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Abstract

Recent advances in bioinformatics analyses have led to the development of novel tools enabling
the capture and trajectory mapping of single-cell RNA sequencing (scRNAseq) data. However,
thereisalack of methods to assess the contributions of biological pathways and transcription
factorsto an overall developmental trajectory mapped from scRNAseq data. In this manuscript,
we present a simplified approach for tragjectory inference of pathway significance (TIPS) that
leverages existing knowledgebases of functional pathways and transcription factor targets to
enable further mechanistic insightsinto a biological process. TIPS returns both the key pathways
whose changes are associated with the process of interest, as well as the individual genes that
best reflect these changes. TIPS also provides insight into the relative timing of pathway changes,
aswell as a suite of visualizations to enable simplified data interpretation of SSCRNAseq libraries
generated using a wide range of techniques. The TIPS package can be run through either aweb
server, or downloaded as a user-friendly GUI run in R, and may serve as a useful tool to help
biologists perform deeper functional analyses and visualization of their single-cell and/or large
cohort RNAseq data.

Keywor ds: trajectory mapping; pseudotime; TIPS; pathway analysis
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I ntroduction

Recent advances in single cell RNAseq (scRNAseq) library construction technologies,
coupled with decreases in cost of high-throughput sequencing, has led to a proliferation of new
single cell transcriptome data across a range of species and devel opmental/disease contexts. In
order to interpret this data, a slew of new bioinformatics tools and analysis techniques have been
devel oped. These include network-based methods to infer cis-regulatory interactions, splicing-
informed mapping of RNA-vel ocity, and inferences on key intercellular interactions based on
receptor-ligand pairs[1-3]. These and other novel tools have helped to unlock the potential of
scRNAseq to provide a plethora of information that was previously inaccessible to bulk
seguencing-based approaches.

However, one areain which currently available single-cell analysistools are lacking inis
in pathway analysis. While pathways analysis and similar gene-set based enrichment analyses
are among the most common ways to infer molecular mechanisms that are involved in the altered
cellular behavior under different conditions, directly applying bulk-sequencing inspired pathway
analysis methods to sScRNAseq data comes with substantial difficulties. Unlike bulk sequencing
profiles, sScRNAseq transcriptome tend to be dropout-heavy, with technical variation causing
false-zero detection of any given gene in acell [4-5]. Chance-driven technical dropout also tends
to be particularly severe for genes with low- to medium- expression magnitudes, many of which
aretypically included as key components of biological pathways. Because of this, some
approaches (such as Metacell) have been developed to enable gene set enrichment analyses
across clusters of cells using composite profiles [6]. Other tools, such as AUCell and GSVA, can
generate scored profiles for single cells along a given pathway of interest, but is predominately
applied to identify differentially regulated pathways between two clusters of interest [7-8]. This
emphasis on pairwise differential regulation isless suitable for single cell datasets that
encompass multiple cellular states and functional clusters. Furthermore, these approaches cannot
provide information on the temporal order by which pathways may change during a larger
biological process.

In order to implement pathway analysis on asingle-cell level, we present here a novel
analytical framework that provides trgjectory inference of pathway significance (TIPS). Our
approach leverages the common trajectory mapping principle of pseudotime assignment to build
pathway-specific trajectories from a pool of single cells. The pseudotime values for each cell
along these pathway-specific trajectories are then compared to identify the processes with
highest similarity to an overall trgjectory in asimple and intuitive process. Key genesthat are
associated with both the overall tragjectory and/or pathway-specific trajectories are also identified,
providing ready targets for downstream validation work. Direct visualizations are also offered at
each of the primary steps, with customizable options for figure generation for pathways and
genes of interest. The key modulesin TIPS incorporate in a number of leading SCRNAseq
analysistools, and can be run sequentially within ashiny GUI in R with the source code
available on GitHub, or on a dedicated webserver. We hope that the TIPS workflow may help
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further expand the range of functional analyses that are possible when working with sScRNAseq
data, and help derive new functional insights into complex biological processes.

Materialsand Methods
Overview of the TIPS framewor k

The TIPS framework is designed as 7 primary modules (described in detail below) intended to be
run sequentially in R as either alocal shiny-based GUI, or as online as a webserver. Each module
will automatically generate and format the analysis results as necessary to permit further

analyses without a need for manual modification. A schematic overview of these modulesis
included as Figurel.

