
 

1 
 

Title Page 1 

 2 

Title:  3 

 4 

Broad transcriptomic dysregulation across the cerebral cortex in ASD. 5 

 6 

Authors:  7 

 8 

Jillian R. Haney1,2,3, Brie Wamsley1,2,3,4, George T. Chen2, Sepideh Parhami1,2,3, Prashant S. Emani8, Nathan 9 

Chang8, Gil D. Hoftman1,3, Diego de Alba3, Gaurav Kale3, Gokul Ramaswami1,2, Christopher L. Hartl1,2, Ting 10 

Jin9, Daifeng Wang9, Jing Ou2, Ye Emily Wu1,2, Neelroop N. Parikshak2,4, Vivek Swarup2,6, T. Grant Belgard10, 11 

Mark Gerstein8, Bogdan Pasaniuc4,7, Michael J. Gandal1,2,3,4,* & Daniel H. Geschwind1,2,3,4,* 12 

 13 

Affiliations: 14 

 15 

1. Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of 16 

California, Los Angeles, Los Angeles, CA 90095, USA. 17 

2. Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of 18 

Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, 19 

USA. 20 

3. Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los 21 

Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA. 22 

4. Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los 23 

Angeles, CA 90095, USA. 24 

5. Department of Neurology, School of Medicine, University of California, San Francisco, CA 94143, USA. 25 

6. Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA. 26 

7. Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, 27 

Los Angeles, 90024, USA. 28 

8. Computational Biology & Bioinformatics Program, Yale University, New Haven, CT 06520, USA. 29 

9. Waisman Center and Department of Biostatistics and Medical Informatics, University of Wisconsin – Madison, 30 

Madison, WI, 53705, USA. 31 

10. The Bioinformatics CRO, 203 Muirfield Cove West, Niceville, FL 32578, USA. 32 

* Correspondence to: mgandal@mednet.ucla.edu and dhg@mednet.ucla.edu  33 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.17.423129doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423129
http://creativecommons.org/licenses/by/4.0/


 

2 
 

Abstract 1 

Classically, psychiatric disorders have been considered to lack defining pathology, but recent work has 2 

demonstrated consistent disruption at the molecular level, characterized by transcriptomic and epigenetic 3 

alterations.1–3 In ASD, upregulation of microglial, astrocyte, and immune signaling genes, downregulation of 4 

specific synaptic genes, and attenuation of regional gene expression differences are observed.1,2,4–6 However, 5 

whether these changes are limited to the cortical association areas profiled is unknown. Here, we perform RNA-6 

sequencing (RNA-seq) on 725 brain samples spanning 11 distinct cortical areas in 112 ASD cases and 7 

neurotypical controls. We identify substantially more genes and isoforms that differentiate ASD from controls 8 

than previously observed. These alterations are pervasive and cortex-wide, but vary in magnitude across 9 

regions, roughly showing an anterior to posterior gradient, with the strongest signal in visual cortex, followed by 10 

parietal cortex and the temporal lobe. We find a notable enrichment of ASD genetic risk variants among cortex-11 

wide downregulated synaptic plasticity genes and upregulated protein folding gene isoforms. Finally, using 12 

snRNA-seq, we determine that regional variation in the magnitude of transcriptomic dysregulation reflects 13 

changes in cellular proportion and cell-type-specific gene expression, particularly impacting L3/4 excitatory 14 

neurons. These results highlight widespread, genetically-driven neuronal dysfunction as a major component of 15 

ASD pathology in the cerebral cortex, extending beyond association cortices to involve primary sensory regions. 16 

  17 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.17.423129doi: bioRxiv preprint 

https://paperpile.com/c/GaGm1R/2cBf+zpgg+lRVX
https://paperpile.com/c/GaGm1R/r95n+XcB4+zpgg+w8Xg+2cBf
https://doi.org/10.1101/2020.12.17.423129
http://creativecommons.org/licenses/by/4.0/


 

3 
 

Main Text 1 

Transcriptomic changes across the cerebral cortex in ASD 2 

 3 

Similar to other neuropsychiatric disorders, the risk for autism spectrum disorder (ASD) involves 4 

substantial genetic liability, which is profoundly complex and heterogeneous.7,8 Despite this causal 5 

heterogeneity, molecular profiling studies consistently show common patterns of shared transcriptomic and 6 

epigenetic dysregulation in the majority of ASD cases in frontal and temporal association cortex.1–3,5 Whether 7 

this represents focal, regional, or more generalized dysfunction is not known. To address this question cortex-8 

wide, we conducted strand-specific RNA-sequencing (RNA-seq) to identify gene and isoform (transcriptomic) 9 

changes in 725 samples across 11 brain regions spanning all four cortical lobules (frontal, parietal, temporal, 10 

and occipital), from 49 subjects with idiopathic ASD and 54 matched neurotypical controls (Fig. 1a, Methods, 11 

Supplementary Table 1, and Extended Data Fig. 1-3). Previous work using gene expression microarrays and 12 

RNA-seq identified gene co-expression modules representing specific pathways differentially expressed in ASD 13 

frontal and temporal cortices.4,5 The number of samples profiled here is more than five times greater than these 14 

prior studies, so we first used this multi-region RNA-seq resource to replicate and extend these previous findings. 15 

We observed widespread dysregulation across all 11 cortical regions that replicated the previously identified 16 

patterns of dysregulation in temporal and frontal cortex (Fig. 1b, Methods, Supplementary Table 2, Extended 17 

Data Fig. 3). However, the magnitude of effect varied across regions, with the primary visual cortex (V1; 18 

