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ABSTRACT  

The essential understanding of disease pathogenesis and enabling genetic findings to be used for 

developing new therapeutics, is missing in the identifications of genomic loci through whole genome 

association studies (GWAS). Here we describe a new computational method (mMap) that reduces 

this gap by characterizing the functional and regulatory impact of allelic variation. The method 

incorporates the precomputed annotations of 26 protein functional regions and eight regulatory 

regions and recover SNPs that fall/lie in these regions. After annotating SNPs to functional or 

regulatory data, method link them to biological functions and pathways, and predicts significantly 

disrupted biological regions, processes and pathways, by controlling false discovery through 

hypergeometric test. By doing so, the method limits data to human interpretation level by prioritizing 

SNPs that have the potential to mediate a biological phenotype. The method is applicable to 

procedures that rely on the understanding of the biological causal role of mouse SNPs and is 

available online. In two example mMap applications, including whole genomes SNPs data from 48 

inbred mice strains, we identify biological mechanisms by which SNPs can regulate pathways to 

govern phenotypes by targeting different coding and regulatory regions, even in closely related strains.  

INTRODUCTION 

Genome wide association studies (GWAS) have identified many genetic factors that are 

associated with disease susceptibility; but we have difficulty determining how the identified 

SNP alleles contribute to disease susceptibility, which is critical for devising new therapies 

from genetic discoveries. Many SNPs identified through GWAS are located within regulatory 

regions, which makes it even harder to decipher the impact of allelic variation. Also, since 

many different SNPs can be associated with a disease phenotype in a GWAS, it can be 

difficult to select the true causative SNP from among the many whose allelic associations 

arise by chance. For all of these reasons, improved computational tools that can rapidly 

assess the potential impact of allelic variation on protein domain structure, post-translational 

modifications, protein-protein interactions, cellular signalling pathways and on promoter or 

enhancer function are needed. This type of computational tool could enable SNPs that are 

most likely to impact a trait response to be identified from among the many that are often 

identified in a GWAS. Moreover, this information could subsequently facilitate the translation 

of genetic data into actionable information that can be used to improve our understanding of 

disease pathogenesis and for developing new therapeutic approaches.  
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We previously developed an early version of this type of computational tool (yMap) for 

analysing the impact of allelic variation in yeast1. Mice are the premier model organism used 

for biomedical discovery; and the large number of available inbred strains has made them 

the ideal experimental organism for use in the genetic analysis of biomedical traits.  

Causative genetic factors affecting susceptibility to eye, metabolic and infectious diseases 

were identified when automated methods were used to filter the output of our haplotype-

based computational genetic mapping (HBCGM) method2. The use of structured 

computational methods enabled true causative genetic factors to be uncovered by identifying 

correlated genes that: (i) were expressed within the target organ for the analysed trait; (ii) 

contained a codon-changing SNP; and (iii) had gene ontology (GO) database annotations 

that were related to the phenotype. Here, we further develop and adapt this approach for 

analysis of mouse genetic data (mMap). To demonstrate utility, mMAP was used to: (i) 

analyse genes affecting the response to drugs of abuse, and (ii) to identify SNP alleles that 

are unique to individual strains and have potential to impact biomedical trait responses. 

Features:  

The architecture for this method is outlined in Figure 1. The gene symbol and identified 

alleles for each SNP are analysed by this program to determine the presence of SNPs in 26 

types of functional (like proteins domains and DNA-binding motifs) and 8 types of regulatory 

genomic regions (promoter and enhancer motifs, see below for details). The SNPs 

containing genes are then processed through over-representation tests to analyse the 

impact of SNPs-regulated biological functional, pathways and regions. This enables the 

impact of SNP alleles on protein functional or genome regulatory regions to be assessed. 

Major features of the method are lists as following: 

Protein functional and regulatory annotations: For functional assessment of SNPs, we pre-

compiled publicly available data from several available resources. Protein functions, protein 

domains, and posttranslational modification data from UniProt3, PTMdb4. Additional protein 

domains data compiled from InterPro5, Pfam6 and SMART7. the protein localization data, as 

well as the transmembrane regions data  and interactions data retrieved from STRING7 db. 