Uploading Data

TIPS takes asits primary datainput a standard gene expression matrix, wherein each row
corresponds to a gene and each column acell, from a comma-delimited (.csv) file. Ideally, this
matrix should be pre-processed beforehand to only include in the cells that are of sufficient
quality and which are pertinent to the intended trajectory analysis. Since preprocessed data may
have been pre-normalized, an option is available to either log-normalize raw data, or to accept it
asis. TIPS also accepts metadata information for each cell (regarding sample quality, origin,
type, etc), from an additional (.csv) file for further visualizations. The user may then choose alist
of gene sets to consider from a dropdown menu (6 are built-in, including Reactome, KEGG,
BioCarta, Msigdb), or otherwise upload an additional (.gmt) file containing the gene lists they
wish to analyze [9-11]. This allowance for built-in options allows for customized analysis of data
derived from other organisms or knowledgebases.

Dimension Reduction

TIPS automatically loads and manages the data input as a Seurat object, and runs three different
dimension reduction algorithms (PCA, tSNE, and UMAP) to generate 2-D visualizations of the
transcriptome similarity between cells [12-13]. Users may select cutoff parameters for selecting
thelist of highly variable genes to consider for these reductions (both expression and dispersion
cutoffs), and number of nearest neighbors, in order to optimize the analysis to suit their dataset.
The results from the reduction can be visualized directly, with metadata information as selectable
overlays, while a Louvain clustering algorithm is run at common resolutions to provide a range
of clustering results.

Primary Trajectory Analysis

To generate the primary trajectory of the dataset, the same pool of highly variable genes used for
dimension reduction in the previous step is passed to Monaocle for DDRTree-based mapping and
pseudotime assignment [14]. Since the actual assignment direction for pseudotime values can be
arbitrary, an option to reverse the initial order of cellsis provided, such that users may select an
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order more intuitive for their question of interest in terms of expected temporal relations between
clusters. This assignment is then treated as the reference pseudotime trgjectory for downstream
anaysis.

Pathway | nference

In order to identify the pathways that are functionally associated with the overall trgjectory of
interest, we first load into the TIPS pipeline the selected reference knowledgebase of pathways
for consideration. We then tailor these reference pathways to the dataset of interest to remove
genes with missing expression, and prune out overly small pathways based on absolute size (<20
genes). TIPS then iteratively runs the DDRTree algorithm to generate one trajectory per pathway
of interest, considering all of the expressed genes from the pathway (including ones where the
genes display non-significant variation in expression) to give a complete picture of pathway
dynamics. This process reduces each pathway to a single linear vector of pseudotime values.
These pseudotime vectors are then compared to the reference pseudotime trajectory using
absolute Pearson’ s correlation to assess relative similarity in terms. Notably, absolute
comparisons are used for these measures to avoid potentially misleading inferences about the
direction of trajectory values. In order to assess the pathways with true significance, DDRTreeis
also iterated on randomly generated pathway lists to establish a false discovery rate for genes
sets of a given size. Pathways at correlation levels below 5% FDR and which have significant
correlation in terms of absolute gene expression (> 0.6) are considered to be significantly
associated with the overall trajectory.

Pathway Temporal Alignment

Individual significantly associated pathways may have distinct modes of behavior over the
course of the pseudotime trajectory, with some showing rapid changes early on, while others are
late-breaking. In order to provide atemporal understanding of these pathway dynamics, we
further utilized the switchde package in R to help identify genes with switch-like expression
characteristics [15]. We can then visualize the distribution of switch points with respect to
pseudotime for each individual pathway, and subsequently compare these distributions to
generate a temporal alignment.

SOM-based Pathway Selection

Although the absolute order of pseudotime values may be arbitrarily assigned and is not
dependent upon a unidirectional change in expression within a given gene list, researchers may
be interested in focusing on investigating processes that do show continual increases or decreases
expression over time. In order to accommodate this need, we implemented self-organizing maps
(SOMs) to cluster the cells using the kohonen package in R [16]. Users can select their pathways
of interest from a dropdown menu to assess the direction, while also choosing the number of
nodes for the SOM that would best fit their interest. Pathways that display monotonic changesin
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behavior can thus be visualized in this manner. The SOM can also be used to help visually
distinguish pathways with more complex expression kinetics.

Individual Gene Sdlection

Although the approach outlined above is sufficient for identifying pathways that meaningfully
contribute to an overall trajectory, it is oftentimes necessary to further clarify the exact genes that
drive such a contribution. To address this question, we included three distinct methods for
identifying critical genes within a pathway. First, we consider the genes with switch-like
behavior recovered from switchde, as the singular and abrupt change in expression within these
genes make them good candidates for functional screening and validation. Second, since other
critical genes may display milder and monotonic changes in expression, we also compute the
Pearson correlation between gene expression and pseudotime progression to help identify genes
not found by switchde. Finally, since still other factors may display more complex changesin
expression dynamics (alternating increases and decreases, or the like), we further weigh the
relative contribution of a given gene on the pseudotime correlation of its parent pathway.
Through these three distinct approaches contained in our final module, we can subsequently
narrow down the range of candidate genes to consider for further validation work.