Brodmann Area (BA) 17) exhibiting the greatest degree of dysregulation, followed by parietal cortex (BA7) and 19 

posterior superior temporal gyrus (BA 41/42/22) both in terms of fold changes and the number of genes 20 

differentially expressed (Fig. 1b, Extended Data Fig. 3). To show that this was not due to regional variation in 21 

sample sizes, we performed permutation testing, which indicated that this increased signal was not biased by 22 

regional sample size differences (Methods, Supplementary Table 2). 23 

Given that qualitatively similar transcriptomic changes were observed across regions (Fig. 1b), we next 24 

combined all regions to increase our statistical power to detect previously unrecognized differentially expressed 25 

(DE) genes and isoforms. We used a linear mixed model framework to control for individual effects and identify 26 

changes across all 11 regions examined as well as within individual regions, separately (Fig. 1c, Methods, 27 

Supplementary Table 3, Extended Data Fig 4). We found 4,223 genes and 9,474 isoforms (FDR < 0.05) DE 28 

across all cortical regions, a notable increase compared to previous analyses (Fig. 1c, Extended Data Fig. 3). 29 

We again observed the greatest signal in BA17, and 59% of DE genes in BA17 alone overlapped with what was 30 

observed globally (Supplementary Table 2, Extended Data Fig. 4). Additionally, DE gene effect sizes in BA17 31 

and BA7 were the highest in magnitude, more than other regions assessed (Fig. 1d, Methods). In comparing 32 

DE genes and isoforms across all regions, we found both conserved and distinct dysregulation (Extended Data 33 

Fig. 4, Supplementary Table 2). Notably, as previously observed in frontal and temporal cortex1 we observed 34 

that DE isoforms exhibited greater effect size changes in ASD than their matched genes (Fig. 1e, 35 

Supplementary Table 2, Extended Data Fig. 4). 36 

We next evaluated differential gene and isoform expression in an additional 83 pan-cortical samples from 37 

9 subjects with dup15q syndrome, a rare genetic disorder with high penetrance for ASD, which previously was 38 

shown to strongly parallel changes in idiopathic ASD in frontal and temporal cortex, but with greater magnitude 39 

of effect.5 We replicated these previous results broadly across the cortical regions examined, finding substantial 40 

overlap in transcriptomic changes between dup15q and idiopathic ASD and with dup15q exhibiting a greater 41 

magnitude of dysregulation overall (Fig. 1f, Supplementary Table 2, Extended Data Fig. 4). BA17 also 42 

exhibited the greatest number of DE genes in dup15q (Extended Data Fig. 4). These results demonstrate that 43 

the molecular pathology shared by this genetic form of ASD and idiopathic ASD is widespread across distinct 44 

regions of the cortex, and that some commonalities in regional variance of effect exist, both impacting sensory 45 

in addition to association cortex. 46 

 47 
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 1 

Broad attenuation of transcriptomic regional identity 2 

 3 

 We previously observed an attenuation of typical gene expression differences between two regions, 4 

frontal and temporal lobe in ASD,4,5 which we refer to here as an “Attenuation of Transcriptomic Regional Identity” 5 

(ARI). To assess whether this was a broader phenomenon, we systematically contrasted all unique pairs of 11 6 

cortical regions (55 comparisons in all) using a conservative statistical approach to account for differences in 7 

sample size across regions, while correcting stringently for multiple comparisons (Fig. 2a, Methods). We further 8 

validated the identified transcriptomic regional identity patterns in our control samples with those from an external 9 

data source, the Allen Brain Atlas9 (Supplementary Table 4, Extended Data Fig. 5, Methods). Ten pairs of 10 

regions exhibited significantly greater ARI patterns in ASD compared to controls, with an additional 31 out of the 11 

55 pairs of regions exhibiting a trend towards attenuation in ASD (Fig. 2b, Supplementary Table 4, Extended 12 

Data Fig. 5, Methods). These results provide evidence in support of widespread ARI across the cerebral cortex 13 

in ASD for the first time, across both gene and isoform levels (Extended Data Fig. 5). Additionally, we observed 14 

a regional anterior - posterior gradient, with nine of the ten region pairs exhibiting significant ARI in ASD 15 

containing either BA17 or BA39-40 (Fig. 2c-d). Notably, BA17 was also one of the regions with the largest case-16 

control differences in gene expression. To determine how gene expression changes were dispersed across 17 

regions in these pairs, we used a conservative filtering process to identify individual genes exhibiting ARI 18 

(Methods, Supplementary Table 4). Although these genes were widely dysregulated, the posterior regions 19 

BA17 and BA39-40 exhibited the greatest changes (Fig. 2c-d, Extended Data Fig. 6). ARI genes were also 20 

comparably disrupted in the dup15q samples (Extended Data Fig. 6), suggesting that transcriptomic regional 21 

identity attenuation in the cerebral cortex is shared across heterogenous forms of ASD. 22 

To identify the biological processes contributing to ARI gene dysregulation in ASD, we grouped together 23 

all of the ARI genes that were either downregulated (1,881 genes) or upregulated (1,695 genes) with a 24 

pronounced posterior effect in ASD (Methods). The downregulated set of ARI genes showed broad enrichment 25 

for neuronal cell-type-specific markers and RNA processing pathways, and contained many transcription factors 26 

