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ABSTRACT

The essential understanding of disease pathogenesis and enabling genetic findings to be used for
developing new therapeutics, is missing in the identifications of genomic loci through whole genome
association studies (GWAS). Here we describe a new computational method (mMap) that reduces
this gap by characterizing the functional and regulatory impact of allelic variation. The method
incorporates the precomputed annotations of 26 protein functional regions and eight regulatory
regions and recover SNPs that fall/lie in these regions. After annotating SNPs to functional or
regulatory data, method link them to biological functions and pathways, and predicts significantly
disrupted biological regions, processes and pathways, by controlling false discovery through
hypergeometric test. By doing so, the method limits data to human interpretation level by prioritizing
SNPs that have the potential to mediate a biological phenotype. The method is applicable to
procedures that rely on the understanding of the biological causal role of mouse SNPs and is
available online. In two example mMap applications, including whole genomes SNPs data from 48
inbred mice strains, we identify biological mechanisms by which SNPs can regulate pathways to

govern phenotypes by targeting different coding and regulatory regions, even in closely related strains.

INTRODUCTION

Genome wide association studies (GWAS) have identified many genetic factors that are
associated with disease susceptibility; but we have difficulty determining how the identified
SNP alleles contribute to disease susceptibility, which is critical for devising new therapies
from genetic discoveries. Many SNPs identified through GWAS are located within regulatory
regions, which makes it even harder to decipher the impact of allelic variation. Also, since
many different SNPs can be associated with a disease phenotype in a GWAS, it can be
difficult to select the true causative SNP from among the many whose allelic associations
arise by chance. For all of these reasons, improved computational tools that can rapidly
assess the potential impact of allelic variation on protein domain structure, post-translational
modifications, protein-protein interactions, cellular signalling pathways and on promoter or
enhancer function are needed. This type of computational tool could enable SNPs that are
most likely to impact a trait response to be identified from among the many that are often
identified in a GWAS. Moreover, this information could subsequently facilitate the translation
of genetic data into actionable information that can be used to improve our understanding of

disease pathogenesis and for developing new therapeutic approaches.
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We previously developed an early version of this type of computational tool (yMap) for
analysing the impact of allelic variation in yeast!. Mice are the premier model organism used
for biomedical discovery; and the large number of available inbred strains has made them
the ideal experimental organism for use in the genetic analysis of biomedical traits.
Causative genetic factors affecting susceptibility to eye, metabolic and infectious diseases
were identified when automated methods were used to filter the output of our haplotype-
based computational genetic mapping (HBCGM) method?. The use of structured
computational methods enabled true causative genetic factors to be uncovered by identifying
correlated genes that: (i) were expressed within the target organ for the analysed trait; (i)
contained a codon-changing SNP; and (iii) had gene ontology (GO) database annotations
that were related to the phenotype. Here, we further develop and adapt this approach for
analysis of mouse genetic data (mMap). To demonstrate utility, mMAP was used to: (i)
analyse genes affecting the response to drugs of abuse, and (ii) to identify SNP alleles that

are unique to individual strains and have potential to impact biomedical trait responses.

Features:

The architecture for this method is outlined in Figure 1. The gene symbol and identified
alleles for each SNP are analysed by this program to determine the presence of SNPs in 26
types of functional (like proteins domains and DNA-binding motifs) and 8 types of regulatory
genomic regions (promoter and enhancer motifs, see below for details). The SNPs
containing genes are then processed through over-representation tests to analyse the
impact of SNPs-regulated biological functional, pathways and regions. This enables the
impact of SNP alleles on protein functional or genome regulatory regions to be assessed.

Major features of the method are lists as following:

Protein functional and regulatory annotations: For functional assessment of SNPs, we pre-
compiled publicly available data from several available resources. Protein functions, protein
domains, and posttranslational modification data from UniProt®, PTMdb*. Additional protein
domains data compiled from InterPro®, Pfam® and SMART”. the protein localization data, as
well as the transmembrane regions data and interactions data retrieved from STRING’ db.
For regulatory assessment of SNPs, data on genomic regulatory regions enhancers,
promoters, promoter-flanking regions, DNA- methylation (CpG Islands), insulators,
transcription start-sites (TSS) and transcription factor binding-sites (TFBS) were compiled
from Encode consortium®, Ensembl®, VISTA?, and UCSC genome browser!?!; structural data
(Disulfide-bond, alpha-helix, Coiled-coil regions and turn) from PDB'2; mouse organ specific
bulk gene expression from Expression Atlas'®. The data of mouse microRNAs target binding

motifs was retrieved from miRBase* and the alternative start/stop codon mouse data from
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TISdb'®. The protein conservation is computed with Rate4Site', the algorithm calculates the
evolutionary rate at which a residue changes, the positions which are slow to change
provides a measure of being evolutionary conserved and vice-versa. The SNP positions that

overlap with the coding regions are provided with conservation scores.