Analyzed Datasets

For our initial analysis of a simulated dataset, we used the splatter package in R with default
setting to generate a dataset of 500 cells with 5,000 expressed genes per cell [17]. To enable
analysis of the impact of technical dropout, we further used the dropout function in splatter to
add in zero-inflation up through arange of median expression values.

scRNAseq Library Construction and Sequencing

In order to provide a direct demonstration of the use of the TIPS framework on real ScRNAseq
data, we isolated peripheral blood mononuclear cells (PBMCs) from whole blood provided by a
healthy donor under approval of the Ethics Committee of Southwest Hospital as part of a pilot
study. CD8+ T cells were acquired and FACS-sorted (Beckmann Coulter) into a 96-well plate
following staining with antibodies against CD3, CD4, and CD8 (BD). Cells were then lysed, and
libraries were prepared using the scSTATseq workflow that we have previously developed [18].
Libraries were sequenced using the HiSeq 4500 platform (I1lumina) and preprocessed as
previously described. Alignment-free counting of reads relative to the reference human
transcriptome was performed using Salmon [19]. The resulting gene expression matrix was then
read into the Seurat package in R, where quality control filtering was performed to remove cells
with excess mitochondrial reads (>10% of all reads), as well as outliersin terms of number of
genes recovered (<5000 or >15,000). The remaining 69 libraries were then passed to the TIPS
framework for further analysis and visualization.
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Additional Comparison Datasets

Additional data from scRNAseq libraries constructed using alternative methods were obtained
from GSE133535, a benchmarking study of different library construction protocols [20]. Since a
mix of cells were used in the study, we individually downloaded each of the data matrices
corresponding to a single method, and filtered them based on metadata annotation to only retain
human cells. Data on these cells was then loaded into Seurat for UM AP-based clustering in order
to identify clusters of CD8+ T cells (based on positive expression of CD8, CD3D, and lack of
expression of CD4 and NCAM 1). Transcriptome information from these CD8+ T cells were then
passed to TIPS for additional analysis.

For analysis of single CD8+ T cells from HCC patients, fully processed sparse matrix files were
obtained from GSE98683, and annotated CD8+ populations were used for further analysis
through TIPS [21]. Data for the HCC samples treated with immune checkpoint blockade was
similarly processed from GSE125449 [22].

Results
Testing of the TIPSworkflow using simulated data

In order to assess the robustness of the analysis workflow described, we first smulated a
medium-sized scRNAseq dataset of 5,000 genes and 500 cells ordered along a single path. We
then compared the performance of different correlation metrics for comparing pathwaysto a
common trgjectory using 1,000 randomly selected gene lists and 100 highly variable gene (HVG)
lists. Since the baseline pseudotime trajectory was generated based on a complete list of HVGs,
we anticipated that subsets of the HV G list would show true signal, while the completely random
lists would reflect the range of noise. Interestingly, we observed that the HV G lists were
essentially indistinguishable from random background when mean pathway gene expression
level was considered (Fig2A). However, pseudotime-to-pseudotime correlations showed a clear
separation between HV G lists and background (Fig2B).This phenomenon suggested that the
TIPS workflow will highlight pathways as being highly significant regardless of average
expression (Fig2C). Instead, we observed that the constituent genes from the highly correlated
lists displayed balanced distribution, with a similar number of genes having increasing or
decreasing expression (and changes of similar magnitude) over the course of the pseudotime
tragjectory (Fig2D). Thistrend could also be clearly identified in terms of specific genesfrom a
single pathway (Fig2E). At the same time, we also observed a clear pattern wherein the addition
of additional information from more HV Gs led to higher correlation with the overall pseudotime
(Fig2F). As such, these results suggest that pseudotime correlation provides a sensitive method
for comparing two trajectories, by accounting for genes with both increasing and decreasing
expression.