(Fig. 2c, Supplementary Table 4). The upregulated ARI genes also contained many transcription factors and 27 

were enriched for oligodendrocyte progenitor cell (OPC) and astrocyte cell-type markers along with metabolic 28 

and development pathways. ARI gene dysregulation was further characterized by subsequent co-expression 29 

network analysis, which further refined the topology and pathways involved. 30 

 31 

Refining disrupted gene co-expression networks in ASD 32 

 33 

We next used weighted gene correlation network analysis (WGCNA)10 across all samples to partition 34 

genes into co-expression modules capturing potentially shared biological functions or regulation (Methods). We 35 

identified a total of 35 gene modules, of which 9 were downregulated and 15 were upregulated in ASD 36 

(Supplementary Table 5-6, Extended Data Fig. 7). We further generated networks using isoform-level 37 

quantifications, identifying 61 isoform modules. Of these, 39 were distinct from the gene modules, with 5 38 

downregulated and 9 upregulated in ASD (Supplementary Table 5-6, Extended Data Fig. 8). In total, 38 gene 39 

and isoform modules were dysregulated in at least one region in ASD. Most of these fell into two broad groups 40 

- either dysregulated (1) cortex-wide with comparable magnitude across regions, or (2) with significantly variable 41 

magnitude across regions. Again, dup15q effects were similar to ASD effects, but were greater in magnitude 42 

(Extended Data Fig. 7-8, Supplementary Table 6). 43 

Cortex-wide dysregulation observed for ASD risk genes 44 

Eighteen gene and isoform modules exhibited a consistent pattern of dysregulation in ASD across all 45 

cortical regions assessed (linear mixed model, FDR < 0.05; Fig. 3a, Extended Data Fig. 7-8, Supplementary 46 

Table 6). These include GeneM9, an upregulated neuronal module with a significant enrichment for non-coding 47 
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genes; GeneM32, a strongly upregulated reactive astrocyte module with the greatest overall magnitude of 1 

dysregulation; and GeneM24, a downregulated module enriched for endothelial and pericyte marker genes which 2 

are involved in blood-brain-barrier functions (Fig. 3b, Extended Data Fig. 7, Supplementary Table 6). These 3 

modules replicate previous findings of neuronal upregulation, astrocyte reactivity, and BBB disruption in ASD,1,4–4 
6 but extend these findings by demonstrating that these processes are widespread across the cerebral cortex. 5 

Two modules  - GeneM5 and IsoM37 - demonstrated cortex-wide dysregulation along with significant 6 

enrichment for ASD-associated common genetic variation (Fig. 3b-d).11 GeneM5 is down-regulated in ASD, 7 

contains many neuronal genes involved in synaptic plasticity, and significantly overlaps with the synaptic module 8 

CTX.M16 previously identified by Parikshak et al.5 (Fig. 3a, Fig. 3d, Supplementary Table 5-6). In addiiton to 9 

common genetic variation, GeneM5 is also significantly enriched for genes containing rare de novo protein 10 

disrupting mutations associated with ASD, including the high-confidence risk genes GRIN2A, MYO5A, and 11 

BTRC12 (Supplementary Table 5-6, Methods). This demonstrates another point of convergence of rare and 12 

common risk variants on shared biological processes in ASD.39 GeneM5 is enriched in cortical lower layer 4-6 13 

excitatory neuron cell-type markers (Extended Data Fig. 7),13 identifying them as a point of convergence for 14 

rare and common genetic risk in ASD. Finally, IsoM37 is enriched for ASD common genetic risk variants (but not 15 

rare mutations), is upregulated in ASD, and contains genes involved in protein folding (Fig. 3a, Fig. 3c, 16 

Supplementary Table 6). To our knowledge, this is the first report of an upregulated ASD transcriptomic 17 

signature that is associated with known ASD risk variants.  18 

Magnitude of effect parallels anterior-posterior gradients 19 

 In addition to observing profound cortex-wide dysregulation in ASD, we found 13 modules that exhibited 20 

their most pronounced ASD effect in BA17, as measured against a permuted distribution containing all regions 21 

(Extended Data Fig. 7, Supplementary Table 6, Methods). Of these, 12 showed significant enrichment for ARI 22 

genes (half up-regulated and half down-regulated in ASD) and all 13 had anterior - posterior gradients of 23 

expression in neurotypical samples, indicating that these modules contribute to transcriptomic regional identities 24 

that are observed in neurotypical controls, but attenuated in ASD (Extended Data Fig. 7, Supplementary Table 25 

6). Six of these modules were more highly expressed in posterior regions in neurotypical subjects and were 26 

observed to be downregulated in ASD across the cortex (Fig. 4a, Extended Data Fig. 7, Supplementary Table 27 

6). These include GeneM23, an oligodendrocyte-specific module consisting of genes important for organelle 28 

regulation and intracellular restructuring; GeneM14, a neuronal module that contains genes involved in neurite 29 

morphogenesis and is also strongly downregulated in BA41-42-22; and GeneM3, a neuronal module enriched 30 

for energy generation and neuronal processes that are highly energy dependent, such as vesicle transport (Fig. 31 

4b-c, Supplementary Table 5-6). GeneM3 is also significantly enriched for cell-type markers specific to layer 32 

4-5 excitatory neurons (Extended Data Fig. 7).13 The next four modules were more highly expressed in anterior 33 

regions in neurotypical subjects and exhibited cortex-wide upregulation in ASD (Fig. 4a, Extended Data Fig. 7, 34 

