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Abstract 

Recent advances in bioinformatics analyses have led to the development of novel tools enabling 
the capture and trajectory mapping of single-cell RNA sequencing (scRNAseq) data. However, 
there is a lack of methods to assess the contributions of biological pathways and transcription 
factors to an overall developmental trajectory mapped from scRNAseq data. In this manuscript, 
we present a simplified approach for trajectory inference of pathway significance (TIPS) that 
leverages existing knowledgebases of functional pathways and transcription factor targets to 
enable further mechanistic insights into a biological process. TIPS returns both the key pathways 
whose changes are associated with the process of interest, as well as the individual genes that 
best reflect these changes. TIPS also provides insight into the relative timing of pathway changes, 
as well as a suite of visualizations to enable simplified data interpretation of scRNAseq libraries 
generated using a wide range of techniques. The TIPS package can be run through either a web 
server, or downloaded as a user-friendly GUI run in R, and may serve as a useful tool to help 
biologists perform deeper functional analyses and visualization of their single-cell and/or large 
cohort RNAseq data. 
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Introduction 

Recent advances in single cell RNAseq (scRNAseq) library construction technologies, 
coupled with decreases in cost of high-throughput sequencing, has led to a proliferation of new 
single cell transcriptome data across a range of species and developmental/disease contexts. In 
order to interpret this data, a slew of new bioinformatics tools and analysis techniques have been 
developed. These include network-based methods to infer cis-regulatory interactions, splicing-
informed mapping of RNA-velocity, and inferences on key intercellular interactions based on 
receptor-ligand pairs [1-3]. These and other novel tools have helped to unlock the potential of 
scRNAseq to provide a plethora of information that was previously inaccessible to bulk 
sequencing-based approaches.    

However, one area in which currently available single-cell analysis tools are lacking in is 
in pathway analysis. While pathways analysis and similar gene-set based enrichment analyses 
are among the most common ways to infer molecular mechanisms that are involved in the altered 
cellular behavior under different conditions, directly applying bulk-sequencing inspired pathway 
analysis methods to scRNAseq data comes with substantial difficulties. Unlike bulk sequencing 
profiles, scRNAseq transcriptome tend to be dropout-heavy, with technical variation causing 
false-zero detection of any given gene in a cell [4-5]. Chance-driven technical dropout also tends 
to be particularly severe for genes with low- to medium- expression magnitudes, many of which 
are typically included as key components of biological pathways. Because of this, some 
approaches (such as Metacell) have been developed to enable gene set enrichment analyses 
across clusters of cells using composite profiles [6]. Other tools, such as AUCell and GSVA, can 
generate scored profiles for single cells along a given pathway of interest, but is predominately 
applied to identify differentially regulated pathways between two clusters of interest [7-8]. This 
emphasis on pairwise differential regulation is less suitable for single cell datasets that 
encompass multiple cellular states and functional clusters. Furthermore, these approaches cannot 
provide information on the temporal order by which pathways may change during a larger 
biological process. 

In order to implement pathway analysis on a single-cell level, we present here a novel 
analytical framework that provides trajectory inference of pathway significance (TIPS). Our 
approach leverages the common trajectory mapping principle of pseudotime assignment to build 
pathway-specific trajectories from a pool of single cells. The pseudotime values for each cell 
along these pathway-specific trajectories are then compared to identify the processes with 
highest similarity to an overall trajectory in a simple and intuitive process. Key genes that are 
associated with both the overall trajectory and/or pathway-specific trajectories are also identified, 
providing ready targets for downstream validation work. Direct visualizations are also offered at 
each of the primary steps, with customizable options for figure generation for pathways and 
genes of interest. The key modules in TIPS incorporate in a number of leading scRNAseq 
analysis tools, and can be run sequentially within a shiny GUI in R with the source code 
available on GitHub, or on a dedicated webserver. We hope that the TIPS workflow may help 
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further expand the range of functional analyses that are possible when working with scRNAseq 
data, and help derive new functional insights into complex biological processes. 

Materials and Methods 

Overview of the TIPS framework 

The TIPS framework is designed as 7 primary modules (described in detail below) intended to be 
run sequentially in R as either a local shiny-based GUI, or as online as a webserver. Each module 
will automatically generate and format the analysis results as necessary to permit further 
analyses without a need for manual modification. A schematic overview of these modules is 
included as Figure1.  