At the same time, we also assessed the potential influence of other factors on the
accuracy of pseudotime mapping to clarify its range of applicability. Since sScRNAseq libraries
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may vary greatly in terms of number of cells recovered, genes recovered, and in sequencing
quality, we controlled for each of these factorsin turn. Interestingly, pseudotime mapping using
subsampled cells demonstrated that decreasing the size of the dataset did not have a strong of an
effect on correlation accuracy, such that a correlation above 0.9 could be maintained even when
the dataset was downsampled to 10% of its original size (Fig2G). However, the gene detection
quality of the cells sequenced had a substantial impact on accuracy, as increasing the degree of
technical dropout in the dataled to a clear deterioration in the correlation (Fig2H). This
deterioration demonstrates that pseudotime assignment is sensitive to information loss. In a
similar vein, we observed that the number of genes considered for pseudotime assignment also
had significant influence on its accuracy; larger sets of randomly selected genes tended to have
significantly higher background noise than their smaller counterparts (Fig2l). Since agiven
dataset may only feature significant expression in a subset of al genes assigned to agiven
pathway, the relative size and representation rate of a pathway may also influence correlation
interpretation. As such, we elected to run independent calculations of background noise using
random lists for each pathway in order to control for differencesin genelist size and
representation.

TIPS confirms existing knowledge of CD8+ T cell differentiation

To validate the utility and biological relevance of our workflow, we then analyzed 69
single-cdll libraries of peripheral blood CD8+ T cells from a healthy donor using the sScSTATseq
method. UMAP clustering of the cells readily identified two prominent clusters of cells of
similar size (Fig2A), and marker analysis demonstrated that clusterO was composed of antigen-
experienced effector cells positive for the effector molecules IFNG and GZMB, while clusterl
included naive/memory cells that displayed high levels of CCR7 and S1PR1 (Fig2B).
Pseudotime trajectory mapping based on the dispersed genes yielded ardatively simple arc, with
the effector cells being assigned higher pseudotime values along this reference trajectory (Fig2C).
We then generated iterated trajectory mappings using the curated hallmark signatures from three
separate knowledgebases (Msigdb, KEGG, Reactome), and performed paired correlation analysis
of the pseudotime values against the reference trajectory to identify pathways with close
association and significant signal over noise based on gene set size (Fig2D). Consistent with our
expectations, arelatively small portion of pathways showed significance, alleviating concerns
about overfitting from our method (TableS1).

From direct inspection of the top pathways displaying significant association via TIPS
analysis, we found a number of well-characterized processes known to influence CD8 behavior,
such as chemokine signaling and IL12 family signaling (Fig2E). At the same time, we also
observed significancein less appreciated processes such the Myd88-mediate TLR cascade and
SLC-mediated transmembrane transport. Overall temporal alignment of these four pathways of
interest based on the order of their switched-on genes demonstrated that each of these pathways
had factors that changed across multiple points of the overall pseudotime trajectory, although
most of the changes were centered at an intermediate timepoint marking a changeover from
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memory to effector status (Fig2F). When we focused in on each pathway, we could observe that
these changes included relatively critical congtituents, such as the signaling kinase IRAK1 in the
Myd88-mediated cascade. Many of these molecules have also previously been demonstrated to
be of functional importance in the context of T cell immunity, such as the co-stimulatory
molecule ICOS, the large neutral amino acid transporter SLC7A5, and the chemokine receptor
CXCR1[23-25]. We also recovered several interesting molecules not characterized in this
context, such as the iron exporter ferroportin (SLC40A1) and zinc importer SLC39A2. Taken
together, these results demonstrate that the TIPS workflow can successfully recapitul ate existing
knowledge of a biological context while also yielding novel candidates for further validation.

In order to put these pathway inferences relating to CD8+ T cells in context, we also
further analyzed three additional ScRNAseq datasets of CD8+ T cells generated using other
library construction methods. From direct inspection, we noted that of the pathways of interest
we described above, four were found to be conserved across at |least 3 of the 4 datasets, with
particularly strong conservation of the chemokine signaling pathway we highlighted (FigS1).
This conservation could be found despite sharp differences between datasets in terms of
information recovered. For instance, we could observe sharp differences in dropout rate and
background noise levels between the scSTATseq and 10X libraries (FigS2). As such, we believe
that the pathway inferences drawn through TIPS may be reproducible across multiple
independent datasets.

