visualized epigenomic data in
136  liver (Fig. 1E), the accumulation of H3K27ac and RNAPII at the Alb locus, a hepatocyte marker,
137 was observed. The former showed an activated upstream enhancer region, whereas the latter
138  was highly transcriptional activity at the locus. The transcription of Alb was also confirmed using
139 RNA-seq with different serial slices. These results indicate that tsChIL enables the simultaneous
140  acquisition of both the tissue distribution of the epigenomic status and the genome-wide
141 epigenomic data using a single tissue section containing a small number of cells (103 to 10° cells
142 in 10 mm?® area).

143

144  Next, to evaluate the genome-wide distribution of the signals obtained using the tsChiL
145 procedure proposed above, we examined the specificity of the signal localization among different
146  tissues and antibodies and the reproducibility of signal localization of the same tissue and
147 antibody. First, to estimate the appropriate number of reads for ChiL-seq with tissues, we
148  obtained 480 M reads from RNAPII ChiL-seq in muscle tissue and evaluated the library
149 complexity®® (i.e. the prediction curve of usable reads). As seen in Figure 1F, the number of total
150  usable reads was starting to move away from the black line at approximately 107, indicating a
151  decreasing percentage of usable reads. Therefore, we determined that approximately 10’ reads
152 is a good cost-balanced number of the required reads in the case wherein the number of cells
153 per section is < 10*. To obtain a ChiL signal with sufficiently high signal-to-noise ratio, we
154 acquired an average of approximately 14 M reads (Table S2), which is comparable to the
155 number of reads in the ENCODE tissue ChIP-seq (10 M—20 M)2.

156

157  with this number of reads, the tsChlL-seq data from the liver, heart, and testis were obtained,

158 and the genome-wide localization of each data set is shown in Figure 1G. In all tissues and
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159 H3K27ac and RNAPIlI S5P antibodies, signals were concentrated around the coding regions
160 (promoters and gene body) compared with the no-antibody (herein, No Ab; without primary
161  antibody) controls (53%-59% and 41%-48%, respectively). The results showed that the genomic
162 sequences were selectively extracted from the transcriptionally activated regions of the genome.
163 In Figure 1H, we describe the correlation matrix of the signal levels on the whole genome to
164  confirm the high reproducibility of the replicates. The dendrogram shows the hierarchical
165 structure of the highest correlation among the replicates (Liver-H3K2ac: 0.90, Liver-Polll: 0.90,
166  Heart-H3K27ac: 0.87, Heart-Polll: 0.92, Testis-H3K27ac: 0.91, Testis-Polll: 0.94 in average of
167 triplicates), and the correlation within the same tissue (e.g., Liver-Polll vs. Liver-K27ac: 0.87;
168  Heart-H3K27ac vs. Heart-Polll: 0.88; and Testis-H3K27ac vs. Testis-Polll: 0.88; the list of all
169 correlation coefficients are summarized in Table S3). These results suggest that tsChlL-seq can
170 capture the epigenomic differences between different tissues and is technically reproducible.

1M

172 Identification of regulatory factors in the formation of tissue-specific enhancers

173 We next assessed the ability of tsChiL for low-input epigenomic analysis of tissues. First, we
174 performed tsChlL using thinly sectioned tissues from the liver, heart, and testis, and the identified
175  enhancers were compared by matching references® (Fig. 2A). According to the odds ratio (i.e.,
176 specificity, the detailed definition is described in Method), each H3K27ac ChliL-seq signal
177 preferentially captured the corresponding tissues-specific enhancer (Liver: 33.5, Heart: 27.1,
178  Testis: 4.1; The other odd ratios are listed in Table S4). Therefore, we successfully detected
179  tissue-specific enhancers using tsChiL with lower input compared to the previous reports that
180  utilized 500 pg chromatin equivalent to 10’-10° cells.

181

182 Next, we examined the enrichment of the H3K27ac signal on representative tissue-specific
183 enhancers, including the liver, heart, and testis. We focused on the enhancer region of Rxra
184 genes29 specifically expressed in liver tissues, Gnat3 cardiac muscle-specific gene retinoic acid
185 receptor, and Eps8 expressed in the blood—testis barrier (BTB)3°. H3K27ac signal enrichments
186 on each tissue-specific enhancer were observed on the IGV screen shot (Fig. 2B). In contrast,
187  all Actb-expressing tissues showed the ubiquitous enrichment of H3K27ac.

188

189  We further evaluated the enrichment of the regulatory sequence in extracted enhancers using
190  tsChiL based on the enrichment of the TF-binding motif (only the top scoring motifs are shown in
191 Fig. 2C; all others are in Table S5). The enrichment of known liver-specific TF-binding motifs,
192  Rxra, Hnf4a, Nr2f6, and others were observed in the H3K27ac tsChliL-seq data obtained from
193 the liver. This data is consistent with the liver-specific regulatory sequences registered as open

194  chromatin regions detected using ATAC-seq with mouse liver tissues in the database®.
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195 Meanwhile, the H3K27ac signal obtained from the heart showed relatively higher enrichment at
196 KIf12 than others; Sox5 and androgen receptor (AR) binding motifs were enriched in the
197 testis-H3K27ac signal, which was consistent with previous studies reporting that AR binds to the
198 androgen responsible element (ARE) on regulatory sequences with histone acetyltransferase to
199  regulate gene expression®®. These data support that H3K27ac tsChIL can identify
200  cis-regulatory elements following the extraction of tissue-specific enhancers.