For regulatory assessment of SNPs, data on genomic regulatory regions enhancers, 

promoters, promoter-flanking regions, DNA- methylation (CpG Islands), insulators, 

transcription start-sites (TSS) and transcription factor binding-sites (TFBS) were compiled 

from Encode consortium8, Ensembl9, VISTA10, and UCSC genome browser11; structural data 

(Disulfide-bond, alpha-helix, Coiled-coil regions and turn) from PDB12; mouse organ specific 

bulk gene expression from Expression Atlas13. The data of mouse microRNAs target binding 

motifs was retrieved from miRBase14 and the alternative start/stop codon mouse data from 
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TISdb15. The protein conservation is computed with Rate4Site16, the algorithm calculates the 

evolutionary rate at which a residue changes, the positions which are slow to change 

provides a measure of being evolutionary conserved and vice-versa. The SNP positions that 

overlap with the coding regions are provided with conservation scores.  

A user provided flat file with gene names and SNP positions processed according to the type 

of function choose. In case of functional analysis of SNPs, the method maps amino acid 

level SNPs positions to protein functional features like PTMs sites or domains, whereas in 

case of regulatory, the SNP with genomic coordinates is mapped to regulatory regions like 

promotors or enhancers. The outcome is stored in a “functional-accessment.txt” file (see 

supplementary info for all the information regarding the commends and output files content). 

Protein pathways, network, GO-terms enrichment analysis: By mapping allelic variations to 

the conserved genomic regions, the impact of allelic variations on biological processes and 

pathways is assessed by hypergeometric tests as implemented7. This part of the analysis 

assesses the potential impact of SNPs on biological processes, pathways and functions. 

Additionally, a protein interaction network analysis describes the functional relationship 

between proteins with SNPs. A similar analysis evaluates if SNP-alleles are significantly co-

localized in any of the given genomic regions, this highlights the impact of a genomic region 

in a given phenotype. Overall, this section aims to highlight the relevant biological regions, 

pathways and functions that can be disrupted due to SNP-containing genes with a high 

potential to mediate a phenotype (Figure 2). 

In the output enrichment lists, for the clarity purposes, we integrate an approach that based 

on the “GO-term merging to nearest ancestral term”17 and shorten the lists to a human 

readable level. Also, the visualisations are generated as a part of output, to present 

biological processes in a way that make interpretation easier. Overall, by doing in-depth 

analyses of the impact of polymorphism on protein activity and regulation, the method 

provides actionable information to prioritize genes from big data for further validation 

analyses. 

 

Literature search: A comprehensive dataset is compiled from various text-mining resources 

by pooling together all the data for a given “gene-disease relation” to complement the final 

output of our pipeline. These gene-disease relationship text-mining data were resourced 

from (a) Phenolyzer18, a tool that prioritizes genes based on information collected from 

several platforms; (b) OpenTarget19 and DisGeNET20, collections of gene-disease 

associations from difference sources including from literature searches; and (c) PubMed and 

NCBI gene db. The outcome complemented with a literature review file 

“phenotype_accessment.txt” for the genes containing SNPs of interest. 
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Single cell expression: Single cell expression data of mouse proteins were retrieved from 

publicly available datasets21. These precompiled datasets contain information of gene 

expression clusters of different cell-types. We provide the expression values of each gene 

with SNPs and a file “scExpression-data.txt” generated for further analyses. 

The final outcome consists of files and visualizations generated for each category of analysis 

as well as summary files. 