A user provided flat file with gene names and SNP positions processed according to the type
of function choose. In case of functional analysis of SNPs, the method maps amino acid
level SNPs positions to protein functional features like PTMs sites or domains, whereas in
case of regulatory, the SNP with genomic coordinates is mapped to regulatory regions like
promotors or enhancers. The outcome is stored in a “functional-accessment.txt” file (see

supplementary info for all the information regarding the commends and output files content).

Protein pathways, network, GO-terms enrichment analysis: By mapping allelic variations to
the conserved genomic regions, the impact of allelic variations on biological processes and
pathways is assessed by hypergeometric tests as implemented’. This part of the analysis
assesses the potential impact of SNPs on biological processes, pathways and functions.
Additionally, a protein interaction network analysis describes the functional relationship
between proteins with SNPs. A similar analysis evaluates if SNP-alleles are significantly co-
localized in any of the given genomic regions, this highlights the impact of a genomic region
in a given phenotype. Overall, this section aims to highlight the relevant biological regions,
pathways and functions that can be disrupted due to SNP-containing genes with a high
potential to mediate a phenotype (Figure 2).

In the output enrichment lists, for the clarity purposes, we integrate an approach that based
on the “GO-term merging to nearest ancestral term”*’ and shorten the lists to a human
readable level. Also, the visualisations are generated as a part of output, to present
biological processes in a way that make interpretation easier. Overall, by doing in-depth
analyses of the impact of polymorphism on protein activity and regulation, the method
provides actionable information to prioritize genes from big data for further validation

analyses.

Literature search: A comprehensive dataset is compiled from various text-mining resources
by pooling together all the data for a given “gene-disease relation” to complement the final
output of our pipeline. These gene-disease relationship text-mining data were resourced
from (a) Phenolyzer'®, a tool that prioritizes genes based on information collected from
several platforms; (b) OpenTarget!® and DisGeNET?°, collections of gene-disease
associations from difference sources including from literature searches; and (c) PubMed and
NCBI gene db. The outcome complemented with a literature review file

“phenotype_accessment.txt” for the genes containing SNPs of interest.
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Single cell expression: Single cell expression data of mouse proteins were retrieved from
publicly available datasets?. These precompiled datasets contain information of gene
expression clusters of different cell-types. We provide the expression values of each gene
with SNPs and a file “scExpression-data.txt” generated for further analyses.

The final outcome consists of files and visualizations generated for each category of analysis

as well as summary files.

Example applications:

Case study 1: Functional assessment of coding SNPs (cSNPs) affecting responses to drugs
of abuse. Genetic factors play a crucial role in determining whether an exposed individual
will become addicted to an abused drug ?2. Several such genetic factors are strongly
associated with addiction to different drugs of abuse in GWAS, which include: ALDH2 and
alcohol abuse 23; CHRNA5, CHRNA3, and CHRNB4 with nicotine?*; and OPRM1 with opioid
abuse?. While the functional connection between these genes and the corresponding
abused drug is very clear, there are many instances were GWAS identify genetic factors
whose functional connection is less clear. We use mMap to assess the potential impact of
SNP alleles present in 638 genes reported for (human or mouse) substance abuse through a
literature search. A subset of these 208 genes have SNPs (from our database of 21.3M
SNPs, as identified and the data was compiled previously?®) located within the 16 different
types of functional regions (Figure 3, Figure S1). With majorly cSNPs disrupted regions are
protein domains (SNPs=149) and disulfide bonds (SNPs=129). One example, a gene called
neuronal adhesion protein, Nrcam, has published genetic SNP association with vulnerability
to autism, alcoholism, and substance addiction?’. We identified 10 SNP-alleles in three
different domains present in it (two SNP-alleles in Ig-like C2-type5, two in Ig-like C2-type6,
six in Fibronectin type-lll) with a broad range of functional classes, from protein-protein
interactions (PPI) to cell adhesion, morphology, and migration. The implication of Nrcam
protein domains in modulating functions due to SNP-alleles assign a novel role to these
SNPs that they can play in addiction phenotype beyond genetic associations. Another
example is, Sema6d protein, that plays an important role in neuronal rewiring during
development, contains three allelic variations in its disulfide bonds (DiSB), can compromise
its normal activities. Previously reported for its association with substance abuse, the cSNPs
present in DiSB of Sema6d may reveal a functional insight of how structural compromise can
play a role in substance addiction pathways. The cSNPs present in genes with substance