201

202 Because the enrichment of the tsChiL signal should reflect the quantitative H3K27ac levels as
203 demonstrated by the identification of super enhancers (SEs) using ChlP-seq, we next
204  quantitatively determined the H3K27ac level based on the read counts. Then, SE formation upon
205  TF binding on the extracted cis-regulatory elements was evaluated. First, we listed the highly

34,35

206 enriched regions of the H3K27ac tsChlL signal as SE from each liver, heart, and testis data
207 set. The labeled genes in Figure 2D are representative protein-coding genes near the identified
208  top ranked SEs, which have the highest read counts in peaks (see Fig. S2 for all replicates). In
209  the liver, known hepatocyte marker genes, Alb, and albumin family, Gc are also detected in
210  motif-enrichment analysis performed in Figure 2C. In addition, the core transcription factor
211 Hnf4a®, which activates the genes by itself, was included in the top rank (1.6 to 3.5%).
212 Furthermore, the SEs featuring each tissue were identified. In the heart (left ventricle), Ablim1
213 expressed in the left ventricle and involved in left—right axis formation®’, was detected, whereas
214 in the testis, SEs were identified in the vicinity of Crem, which is involved in spermatogenesissg.
215

216  Finally, to validate the function of the SEs identified in the liver using this method, we performed
217  tsChliL targeting Hnf4a, which showed a high specificity score (deviation-Z) in liver SEs. Hnf4a is
218 known to be an important nuclear receptor during hepatocyte differentiation®®, and has been
219 shown to contribute to SE formation as a core transcription factor, along with RXRa?°.
220  Immunostaining with the ChIL Probe showed that the HNF4o was distributed throughout most
221 cells in the liver tissue and detected in the open chromatin region of the nucleus in each cell (Fig.
222 2E). A pronounced accumulation of Hnf4a signals in the SEs in the region was observed (Fig.
223  2F, see Fig. S3 for the motif enrichment analysis on Hnf4a peaks). We next evaluated the
224  selective binding of Hnf4a to the genes in the liver SEs (Fig. 2G; Fig. S4 for the replicates).
225 Using the gene sets of SEs and TEs neighboring genes obtained in Figure 2D, gene sets
226  enrichment analysis (GSEA)* demonstrated that the hits of the ChiL-Hnf4a peaks against liver
227 enhancers scored as high as 0.72 in the enrichment score (Fig. 2G, top). Particularly, Hnf4a was
228  bound to 76.4-78.8% of the SEs (Fig. 2G bottom). In contrast, in the negative controls of the
229  heart- and testis-specific SEs, the number of SEs bound by Hnf4a was approximately 0.5 in the
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230  enrichment score and the percentage of Hnf4a bound to the heart- and testis-specific SEs was at
231 arandom chance level (24.4-34.2%).

232

233  In summary, the data from tsChiL-H3K27ac demonstrated that the regulatory candidate
234 transcription factor Hnf4a obtained from the cis-element refinement selectively binds to the
235  liver-specific SE region of the Hnf4a locus. Hnf4a could be validated to provide positive feedback
236  that binds to the SE region of its own Hnf4a locus. Our data indicated that tsChiL is useful for the
231 regulatory analysis of enhancers, including transcription factors and SEs, using low number of
238  cells.

239

240  tsChIL-RNAPII peaks detected the majority of active genes in tissue

241 Transcriptome information is obtained by evaluating the binding position of RNAPII using
242 epigenomic analysis. Here, we detected the active genes based on the binding of RNAPII on the
243 genome using tsChiL. In Figure 3A, we plotted the cumulative number of consumed reads of the
244 detected genes in RNA-seq and RNAPII tsChiL in the order of their read counts. Due to the wide
245  dynamic range of RNA-seq data, high copy-number mitochondrial-derived RNAs (e.g.,
246 mitochondrial ribosomal RNAs) and highly expressed genes that characterize each tissue (Alb in
247  liver, Myh6 in the heart, Prm1 in testes), consumed 80% reads on a small number of highly
248 expressed genes (whose expression can be confirmed; Liver 5%, Heart 1%, Testis 11%). The
249 identification of weakly expressed genes and rare populations in bulk tissue RNA-seq is
250  generally hard to obtain because the top 10% genes spends 80% of its reads in even at the

251 single-cell level**.

252

253 In contrast, ChIL-RNAPII did not exhibit an exponential increase in the number of consumed
254 reads required to detect gene expression from RNA-seq. It also efficiently detected more genes
255 as the number of reads increased. The dynamic range of RNA-seq depends on the product of
256  the cell number and the concentration of RNA in each gene, whereas that of the RNAPII signals,
257  in essence, depends on the product of the presence or absence of gene expression (0, 1, or 2)
258  and the cell number. The results are consistent with the fact that highly and ubiquitously
259  expressed genes occupy a high number of reads in the RNA-seq data. The result suggested that
260  fewer reads are required for gene expression profiling using tsChiL RNAP2 than RNA-seq.