Supplementary Table 6). These include GeneM8, a microglial module containing genes involved in immune 35 

signaling and phagocytosis; and GeneM7, an immune response module containing genes such as NF-kB and 36 

interferon response pathways (Fig. 4b, Supplementary Table 5-6). Although neuronal and oligodendrocyte 37 

downregulation along with immune and microglia upregulation have been previously reported in ASD,1,4–6 these 38 

findings indicate that this dysregulation is widespread across the cerebral cortex, with increased magnitude in 39 

posterior regions, a pattern most pronounced in BA17. 40 

The last three modules were observed to be significantly upregulated in ASD only in BA17. One of these, 41 

GeneM4, is an inhibitory neuron module containing many genes important for various intracellular signaling and 42 

maturation processes, such as SCN9A (Fig. 4a-c, Supplementary Table 5-6). Additionally, GeneM4 is 43 

significantly enriched for lincRNAs and for previously reported gene modules associated with upregulated 44 

pathways related to development5 and signaling1,6 in ASD, although we observe this effect in BA17 for the first 45 

time (Extended Data Fig. 7). We also identified four other modules exhibiting strong region-specific 46 

dysregulation in regions other than BA17 (Extended Data Fig. 7). For example, the module GeneM34, which 47 
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contains genes involved in cellular stress response regulatory processes, is upregulated with the greatest 1 

magnitude in BA4-6 and shows no significant effect in BA17 (Extended Data Fig. 7, Supplementary Table 5-2 

6). None of the gene modules with regionally-variable magnitudes of ASD effect were significantly enriched for 3 

known ASD genetic risk variants. 4 

Cell-type changes mirror regional variation 5 

We finally sought to determine what might be driving the observed changes in magnitude of ASD effect 6 

across regions. It is well established that BA17 is the most neuronally dense region in the human brain, with a 7 

notable expansion in the thickness of L3/4, compared with other cortical regions.18 Likewise, there is an anterior-8 

posterior gradient in neuronal density observed in mice and primates.14–17 As such, we posited that regional 9 

variation in cell density could be contributing to regional differences in magnitude of ASD effect. Regional 10 

neuronal density across multiple brain regions has not been quantitatively studied in the human brain, but such 11 

gradients have been established across some regions in non-human primates.15,16 Therefore, we compared the 12 

region-specific ASD effect size changes in our gene modules to regional neuronal nuclei density measured in 13 

primates15 for 6 matched regions across species. We observed a significant association between neuronal 14 

density and the effect sizes for several modules dysregulated in ASD (seven with FDR < 0.05, and an additional 15 

eight with FDR < 0.1, Extended Data Fig. 9, Supplementary Table 7). Further, L3/4 thickness was also 16 

associated with the region-specific ASD effect sizes in dysregulated modules (Supplementary Table 7). 17 

These observations motivated us to perform single-nucleus RNA sequencing (snRNA-seq) in a small 18 

cohort of individuals to help evaluate how distinct neural cell-types could be contributing to the regional variance 19 

in ASD transcriptomic dysregulation identified with bulk RNA-seq (Fig. 4d, Extended Data Fig. 9, 20 

Supplementary Table 7, Methods). We sequenced over 150,000 nuclei from ASD and control samples across 21 

frontal and occipital cortices with matching bulk RNA-seq. From these data, we identified 35 distinct cell clusters 22 

and 4,953 cell-type-specific DE genes in ASD subjects in the frontal and occipital cortex. The vast majority of 23 

these were DE in excitatory neurons in both regions, and exhibited larger effects overall in the occipital lobe (Fig. 24 

4f). While statistical power limited our ability to detect significant cell-type proportion differences between regions 25 

or diagnoses (Methods), we do observe that excitatory neurons are increased in proportion by ~5% in BA17 26 

across both control and ASD subjects compared to frontal regions (Extended Data Fig. 9), corresponding with 27 

the primate neuronal density measurements. To predict how cell-type proportions may vary across our entire 28 

bulk RNA-seq dataset, next we utilized cell-type markers from our snRNA-seq to perform cell-type deconvolution 29 

in all samples (Methods). We identified 11 significant cell subtype proportion changes present across six 30 

different regions in ASD, characterized by neuronal decreases and astrocyte and microglia increases (Fig. 4e, 31 

Extended Data Fig. 9, Supplementary Table 7). We also found many anterior-posterior cell-type proportion 32 

gradients in control subjects that are attenuated in ASD (Extended Data Fig. 9, Supplementary Table 7), 33 

mirroring patterns observed with our bulk RNA-seq transcriptomic regional identity analysis.  34 

When directly comparing cell-type-specific DE and deconvolved proportional changes in ASD with 35 

regional variability in the larger bulk transcriptome sample, we observed a convergent signal within excitatory 36 

neurons – in particular, those in L3/4 (ExNeuron4; Fig. 4e-f, Extended Data Fig. 9).  Recapitulating the known 37 

increase in thickness of L3/4 in BA17 compared with other cortical regions18, we observed a significant increase 38 

in the estimated proportion of the ExNeuron4_L3/4 cluster in posterior regions, peaking in BA17 (Fig. 4e; 39 

Extended Data Fig. 9g). This regional pattern was significantly attenuated in ASD, with a ~2-fold median 40 

reduction in estimated Ex4 neuronal proportion in BA17 compared with controls. This cell cluster, with marker 41 

genes RORB, PCP4, CUX2, PHACTR2, and EYA4, also exhibited substantially greater cell-type-specific DE in 42 

snRNA-seq profiling from BA17 compared with frontal cortex (90 vs 0 DE genes, respectively; Extended Data 43 

Fig. 9d). Similarly, BA17 shows a substantially greater upregulation of inhibitory neuron genes in the single cell 44 

data, consistent with the observed greater up-regulation of GeneM4 (inhibitory neuron) in BA17 (Fig. 4f). 45 