Uploading Data 

TIPS takes as its primary data input a standard gene expression matrix, wherein each row 
corresponds to a gene and each column a cell, from a comma-delimited (.csv) file. Ideally, this 
matrix should be pre-processed beforehand to only include in the cells that are of sufficient 
quality and which are pertinent to the intended trajectory analysis. Since preprocessed data may 
have been pre-normalized, an option is available to either log-normalize raw data, or to accept it 
as is. TIPS also accepts metadata information for each cell (regarding sample quality, origin, 
type, etc), from an additional (.csv) file for further visualizations. The user may then choose a list 
of gene sets to consider from a dropdown menu (6 are built-in, including Reactome, KEGG, 
BioCarta, Msigdb), or otherwise upload an additional (.gmt) file containing the gene lists they 
wish to analyze [9-11]. This allowance for built-in options allows for customized analysis of data 
derived from other organisms or knowledgebases.  

Dimension Reduction 

TIPS automatically loads and manages the data input as a Seurat object, and runs three different 
dimension reduction algorithms (PCA, tSNE, and UMAP) to generate 2-D visualizations of the 
transcriptome similarity between cells [12-13]. Users may select cutoff parameters for selecting 
the list of highly variable genes to consider for these reductions (both expression and dispersion 
cutoffs), and number of nearest neighbors, in order to optimize the analysis to suit their dataset. 
The results from the reduction can be visualized directly, with metadata information as selectable 
overlays, while a Louvain clustering algorithm is run at common resolutions to provide a range 
of clustering results.  

Primary Trajectory Analysis 

To generate the primary trajectory of the dataset, the same pool of highly variable genes used for 
dimension reduction in the previous step is passed to Monocle for DDRTree-based mapping and 
pseudotime assignment [14]. Since the actual assignment direction for pseudotime values can be 
arbitrary, an option to reverse the initial order of cells is provided, such that users may select an 
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order more intuitive for their question of interest in terms of expected temporal relations between 
clusters. This assignment is then treated as the reference pseudotime trajectory for downstream 
analysis. 

Pathway Inference 

In order to identify the pathways that are functionally associated with the overall trajectory of 
interest, we first load into the TIPS pipeline the selected reference knowledgebase of pathways 
for consideration. We then tailor these reference pathways to the dataset of interest to remove 
genes with missing expression, and prune out overly small pathways based on absolute size (<20 
genes). TIPS then iteratively runs the DDRTree algorithm to generate one trajectory per pathway 
of interest, considering all of the expressed genes from the pathway (including ones where the 
genes display non-significant variation in expression) to give a complete picture of pathway 
dynamics. This process reduces each pathway to a single linear vector of pseudotime values. 
These pseudotime vectors are then compared to the reference pseudotime trajectory using 
absolute Pearson’s correlation to assess relative similarity in terms. Notably, absolute 
comparisons are used for these measures to avoid potentially misleading inferences about the 
direction of trajectory values. In order to assess the pathways with true significance, DDRTree is 
also iterated on randomly generated pathway lists to establish a false discovery rate for genes 
sets of a given size. Pathways at correlation levels below 5% FDR and which have significant 
correlation in terms of absolute gene expression (> 0.6) are considered to be significantly 
associated with the overall trajectory. 

Pathway Temporal Alignment 

Individual significantly associated pathways may have distinct modes of behavior over the 
course of the pseudotime trajectory, with some showing rapid changes early on, while others are 
late-breaking. In order to provide a temporal understanding of these pathway dynamics, we 
further utilized the switchde package in R to help identify genes with switch-like expression 
characteristics [15]. We can then visualize the distribution of switch points with respect to 
pseudotime for each individual pathway, and subsequently compare these distributions to 
generate a temporal alignment. 

SOM-based Pathway Selection 

Although the absolute order of pseudotime values may be arbitrarily assigned and is not 
dependent upon a unidirectional change in expression within a given gene list, researchers may 
be interested in focusing on investigating processes that do show continual increases or decreases 
expression over time. In order to accommodate this need, we implemented self-organizing maps 
(SOMs) to cluster the cells using the kohonen package in R [16]. Users can select their pathways 
of interest from a dropdown menu to assess the direction, while also choosing the number of 
nodes for the SOM that would best fit their interest. Pathways that display monotonic changes in 
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behavior can thus be visualized in this manner. The SOM can also be used to help visually 
distinguish pathways with more complex expression kinetics. 

Individual Gene Selection 

Although the approach outlined above is sufficient for identifying pathways that meaningfully 
contribute to an overall trajectory, it is oftentimes necessary to further clarify the exact genes that 
drive such a contribution. To address this question, we included three distinct methods for 
identifying critical genes within a pathway. First, we consider the genes with switch-like 
behavior recovered from switchde, as the singular and abrupt change in expression within these 
genes make them good candidates for functional screening and validation. Second, since other 
critical genes may display milder and monotonic changes in expression, we also compute the 
Pearson correlation between gene expression and pseudotime progression to help identify genes 
not found by switchde. Finally, since still other factors may display more complex changes in 
expression dynamics (alternating increases and decreases, or the like), we further weigh the 
relative contribution of a given gene on the pseudotime correlation of its parent pathway. 
Through these three distinct approaches contained in our final module, we can subsequently 
narrow down the range of candidate genes to consider for further validation work. 