261

262  Thus, the genes were divided into five groups based on their expression levels from RNA-seq,
263 and the correlation of each tsChlL RNAPII signal with their expression levels was examined (Fig.
264  3B). In the high-expression group in all tissues, the intensity of the RNAPII signal in the TSS was

265  highly correlated with its expression level. In the 75"-100" percentile group, a high accumulation
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266 of RNAPII in the gene body region was also detected, suggesting a movement of RNAPII to the
267 locus upon transcriptional activation. Here, we showed that tsChIL-RNAPII demonstrated a
268 preference for capturing highly expressed genes in tissues. Subsequently, we assessed the
269  overlap between RNA-seg-confirmed genes (TPM > 0) and tsChIL-RNAPII peaks. tsChiL peaks
270  captured approximately 30% (Testis slightly lower, approximately 20%) of the active genes (TPM
271 > 0), whereas false positives were almost absent (Fig. 3C). In addition, tsChIL peaks stably
212 detected approximately 40-50% of the genes expressed in RNA-seq, independent of the TPM
273  threshold for defining the expressed genes in RNA-seq (Fig. S5). These results suggest that the
274 peak region is likely to capture genes with high expression because the region with high signal
275 counts was judged to be the peak region43. In all tissues, the expression levels of the genes in
276  Common were higher than those in RNA-seq group as expected (Fig. 3D).

271

278  Figure 3E shows an IGV screenshot of the tsChiL RNAPII. The accumulation was detected at
279  the Trf (transferrin) locus in the liver, Myh6 (cardiac myosin) in the heart, and Meigl (a
280 meiosis-expressed gene) in the testes. These are considered representatives of genes
281 specifically expressed in each tissue. At the Actb locus, a house-keeping gene, the RNAPII
282 signal was accumulated in all tissues, indicating active transcription. In these highly
283 transcriptionally active genes, a wide distribution of RNAPII signals was detected on the gene
284 body, suggesting that the RNAPII binding distribution patterns would enable an in-depth profiling
285  of the transcriptional programs in tissues.

286

287 Modeling RNAPII traveling reveals transcriptional dynamics in the rapid change of cell
288  population in skeletal muscle regeneration

289  We demonstrated that enhancers and transcriptional activity states can be detected with high
290  sensitivity, specificity, and reproducibility at the whole-tissue level by the optimized ChiIL for
291  tissues. Then, tsChIL-RNAPII data in Figure 3 suggested that, in addition to amount of the signal
292 at the gene loci, evaluation of the distribution or its elongation across the entire locus would
293  improve the analysis of the transcriptional activation in various cells in tissue. We thus conceived
294  a concept the statistical modeling of tsChIL-RNAPII data for the epigenomic analysis of
295  heterogeneous tissues.

296

297  We used skeletal muscle regeneration as a model case, wherein numerous cell types
298  dynamically change their composition, particularly that of the mouse tibialis anterior (TA) muscle
299  after cardiotoxin (CTX)-induced injury. During regeneration, migrating immune cells are
300  dominate the tissue 2 to 3 days after muscle injury*. During this time, the activation of satellite

301 cells, which are responsible for skeletal muscle regeneration, leads to the regenerated muscle
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302 fibers observed on day 14. We thus established a model to analyze the gene expression
303 dynamics in each cell type from day O (pre-injured period) and until day 14. tsChiL obtained data
304  from five biological replicates using the tissue sections of TA muscles at five time points on days
305 0,3,5,7, and 14 after the CTX-induced muscle injury. As shown in Figure 4A (Fig. S6A for the
306 entire time-course), the basal lamina separating the muscle fibers observed on day 0 was
307 destroyed post-injury. The destruction of the cells on the third day can be seen in the image of
308 laminin co-stained with the ChIL probe. Furthermore, the fluorescence image of the ChiL probe
309 suggests the presence of multiple cell types, such as the activated muscle satellite cells, muscle
310 progenitor cells that have started to differentiate, and migrating immune cells associated with the
31 inflammatory response. On day 14, the structure of the muscle fibers possessing central nuclei
312 were observed, thus indicating regenerated muscles.

313

314 First, we visualized the distribution of the RNAPII signal by IGV for representative genes in
315 skeletal muscle and immune cells. Changes in RNAPII distribution are observed at the locus for
316 Actal (which is highly expressed in skeletal muscle) and Cd68 (a surface marker of
317 macrophages) (Fig. 4B). The Cd68 locus showed an overall increase in the RNAPII signal from
318 day O to day 3, whereas Actal showed an overall decrease. These results indicate the rapid
319 increase in immune cells and the decrease in skeletal muscle cells during the early stages of
320  injury (days 2-3) as shown in Figure 4C. In Actal, however, the RNAPII signal is more
321 concentrated near the transcriptional end site (TES) than the transcriptional start site (TSS). We
322  thus hypothesized that the shape of the RNAPII distribution contains information on both the
323 population size of cells and the regulatory state of a gene known as the pause/release of the
324 RNAPII**“®, Therefore, we established a model for two cases (or their combination) as shown in
325  Figure 4D: one in which a specific gene of resident cells is activated by the induction of muscle
326  regeneration (i), and the other in which the height of the already activated RNAPII signal
321 increases due to an increase in the number of cells (e.g., migrated immune cells from outside the
328  tissue) (ii). The traveling ratio (TR) is often used to evaluate the degree of RNAPII pause/release,
329 as in Bartman et al.*, providing a brief description of the geometry of the distribution of the
330  RNAPII in the gene loci in terms of the ratio of the signal levels between TSS and TES.
331 Furthermore, we modeled the estimation of TR as a form of Poisson regression with an offset
332  term (see details in Methods). For each locus, the signal level (count per million [CPM]) of
333  RNAPII at the TSS is exp(Bo), and that of TES is exp(B;) times the TSS level exp(Bo), i.e.,
334  exp(Bo+B1). The statistical model allows us to evaluate the confidence intervals for TR and