addiction association reveal a previously unknown function of DiSB in the phenotype.
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Together, in 208 genes, mMap identified genes with greater number of cSNPs are Discl and
Synel (Figure 2). And pathways enrichment tests of genes with cSNPs revealed pathways
like neuroactive ligand-receptor interaction (p= 3.65e-15), calcium signalling (p= 2.2e-07)
and PI3K-Akt signalling (p= 6.25e-06) (Table S1). These pathways are critical for the brain
development and functions and reflect a possible functional compromise that can play an
important role during substance addiction. This analysis presents an additional way to
prioritize phenotype relevant genes and pathways by focusing on SNPs that can disrupt

protein functional regions like domains (Table S2).

Analysis of regulatory SNPs (rSNPs). It has often been difficult to determine the impact of
rSNPs, but the recent production of many new data sets by the ENCODE project has
increased our knowledge about the sequence and function of genomic regulatory regions®.
This data along with other advances makes it possible assess the functional impact of many
rSNP alleles. For mouse SNP analysis, the mMap framework analyses the allelic impact on
eight different types of regulatory regions: promoters, enhancers, transcription start sites
(TSS), CpG Islands, splice-sites, microRNA binding motifs, alternative stop/start codons and
insulators. To demonstrate utility, mMap was used to analyse the impact of murine rSNP
alleles present in 638 genes (Table 2) associated with addiction. We found rSNPs within
promoters (SNPs=559), CpG Islands (SNPs=3955), enhancers (SNPs=3544), insulators
(SNPs=72) and transcription start-sites (n=5) of these genes. As one example, Insulin
receptor (Insr) encodes a tyrosine kinase that regulates the insulin response through
activation of several intra-cellular signalling pathways. Recently shown that insulin regulate
the ability of drugs that exert their role through impacting dopamine dependent
neurotransmission?®. mMap analysis identified 24 SNPs within the Insr promoter region
(Figure S2). By affecting the binding of transcription factors to the promoters, these SNPs
could have an allelic effect on Insr mRNA transcription. As another example, Neurexin 3
(Nrxn3) encodes a protein that functions in synapse development?®, and NRXN3 alleles have
been associated with alcohol abuse *° and cocaine dependence 3 in human GWAS. mMap
analysis identified 278 murine SNPs located within or near CpG islands in Nrxn3. Moreover,
Nrxn3 mRNA is extensively spliced, and the different isoforms have different functional
effects on the synapse®2. In total, mMMAP analysis identified 299 rSNPs in Nrxn3, and any of
these could alter its splicing. SNPs in Glyoxalase 1 (GLO1) have been associated with the
level of alcohol consumption, and it has been considered as a therapeutic target for
treatment of alcoholism®. mMAP identified 34 SNPs located within or enhancer regions in
Glol. This suggest that rSNP alleles could impact its expression. Astrotactin-2 (Astn2) has
been shown to effect many neurodevelopmental phenotypes®* and null mice of its

interacting partner protein Astnl exhibit alterations in balance and coordination®. mMap
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identified 11 SNPs present within or near insulator regions of Astn2 (Figure S2). Thus, an
allelic effect within an insulator region could alter Atn2 mRNA expression in mouse
cerebellum, which could produce a neurodevelopmental effect that alters the response to
drugs of abuse. Of note, murine strains show dramatically different responses to cocaine®®
and opiates. Thus, mMMAP analysis indicates that there are several routes through which

rSNPs in Insr, Nrxn3 or Glol could impact the response of inbred strains to drugs of abuse.

Of particular interest, a subgroup of addiction-related genes has SNP-alleles that either
introduce (n=16) or remove (n=4) a stop codon in 14 genes across the 42 analysed strains.
These 14 genes are reported previously for their phenotypically relevant genomic
associations however, the role of these proteins not yet evaluated in substance addiction3'38,
As one example, carboxylesterases are a family of enzymes that are highly expressed in
liver, and are known to play a role in the metabolism of drugs of abuse®*® .
Carboxylesterase 2a (Ces2a) has two SNPs that introduce stop codons at amino acids 497
and 527, which result in the expression of a truncated form of this enzyme (Table S3).
Truncated proteins are present in other animal species (including humans), and human
protein truncations are shown to be associated with important medical phenotypes such as
hypertension“’. This can be of interest to put forward for the evaluation of these “knockouts”

for their potential role in the development of the addiction phenotype.

mMap based biological pathways over-representation in genes with rSNPs identified
pathways like neuroactive ligand-receptor interaction (p=1.08e-18), cocaine addiction
(2.06e-14) and calcium signalling (p=1.0e-6). Overall, these are crucial pathways that

regulate the neuroplasticity under rapid response conditions.