Analyzed Datasets 

For our initial analysis of a simulated dataset, we used the splatter package in R with default 
setting to generate a dataset of 500 cells with 5,000 expressed genes per cell [17]. To enable 
analysis of the impact of technical dropout, we further used the dropout function in splatter to 
add in zero-inflation up through a range of median expression values.  

scRNAseq Library Construction and Sequencing 

In order to provide a direct demonstration of the use of the TIPS framework on real scRNAseq 
data, we isolated peripheral blood mononuclear cells (PBMCs) from whole blood provided by a 
healthy donor under approval of the Ethics Committee of Southwest Hospital as part of a pilot 
study. CD8+ T cells were acquired and FACS-sorted (Beckmann Coulter) into a 96-well plate 
following staining with antibodies against CD3, CD4, and CD8 (BD). Cells were then lysed, and 
libraries were prepared using the scSTATseq workflow that we have previously developed [18]. 
Libraries were sequenced using the HiSeq 4500 platform (Illumina) and preprocessed as 
previously described. Alignment-free counting of reads relative to the reference human 
transcriptome was performed using Salmon [19]. The resulting gene expression matrix was then 
read into the Seurat package in R, where quality control filtering was performed to remove cells 
with excess mitochondrial reads (>10% of all reads), as well as outliers in terms of number of 
genes recovered (<5000 or >15,000). The remaining 69 libraries were then passed to the TIPS 
framework for further analysis and visualization. 
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Additional Comparison Datasets 

Additional data from scRNAseq libraries constructed using alternative methods were obtained 
from GSE133535, a benchmarking study of different library construction protocols [20]. Since a 
mix of cells were used in the study, we individually downloaded each of the data matrices 
corresponding to a single method, and filtered them based on metadata annotation to only retain 
human cells. Data on these cells was then loaded into Seurat for UMAP-based clustering in order 
to identify clusters of CD8+ T cells (based on positive expression of CD8, CD3D, and lack of 
expression of CD4 and NCAM1). Transcriptome information from these CD8+ T cells were then 
passed to TIPS for additional analysis.  

For analysis of single CD8+ T cells from HCC patients, fully processed sparse matrix files were 
obtained from GSE98683, and annotated CD8+ populations were used for further analysis 
through TIPS [21]. Data for the HCC samples treated with immune checkpoint blockade was 
similarly processed from GSE125449 [22].    

Results 

Testing of the TIPS workflow using simulated data 

In order to assess the robustness of the analysis workflow described, we first simulated a 
medium-sized scRNAseq dataset of 5,000 genes and 500 cells ordered along a single path. We 
then compared the performance of different correlation metrics for comparing pathways to a 
common trajectory using 1,000 randomly selected gene lists and 100 highly variable gene (HVG) 
lists. Since the baseline pseudotime trajectory was generated based on a complete list of HVGs, 
we anticipated that subsets of the HVG list would show true signal, while the completely random 
lists would reflect the range of noise. Interestingly, we observed that the HVG lists were 
essentially indistinguishable from random background when mean pathway gene expression 
level was considered (Fig2A). However, pseudotime-to-pseudotime correlations showed a clear 
separation between HVG lists and background (Fig2B).This phenomenon suggested that the 
TIPS workflow will highlight pathways as being highly significant regardless of average 
expression (Fig2C). Instead, we observed that the constituent genes from the highly correlated 
lists displayed balanced distribution, with a similar number of genes having increasing or 
decreasing expression (and changes of similar magnitude) over the course of the pseudotime 
trajectory (Fig2D). This trend could also be clearly identified in terms of specific genes from a 
single pathway (Fig2E). At the same time, we also observed a clear pattern wherein the addition 
of additional information from more HVGs led to higher correlation with the overall pseudotime 
(Fig2F). As such, these results suggest that pseudotime correlation provides a sensitive method 
for comparing two trajectories, by accounting for genes with both increasing and decreasing 
expression. 