335  perform statistical tests for changes in varying conditions and time points.
336
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337  Figure 4E shows the estimated values of the mean RNAPII levels at TSS and TR, along with the
338 confidence intervals. We then compared the tissue-wide expression levels of the corresponding
339 genes (Fig. 4F). Surprisingly, the tissues-wide expression of Actal and Cd68 were synchronized
340  with the pattern of the RNAPII TSS-level, whereas the transcription factor myogenin (Myog)
341 expressed in muscle progenitor cells at the differentiation stage has a synchronized pattern to
342  TR. These results suggest that the tissue bulk RNA-seq is a combination of the cell number and
343  the changes in the amount of gene expression.

344

345  Therefore, to distinguish the transcriptional activation indicated by the TR, and the population
346  size indicated by the TSS-level as inferred in Figure 4E-F, we analyzed the changes in the
347  TSS-levels and TR at day 3 (Fig. 4G and Fig. S6C). Each set of genes was associated with each
348 'single’ cell-type, the definition of which is based on the scRNA-seq analysis of injured muscle by
349 De Micheli et al.®. The population size of the cells that express the skeletal muscle related
350  genes (Fig. 4G, right) were decreased after injury, whereas the changes in TR revealed the
351 active transcription of the genes. Meanwhile, in the group of genes associated with immune
352  cells, TSS-level was increased while TR was less altered (Fig. 4G, left), which can be interpreted
353 as an increase in the population of cells already possessing active gene loci (i.e. migration). This
354 interpretation is consistent with the dynamic population changes in muscle regeneration clearly

355  revealed by recent studies using scRNA-seq*®™>°

. In summary, the statistical model of tsChIL
356 RNAPII allowed us to evaluate the transcriptional activity of genes associated with specific cell
357 types, independent of increased population of immune cells and decreased skeletal muscle cells
358  during muscle regeneration.

359

360 Next, we identified the uncharacterized dynamics in muscle regeneration from day 0-14 using
361 the other cell-type markers defined by De Micheli et al.”®. First, we selected 66 genes among the
362  markers that changed the TR (FDR < 0.1) at any time point compared with day 0. The changes
363  inthe TR and TSS level of these genes are shown as a heatmap (Fig. 4H) to visualize the trends
364 in the transcriptional activation of each gene, as well as the increase or decrease in the number
365  of cells that harbor the activated genes. From the log,TSS, which indicates the cell number, we
366  confirmed that mature skeletal muscles (SKMs) decreased once after injury (white to blue);
367  however, most genes were activated at day 3 and returned to the original population size (white)
368  atday 14. Many of the cell types, such as mesenchymal progenitors/SMCs, myeloid progenitors,
369  and resident macrophages/APCs, transiently increased in number after injury but returned to
370  their pre-injured levels on day 14, indicating association with inflammatory responses (Ada2,

371 Rgs2, Corola, Lyz2, Clga)*®*'. Meanwhile, Myl1, a gene that was transiently increased after
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372 injury, Tnnc2, and Actal, showed the same TR pattern, suggesting that these genes also
373  function in regeneration and not only in muscle fiber formation®.

374

315 Next, we describe the muscle regeneration process by classifying gene groups according to the
3176 pattern of TR changes over time. The clusters C1-5 were assigned according to their peaks
371 (highest point) of TR in the time-course of regeneration, the tissue-wide dynamics were
378  appeared in Figure 4l, suggesting transcriptional regulation in muscle regeneration. The C1
379 exhibit the highest TR at day 0, and thus indicates a down regulated biological process after the
380 injury. The proliferation of the immune cell was repressed, and the major participants are the
381 resident macrophages and APCs and myeloid progenitors. The C2 which has peak at day 3,
382 districted the activation of myogenesis mainly orchestrated by MuSC, muscle progenitors and
383 also by neural cells, which is consistent with previous reports53. The C3, which has peak day 5,
384  does not show strong enrichment. The C4 contained muscle contraction, ion transport and action
385 potential related GO terms, which suggests the regenerated muscle was formed at day 7. The
386 C5 (day 14) showed the activation of angiogenesis in the late stage of regeneration>*. Here, the
387 statistical modeling that combined RNAPII-mediated transcriptional elongation and population
388 size changes achieved by our tsChiL provides a strategy for understanding the process of
389  muscle regeneration that is organized by diverse cell types in tissue.

390

391  Discussion

392 Here, we established a high-precision method for tissue epigenomic analysis using a single, thin
393 section samples. We focused on the tsChiL data of RNAPII and established a statistical model to
394 identify the changes in both population size and transcriptional regulation in the various cell

395  types. In this analysis, we utilized single-cell analysis transcriptomic data as a reference of

396 cell-type annotation. The efficient combination of existing single-cell analysis data and bulk but
397 high-depth tsChlIL data may lead to future approaches to analyze large numbers of individuals at
398  the whole-cell level.

399

400  We demonstrated that the transcriptional regulation of each cell type can be analyzed

401  independently, even in situations with large-scale variations in tissue cell-type composition, as in
402  the case of muscle regeneration. tsChiL by itself can also provide a qualitative assessment of the
403  changes in cell population size. Although we did not identify the cell types in the tissues nor

404  estimated their compositional ratios, our framework that combined scRNA-seq and epigenomic

405  analysis provides solid guidance for future tissue analysis.