Substantial changes in gene expression are also evident in other cell subtypes (Extended Data Fig. 9, 46 

Supplementary Table 7), such as microglia_2, which shows a strong and specific increase in DE genes in ASD 47 
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BA17 compared to frontal regions. These observed intracellular/cell-type changes in neuronal and microglial 1 

gene expression are further supported by another snRNA-seq dataset containing a small ASD cohort, which 2 

assessed a single region.19 Here, through performing multi-region snRNA-seq and cell-type deconvolution, we 3 

show that predicted cell-type proportions as well as cell-type-specific gene expression profiles are impacted 4 

across the ASD cerebral cortex. Importantly, we see increased cell-type-specific transcriptomic dysregulation 5 

and lowered neuronal proportions with a notable convergence within L3/4 excitatory neurons in ASD BA17, a 6 

region where neuronal proportions are neurotypically abundant. These changes likely contribute to the 7 

pronounced ASD effect we observe with bulk RNA-seq in this region. 8 

 9 

Discussion 10 

 11 

 Overall, the findings presented here substantially expand our understanding of ASD pathology beyond 12 

the previously established ‘downregulated neuron’ and ‘upregulated glia/immune’ functional categories observed 13 

in frontal and temporal lobe. We identify gene and isoform expression changes in ASD that extend across the 14 

cerebral cortex, many neural cell-types, and specific biological processes (Extended Data Fig. 10), including 15 

primary sensory areas in addition to association areas.1,4–6 We find that the recently observed reactive astrocyte 16 

upregulation and blood-brain barrier membrane transport downregulation1 is extended cortex-wide in ASD. It is 17 

interesting to speculate that the substantial changes observed in area 17, a primary sensory region, may be 18 

related to the widespread observation of sensory hypersensitivity or processing abnormalities in ASD.40 19 

Nevertheless, this region shows the most profound changes in gene expression, a clear demonstration that these 20 

alterations are not specific to higher association areas.  21 

Furthermore, we find that other dysregulated pathways observed before in ASD - particularly upregulated 22 

immune response and reactive microglia genes, along with downregulated neurite morphogenesis and neuronal 23 

energy pathway genes - are not only impacted cortex-wide in ASD, but impacted in a regional gradient that 24 

reflects fundamental elements of cortical cytoarchitecture, such as neuronal density. It is also notable that the 25 

magnitude of region-level differences in ASD parallels regional variance in attenuation of transcriptomic identity 26 

(ARI gene dysregulation), suggesting that they reflect related processes. That the gradient of region-specific 27 

changes between ASD and controls coincides with both neuronal proportion differences and cell-type-specific 28 

transcriptomic dysregulation further suggests that the interplay of cytoarchitecture and cell-type gene expression, 29 

rather than a single one of these features, influences our ability to observe transcriptomic changes in bulk tissue. 30 

Given the connection between regional cytoarchitecture, local circuits and long-range brain connectivity,20,21 31 

parsimony suggests that in addition to developmental patterning contributions,5,22 the diminution of transcriptomic 32 

regional identity reflects changes in local neuronal circuit dysfunction and deficits in synaptic plasticity and 33 

homeostasis that are widely propagated.20 This is supported by our observation that the gene co-expression 34 

module representing synaptic plasticity genes is downregulated cortex-wide and is significantly enriched with 35 

common and rare ASD genetic risk variants, further emphasizing that synaptic plasticity is a convergent pathway 36 

in ASD. Given this result, along with our observations of profound neuronal dysregulation present throughout the 37 

ASD cortex, future work should determine which specific aspects of synaptic plasticity may contribute to causal 38 

mechanisms in the disorder across specific brain regions and developmental timepoints. 39 

 Several additional factors should guide the interpretation of these results. The samples utilized in this 40 

work were obtained from heterogeneous postmortem cortical tissue, meaning that the results reported here are 41 

broadly applicable to the postnatal ASD cortex across both sexes and a span of ages from two to 68 years old, 42 

and they should be interpreted in this context. Rigorous methodology was utilized at every step to account for 43 

biological and technical variability, ensuring that the results reported here are conservative and widely applicable. 44 

Additionally, bulk tissue RNA-seq, in contrast to single cell and nucleus RNA-seq, does not have the cellular 45 

resolution to assess dissection variability across cortical regions and cell-type specificity of transcriptomic 46 

changes. We addressed this by performing snRNA-seq, which significantly enhanced our understanding of 47 

regional variation in ASD transcriptomic dysregulation. However, snRNA-seq also has its own limitations. While 48 
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snRNA-seq can profile tens of thousands of cells, snRNA-seq experiments typically have fewer unique samples 1 

than bulk RNA-seq experiments, and the comparability of snRNA-seq cell-type proportions to true sample cell-2 

type proportions is currently unclear.23 It is also challenging to estimate isoform quantifications with single cell 3 

RNA-seq approaches, whereas this remains a strength of bulk tissue RNA-seq.24 Leveraging this, we 4 

subsequently identified an upregulated isoform-specific co-expression module enriched with ASD GWAS 5 

variants, implicating increased protein folding dysfunction for the first time as a putative pathway contributing to 6 