At the same time, we also assessed the potential influence of other factors on the 
accuracy of pseudotime mapping to clarify its range of applicability. Since scRNAseq libraries 
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may vary greatly in terms of number of cells recovered, genes recovered, and in sequencing 
quality, we controlled for each of these factors in turn. Interestingly, pseudotime mapping using 
subsampled cells demonstrated that decreasing the size of the dataset did not have a strong of an 
effect on correlation accuracy, such that a correlation above 0.9 could be maintained even when 
the dataset was downsampled to 10% of its original size (Fig2G). However, the gene detection 
quality of the cells sequenced had a substantial impact on accuracy, as increasing the degree of 
technical dropout in the data led to a clear deterioration in the correlation (Fig2H). This 
deterioration demonstrates that pseudotime assignment is sensitive to information loss. In a 
similar vein, we observed that the number of genes considered for pseudotime assignment also 
had significant influence on its accuracy; larger sets of randomly selected genes tended to have 
significantly higher background noise than their smaller counterparts (Fig2I). Since a given 
dataset may only feature significant expression in a subset of all genes assigned to a given 
pathway, the relative size and representation rate of a pathway may also influence correlation 
interpretation. As such, we elected to run independent calculations of background noise using 
random lists for each pathway in order to control for differences in gene list size and 
representation. 

TIPS confirms existing knowledge of CD8+ T cell differentiation 

 To validate the utility and biological relevance of our workflow, we then analyzed 69 
single-cell libraries of peripheral blood CD8+ T cells from a healthy donor using the scSTATseq 
method. UMAP clustering of the cells readily identified two prominent clusters of cells of 
similar size (Fig2A), and marker analysis demonstrated that cluster0 was composed of antigen-
experienced effector cells positive for the effector molecules IFNG and GZMB, while cluster1 
included naïve/memory cells that displayed high levels of CCR7 and S1PR1 (Fig2B). 
Pseudotime trajectory mapping based on the dispersed genes yielded a relatively simple arc, with 
the effector cells being assigned higher pseudotime values along this reference trajectory (Fig2C). 
We then generated iterated trajectory mappings using the curated hallmark signatures from three 
separate knowledgebases (Msigdb, KEGG, Reactome), and performed paired correlation analysis 
of the pseudotime values against the reference trajectory to identify pathways with close 
association and significant signal over noise based on gene set size (Fig2D). Consistent with our 
expectations, a relatively small portion of pathways showed significance, alleviating concerns 
about overfitting from our method (TableS1). 

 From direct inspection of the top pathways displaying significant association via TIPS 
analysis, we found a number of well-characterized processes known to influence CD8 behavior, 
such as chemokine signaling and IL12 family signaling (Fig2E). At the same time, we also 
observed significance in less appreciated processes such the Myd88-mediate TLR cascade and 
SLC-mediated transmembrane transport. Overall temporal alignment of these four pathways of 
interest based on the order of their switched-on genes demonstrated that each of these pathways 
had factors that changed across multiple points of the overall pseudotime trajectory, although 
most of the changes were centered at an intermediate timepoint marking a changeover from 
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memory to effector status (Fig2F). When we focused in on each pathway, we could observe that 
these changes included relatively critical constituents, such as the signaling kinase IRAK1 in the 
Myd88-mediated cascade. Many of these molecules have also previously been demonstrated to 
be of functional importance in the context of T cell immunity, such as the co-stimulatory 
molecule ICOS, the large neutral amino acid transporter SLC7A5, and the chemokine receptor 
CXCR1 [23-25]. We also recovered several interesting molecules not characterized in this 
context, such as the iron exporter ferroportin (SLC40A1) and zinc importer SLC39A2. Taken 
together, these results demonstrate that the TIPS workflow can successfully recapitulate existing 
knowledge of a biological context while also yielding novel candidates for further validation.   

In order to put these pathway inferences relating to CD8+ T cells in context, we also 
further analyzed three additional scRNAseq datasets of CD8+ T cells generated using other 
library construction methods. From direct inspection, we noted that of the pathways of interest 
we described above, four were found to be conserved across at least 3 of the 4 datasets, with 
particularly strong conservation of the chemokine signaling pathway we highlighted (FigS1). 
This conservation could be found despite sharp differences between datasets in terms of 
information recovered. For instance, we could observe sharp differences in dropout rate and 
background noise levels between the scSTATseq and 10X libraries (FigS2). As such, we believe 
that the pathway inferences drawn through TIPS may be reproducible across multiple 
independent datasets. 