406
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The traveling ratio (or pausing index), a concise measure of RNA polymerase Il dynamics, which
was originally introduced in the ChIP-chip as a measure of the degree of transcriptional
elongation*“°; and used in GRO-seq™> and ChIP-seq®. We found that the shape of the
distribution of RNAPII at the genomic locus, as revealed by epigenomic analysis, is indeed a
useful indicator of the transcriptional activity of a gene, and that the RNA-seq of bulk tissue is the

sum of all transcripts of all cells and is always affected by the population size.

The statistical modeling of TR provides analogous advantages in the analysis of differentially
expressed genes, such as the screening of genes with altered transcriptional states and
calculation of confidence intervals for TR. Here, we used a simplified model in which the RNAPII
signal at a single locus is the product of the size of the active population and the degree of
activity (traveling ratio). Alternatively, a more realistic model with different transcriptional
activities for different cell types and within the same cell type may be possible as proposed in the

bulk data decomposition methods®**"®

. Despite our simplified assumption, our established
model successfully determined transcriptional activities by cell type within a tissue. In addition,
tsChiIL RNAPII data can be modeled using a simple Poisson distribution rather than a negative
binomial distribution, which involves a complex dispersion parameter estimation. Furthermore,
the use of CPM normalization with offset terms as a natural way of handling replicates made the

model easier to apply, interpret, and use for tissue epigenome profiling.

Conventional ChIP-seq has a limited genome coverage of cell owing to the efficiency of
immunoprecipitation. In contrast, ChiL-seq, on which tsChiL is based, achieves a higher genome
coverage of at least 90% for histone modifications at the single-cell level. Accordingly, the
acquired data was assumed to be a sum of the deeply profiled cells. Thus, we believe that the
acquisition of such high-depth epigenome data will continue to be necessary for the modeling
compositions of tissues as shown in our framework. These high-depth data are expected to be
provided not only by ChiL-seq, but also by other single-cell epigenomic analysis methods; thus,

other methods can be integrated to our analysis framework.

tsChliL showed great potential to replace ChIP-seq, which has been the standard method of
epigenomic analysis for tissues. In this paper, the high reproducibility of tsChiL, both technically
and biologically, was demonstrated. Furthermore, tsChlL achieved comparable performance
while using fewer cells than ChIP-seq (~1/10,000 of required cell), and parameters, such as
fixation conditions, can be monitored based on the quality of immunostaining images. These
advantages can reduce cost. In addition, by combining visualization and genome-wide analysis

the spatial characteristic can be profiled and linked with the genome-wide characteristics of
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443 epigenomes as shown in the massive wave of RNAPII in the testis. For more advanced

444  applications, by leveraging the pairing of serial-thin sections of the same mouse, the correlation
445 between spatial and genome-wide patterns of heterologous proteins, such as histone

446 modifications and transcription factors, may be reliably estimated. We believe our proposed

447 method is a useful tool for tissue epigenomic analysis, together with recent scRNA-seq and

448  microscopy-based spatial transcriptomics.

449

450  Materials and Methods

451  Ethical statement

452  All animal procedures were conducted in accordance with the Guidelines for the Care and Use of
453 Laboratory Animals and were approved by the Institutional Animal Care and Use Committee
454  (IACUC) at Kyushu University.

455

456  Tissue preparation

45]  Eight-week-old C57BL/6N mice were used as replicates for this study. The liver, left ventricle and
458  testis were prepared from male, and tibialis anterior (TA) muscles were from female mise.

459  Tissues were freshly frozen using isopentane chilled with LN2 and stored at —=80°C. Muscle

460 regeneration studies were performed as previously reported, except for the injection of CTX into
461  the TA muscle®. Injured and intact TA muscles were sampled from five mice at day 0, 3, 5, 7,
462  and 14 after CTX injury. The day 0 indicates a needle-injured control.

463

464  Immunohistochemistry

465  Each tissue cryosection (10 pm) was placed on the bottom of 96-well microplate (Ibidi #89626)
466  and stored at -80°C until use. Each section was fixed with 4% paraformaldehyde in 0.3%

467  TritonX-100/PBS for 5 min and washed with 0.3% Triton X-100/PBS. Double blocking was

468  performed using blocking one (Nacalai #03953) and M.O.M blocking reagent (Vector

469 Laboratories #BMK-2202) following the manufacturer’s protocol. The sections were incubated
470  overnight at 4 °C with primary antibodies diluted in M.O.M. protein concentrate/PBS, followed by
471  incubation with ChIL probe at the same conditions but with the addition of 0.5 M NaCl. Then, the
472  wells were filled with PBS for imaging. The following antibodies were used: rabbit anti-H3K27ac
473 (1:500) (CMA309/9E2H10)%, rat anti-RNA polymerase Il S5P (1:1000) (1H4B6)*, and rabbit
474  anti-HNf4a (1:500) (C11F12, Cell Signaling Technology Cat. #3113), rabbit anti-laminin2a

475  (Sigma #L-9393).