 

Example applications: 

Case study 1: Functional assessment of coding SNPs (cSNPs) affecting responses to drugs 

of abuse. Genetic factors play a crucial role in determining whether an exposed individual 

will become addicted to an abused drug 22. Several such genetic factors are strongly 

associated with addiction to different drugs of abuse in GWAS, which include: ALDH2 and 

alcohol abuse 23; CHRNA5, CHRNA3, and CHRNB4 with nicotine24; and OPRM1 with opioid 

abuse25. While the functional connection between these genes and the corresponding 

abused drug is very clear, there are many instances were GWAS identify genetic factors 

whose functional connection is less clear. We use mMap to assess the potential impact of 

SNP alleles present in 638 genes reported for (human or mouse) substance abuse through a 

literature search. A subset of these 208 genes have SNPs (from our database of 21.3M 

SNPs, as identified and the data was compiled previously26) located within the 16 different 

types of functional regions (Figure 3, Figure S1). With majorly cSNPs disrupted regions are 

protein domains (SNPs=149) and disulfide bonds (SNPs=129). One example, a gene called 

neuronal adhesion protein, Nrcam, has published genetic SNP association with vulnerability 

to autism, alcoholism, and substance addiction27. We identified 10 SNP-alleles in three 

different domains present in it (two SNP-alleles in Ig-like C2-type5, two in Ig-like C2-type6, 

six in Fibronectin type-III) with a broad range of functional classes, from protein-protein 

interactions (PPI) to cell adhesion, morphology, and migration. The implication of Nrcam 

protein domains in modulating functions due to SNP-alleles assign a novel role to these 

SNPs that they can play in addiction phenotype beyond genetic associations. Another 

example is, Sema6d protein, that plays an important role in neuronal rewiring during 

development, contains three allelic variations in its disulfide bonds (DiSB), can compromise 

its normal activities. Previously reported for its association with substance abuse, the cSNPs 

present in DiSB of Sema6d may reveal a functional insight of how structural compromise can 

play a role in substance addiction pathways. The cSNPs present in genes with substance 

addiction association reveal a previously unknown function of DiSB in the phenotype.  
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Together, in 208 genes, mMap identified genes with greater number of cSNPs are Disc1 and 

Syne1 (Figure 2). And pathways enrichment tests of genes with cSNPs revealed pathways 

like neuroactive ligand-receptor interaction (p= 3.65e-15), calcium signalling (p= 2.2e-07) 

and PI3K-Akt signalling (p= 6.25e-06) (Table S1). These pathways are critical for the brain 

development and functions and reflect a possible functional compromise that can play an 

important role during substance addiction. This analysis presents an additional way to 

prioritize phenotype relevant genes and pathways by focusing on SNPs that can disrupt 

protein functional regions like domains (Table S2). 

Analysis of regulatory SNPs (rSNPs). It has often been difficult to determine the impact of 

rSNPs, but the recent production of many new data sets by the ENCODE project has 

increased our knowledge about the sequence and function of genomic regulatory regions8. 

This data along with other advances makes it possible assess the functional impact of many 

rSNP alleles. For mouse SNP analysis, the mMap framework analyses the allelic impact on 

eight different types of regulatory regions: promoters, enhancers, transcription start sites 

(TSS), CpG Islands, splice-sites, microRNA binding motifs, alternative stop/start codons and 

insulators. To demonstrate utility, mMap was used to analyse the impact of murine rSNP 

alleles present in 638 genes (Table 2) associated with addiction. We found rSNPs within 

promoters (SNPs=559), CpG Islands (SNPs=3955), enhancers (SNPs=3544), insulators 

(SNPs=72) and transcription start-sites (n=5) of these genes. As one example, Insulin 

receptor (Insr) encodes a tyrosine kinase that regulates the insulin response through 

activation of several intra-cellular signalling pathways. Recently shown that insulin regulate 

the ability of drugs that exert their role through impacting dopamine dependent 

neurotransmission28. mMap analysis identified 24 SNPs within the Insr promoter region 

(Figure S2). By affecting the binding of transcription factors to the promoters, these SNPs 

could have an allelic effect on Insr mRNA transcription. As another example, Neurexin 3 

(Nrxn3) encodes a protein that functions in synapse development29, and NRXN3 alleles have 

been associated with alcohol abuse 30 and cocaine dependence 31 in human GWAS. mMap 

analysis identified 278 murine SNPs located within or near CpG islands in Nrxn3. Moreover, 