Individual Gene Sdlection

In the results described above, we relied on picking genes with significant changesin
switch-like expression as representative genes in a given pathway. However, it iswell
appreciated that not all genes may display this type of expression characteristic. As such, in order
to develop a broader mechanism for identifying critical genesin a given pathway, we further
explored using two other scoring approaches to assess gene significance. One approach isto
perform adirect Pearson correlation between gene expression level for each cell with its assigned
pseudotime, to capture genes with steady and monotonic expression changes. The other isto
further iterate the DDRTree algorithm on a pathway-level, and calculate the impact removing a
single given gene would have on the strength of the pseudotime correlation (DDRTree influence).
When applied to the simulated dataset described above, we found that the correlation metric was
highly associated with the switchde-based results, and did not help to discover more significantly
associated genes (FigS3A). However, we found that the DDRTree influence metric recovered an
independent pool of genes that did not follow switch-like behavior (FigS3C). These results were
even more pronounced when applied to real data, as assessing DDRTree influence led to the
identification of genes with complex expression dynamics (alternatively increasing then
decreasing) (Fig$4). Since these two metrics captured distinct pools of genes that are meaningful
in different context, we elected to incorporate both of these methods for gene selection to help
maximize the amount of information obtainable from TIPS and assist in downstream screening.
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TIPS analysis of complex progression trajectories

While differentiation trajectories may sometimes involve a simple progression from one
dominant state to another, real biological traectories are oftentimes more complex, and involve
multiple stable intermediate states. In order to understand if the TIPS workflow is sufficiently
robust to handle these complex trajectories, we next applied it to analyze the differentiation
trajectory of CD8+ tumor-infiltrating lymphocytes (TILS). TILs reside in acomplex tumor-
immune microenvironment, wherein different types of cellular and metabolic interactions may
influence their behavior. CD8+ TILsin particular have been demonstrated to become
functionally exhausted in many types of solid tumors, and prevention/reversal of exhaustion has
been the focus of intensive research. To examine the processes underlying CD8+ TIL behavior,
we applied the TIPS workflow to a dataset of CD8+ TILs derived from hepatocellular carcinoma
(HCC) patients that was generated using the plate-based SMARTseg2 library construction.

From our initial dimension reduction via UMAP, we were able to observe a number of
separate clusters that roughly corresponded to the published cellular annotations (Fig4A). These
cell types progressed in our tragjectory analysisin a somewhat irregular manner, with an
undefined population of cells marking the pseudotime endpoint (Fig4B-C). A reatively small
portion of curated pathways (51/1,114) were found to have significant association with this
trajectory (TableS2), from which we could identify a few pathways that have been previously
validated, such as receptor-tyrosine kinase (RTK) signaling and TLR cascade (FigdD-E). From
further exploration of the unannotated cluster, we found that the cluster was dominated by
ribosomal signatures, explaining the inclusion of significant correlations with ribosome-related
pathways in our inference (FigS5). More interestingly however, we aso uncovered pathways that
have been reported to influence CD8+ T cell behavior in other contexts, such asthe ROBO
receptors and ERBB2 signaling pathways [26-27]. These pathways largely underwent substantial
changes in gene expression early on in the pseudotime trajectory, although a portion of the
ROBO receptor pathway shifted later on (Fig4dF). Manual inspection of the genes within these
pathways demonstrated that while the expression of ROBO receptors themselves did not show
strong changes with respect to pseudotime, we could observe increases in the chemokine
receptor CXCR4 that has been shown to rely on ROBO cooperation (Fig4l). Similarly, while
ERBB2 itself did not show significant changes in expression, we did note a decreased expression
in its downstream signal mediator KRAS at the endstage of the pseudotime trajectory (Fig4J).
Taken together, these results suggest that both of these pathways may also play significant roles
in regulating CD8+ TIL behavior.

TIPS analysisof CD8+ TIL trajectory during checkpoint blockade

The recent development of immune checkpoint blockade (ICB) antibodies targeting PD-
1/PD-L1 and CTLA-4 has opened a new avenue for cancer therapy. While these inhibitors are
expected to have a significant impact on the behavior of TILs, the exact molecular mechanisms
and processes that are altered as a result of their application are not yet fully understood. To
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extend our analysis of TIL behavior in HCC from above, we next analyzed a droplet-based
dataset of TILs taken from patients who had undergone direct surgical resection only, or
otherwise received anti-PD-L1 and anti-CTLA4 or anti-PD-1 treatment prior to resection. After
subsetting out the population of CD8+ T cells from the dataset, we observed from dimension
reduction that there was substantial separation between cells taken from the patients who had
received differential treatment. This separation was also clear in our trajectory construction,
where cells derived from untreated patients marked the end stage, while those from patients
treated with anti-PD-L1 and anti-CTLA4 marked the start point.

Application of TIPS using the Reactome and KEGG knowledgebase once again yielded a
small pool of (52 out of 965) pathways with significant associations (TableS3). As awhole, these
pathways were significantly different from those recovered from the previous analysis of HCC
samples above. However, we were able to recover pathways such as cellular senescence and
TCA cycle, which have been previoudy implicated to be altered as aresult of 1CB [28,29]
(FigS6). At the same time, we also uncovered anumber of pathways that have not characterized
in this context, such as WNT signaling and estrogen-dependent gene expression. Whether these
pathways and their downstream molecules may also be important contributors to ICB success
remains an open question for future validation.