476

477  tsChiL-seq
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478  tsChiL-seq was performed according to ChIL"® with some modifications: longer incubation time
479  was employed for some steps (1 h extended Tn5 binding and 2 h fill-in step), Thermo T7 RNA
480  polymerase (100 U/well; Toyobo), and 15 cycles of polymerase chain reaction (PCR)

481  amplification. Column purification (Zymo #D4013) and x0.5 volume of AMpure beads (Beckman
482 Coulter) selection were performed to obtain 200 to 500 bp average of the library. The single-end
483 libraries were sequenced using NovaSeq (lllumina). Reads were mapped against the GRCm38
484 reference genome using Bowtie2®” with the default option. Duplicated reads were discarded
485 using Samtools (rmdup). The uniquely mapped reads were used for further analysis.

486

487  Quality assessments of tsChiL-seq data

488  The matrix of read counts on the equally sized (10 kb) windows on the mouse genome was
489 generated using deepTooIs63 (version. 3.4.1) with the command: multiBamSummary bins -bs
490 10000 --ignoreDuplicates. Pearson correlation coefficients were calculated using the

491 log-transformed read count (with +0.5 pseudo-counts). The breakdown of mapped reads at the
492 genomic regions was calculated using HOMER (annotatePeaks.pl). The library complexity was
493 evaluated by Preseqzs. The theoretical case assumed uniform probabilities of obtaining reads
494  from the mouse genome (i.e., a common expected values of the Poisson distribution).

495

496  RNA-seq analysis

497  Total RNA (10 ng) was extracted for library preparation using a SMART-Seq Stranded Kit

498  (Takara) according to the manufacturer’s instructions. Libraries were sequenced on Hiseq1500
499 and NovaSeq (lllumina). Gene expression quantification was performed using Salmon® quant
500  with the default option.

501

502  Tissue-specific enhancer analysis

503  Peaks of tsChIL-H3K27ac were called using MACS2% with the option: callpeak --call-summits
504  --nomodel --nolambda -q 0.05. Tissue specificities of the peaks were evaluated using the odds
505 ratio in the known tissue-specific enhancer lists®. The odds ratio is defined as (p/(1-p))/(q/(1-)),
506  where p is the proportion of hits in the target tissue and q is the proportion of hits to the other
507 tissues in the enhancer lists. ChromVAR® analysis was performed using consensus peaks of
b08  each tissue. The consensus peaks were constructed by taking the intersection of the peaks of
509 three biological replicates. Typical and super enhancer candidates were called using HOMER®’
510  finePeaks with the option: -style super -superSlope -1000 -gsize 3e9. The pre-ranked GSEA®
b11  was performed using tag (read) count-ordered enhancer peaks. Then, the peaks were marked
512 by a binary indicator overlapping with tsChiL-Hnf4a peaks (called by MACS?2 as described above
513 with the option: -q 1e-5).
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Transcriptional activation analysis by tsChIL-RNAPII
Aggregation plots of the gene expression percentile groups were created using agpluses. The
gene groups were divided according to the TPM of the bulk RNA-seq analysis of each tissue

(liver, heart, and testis).

Statistical modeling of traveling ratio

The read counts of RNAPII tsChliL-seq at the TSS-region (=750 to +750 bp) and TES-region (0
to +1,500 bp) at all mouse transcripts were fitted to the following Poisson regression model. For
each gene, assume that the read count y; of the i-th replicate at site j (TSS or TES) follows the
Poisson distribution, where the mean parameter A; satisfies the relation: Aj/M; = exp(Bo+01Sj).
The offset term M,; is the total reads (in millions) of the replicate i, and s; is the indicator variable
that the read count y; is either TSS (s;; = 0) or TES (s = 1). Since the offsetting is equivalent to
the CPM normalization of the mean count, exp(Bo) and exp(B:1) can be referred to as the mean
CPM at TSS and the magnification factor of TES to TSS (i.e., the traveling ratio) of the gene,
respectively. The model evaluates variance and can thus estimate the confidence intervals of the
traveling ratio by utilizing all replicates (5 in our case) that have different total sequenced reads.
We assumed that the contrasts X - Y (e.g., fold-changes of TR between day 3 and day 0) follow a
Gaussian distribution, and the variance was calculated from Vy + Vy (variances of X and Y)
under the independence assumption of X and Y. p-values were estimated from the model, and
multiple test correction was performed using the Benjamini-Hochberg procedure in the selected

genes of interest.

Data Availability

The RNA-seq and tsChiL-seq data generated in this study have been deposited in the Gene
Expression Omnibus (GEO) database under the accession code: GSE159024. The codes used
for the statistical modeling of tsChlL-seq data are available at:

https://github.com/kazumits/tissueChlIL
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127  Figure 1: Epigenomic profiling using a single tissue section. (A) Schematic diagram of the

728  tsChliL protocol. (B-D) Immunofluorescent images of mouse liver (B), testis (C) and heart (D).
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129 H3K27ac, RNAPII-S5P, and laminin were stained with specific primary antibodies and visualized
730 using fluorescent labeled anti-mouse ChiL-probe (red: H3K27ac and PollIS5P) and anti-rabbit
731 1gG (green: laminin). DNA was counterstained with Hoechst 33342. Scale Bar: 20 um (left

7132 images), 10 um (right images). (E) Genome browser images of ChlL-seq for H3K27ac and