Nrxn3 mRNA is extensively spliced, and the different isoforms have different functional 

effects on the synapse32. In total, mMAP analysis identified 299 rSNPs in Nrxn3, and any of 

these could alter its splicing. SNPs in Glyoxalase 1 (GLO1)  have been associated with the 

level of alcohol consumption, and it has been considered as a therapeutic target for 

treatment of alcoholism33. mMAP identified 34 SNPs located within or enhancer regions in 

Glo1. This suggest that rSNP alleles could impact its expression. Astrotactin-2 (Astn2) has 

been shown to effect  many neurodevelopmental phenotypes34 and null mice of its 

interacting partner protein Astn1 exhibit alterations in balance and coordination35. mMap 
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identified 11 SNPs present within or near insulator regions of Astn2 (Figure S2). Thus, an 

allelic effect within an insulator region could alter Atn2 mRNA expression in mouse 

cerebellum, which could produce a neurodevelopmental effect that alters the response to 

drugs of abuse. Of note, murine strains show dramatically different responses to cocaine36 

and opiates. Thus, mMAP analysis indicates that there are several routes through which 

rSNPs in Insr, Nrxn3 or Glo1 could impact the response of inbred strains to drugs of abuse. 

Of particular interest, a subgroup of addiction-related genes has SNP-alleles that either 

introduce (n=16) or remove (n=4) a stop codon in 14 genes across the 42 analysed strains. 

These 14 genes are reported previously for their phenotypically relevant genomic 

associations however, the role of these proteins not yet evaluated in substance addiction37,38. 

As one example, carboxylesterases are a family of enzymes that are highly expressed in 

liver, and are known to play a role in the metabolism of drugs of abuse36 39. 

Carboxylesterase 2a (Ces2a) has two SNPs that introduce stop codons at amino acids 497 

and 527, which result in the expression of a truncated form of this enzyme (Table S3). 

Truncated proteins are present in other animal species (including humans), and human 

protein truncations are shown to be associated with important medical phenotypes such as 

hypertension40. This can be of interest to put forward for the evaluation of these “knockouts” 

for their potential role in the development of the addiction phenotype. 

mMap based biological pathways over-representation in genes with rSNPs identified 

pathways like neuroactive ligand-receptor interaction (p=1.08e-18), cocaine addiction 

(2.06e-14) and calcium signalling (p=1.0e-6). Overall, these are crucial pathways that 

regulate the neuroplasticity under rapid response conditions.  

Conclusion of case study 1: The mMaps results of biological impact of SNPs present in 

genes known for substance addiction, provide novel insights at a multidimensional space of 

biomolecular features like protein domains and enhancers, and emphasize the importance of 

this approach in prioritizing the phenotypically crucial genes with regulatory and functional 

SNP-alleles.  

Case study 2: Mouse Strains Private SNPs Analysis, To Access and Predict Their Functional 

Contribution(s). In a second application of mMap, we analyzed the individual genetic 

makeup of 42 inbred mouse strains (129P2/OlaHsd, 129S1/SvImJ,129S5/SvEvBrd, AKR/J, 

A/J, B10.D2-Hc<0>, BTBR + tf>/J, BUB/BnJ, BALB/cJ, C3H/HeJ, C57BL/10J, C57BL6NJ, 

C57BR/cdJ, C57L/J, C58/J, CBA/J, CE/J, DBA/1J, DBA/2J, FVB/NJ, I/LnJ, KK/HIL, LG/J, 

LP/J, MA/MyJ, MRL/MpJ, NOD/ShiLtJ, NON/ShiLtJ, NU/J, NZB/BINJ, NZO/HILtJ, 

NZW/LacJ, P/J, PL/J, RF/J, RHJ/LeJ, RIIIS/J, SEA/GnJ, SJL/J, SM/J, ST/bJ, SWR/J) and six 

wild-drive strains (CAST/EiJ, MOLF/EiJ, PWD/PhJ, PWK/PhJ, SPRET /EiJ, WSB/EiJ) 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.423378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423378
http://creativecommons.org/licenses/by-nc/4.0/


consisting of 21.3M SNPs as described previously26, to access the contribution of various 

genetic (coding or non-coding) aspects in individual phenotypes. A private SNP, we 

described as a homozygous variable allele compared to high quality homogenous reference 

alleles present in the rest of the strains in our database (Table S4). We identified 3.35M 