Individual Gene Selection 

 In the results described above, we relied on picking genes with significant changes in 
switch-like expression as representative genes in a given pathway. However, it is well 
appreciated that not all genes may display this type of expression characteristic. As such, in order 
to develop a broader mechanism for identifying critical genes in a given pathway, we further 
explored using two other scoring approaches to assess gene significance. One approach is to 
perform a direct Pearson correlation between gene expression level for each cell with its assigned 
pseudotime, to capture genes with steady and monotonic expression changes. The other is to 
further iterate the DDRTree algorithm on a pathway-level, and calculate the impact removing a 
single given gene would have on the strength of the pseudotime correlation (DDRTree influence). 
When applied to the simulated dataset described above, we found that the correlation metric was 
highly associated with the switchde-based results, and did not help to discover more significantly 
associated genes (FigS3A). However, we found that the DDRTree influence metric recovered an 
independent pool of genes that did not follow switch-like behavior (FigS3C). These results were 
even more pronounced when applied to real data, as assessing DDRTree influence led to the 
identification of genes with complex expression dynamics (alternatively increasing then 
decreasing) (FigS4). Since these two metrics captured distinct pools of genes that are meaningful 
in different context, we elected to incorporate both of these methods for gene selection to help 
maximize the amount of information obtainable from TIPS and assist in downstream screening.    
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TIPS analysis of complex progression trajectories 

 While differentiation trajectories may sometimes involve a simple progression from one 
dominant state to another, real biological trajectories are oftentimes more complex, and involve 
multiple stable intermediate states. In order to understand if the TIPS workflow is sufficiently 
robust to handle these complex trajectories, we next applied it to analyze the differentiation 
trajectory of CD8+ tumor-infiltrating lymphocytes (TILs). TILs reside in a complex tumor-
immune microenvironment, wherein different types of cellular and metabolic interactions may 
influence their behavior. CD8+ TILs in particular have been demonstrated to become 
functionally exhausted in many types of solid tumors, and prevention/reversal of exhaustion has 
been the focus of intensive research. To examine the processes underlying CD8+ TIL behavior, 
we applied the TIPS workflow to a dataset of CD8+ TILs derived from hepatocellular carcinoma 
(HCC) patients that was generated using the plate-based SMARTseq2 library construction.  

 From our initial dimension reduction via UMAP, we were able to observe a number of 
separate clusters that roughly corresponded to the published cellular annotations (Fig4A). These 
cell types progressed in our trajectory analysis in a somewhat irregular manner, with an 
undefined population of cells marking the pseudotime endpoint (Fig4B-C). A relatively small 
portion of curated pathways (51/1,114) were found to have significant association with this 
trajectory (TableS2), from which we could identify a few pathways that have been previously 
validated, such as receptor-tyrosine kinase (RTK) signaling and TLR cascade (Fig4D-E). From 
further exploration of the unannotated cluster, we found that the cluster was dominated by 
ribosomal signatures, explaining the inclusion of significant correlations with ribosome-related 
pathways in our inference (FigS5). More interestingly however, we also uncovered pathways that 
have been reported to influence CD8+ T cell behavior in other contexts, such as the ROBO 
receptors and ERBB2 signaling pathways [26-27]. These pathways largely underwent substantial 
changes in gene expression early on in the pseudotime trajectory, although a portion of the 
ROBO receptor pathway shifted later on (Fig4F). Manual inspection of the genes within these 
pathways demonstrated that while the expression of ROBO receptors themselves did not show 
strong changes with respect to pseudotime, we could observe increases in the chemokine 
receptor CXCR4 that has been shown to rely on ROBO cooperation (Fig4I). Similarly, while 
ERBB2 itself did not show significant changes in expression, we did note a decreased expression 
in its downstream signal mediator KRAS at the endstage of the pseudotime trajectory (Fig4J). 
Taken together, these results suggest that both of these pathways may also play significant roles 
in regulating CD8+ TIL behavior.  

TIPS analysis of CD8+ TIL trajectory during checkpoint blockade 

 The recent development of immune checkpoint blockade (ICB) antibodies targeting PD-
1/PD-L1 and CTLA-4 has opened a new avenue for cancer therapy. While these inhibitors are 
expected to have a significant impact on the behavior of TILs, the exact molecular mechanisms 
and processes that are altered as a result of their application are not yet fully understood. To 
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extend our analysis of TIL behavior in HCC from above, we next analyzed a droplet-based 
dataset of TILs taken from patients who had undergone direct surgical resection only, or 
otherwise received anti-PD-L1 and anti-CTLA4 or anti-PD-1 treatment prior to resection. After 
subsetting out the population of CD8+ T cells from the dataset, we observed from dimension 
reduction that there was substantial separation between cells taken from the patients who had 
received differential treatment. This separation was also clear in our trajectory construction, 
where cells derived from untreated patients marked the end stage, while those from patients 
treated with anti-PD-L1 and anti-CTLA4 marked the start point. 

 Application of TIPS using the Reactome and KEGG knowledgebase once again yielded a 
small pool of (52 out of 965) pathways with significant associations (TableS3). As a whole, these 
pathways were significantly different from those recovered from the previous analysis of HCC 
samples above. However, we were able to recover pathways such as cellular senescence and 
TCA cycle, which have been previously implicated to be altered as a result of ICB [28,29] 
(FigS6). At the same time, we also uncovered a number of pathways that have not characterized 
in this context, such as WNT signaling and estrogen-dependent gene expression. Whether these 
pathways and their downstream molecules may also be important contributors to ICB success 
remains an open question for future validation. 