Conclusion of case study 1: The mMaps results of biological impact of SNPs present in
genes known for substance addiction, provide novel insights at a multidimensional space of
biomolecular features like protein domains and enhancers, and emphasize the importance of
this approach in prioritizing the phenotypically crucial genes with regulatory and functional
SNP-alleles.

Case study 2: Mouse Strains Private SNPs Analysis, To Access and Predict Their Functional
Contribution(s). In a second application of mMap, we analyzed the individual genetic
makeup of 42 inbred mouse strains (129P2/OlaHsd, 129S1/SvimJ,129S5/SvEvBrd, AKR/J,
A/J, B10.D2-Hc<0>, BTBR + tf>/J, BUB/BnJ, BALB/cJ, C3H/HeJ, C57BL/10J, C57BL6NJ,
C57BR/cdJ, C57L/J, C58/J, CBA/J, CE/J, DBA/1J, DBA/2J, FVBI/NJ, I/LnJ, KK/HIL, LG/J,
LP/J, MA/MyJ, MRL/MpJ, NOD/ShiLtJ, NON/ShiLtJ, NU/J, NZB/BINJ, NZO/HILt],
NZW/LacJ, P/J, PL/J, RF/J, RHJ/Led, RIIIS/J, SEA/GnJ, SJL/J, SM/J, ST/bJ, SWR/J) and six
wild-drive strains (CAST/EiJ, MOLF/EiJ, PWD/PhJ, PWK/PhJ, SPRET /EiJ, WSBI/EiJ)
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consisting of 21.3M SNPs as described previously?®, to access the contribution of various
genetic (coding or non-coding) aspects in individual phenotypes. A private SNP, we
described as a homozygous variable allele compared to high quality homogenous reference
alleles present in the rest of the strains in our database (Table S4). We identified 3.35M
(15% of total) private SNPs across 48 strains. Out of these, 11242 SNPs are coding — i.e.
changing an amino acid codon — and a mMap analysis of these private cSNPs revealed
2969 SNP-alleles can be mapped to functional protein regions. Out of which, a subgroup of
1502 cSNPs overlap with annotated conserved protein domains. Functionally, these private
cSNPs containing domains have a range of functions like protein interactions, stability, or
signalling. Among strains with 94 cSNPs present in the annotated domains, CE/J strain has
the highest number of domains disrupted. Of interest, in closely related strains, like DBA1/J
and DBA/2J, the DBA/1J strain has three proteins whereas the DBA/2J has six different
proteins with cSNPs present in domains. Both of these strains only have 5.6% alleles
differences* but at functional level they do not share any of these disrupted domains.
DBA/1J has altered domains, TSP type-1, Fibronectin type-lll and Peptidase S8 with
functions cell-to-cell communications, protein binding and Proteolytic Activity, respectively.
Whereas DBA/2J has altered domains with functions including immune response (C-type
lectin) and detoxification (Rhodanese). Alterations in different protein domains show the way
in which private cSNPs work at a functional level to achieve a unique phenotype even for
closely related strains like DBA/1J and DBA/2J. mMap identified another group of genes
(n=258) with cSNPs overlapping to disulfide bonds (DiSB). Among studied strains, the CE/J
has 25 cSNPs, SM/J has 21, NZO/HILtJ and RIIIS/J 20 cSNPs present in their DiSB. The

cSNPs impact on DiSB may have a role to play in the phenotype of these strains (see below).