(15% of total) private SNPs across 48 strains. Out of these, 11242 SNPs are coding – i.e. 

changing an amino acid codon – and a mMap analysis of these private cSNPs revealed 

2969 SNP-alleles can be mapped to functional protein regions. Out of which, a subgroup of 

1502 cSNPs overlap with annotated conserved protein domains. Functionally, these private 

cSNPs containing domains have a range of functions like protein interactions, stability, or 

signalling. Among strains with 94 cSNPs present in the annotated domains, CE/J strain has 

the highest number of domains disrupted. Of interest, in closely related strains, like DBA1/J 

and DBA/2J, the DBA/1J strain has three proteins whereas the DBA/2J has six different 

proteins with cSNPs present in domains. Both of these strains only have 5.6% alleles 

differences41 but at functional level they do not share any of these disrupted domains. 

DBA/1J has altered domains, TSP type-1, Fibronectin type-III and Peptidase S8 with 

functions cell-to-cell communications, protein binding and Proteolytic Activity, respectively. 

Whereas DBA/2J has altered domains with functions including immune response (C-type 

lectin) and detoxification (Rhodanese). Alterations in different protein domains show the way 

in which private cSNPs work at a functional level to achieve a unique phenotype even for 

closely related strains like DBA/1J and DBA/2J. mMap identified another group of genes 

(n=258) with cSNPs overlapping to disulfide bonds (DiSB). Among studied strains, the CE/J 

has 25 cSNPs, SM/J has 21, NZO/HILtJ and RIIIS/J 20 cSNPs present in their DiSB. The 

cSNPs impact on DiSB may have a role to play in the phenotype of these strains (see below).  

Additionally, mMap analysis suggested a total of 313,384 (8.95% of private) SNPs potentially 

impacting genomic regulatory regions of the studied strains. Major regulatory regions that 

are disrupted include CpG islands (CGI), genomic enhancers, and promoters (Figure 4). Out 

of these rSNPs, 8104 rSNPs (2.7%) fall in the CGI, 22543 (7.7%) in the enhancers, and 

49438 (17 %) in the promoter regions of nearby genes (Figure 4). These results emphasize 

the potential variations in epigenetic and transcription regulatory mechanisms behind the 

phenotypic differences among mouse strains, in addition to protein codon changing SNPs. 

Promoters play crucial role in genomic and protein functions by transcription regulation. A 

set of genes (n=11622) identified by mMap has disrupted nearby promoters by private 

rSNPs. Among most affected strains, the C57L/J strains have 2842, SW/R has 2276, and 

129S5/SvEvBrd has 1945 gene. Enhancers promote gene transcription by facilitating the 

binding of activator proteins. mMap identified 3948 genes have rSNPs present in their 

nearby enhancers, that can mediate the transcription of these genes. Among strains, 
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SPRET/EiJ (n =1806), CAST (n=675), CE/J (n = 579), SM/J (n=483), and 129S5/SvEvBrd 

(n=448) have the highest number of genes with potentially disrupted nearby enhancers by 

their private rSNPs.  

Another region of particular interest uncovered by the application of mMap was CGI (n=3585 

genes). Different strains show different number of disrupted CGI disrupted by private rSNPs. 