Discussion 

 While a large number of methods have been developed in recent years to help order cells 
along a single and/or multiple trajectories, obtaining information of biological significance of 
from such analysis has somewhat lagged behind [30]. In particular, although it has been 
demonstrated through a number of methods that trajectory analysis can recapitulate the known 
order of cellular maturation over the course of hematopoiesis, few studies have been able to 
discover novel transcription factors and/or biological processes that influence this process. In an 
attempt to redress this deficiency, we have presented the TIPS framework as described above to 
help uncover these molecular mechanisms. By relying on pseudotime trajectories as our point of 
comparison, we can maintain the single-cell nature of the data, and thereby identify pathways 
that change across multiple clusters. Furthermore, we can leverage existing tools for identifying 
gene changes with respect to pseudotime to give an overview of the temporal order in which 
pathways undergo significant changes. This latter form of temporal information is an additional 
vantage point that may of particular use in examining interdependent pathway relationships.  

Although our current pseudotime workflow is built upon the DDRTree algorithm 
implemented in Monocle, we believe that this approach is not limited to this method for 
pseudotime assignment. Instead, the relative simplicity of our conceptual framework should 
allow it to be readily implemented using other algorithms, including those that enable 
simultaneous consideration of independent and/or circular trajectories. This flexibility thus 
allows for further optimization of pathway analysis methods for single cell data that have faster 
runtimes and potentially improved accuracy. We hope to be able to continually update our TIPS 
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server to incorporate these newer methods for pseudotime assignment. Similarly, we currently 
rely on the switchde concept of finding genes with single, abrupt changes in expression, to define 
the order at which a pathway may be activating. This approach may be particularly suitable for 
genes with pronounced burst [31]. However, not all genes will follow this pattern of expression; 
some may have substantially more gradual increases in response to stimuli as a result of a higher 
basal level of expression, while others may display more complex expression kinetics with 
multiple on/off switch points. Further development of gene kinetic modeling and regulatory 
inference algorithms may be able to identify ways to successfully capture the signal of these 
genes with respect to pseudotime and help refine our understanding of pathway kinetics [32]. 

In short, our conceptual approach is not limited by the type of single-cell library 
construction method used; we present worked examples of TIPS analysis as performed on three 
different datasets from independent sources and generated with different workflows. These 
datasets vary significantly in the numbers of cells sequenced, the numbers of genes detected per 
cell, and in their rate of technical dropout. This latter source of variation may have particularly 
significant ramifications on the accuracy of pseudotime alignment. A number of informatics 
tools have been designed to impute and correct for this variation [33]. However, as further 
advances in library construction lead to increasingly precise and accurate single-cell profiles, 
technical dropout may also be significantly ameliorated. Together with further refinement and 
expansion of knowledgebase data, we anticipate that the analytical framework we describe in this 
manuscript will only improve in accuracy and predictive power over time.  

 

 

 

Key Points 

� The TIPS framework can be used to infer which biological pathways are significantly 
associated with progression along a central pseudotime trajectory 

� Additional contextual information on the relative order of pathway changes, and the specific 
genes driving such changes, can also be identified 

� TIPS opens up new modes of information recoverable from trajectory analysis 
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Figure 1—Overview of TIPS workflow 

The TIPS workflow as presented here and as implemented in our GUI and shiny app requires the 
input of only a gene expression file and the selection of a reference database for consideration, 
with an optional option for helping visualize associated metadata. These data are then loaded to 
create a Seurat object. Three modes of dimension reduction are then run (PCA, tSNE, and 
UMAP) to generate 2-D visualizations of transcriptional similarity between cells using HVGs. A 
trajectory is constructed using DDRTree in monocle (run in successive order in our app). Users 
may then select parameters regarding gene size and expression to filter for pathways of interest, 
and additional trajectories are then constructed based on individual pathway gene sets. The 
statistical significance of each pathway is computed based on signal relative to background noise 
from 1,000 randomly selected gene lists of the same size. Users may then further select specific 
pathways of interest for further analysis. These analyses include temporal ordering of different 
pathways, as well as selection of the critical genes from each pathway for downstream validation. 
All visualizations can be exported as publication-ready PDFs or tiffs with selectable scaling. The 
Seurat and monocle objects are stored in a directory to allow for further manipulation by the user 
if necessary. Full tables of pathways and genes within displaying significant association are also 
provided as text files.  