733 RNAPII-S5P and bulk tissue RNA-seq data at the Alb locus in liver tissues. (F) Library complexity
134 of ChiL data. Poisson represents an ideal case of the uniform probability of obtaining reads from
135  the mouse genome, whereas preseq refers to the future/past predictions of a species discovery
136 curve of sequenced reads using Preseqzs. Black circle indicates the read number we sequenced
1317 for this prediction. (G) Breakdown of mapped reads at the annotated genomic regions. Gene
7138 body: 3-UTR, exon, intron, 5’-UTR; Others: ncRNA, miRNA, snoRNA, and pseudogenes. The
139 proportions of the annotated region on the mouse genome are shown as “Genome” at the bottom
740  lane. (H) Genome-wide correlation at 10 kbp bins. Hierarchical clustering of Pearson’s

41 correlation coefficient of log-transformed tsChlL-seq counts is shown.
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Figure 2: Upstream factor identification through enhancer analysis using tsChiL-seq. (A)

Tissue specificity of identified enhancers by tsChlL-H3K27ac. The odds ratios of hits in the

reference tissue-specific enhancer list identified by bulk-tissue ChlP-seq data® are shown. Odds
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147 is defined in Methods. The cells enclosed by black squares indicate the maximal odds ratios (i.e.,
748  maximal specificity) for each row. (B) The IGV tracks of tsChIL-H3K27ac at identified

749 tissue-specific enhancers of Rxra, Gnat3, Eps8, and a house-keeping gene of Actb loci are

750  shown with the replicates. (C) Specific motif enrichment analysis was conducted using

151 chromVAR®. Hierarchical clustering of deviation-Z scores of three replicates of each tissue is
152 shown. (D) Super-enhancer identification. Tissue-specific enhancers are identified, so that they
753 are listed more than twice (twice: blue, all: red) in the top 5% in all enhancer candidates and are
154 not in the SEs of other tissues. Grey shades indicate the top 5% of tag count in enhancer

155  candidates. (E) Immunofluorescent images of mouse liver sections. Tissues were stained with
756 anti-Hnf4a antibody and visualized by a fluorescent-labeled anti-mouse ChlL probe. DNA was
757  counterstained with Hoechst 33342. Scale bar: 200 um (top), 10 um (bottom). (F) Hnf4a binds to
758  the SE at Alb gene loci. (G) Gene set enrichment analysis of Hnf4a-bound genes (top), and their

759  rate of Hnf4a-bound genes in sliding windows of 100 genes (bottom).
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762  Figure 3: ChIL-RNAPII detect active genes in tissue. (A) Dynamic ranges of bulk-tissue

763 RNA-seq and tsChIL RNAPII. The cumulative proportion in total mapped reads at genes (red:
764  tsChliL, blue: RNA-seq) were compared. Genes are ordered by the read counts on the exons for
765  RNA-seq and on +/-750 bp from TSS for tsChiL, respectively. (B) Signal intensities of tsChIL
766 correlated with the expression levels of genes. The lines indicate the average CPM of each

167 expression group at TSS. The expression groups were assigned with respect to the expression
168 levels (TPM) of genes. (C) Coverage of expressed genes by tsChIL-RNAPII peaks. The stacked
769 bar chart shows the proportions of detected genes in the RNA-seq only (RNA-seq: blue),

770 tsChlIL-Pol2 only (ChIL: red) and both (Common: green). (D) Higher expression levels at

771 tsChIL-Pol2 peaks. The expression levels of all expressed genes (TPM > 0) are shown. (E) The
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772 tissue-specific genes identified by tsChIL-RNAPII. The IGV tracks of all replicates of
713 tsChIL-RNAPII are shown at each specific gene (Trf, Myh6, and Meig for the liver, heart, and

774 testis, respectively). Actb is also shown as the ubiquitously expressed gene in the three tissues.
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776 Figure 4: Statistical modeling of the traveling ratio reveals the independent dynamics
1717 between population and transcriptional regulation in regenerating skeletal muscle

778  tissues. (A) Immunofluorescent images of the mouse tibialis anterior muscle on the indicated
719  days after CTX treatment. The images of anti-mouse ChiL probe for RNAPII-S5P (red) and

780  anti-rabbit IgG for laminin (green) are shown. Scale bar: 20 um. Refer to Figure S6A for more
181  frequent time points. (B) tsChIL-RNAPII signal of the marker genes of mature skeletal muscle
182 (Actal) and macrophages (Cd68). (C) Proportion of sequenced reads (%UMI) occupied by the
183 representative cell types in muscle regeneration. The single cell data (GSE143437) by De

784  Micheli et al.”® was re-analyzed. See Figure S6B for the detailed cell-type annotations. (D)

185 Extraction of independent dynamics of the population and transcriptional regulation. Change in
186 RNAPII distribution at the gene loci: a gene (blue) was transcriptionally activated (red nuclei)
181  following the stimuli, while population size was unchanged. Change in the height of RNAPII
188 distribution: a type of cells (yellow) was grown after the stimuli, while the transcriptional activity
789  was maintained. (E) Estimated mean (95% confidence interval) of TR and the CPM of

790  tsChIL-RNAPII at TSS. Representative genes of mature skeletal muscle cells and immune cells
791 are shown. (F) Bulk-tissue expression levels (TPM) of the representative genes. (G) Different
192 activities of two major cell-types in muscle regeneration. Scatter plots of log,FC of day-3 vs.
793  day-0 of TR (x-axis) and the TSS-level (y-axis) are shown: immune cell marker genes (left);
194 myogenic genes: right. Colors indicate significance in TR and TSS-level based on |log,FC| > 1
795  (two-fold) and FDR < 0.1. (H) Activities of major cell types in muscle regeneration. The colors of
796  the heatmap show the log,FC to day 0 (uninjured) of TR and TSS levels. Representative genes
797  with significant changes in TR are shown. (I) The dynamics of the biological process in muscle
798 regeneration and the participating cell types. Genes were assigned to five groups (C1-5) based
799 on highest time point of TR. OR indicates the specificity of participation to the biological

800  processes.