129S5/SvEvBrd (n=560), RIIIS/J (n=301), and B10 (n=287) strains have the highest number 

of genes with rSNPs in nearby CGIs. One example is of a phenotypically important gene, 

G1/S-specific cyclin-D1 (Ccnd1), which has rSNPs in the RIIIS/J strain, the gene has been 

reported for eye- and lens-related biomedical traits42. This strain is known for the 

spontaneous development of lens and cataract phenotypes. mMap analysis suggested a 

potential novel transcription mechanism via rSNPs mediated methylation of CGI region 

nearby to Ccnd1 gene, which can play an epigenetic regulation of vision phenotype of this 

strain. In KK/HiJ strain, the pathways enrichment among genes with disrupted nearby CGI 

include macromolecule biosynthesis (p=5.05 e-05) and metabolism regulation (p=0.00023). 

The KK/HiJ which serves as a model to study type-2 diabetes mellitus (DM-2) and the genes 

with rSNPs containing CGI could be prioritized for further assessment of their role in KK/HiJ 

metabolism and in DM-2 disease phenotype.  

Together, the private SNPs show an individual trend in functional and regulatory genomic 

regions to disrupt these features in a particular individual way that is unique and had not 

been explored before. In conclusion of case study2: Both, private cSNPs and rSNPs, based 

mMap results are an important step to demonstrate how individual SNPs can regulate 

different regulatory and functional circuits at individual phenotype level. 

DISCUSSION 

We provided a computational pipeline with two data analyses examples to highlight the 

importance of linking big SNPs data to biological features in order to interpret the potential 

consequences of SNPs onto the phenotypes. A method like this was overdue to fill the 

knowledge gap of number of SNPs present in the genome of a premier biomedical model 

organism like mouse and their biological importance. The mMap pipeline can greatly 

improve the data interpretation by demonstrating the biological role that SNP-alleles play in a 

disease phenotype. Importantly, the biological understanding of genetically associated loci is 

crucial for the formulation of therapeutics against genetic targets. In both mMap applications, 

the SNPs present in regulatory regions outnumber the SNPs detected in the protein coding 

regions, which is quite important finding. Consistent with previous results43, our findings 

show that the transcription regulation plays a potentially crucial role in mediating a 
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biomedical phenotype susceptibility. This highlights the need to revisit the conventional 

paradigm that focuses on targeting coding SNPs as important regulators of phenotypes.     

 

In general, the common mechanisms of substance response are either not known or difficult 

to define. However, our approach fills this knowledge gap by showing how genetically 

associated loci assert their pathway-level influence by modulating the protein regulatory and 

functional features to impact a phenotype. we examined the biological consequences of 

SNP-alleles from 638 previously reported genes for their genetic association with the 

phenotype. Previously GWAS reported loci for human alcoholism and alcohol consumption 

in mice, including autism susceptibility candidate 2 (AUTS2) gene44, mu-opioid receptor45 

(OPRM1), Ankyrin Repeat and Kinase Domain Containing-146 (ANKK1), Nesprin-1 (SYNE1), 

and GABA receptor alpha2 subunit 47. We identified the SNPs present in these – and other – 

genes that can mediate response to alcohol by affecting both genetic and epigenetic 

elements. Auts2 has four SNP-alleles in regulatory enhancer regions which can impact its 

expression, Oprm1 has 1 allelic variation in its structural alpha helix, Ankk1 has four SNP-

alleles in functionally crucial protein kinase domain which can mediate phosphorylation 

events of Ankk1 kinase, whereas Syne2 has 6 SNP-alleles in promoter regions that can 

affect its transcription and 25 alleles in structurally important Spectrin regions. This 

investigation is critical to understand a biological role that SNPs can play in alcoholism. 

Likewise, genes reported for opioid and cocaine responses have several SNPs present that 

can change the epigenetic and regulatory architecture. The central opioid addiction regulator, 

Oprm1, has hypermethylated promoter and histone deacetylation associated with heroin 

addiction48. We detected SNPs (n=6) present in nearby CGI of Oprm1 gene that can change 

the methylation landscape of the gene and addiction regulation phenotype. Another 

interesting fact, the pathways enrichment analyses revealed neuroplasticity pathways that 

are common to these and other SNPs carrying addiction genes. This shows that the 

underlying common routes that these genes take in different types substance addiction. It is 

also noteworthy that our method accurately predicted the pathways known to play crucial 

role in addiction.  