Discussion

While alarge number of methods have been developed in recent yearsto help order cells
along a single and/or multiple trg ectories, obtaining information of biological significance of
from such analysis has somewhat lagged behind [30]. In particular, although it has been
demonstrated through a number of methods that trajectory analysis can recapitulate the known
order of cellular maturation over the course of hematopoiesis, few studies have been able to
discover novel transcription factors and/or biological processes that influence this process. In an
attempt to redress this deficiency, we have presented the TIPS framework as described above to
help uncover these molecular mechanisms. By relying on pseudotime trajectories as our point of
comparison, we can maintain the single-cell nature of the data, and thereby identify pathways
that change across multiple clusters. Furthermore, we can leverage existing tools for identifying
gene changes with respect to pseudotime to give an overview of the temporal order in which
pathways undergo significant changes. This latter form of temporal information is an additional
vantage point that may of particular use in examining interdependent pathway relationships.

Although our current pseudotime workflow is built upon the DDRTree algorithm
implemented in Monocle, we believe that this approach is not limited to this method for
pseudotime assignment. Instead, the relative simplicity of our conceptual framework should
allow it to be readily implemented using other algorithms, including those that enable
simultaneous consideration of independent and/or circular trajectories. Thisflexibility thus
allows for further optimization of pathway analysis methods for single cell data that have faster
runtimes and potentially improved accuracy. We hope to be able to continually update our TIPS
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server to incorporate these newer methods for pseudotime assignment. Similarly, we currently
rely on the switchde concept of finding genes with single, abrupt changes in expression, to define
the order at which a pathway may be activating. This approach may be particularly suitable for
genes with pronounced burst [31]. However, not all genes will follow this pattern of expression;
some may have substantially more gradual increases in response to stimuli as aresult of ahigher
basal level of expression, while others may display more complex expression kinetics with
multiple on/off switch points. Further development of gene kinetic modeling and regulatory
inference algorithms may be able to identify ways to successfully capture the signal of these
genes with respect to pseudotime and help refine our understanding of pathway Kinetics[32].

In short, our conceptual approach is not limited by the type of single-cdl library
construction method used; we present worked examples of TIPS analysis as performed on three
different datasets from independent sources and generated with different workflows. These
datasets vary significantly in the numbers of cells sequenced, the numbers of genes detected per
cell, and in their rate of technical dropout. This latter source of variation may have particularly
significant ramifications on the accuracy of pseudotime alignment. A number of informatics
tools have been designed to impute and correct for this variation [33]. However, as further
advancesin library construction lead to increasingly precise and accurate single-cell profiles,
technical dropout may also be significantly ameliorated. Together with further refinement and
expansion of knowledgebase data, we anticipate that the analytical framework we describe in this
manuscript will only improve in accuracy and predictive power over time.

Key Points

s The TIPS framework can be used to infer which biological pathways are significantly
associated with progression along a central pseudotime tragjectory

% Additional contextual information on the relative order of pathway changes, and the specific
genes driving such changes, can also be identified

% TIPS opens up new modes of information recoverable from trajectory analysis
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Figure 1—Overview of TIPS wor kflow

The TIPS workflow as presented here and as implemented in our GUI and shiny app requires the
input of only a gene expression file and the selection of a reference database for consideration,
with an optional option for helping visualize associated metadata. These data are then loaded to
create a Seurat object. Three modes of dimension reduction are then run (PCA, tSNE, and
UMAP) to generate 2-D visualizations of transcriptional similarity between cells using HVGs. A
trajectory is constructed using DDRTree in monocle (run in successive order in our app). Users
may then select parameters regarding gene size and expression to filter for pathways of interest,
and additional trajectories are then constructed based on individual pathway gene sets. The
statistical significance of each pathway is computed based on signal relative to background noise
from 1,000 randomly selected gene lists of the same size. Users may then further select specific
pathways of interest for further analysis. These analyses include temporal ordering of different
pathways, as well as selection of the critical genes from each pathway for downstream validation.
All visualizations can be exported as publication-ready PDFs or tiffs with selectable scaling. The
Seurat and monocle objects are stored in adirectory to alow for further manipulation by the user
if necessary. Full tables of pathways and genes within displaying significant association are also
provided as text files.