ASD causal mechanisms. Interestingly, upregulated proteostasis is also implicated in Down’s Syndrome,25,26 7 

supporting that protein folding machinery may be an affected biological process in multiple neurodevelopmental 8 

disorders. The utilization of methods that have greater cellular resolution is necessary for the improved and 9 

continued mapping of the results presented here to specific cortical cell-types. As we seek to gain a complete 10 

understanding of ASD neural pathology, future approaches which integrate different sources of biological data - 11 

including this cortex-wide transcriptomic resource - to determine how ASD risk genes are acting in the brain will 12 

be essential. 13 

  14 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.17.423129doi: bioRxiv preprint 

https://paperpile.com/c/GaGm1R/RRhd
https://paperpile.com/c/GaGm1R/SFlY
https://paperpile.com/c/GaGm1R/HmYn+lkL5
https://doi.org/10.1101/2020.12.17.423129
http://creativecommons.org/licenses/by/4.0/


 

9 
 

Methods 1 

 2 

Sample Acquisition and Preparation for RNA-seq 3 

 4 

Postmortem cortical brain samples were acquired from the Harvard Brain Bank as part of the Autism BrainNet 5 

project (formerly the Autism Tissue Project, ATP) and the University of Maryland Brain Banks (UMDB). A total 6 

of 842 samples from subjects with ASD, dup15q syndrome, and non-psychiatric controls (112 unique subjects) 7 

across 11 cortical regions encompassing all major cortical lobes – frontal: BA4/6, BA9, BA44/45, BA24; 8 

temporal: BA38, BA41/42/22, BA20/37; parietal: BA3/1/2/5, BA7, BA39/40; and occipital, BA17 - were 9 

acquired. These included 253 samples previously published in Parikshak et al., Nature 20165 from BA9 and 10 

BA41/42/22 and/or Gandal et al., Science 2018b1,5 from BA9, BA4/6, and BA41/42/22.  An ASD diagnosis was 11 

confirmed by the Autism Diagnostic Interview-Revised (ADIR) in 30 of the subjects. In the remaining 19 12 

subjects, diagnosis was supported by clinical history. Frozen brain samples were stored at -80 deg C. To 13 

extract RNA from these samples, first approximately 50-100mg of tissue were dissected from the cortical 14 

regions of interest on dry ice in a dehydrated dissection chamber to reduce degradation effects from sample 15 

thawing or humidity. Then, RNA was isolated from each sample using the miRNeasy kit with no modifications 16 

(Qiagen). For each RNA sample, RNA quality was quantified using the RNA Integrity Number (RIN) on an 17 

Agilent Bioanalyzer.  18 

 19 

RNA-seq and RNA Data Processing 20 

 21 

Initial sequencing in BA9 and BA41/42/22 was performed in three batches as published by Parikshak et al., 22 

Nature 2016.5 The remaining regions, along with additional BA9 and BA41/42/22 samples, were sequenced 23 

across three new batches. For all of these batches, strand-specific RNA-seq libraries were prepared. For the 24 

first two batches, the TruSeq Stranded Total RNA sample prep kit with RiboZero Gold (Illumina) was used to 25 

obtain rRNA-depleted libraries. The remaining batch was prepared with the TruSeq RNA Exome sample prep 26 

kit (formerly the TruSeq RNA Access sample prep kit; Illumina). All libraries were randomly pooled to multiplex 27 

24 samples per lane using Illumina TruSeq barcodes. Each lane was sequenced five times on an Illumina 28 

HiSeq 2500 or 4000 instrument using high output mode with standard chemistry and protocols for 50, 69, or 29 

100 bp paired-end reads (read length varied by batch) to achieve a target depth of 70 million reads. 30 

 31 

After sequencing, the resulting sample FASTQ files from all batches (including the Parikshak et al.5 samples) 32 

were subjected to the same processing pipeline. First, FASTQ files were assessed with FastQC27 (v0.11.2) to 33 

verify that quality was sufficient for further processing. FASTQ files were then aligned to the human reference 34 

genome (GRCh3728 Ensembl v75) with STAR29 (v2.5.2b). Picard tools30 (v2.5.0) was used with the resulting 35 

BAM files to collect various read quality measures, in addition to the quality measures collected by STAR. 36 

verifyBAMID31 was also used with these BAM files along with known sample genotypes from Parikshak et al.5 37 

to validate that sample identity was correct for all BAM files. Additionally, the expression of XIST (a female-38 

specific gene) was assessed to contribute to sample identity verification. Finally, RSEM32 (v1.3.0) was used for 39 

quantification (Gencode33 release 25lift37) to obtain expected read counts at the gene and isoform levels. 40 

  41 

Expected gene and isoform read counts were then subjected to several processing steps in preparation for 42 

downstream analysis, mainly using R.34 First, Counts Per Million (CPM) were obtained from counts for gene 43 

and isoform filtering purposes. Genes and isoforms were filtered such that genes/isoforms with a CPM > 0.1 in 44 

at least 30% of samples were retained. Genes/isoforms were also removed which had an effective length 45 

(measured by RSEM) of less than 15 bp. Isoforms were additionally filtered such that all isoforms 46 

corresponded with genes in the gene-level analysis. The counts for the remaining genes (24,836) and isoforms 47 

(99,819) passing these filters were normalized using the limma-trend approach in the limma35 R package. 48 
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Briefly, the limma-trend approach obtains normalized expression data through taking the log2(CPM) of read 1 

counts with an adjustment for sample read depth variance. An offset value calculated with CQN36 accounting 2 

for GC content bias and gene/isoform effective length bias in read quantification was also incorporated during 3 

the normalization process. With this normalized expression data, sample outliers were identified in each 4 

sequencing batch by cortical lobe (frontal, parietal, temporal, and occipital) group that had both (1) an absolute 5 

z-score greater than 3 for any of the top 10 expression principal components (PCs) and (2) a sample 6 

connectivity score less than -2. Sample connectivity was calculated using the fundamentalNetworkConcepts 7 

function in the WGCNA10 R package, with the signed adjacency matrix (soft power of 2) of the sample biweight 8 

midcorrelation as input. This process identified 34 outliers, resulting in a final total of 808 samples 9 