801  Table 1: Cell numbers in the tissue sections used in this study

Tissue section Cell count (rep.#1-3) Average

Heart H3K27ac 12,297 14,210 9,090 11,866
Heart RNAPII-S5P 12,155 13,755 8,847 11,586
Liver H3K27ac 14,999 7,458 11,551 11,336
Liver RNAPII-S5P 14,177 14,112 16,330 14,873
Testis H3K27ac 17,085 16,723 16,931 16,913
Testis RNAPII-S5P 20,542 17,426 13,634 17,201
TA muscle RNAPII-S5P 4,104 3,723 4,421 4,083
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Figure S1: Immunofluorescent images of whole sections stained with the ChlL-probe.
Immunofluorescent images of the indicated tissues for all replicates (N=3). Tissue sections were
stained with H3K27ac or PollIS5P antibody and visualized using the fluorescent dye—conjugated
ChiL-probe. DNA was counterstained with Hoechst 33342. Scale bar: 1 mm.
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810 Figure S2: Super-enhancer analysis of each replicate. Tissue-specific enhancers are

811 identified so that they are listed more than twice (twice: blue, all: red) in the top 5% of tag count
812  among enhancer candidates and are not in the SEs of other tissues. Grey shades indicate the
813  top 5% of tag count among the enhancer candidates.

814
Motif Source log,, p-value
géél}él%CAAA TFCA HNF4a(NR),DR1/HepG2-HNF4a-ChIP-Seq(GSE25021)/Homer -1432
QéAA TCAR Erra(NR)/HepG2-Erra-ChIP-Seq(GSE31477)/Homer 1176
ggi\l_\%;g AAA ; TIQA PPARa(NR),DR1/Liver-Ppara-ChIP-Seq(GSE47954)/Homer -1701
IAGGECAAAGGICA RXR(NR),DR1/3T3L1-RXR-ChIP-Seq(GSE13511)/Homer -924
815 TGACCTITSSCCGA PPARE(NR),DR1/3T3L1-Pparg-ChIP-Seq(GSE13511)/Homer 814

816  Figure S3: Motif enrichment analysis of tsChIL-Hnf4a peaks. Enrichment analysis of known
817  motifs using HOMER. The motifs shown here are the top 5 based on the p-values. Their

818  enrichment of motifs was evaluated within 250 bp from a summit of MACS2 peaks. The height of
819  the motif logos corresponds to nucleotide frequencies.
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Figure S4: Enhancer set enrichment analysis of Hnf4a-bound genes. Gene set enrichment
analysis of Hnf4a-bound genes (A), and the rate of Hnf4a-bound genes in the sliding windows of
100 genes (B) along the ordered enhancers. All possible combinations (3 x 3 combination of
replicates for tsChIL-H3K27ac and tsChiL-Hnf4a) are shown.

Liver Heart Testis

Precision

Figure S5: Tolerant definition of “active genes” by RNA-seq. Precision and recall curves for
predicting tsChIL-RNAPII peaks based on TPM values are shown. The recall represents the
proportion of RNAPII peaks covered by the active genes, and the precision is the proportion of
active genes covered by the RNAPII peaks. Active genes are defined at each TPM threshold.
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Figure S6: Statistical modeling of RNAPII reveals transcriptional dynamics in muscle
regeneration. (A) The complete immunofluorescent images shown in Figure 4a. Scale bar: 20
pm. (B) Proportion of sequenced reads (%UMI) occupied by the annotated cell types in muscle
regeneration. The single cell data (GSE143437) by De Micheli et al. was re-analyzed. (C)
Volcano plots of the contrasts (day 3 vs. day 0 after CTX injury) for TR (top) and TSS (bottom).
The x-axis represents log,FC (day 3/day 0), whereas the y-axis represents -log;oFDR.
Significant changes that satisfy |log,FC| > 1 (twofold) and FDR < 0.1 are in red. Genes that have
the top 10 p-values are labelled.
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841  Table S1: Epigenomic analysis methods on tissue sections

842

Method Tissue Target Sample vol. Journal

Fanelli et al., 2010
Proc Natl Acad Sci USA

PAT-ChIP Spleen Histone modification 4 sections
Fanelli et al., 2011
Nat Protoc
Seminoma
Breast cancer j t al., 201
FiT-seq Histone modification 10 sections Cejas'etal,, 2016
Bladder cancer Nat Med
CRC
. . Amatori et al., 2018
EPAT-ChIP Breast cancer Histone modification 10 sections
Clin Epigenetics
Chrom-EX Liver Histone modification Zhong et al., 2019
2 sections 2
PE Spleen Polymerase BMC Genomics
Seminoma

Breast cancer
Font-Tello et al., 2020

FiTAc-seq Bladder cancer Histone modification 2-4 sections
Nat Protoc
Melanoma
PNETs
Liver
Histone modification
Tissue-ChlL Heart . 2 ;
. Transcription factor 1 section This study
-seq Testis

Polymerase
Skeletal muscle
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