 

Previous studies on the examination of SNPs present in inbred mouse strains were largely 

focusing on the analysis of allele frequencies49. At one instance, authors identified SNPs 

from 36 inbred strains and predicted underlying functional effects of private SNPs on 

individual strain phenotypes, but the overall prediction did not include annotations of genome 

regulatory or functional regions50. In general, these and other such studies have greatly 

increased the identification and knowledge of genetic variations present in mouse 

populations. However, the lack of detailed functional understanding has left unexplored gaps 
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between SNP data and known biological features of different mouse strains. We explored 

3.35M private SNPs from a deserve group of 48 mouse strains to detect their influence on 

functional and regulatory genetic horizon at an individual strain level. Among major private 

SNPs containing regulatory elements, the CGI and enhancers appear as most polymorphic 

regions. In comparison to functional regions, the regulatory regions may have much more 

influence in the phenotypic differences, even in closely related strains. By doing so, we show 

that our approach provides an additional way to observe the regulatory mechanisms by 

which private SNPs can mediate important functions at an individual phenotype level.  

 

Future prospects: Our method can provide an early glimpse of the role played by SNPs at an 

individual strain level. It thereby provides a foundation of future method development to 

examine and to interpret the functional contribution of individual genetic makeup at whole 

genome. However, it is also important to consider that the predictive efficiency of such a 

method can greatly improve through the availability of ‘complete’ data sets from new and 

improved experimental methods, like single cell multiple-omics analyses with additional 

information of regulatory and functional genome regions. In future, we therefore plan to 

include additional datatypes to make mMap even more useful. Also, both applications of 

mMap revealed that the majority of SNPs are either intergenic or intronic which cannot be 

mapped to present mouse data of functional and regulatory regions. In this case, the 

inclusion of conservation-based computational epistasis methods will certainly help in 

defining a role for intergenic SNPs and increase method’s evaluation strength. 

 

Conclusion: We developed a computational tool that can analyse SNP data through 

characterizing the impact of allelic variation on genomics functional features like protein 

domain structure, post-translational modifications, protein-protein interactions, and on 

regulatory features like promoter or enhancer regions. The hallmark of this approach is 

linking the conserved genomic regions impacted by SNP-alleles to biological pathways and 

functions that can potentially disrupt phenotypes. We first applied mMap to show the impact 

of SNP-alleles on the known genetic factors of substance addiction. A second application of 

this approach on the individual SNP profiles of mouse strains highlighted the contribution of 

private allelic variations in individual phenotypes of each strain.  

 

AVAILABILITY 

source-code is available via a GitHub page. 

Source code : https://github.com/AhmedArslan/mMap  
 
Operatizing system(s): Mac OS X and Windows 
Programming language: Python 
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TABLE AND FIGURES LEGENDS 

 

Figure 1. mMap framework. (Input) user provided data is processed and (in “Processing” step) mapped to the 

regulatory or functional regions, depending on the type of approach choose; to prioritize genes. The prioritized 

SNP containing genes are then processed through different additional tools/analyses including (i) biological 

processes enrichment (ii) KEGG pathways enrichment (iii) functional or regulatory region enrichment (iv) 

biological network analysis. (Output) a comprehensive report and data visualisations are generated as the part of 

final outcome (see methods). 
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Figure 2: Example of data visualizations of results output. [a] number of SNPs on interest present in each 

gene [b] the biological processes and [d] pathways over-presentation of genes with SNPs of interests. All these 

barcharts are implemented in python’s matlibplot package. [c] the interactomes of genes with SNPs shows the 

protein-protein interactions implemented from String-db. 

 

 

Figure 3: The genes of substance addiction show variable number of SNPs overlap with different genomic 

regions, with regulatory regions like promoters and CpG Islands are most disrupted as SNPs data largely disrupt 

these areas.  
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Figure 4. Different trends of stains private SNPs overlapping with various genomic regions. The horizontal axis 

represents different mice strains and vertical axis contains number of SNPs in each gene.  
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