(341=Control, 384=ASD, 83=dup15q) which were carried forward for analysis. 10 

 11 

Evaluating Previous Co-Expression Modules and ASD DE Genes/Isoforms Cortex-wide 12 

 13 

Linear models for all subsequent analyses are described in the Supplementary Methods. 14 

 15 

To determine how gene co-expression modules previously identified in Parikshak et al.5,35 and Voineagu et al.4 16 

were effected across distinct cortical regions, we first created a regressed gene expression dataset that only 17 

contained the effects of biological covariates (subject, diagnosis, region, sequencing batch, sex, ancestry, age, 18 

and age2). This regressed dataset was created with the ‘lmerTest’37 package in R through subtracting the 19 

effects of technical covariates from each gene, leaving only the random intercept, biological covariate effects, 20 

and the residual. ASD-associated module eigengene region-specific ASD effects were identified using 21 

contrasts (eg. Control_BA17 - ASD_BA17) with the limma34 R package with this regressed expression dataset, 22 

accounting for all biological covariates. Region-specific contrasts with a p-value < 0.05 were considered 23 

significant (FDR-correction was unwarranted since only eight module eigengenes were examined). 24 

 25 

To identify genes and isoforms dysregulated in ASD both within specific regions and cortex-wide, the limma35 26 

R package was applied with the gene and isoform expression data using our full gene and isoform models 27 

(both biological and technical covariates). The standard limma35 workflow was implemented as recommended 28 

for linear mixed models. Region-specific dysregulation was identified as described above for the Parikshak et 29 

al.5 and Voineagu et al.4 modules. Whole cortex dysregulation was established through subtracting the sum of 30 

the ASD region-specific effects from the sum of the Control region-specific effects. For both region-specific and 31 

whole cortex effects, genes and isoforms with an FDR-corrected p-value < 0.05 were considered significantly 32 

dysregulated. dup15q region-specific and whole cortex dysregulation was also established in this manner. The 33 

fixed effects of sex, age, and age2 were also acquired (shared in Supplementary Table 3) using the full gene 34 

and isoform models. 35 

 36 

The methodology used to evaluate region-specific ASD effects compared to whole cortex ASD effects is 37 

described in the Supplementary Methods. 38 

 39 

Transcriptomic Regional Identity Analysis 40 

 41 

To identify differentially expressed genes and isoforms between all 55 pairs of cortical regions, a regressed 42 

gene expression dataset containing only the random effect of subject and the fixed effects of diagnosis and 43 

region (along with the model residual) was used. Regression was performed as described for evaluation of 44 

previously identified co-expression modules. Significant attenuation of DE genes between each pair of regions 45 

(a reduction in transcriptomic regional identity differences) in ASD was established through the following 46 

process. (1) ASD and Control subjects containing each region in the regional pair were extracted for use in the 47 

analysis. (2) Separately in ASD and Control subjects, the number of DE genes between regions was calculated 48 
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using the paired Wilcoxon signed-rank test. Genes with an FDR-corrected p-value < 0.05 were considered DE. 1 

(3) The difference in the number of DE genes between regions for ASD v Control subjects was calculated (the 2 

‘true’ difference). (4) A permuted distribution of the difference in DE genes between regions for ASD v Control 3 

subjects was generated to test the ‘true’ difference. Each permutation (10,000 in total) randomly assigned 4 

‘ASD’ and ‘Control’ status to subjects, but kept the number of ASD and Control subjects consistent with the 5 

true number of ASD and Control subjects. (5) A two-tailed p-value was obtained from testing the ‘true’ 6 

difference against the permuted distribution. If the regional comparison p-value < 0.05, with the number of DE 7 

genes between regions in ASD less than that in Controls, then the regional comparison was considered 8 

significantly attenuated in ASD. Otherwise, the regional comparison was considered over-patterned in ASD. 9 

This procedure was repeated with isoform level regressed gene expression data (similarly, only containing the 10 

random effect of subject and the fixed effects of diagnosis and region, along with the model residual) to identify 11 

altered transcriptomic identities in ASD at the isoform-level.  12 

 13 

The previously described permutation approach was designed to identify differences in transcriptomic regional 14 

identity in ASD. Importantly, this method is not appropriate for assessing variance in expected numbers of DE 15 

genes between regions across regional pairs and diagnoses, since the number of ASD and Control subjects 16 

varied across regional pairs. To examine this, for each regional comparison we subset to 10 pairs of ASD and 17 

Control subjects (10 was selected since every regional comparison had at least this many subjects). When 18 

subsetting, subjects were removed such that the remaining subjects were closest in age to the median age of 19 

the available samples for that regional comparison. A bootstrap approach was then used to calculate the 20 

number of DE genes (p-value < 0.05) between regions separately in Control and ASD subjects through 21 

sampling subjects with replacement (mean taken across 10,000 bootstraps). The same regressed expression 22 

dataset used for the permutation approach was utilized for this bootstrap analysis. Any regional comparison in 23 

which the number of DE genes between regions was less in ASD than in Control subjects was considered 24 

trending towards attenuation in ASD. 25 

 26 

To validate our bootstrapped estimates for the number of DE genes between pairs of regions in Controls, we 27 

compared these estimates to those of the Allen Brain Atlas9, which is the best publicly available work for 28 

comparison. Allen Brain Atlas regions were matched to Brodmann regions (Supplementary Table 4) and 29 

matching regional pairs were extracted for comparison with this work. When the Allen Brain Atlas had two or 30 

more regional pairs matching one regional pair in this work, the mean was taken across the Allen Brain Atlas 31 

regional pairs. A p-value for the association of the number of DE genes between regions in Controls obtained 32 

in this work compared to the Allen Brain Atlas was calculated from a linear model (cortex-wide bootstrap mean 33 