Figure 2—Parameter Testing using Simulated Data

For parameter testing, we used a smulated dataset of 500 cells and 5,000 genes per cell,
comparable in information amount to most real single-cell datasets. We then generated 1,000
lists of 100 genes each for background measurement, and 100 lists of 100 genes each from the
subset of HVGs (527 total) as our signal of interest. A) Average gene expression is commonly
used as ametric for identifying significantly associated pathways in bulk analyses. However, no
differences in correlation distribution could be found when HVG lists and random lists were
compared using averaged expression to pseudotime correlation. B) When the lists were instead
run through DDRTree to generate individual pseudotime vectors, pseudotime vectors derived
from HV G lists showed very high levels of correlation, while few random lists showed
significance. P values shown in A and B are for the Pearson correlation statistic. C) Dotplot of
pseudotime correlation vs expression correlation demonstrates that the majority of HV G lists that
showed high levels of pseudotime correlation had very little correlation in terms of expression (R
<0.2). D) Dotplot of the expression profiles of all HV Gs of the ssmulated dataset derived from
switchde. muO indicates the half-peak expression of a gene prior to the switch event, while k
indicates the magnitude of the switch event, and tO the timepoint along the trajectory at which
the switch event takes place. We can observe that most of the genes displaying noticeable switch
behavior had low average expression, but roughly equal numbers of genes had increasing or
decreasing expression. E) Taking one significantly associated HV G list as an example, we can
observe that a given pathway may also include individual genes with increasing and decreasing
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expression. F) By increasing or decreasing the size of the gene list considered, we can observe
that the magnitude of the pseudotime correlation is highly sensitive to the size and amount of
information considered. When the top50 genes with increasing expression by switchde are
considered, the resulting correlation is higher than if the next 51 (top51-101) are considered.
However, the full list of top100 genes has a higher correlation still. This effect can also be seen
in the genes with decreasing expression (bot1-100). Furthermore, afuller list of 200 genes (union
of the top100 increasing and bottom100 decreasing) has a higher correlation than either list alone.
These results confirm that the method is sufficiently sensitive. G) Real sScRNAseq datasets can
vary greatly in the numbers of cells sequenced. By subsetting the simulated set, we sought to
measure the influence of changes in dataset size. Interestingly, while the smaller sets did display
reduced correlation between the new pseudotime assignments for the cells subsetted and their
original pseudotime values, most subsets retained a representative capability with R> 0.9 at 50
cells. H) Real scRNAseq may also display zero-inflation as aresult of technical dropout or
transcriptional burst. By artificially adding in zero-inflation to splatter, we observed that an
increase in dropout could drive a sharp decrease in pseudotime correlation. Indeed, past a certain
threshold, trajectory analysis would be essentially meaningless. I) Real sScRNAseq datasets may
also measure and consider gene sets of different sizes. By changing the size of a randomly
selected gene set, we also observed significant changes in the distribution of pseudotime
correlation values; larger datasets naturally tended to have higher noise.

Figure 3—TIPSworkflow applied to CD8+ T cells

A) UMAP reduction and clustering of the sorted CD8+ T cellsidentifies two prominent clusters
reflective of effector and naive/memory like populations. B) Violin plot of four prominent
markers of T cell state demonstrate that the effector cluster features high expression of the
functional molecules GZMB and IFNG, while the memory cluster shows elevated expression of
CCRY and S1PR1. C) Trajectory mapping of these cells reveals a simple arcing path with ordered
progression from memory to effector cells. D) Volcano plot of the distribution of pseudotime
correlation values and false discovery rates (FDR) for all pathways derived from three databases
considered. Notably, a number of larger pathways do display high levels of pseudotime
correlation, but at a level functionally indistinguishable from randomly selected gene sets of
matching size. E) Dotplot visualization of ten pathways of interest that had significant correlation.
While TIPS includes a default option for picking the top10 pathways, users may also wish to
highlight specific pathways of interest. F) Temporal ordering of four pathways of interest using
the switch points of significant genes along the trajectory. While the majority of the switch
events occur at the point of change between memory and effector populations, a significant
portion also occur at earlier and later points, indicating that the changes do not ssimply describe
DEGs between the two clusters. G-J) Plots of the scaled expression of specific genes of interest
from each pathway visualized over the course of pseudotime progression. These include genes
that changed late in the trgjectory, such as CXCR1 from the chemokine signaling pathway, as
well as genes that change earlier on, such as IL12A from the IL-12 family signaling pathway.
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Figure 4— Application of TIPS to identify pathways associated with CD8 TIL function