Additionally, mMap analysis suggested a total of 313,384 (8.95% of private) SNPs potentially
impacting genomic regulatory regions of the studied strains. Major regulatory regions that
are disrupted include CpG islands (CGl), genomic enhancers, and promoters (Figure 4). Out
of these rSNPs, 8104 rSNPs (2.7%) fall in the CGI, 22543 (7.7%) in the enhancers, and
49438 (17 %) in the promoter regions of nearby genes (Figure 4). These results emphasize
the potential variations in epigenetic and transcription regulatory mechanisms behind the
phenotypic differences among mouse strains, in addition to protein codon changing SNPs.
Promoters play crucial role in genomic and protein functions by transcription regulation. A
set of genes (n=11622) identified by mMap has disrupted nearby promoters by private
rSNPs. Among most affected strains, the C57L/J strains have 2842, SW/R has 2276, and
129S5/SvEvBrd has 1945 gene. Enhancers promote gene transcription by facilitating the
binding of activator proteins. mMap identified 3948 genes have rSNPs present in their

nearby enhancers, that can mediate the transcription of these genes. Among strains,
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SPRET/EIJ (n =1806), CAST (n=675), CE/J (n = 579), SM/J (n=483), and 129S5/SvEvBrd
(n=448) have the highest number of genes with potentially disrupted nearby enhancers by
their private rSNPs.

Another region of particular interest uncovered by the application of mMap was CGI (n=3585
genes). Different strains show different number of disrupted CGI disrupted by private rSNPs.
129S5/SvEvVBrd (n=560), RIIIS/J (n=301), and B10 (n=287) strains have the highest number
of genes with rSNPs in nearby CGls. One example is of a phenotypically important gene,
G1/S-specific cyclin-D1 (Ccndl), which has rSNPs in the RIIIS/J strain, the gene has been
reported for eye- and lens-related biomedical traits*>. This strain is known for the
spontaneous development of lens and cataract phenotypes. mMap analysis suggested a
potential novel transcription mechanism via rSNPs mediated methylation of CGI region
nearby to Ccndl gene, which can play an epigenetic regulation of vision phenotype of this
strain. In KK/HiJ strain, the pathways enrichment among genes with disrupted nearby CGI
include macromolecule biosynthesis (p=5.05 e-05) and metabolism regulation (p=0.00023).
The KK/HiJ which serves as a model to study type-2 diabetes mellitus (DM-2) and the genes
with rSNPs containing CGI could be prioritized for further assessment of their role in KK/HiJ

metabolism and in DM-2 disease phenotype.

Together, the private SNPs show an individual trend in functional and regulatory genomic
regions to disrupt these features in a particular individual way that is unique and had not
been explored before. In conclusion of case study2: Both, private cSNPs and rSNPs, based
mMap results are an important step to demonstrate how individual SNPs can regulate

different regulatory and functional circuits at individual phenotype level.
DISCUSSION

We provided a computational pipeline with two data analyses examples to highlight the
importance of linking big SNPs data to biological features in order to interpret the potential
consequences of SNPs onto the phenotypes. A method like this was overdue to fill the
knowledge gap of number of SNPs present in the genome of a premier biomedical model
organism like mouse and their biological importance. The mMap pipeline can greatly
improve the data interpretation by demonstrating the biological role that SNP-alleles play in a
disease phenotype. Importantly, the biological understanding of genetically associated loci is
crucial for the formulation of therapeutics against genetic targets. In both mMap applications,
the SNPs present in regulatory regions outnumber the SNPs detected in the protein coding
regions, which is quite important finding. Consistent with previous results*®, our findings

show that the transcription regulation plays a potentially crucial role in mediating a
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biomedical phenotype susceptibility. This highlights the need to revisit the conventional

paradigm that focuses on targeting coding SNPs as important regulators of phenotypes.

In general, the common mechanisms of substance response are either not known or difficult
to define. However, our approach fills this knowledge gap by showing how genetically
associated loci assert their pathway-level influence by modulating the protein regulatory and
functional features to impact a phenotype. we examined the biological consequences of
SNP-alleles from 638 previously reported genes for their genetic association with the
phenotype. Previously GWAS reported loci for human alcoholism and alcohol consumption
in mice, including autism susceptibility candidate 2 (AUTS2) gene**, mu-opioid receptor®®
(OPRM1), Ankyrin Repeat and Kinase Domain Containing-1*6 (ANKK1), Nesprin-1 (SYNE1),
and GABA receptor alpha2 subunit 4’. We identified the SNPs present in these — and other —
genes that can mediate response to alcohol by affecting both genetic and epigenetic
elements. Auts2 has four SNP-alleles in regulatory enhancer regions which can impact its
expression, Oprml has 1 allelic variation in its structural alpha helix, Ankkl has four SNP-
alleles in functionally crucial protein kinase domain which can mediate phosphorylation
events of Ankkl kinase, whereas Syne2 has 6 SNP-alleles in promoter regions that can
affect its transcription and 25 alleles in structurally important Spectrin regions. This
investigation is critical to understand a biological role that SNPs can play in alcoholism.
Likewise, genes reported for opioid and cocaine responses have several SNPs present that
can change the epigenetic and regulatory architecture. The central opioid addiction regulator,
Oprml, has hypermethylated promoter and histone deacetylation associated with heroin
addiction*®. We detected SNPs (n=6) present in nearby CGI of Oprm1 gene that can change
the methylation landscape of the gene and addiction regulation phenotype. Another
interesting fact, the pathways enrichment analyses revealed neuroplasticity pathways that
are common to these and other SNPs carrying addiction genes. This shows that the
underlying common routes that these genes take in different types substance addiction. It is
also noteworthy that our method accurately predicted the pathways known to play crucial