 

Figure 2—Parameter Testing using Simulated Data 

For parameter testing, we used a simulated dataset of 500 cells and 5,000 genes per cell, 
comparable in information amount to most real single-cell datasets. We then generated 1,000 
lists of 100 genes each for background measurement, and 100 lists of 100 genes each from the 
subset of HVGs (527 total) as our signal of interest. A) Average gene expression is commonly 
used as a metric for identifying significantly associated pathways in bulk analyses. However, no 
differences in correlation distribution could be found when HVG lists and random lists were 
compared using averaged expression to pseudotime correlation. B) When the lists were instead 
run through DDRTree to generate individual pseudotime vectors, pseudotime vectors derived 
from HVG lists showed very high levels of correlation, while few random lists showed 
significance. P values shown in A and B are for the Pearson correlation statistic. C) Dotplot of 
pseudotime correlation vs expression correlation demonstrates that the majority of HVG lists that 
showed high levels of pseudotime correlation had very little correlation in terms of expression (R 
<0.2). D) Dotplot of the expression profiles of all HVGs of the simulated dataset derived from 
switchde. mu0 indicates the half-peak expression of a gene prior to the switch event, while k 
indicates the magnitude of the switch event, and t0 the timepoint along the trajectory at which 
the switch event takes place. We can observe that most of the genes displaying noticeable switch 
behavior had low average expression, but roughly equal numbers of genes had increasing or 
decreasing expression. E) Taking one significantly associated HVG list as an example, we can 
observe that a given pathway may also include individual genes with increasing and decreasing 
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expression. F) By increasing or decreasing the size of the gene list considered, we can observe 
that the magnitude of the pseudotime correlation is highly sensitive to the size and amount of 
information considered. When the top50 genes with increasing expression by switchde are 
considered, the resulting correlation is higher than if the next 51 (top51-101) are considered. 
However, the full list of top100 genes has a higher correlation still. This effect can also be seen 
in the genes with decreasing expression (bot1-100). Furthermore, a fuller list of 200 genes (union 
of the top100 increasing and bottom100 decreasing) has a higher correlation than either list alone. 
These results confirm that the method is sufficiently sensitive. G) Real scRNAseq datasets can 
vary greatly in the numbers of cells sequenced. By subsetting the simulated set, we sought to 
measure the influence of changes in dataset size. Interestingly, while the smaller sets did display 
reduced correlation between the new pseudotime assignments for the cells subsetted and their 
original pseudotime values, most subsets retained a representative capability with R > 0.9 at 50 
cells. H) Real scRNAseq may also display zero-inflation as a result of technical dropout or 
transcriptional burst. By artificially adding in zero-inflation to splatter, we observed that an 
increase in dropout could drive a sharp decrease in pseudotime correlation. Indeed, past a certain 
threshold, trajectory analysis would be essentially meaningless. I) Real scRNAseq datasets may 
also measure and consider gene sets of different sizes. By changing the size of a randomly 
selected gene set, we also observed significant changes in the distribution of pseudotime 
correlation values; larger datasets naturally tended to have higher noise.   

Figure 3—TIPS workflow applied to CD8+ T cells 

A) UMAP reduction and clustering of the sorted CD8+ T cells identifies two prominent clusters 
reflective of effector and naïve/memory like populations. B) Violin plot of four prominent 
markers of T cell state demonstrate that the effector cluster features high expression of the 
functional molecules GZMB and IFNG, while the memory cluster shows elevated expression of 
CCR7 and S1PR1. C) Trajectory mapping of these cells reveals a simple arcing path with ordered 
progression from memory to effector cells. D) Volcano plot of the distribution of pseudotime 
correlation values and false discovery rates (FDR) for all pathways derived from three databases 
considered. Notably, a number of larger pathways do display high levels of pseudotime 
correlation, but at a level functionally indistinguishable from randomly selected gene sets of 
matching size. E) Dotplot visualization of ten pathways of interest that had significant correlation. 
While TIPS includes a default option for picking the top10 pathways, users may also wish to 
highlight specific pathways of interest. F) Temporal ordering of four pathways of interest using 
the switch points of significant genes along the trajectory. While the majority of the switch 
events occur at the point of change between memory and effector populations, a significant 
portion also occur at earlier and later points, indicating that the changes do not simply describe 
DEGs between the two clusters. G-J) Plots of the scaled expression of specific genes of interest 
from each pathway visualized over the course of pseudotime progression. These include genes 
that changed late in the trajectory, such as CXCR1 from the chemokine signaling pathway, as 
well as genes that change earlier on, such as IL12A from the IL-12 family signaling pathway. 
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Figure 4– Application of TIPS to identify pathways associated with CD8 TIL function 