A) UMAP reduction of the subset of CD8+ TILs taken from tumor regions (annotated as TTC in
original data) shows relatively clean separation between the 5 types of annotated cell populations
described in the original analysis, with some overlap caused by differencesin dimension
reduction method and HV G sdlection. B-C) Trajectory mapping of these cells shows some
stratification between cell states along the pseudotime trajectory, with arelatively prominent
placement of unannotated cells at the end point of the trgjectory. D) Distribution of pathways
according to pseudotime correlation and FDR shows relatively few significant pathways. E)
Dotplot visualization of several significant pathways. F) Temporal ordering of selected pathways
shows that most changes occur early on along the trgjectory, although the ROBO receptors
pathway includes a secondary peak of changes at the middle of the trgjectory. G-J) Plots of the
scaled expression of specific genes of interest from each pathway visualized over the course of
pseudotime progression.

FigS1—Conservation of TIPS resultsin other CD8+ T scRNAseq datasets

A) Dotplot of the pseudotime correlations found in each independent dataset for ten pathways of
interest inferred to be significantly associated in the scCSTATseq dataset. SMARTSseq3,
ScSTATseq, and Quartzseq2 are all plate-based methods for library construction, while the 10X
chromium technique is the currently most common droplet-based method. B) The relative
proportion of the genes in each pathway found to be measured in each dataset. Notably, while
SMARTseq3 and scSTATseq generally detect expression of large portions of these genes, the
Chromium and Quartzeq2 data show lower detection rates, likely explaining the sharp
differencesin correlation.

FigS2—In-depth comparison of plate and droplet-based sequencing quality

A) Overall dropout rate was much higher in the droplet-based library, as fewer than 2,000 genes
were found in more than 50% of the cells, while over 10,000 genes were found at over 50%
detection in the plate-based library. B) Because of this zero-inflation dropout, the dropl et-based
library has very high coefficient of variation (CV) for genes with low levels of average
expression. C) Further inspection showed that the droplet based library has a tendency of
aligning pseudotime trajectory in an order from cells with fewer genes to cells with more genes.
Thisintrinsc effect has significant consequences on the level of background noise. D-E) While
background noise in both droplet-based and plate-based data increase based on the numbers of
genes considered (1,000 randomly selected lists for each size), the rate of increase was
substantially more dramatic in the droplet-based data. F-G) This effect also caused the droplet-
based data to have high correlation between expression level and pseudotime correlation, a
phenomenon not seen in the plate-based data.
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FigS3—Gene sdlection in smulated data

Single gene correlation with the overall pseudotime trgjectory, the intensity of single gene
switching, and the influence of a single gene on DDRTree correlation were computed for a pool
of 100 HVGs. A-C) Intensity of switch events and expression correlation showed significant
correlation. However, DDRTree influence was significantly independent from these two metrics.
D-E) Top5 genes selected based on their magnitude of DDRTree influence or switch intensity
shows no pronounced differences.

FigSA—Gene sdlection in real data

Single gene correlation with the overall pseudotime trgjectory, the intensity of single gene
switching, and the influence of a single gene on DDRTree correlation were computed for a pool
of genes in the chemokine signaling pathway. A-C) Intensity of switch events and expression
correlation showed significant correlation asin the simulated set. However, DDRTree influence
was significantly independent from these two metrics. D-E) Top5 genes selected based on their
magnitude of DDRTree influence or switch intensity. Whereas the genes selected based on
switch-like behavior tend to display a singular change in expression, genes selected based on
DDRTree influence feature multiple peaks indicative of more complex expression dynamics.

FigS5—Annotation of an originally unannotated cluster of cells

A) From our trajectory analysis, we also observed a number of pathways representing ribosomal
activity and basic transcription/trangation to be significantly associated with the overall
trajectory. B) Heatmap of the top cluster-unique genes in the unknown cluster demonstrates that
the cluster is dominated by a ribosomal signature.

FigS6-- Application of TIPS to identify pathways responsive to checkpoint blockade

A) UMAP reduction of the subset of CD8+ TILs taken from tumor regions shows clean
separation between cell signatures asaresult of ICB blockade treatment. B-C) Trajectory
mapping of these cells shows some stratification between cell states along the pseudotime
trajectory, with cells from untreated patients reaching the end of the trgjectory. D) Distribution of
pathways according to pseudotime correlation and FDR shows relatively few significant
pathways. E) Dotplot visualization of several significant pathways. F) Temporal ordering of
selected pathways shows that most changes occur throughout the trajectory, with the estrogen-
dependent expression pathway more prominently featured at the end of the trajectory. Notably,
we could also observe early changes in genes associated with cellular senescence.
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