role in addiction.

Previous studies on the examination of SNPs present in inbred mouse strains were largely
focusing on the analysis of allele frequencies®. At one instance, authors identified SNPs
from 36 inbred strains and predicted underlying functional effects of private SNPs on
individual strain phenotypes, but the overall prediction did not include annotations of genome
regulatory or functional regions®°. In general, these and other such studies have greatly
increased the identification and knowledge of genetic variations present in mouse

populations. However, the lack of detailed functional understanding has left unexplored gaps
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between SNP data and known biological features of different mouse strains. We explored
3.35M private SNPs from a deserve group of 48 mouse strains to detect their influence on
functional and regulatory genetic horizon at an individual strain level. Among major private
SNPs containing regulatory elements, the CGI and enhancers appear as most polymorphic
regions. In comparison to functional regions, the regulatory regions may have much more
influence in the phenotypic differences, even in closely related strains. By doing so, we show
that our approach provides an additional way to observe the regulatory mechanisms by

which private SNPs can mediate important functions at an individual phenotype level.

Future prospects: Our method can provide an early glimpse of the role played by SNPs at an
individual strain level. It thereby provides a foundation of future method development to
examine and to interpret the functional contribution of individual genetic makeup at whole
genome. However, it is also important to consider that the predictive efficiency of such a
method can greatly improve through the availability of ‘complete’ data sets from new and
improved experimental methods, like single cell multiple-omics analyses with additional
information of regulatory and functional genome regions. In future, we therefore plan to
include additional datatypes to make mMap even more useful. Also, both applications of
mMap revealed that the majority of SNPs are either intergenic or intronic which cannot be
mapped to present mouse data of functional and regulatory regions. In this case, the
inclusion of conservation-based computational epistasis methods will certainly help in

defining a role for intergenic SNPs and increase method’s evaluation strength.

Conclusion: We developed a computational tool that can analyse SNP data through
characterizing the impact of allelic variation on genomics functional features like protein
domain structure, post-translational modifications, protein-protein interactions, and on
regulatory features like promoter or enhancer regions. The hallmark of this approach is
linking the conserved genomic regions impacted by SNP-alleles to biological pathways and
functions that can potentially disrupt phenotypes. We first applied mMap to show the impact
of SNP-alleles on the known genetic factors of substance addiction. A second application of
this approach on the individual SNP profiles of mouse strains highlighted the contribution of

private allelic variations in individual phenotypes of each strain.

AVAILABILITY
source-code is available via a GitHub page.

Source code : https://github.com/AhmedArslan/mMap

Operatizing system(s): Mac OS X and Windows
Programming language: Python
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Figure 1. mMap framework. (Input) user provided data is processed and (in “Processing” step) mapped to the
regulatory or functional regions, depending on the type of approach choose; to prioritize genes. The prioritized
SNP containing genes are then processed through different additional tools/analyses including (i) biological
processes enrichment (i) KEGG pathways enrichment (iii) functional or regulatory region enrichment (iv)
biological network analysis. (Output) a comprehensive report and data visualisations are generated as the part of

final outcome (see methods).
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Figure 2: Example of data visualizations of results output. [a] number of SNPs on interest present in each
gene [b] the biological processes and [d] pathways over-presentation of genes with SNPs of interests. All these
barcharts are implemented in python’s matlibplot package. [c] the interactomes of genes with SNPs shows the

protein-protein interactions implemented from String-db.
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Figure 3: The genes of substance addiction show variable number of SNPs overlap with different genomic
regions, with regulatory regions like promoters and CpG Islands are most disrupted as SNPs data largely disrupt

these areas.
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Figure 4. Different trends of stains private SNPs overlapping with various genomic regions. The horizontal axis
represents different mice strains and vertical axis contains number of SNPs in each gene.
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