A) UMAP reduction of the subset of CD8+ TILs taken from tumor regions (annotated as TTC in 
original data) shows relatively clean separation between the 5 types of annotated cell populations 
described in the original analysis, with some overlap caused by differences in dimension 
reduction method and HVG selection. B-C) Trajectory mapping of these cells shows some 
stratification between cell states along the pseudotime trajectory, with a relatively prominent 
placement of unannotated cells at the end point of the trajectory. D) Distribution of pathways 
according to pseudotime correlation and FDR shows relatively few significant pathways. E) 
Dotplot visualization of several significant pathways. F) Temporal ordering of selected pathways 
shows that most changes occur early on along the trajectory, although the ROBO receptors 
pathway includes a secondary peak of changes at the middle of the trajectory. G-J) Plots of the 
scaled expression of specific genes of interest from each pathway visualized over the course of 
pseudotime progression.  

FigS1—Conservation of TIPS results in other CD8+ T scRNAseq datasets 

A) Dotplot of the pseudotime correlations found in each independent dataset for ten pathways of 
interest inferred to be significantly associated in the scSTATseq dataset. SMARTseq3, 
scSTATseq, and Quartzseq2 are all plate-based methods for library construction, while the 10X 
chromium technique is the currently most common droplet-based method. B) The relative 
proportion of the genes in each pathway found to be measured in each dataset. Notably, while 
SMARTseq3 and scSTATseq generally detect expression of large portions of these genes, the 
Chromium and Quartzeq2 data show lower detection rates, likely explaining the sharp 
differences in correlation. 

FigS2—In-depth comparison of plate and droplet-based sequencing quality 

A) Overall dropout rate was much higher in the droplet-based library, as fewer than 2,000 genes 
were found in more than 50% of the cells, while over 10,000 genes were found at over 50% 
detection in the plate-based library. B) Because of this zero-inflation dropout, the droplet-based 
library has very high coefficient of variation (CV) for genes with low levels of average 
expression. C) Further inspection showed that the droplet based library has a tendency of 
aligning pseudotime trajectory in an order from cells with fewer genes to cells with more genes. 
This intrinsic effect has significant consequences on the level of background noise. D-E) While 
background noise in both droplet-based and plate-based data increase based on the numbers of 
genes considered (1,000 randomly selected lists for each size), the rate of increase was 
substantially more dramatic in the droplet-based data. F-G) This effect also caused the droplet-
based data to have high correlation between expression level and pseudotime correlation, a 
phenomenon not seen in the plate-based data. 
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FigS3—Gene selection in simulated data 

Single gene correlation with the overall pseudotime trajectory, the intensity of single gene 
switching, and the influence of a single gene on DDRTree correlation were computed for a pool 
of 100 HVGs. A-C) Intensity of switch events and expression correlation showed significant 
correlation. However, DDRTree influence was significantly independent from these two metrics. 
D-E) Top5 genes selected based on their magnitude of DDRTree influence or switch intensity 
shows no pronounced differences. 

FigS4—Gene selection in real data 

Single gene correlation with the overall pseudotime trajectory, the intensity of single gene 
switching, and the influence of a single gene on DDRTree correlation were computed for a pool 
of genes in the chemokine signaling pathway. A-C) Intensity of switch events and expression 
correlation showed significant correlation as in the simulated set. However, DDRTree influence 
was significantly independent from these two metrics. D-E) Top5 genes selected based on their 
magnitude of DDRTree influence or switch intensity. Whereas the genes selected based on 
switch-like behavior tend to display a singular change in expression, genes selected based on 
DDRTree influence feature multiple peaks indicative of more complex expression dynamics. 

FigS5—Annotation of an originally unannotated cluster of cells 

A) From our trajectory analysis, we also observed a number of pathways representing ribosomal 
activity and basic transcription/translation to be significantly associated with the overall 
trajectory. B) Heatmap of the top cluster-unique genes in the unknown cluster demonstrates that 
the cluster is dominated by a ribosomal signature. 

FigS6-- Application of TIPS to identify pathways responsive to checkpoint blockade 

A) UMAP reduction of the subset of CD8+ TILs taken from tumor regions shows clean 
separation between cell signatures as a result of ICB blockade treatment.  B-C) Trajectory 
mapping of these cells shows some stratification between cell states along the pseudotime 
trajectory, with cells from untreated patients reaching the end of the trajectory. D) Distribution of 
pathways according to pseudotime correlation and FDR shows relatively few significant 
pathways. E) Dotplot visualization of several significant pathways. F) Temporal ordering of 
selected pathways shows that most changes occur throughout the trajectory, with the estrogen-
dependent expression pathway more prominently featured at the end of the trajectory. Notably, 
we could also observe early changes in genes associated with cellular senescence.  
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