~ allen brain atlas mean). 34 

 35 

We applied a stringent filtering process to identify high-confidence attenuated regional identity (ARI) genes 36 

from each significantly attenuated regional comparison identified with the permutation procedure described 37 

above. First, for each of the attenuated regional comparisons, we extracted the genes which were identified as 38 

DE between regions in subjects labeled as Controls in each of the 10,000 permutations. Then, we calculated 39 

how many times each of the genes truly DE between pairs of regions in the Control subjects were present in 40 

their respective permuted groups (ranging from a possible 0 to 10,000 occurrences). Those ‘true’ DE genes 41 

which were present in less than 95% of their respective permutations were retained as ARI genes for each 42 

attenuated regional comparison. For each set of ARI genes (ten total), each gene was matched to the region in 43 

which it had higher expression in Control subjects. The paired Wilcoxon signed-rank p-values identified for 44 

these genes in Controls (those subjects used for the permutation analysis) were also extracted and are shared 45 

in Supplementary Table 4. 46 

 47 
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ARI gene groups (ARI downregulated genes, those highly expressed in BA17 and BA39-40 relative to other 1 

regions in Controls; ARI upregulated genes, those lowly expressed in BA17 and BA39-40 relative to other 2 

regions in Controls) were created through taking the union (without duplicates) across all ten identified ASD-3 

attenuated regional comparisons, and sorting genes into the two groups based on gene expression profiles 4 

across regions. The details of this process are described in the Supplementary Methods, along with functional 5 

annotation procedures. 6 

 7 

Network-Based Functional Characterization 8 

 9 

Standard workflows, as previously described in Parikshak et al.5 and Gandal et al.,1 were followed (with minor 10 

modifications) to identify gene and isoform co-expression modules using Weighted Gene Correlation Network 11 

Analysis (WGCNA).10 Details regarding network formation, module identification, and module functional 12 

characterization are described in the Supplementary Methods. 13 

 14 

snRNA-seq and Cell-type Deconvolution 15 

 16 

Cell types were annotated based on expression of known marker genes visualized on the UMAP plot, violin 17 

plots, and by performing unbiased gene marker analysis. To gain insight into the regional enrichment or 18 

diagnostic enrichment of cell types, the relative proportion of the number of nuclei in each cell type was 19 

normalized to the total number of nuclei captured from each library. Average cell-type proportions and standard 20 

errors (across libraries) were scaled such that each Lobule x Diagnosis group sums to 100%, so that cell-type 21 

proportions in these groups could be fairly compared across all cell-types. To determine if any changes in cell-22 

type proportion were statistically significant, we implemented scDC38 to bootstrap proportion estimates for our 23 

samples (Supplementary Table 7). We employed a linear mixed model (random effect of subject) to 24 

determine if any changes in cell-type proportion were present across regions and diagnoses. None of the 25 

model covariates were statistically significant (p > 0.05 for all model covariates). However, we did find several 26 

significantly different predicted cell-type proportions in ASD with cell-type deconvolution analysis. We describe 27 

methods for cell-type deconvolution in detail in the Supplementary Methods. To identify genes differentially 28 

expressed in ASD compared to control in each cell type, the non-parametric Wilcoxon rank sum test was 29 

applied including gene detection rate and sequencing depth within the model. We compared frontal cortex ASD 30 

cells to frontal cortex control cells within each cluster and likewise for the occipital cortical cells. The bars in 31 

Figure 4e are the summation of all differentially expressed genes identified in each cell subtype for the broader 32 

cell-type (eg. all excitatory neuron subtype DE genes are summed to obtain the number of DE genes in the 33 

broad excitatory neuron cell class). Further details regarding the snRNA-seq analysis are included in the 34 

Supplementary Methods. 35 

 36 

Data availability 37 

 38 

All of the raw bulk RNA-seq data (FASTQ files) and processed (utilized for DE gene analysis, transcriptomic 39 

regional identity analysis, and WGCNA) bulk RNA-seq data that support the findings of this study will be 40 

deposited in a publicly accessible repository. snRNA-seq data will be made available by the corresponding 41 

authors upon reasonable request. All of the code, raw data, and processed data for the bulk RNA-seq analysis 42 

that support the findings of this study will also be made available in a publicly accessible GitHub repository, 43 

where readers may also access an R Shiny tool to visualize RNA-seq data across the biological covariates 44 

assessed in this study. 45 

 46 

 47 
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Code availability 1 

 2 

All of the code, raw data, and processed data for the bulk RNA-seq analysis that support the findings of this 3 

study will also be made available in a publicly accessible GitHub repository, where readers may also access an 4 

R Shiny tool to visualize RNA-seq data across the biological covariates assessed in this study. 5 

 6 

Extended Data Figure Legends 7 

 8 
Extended Data Figure 1 | Experiment Workflow and Sample Overview. a. Overview of experiment workflow. 9 
b. Summary of sample composition (biological data, brain bank source, and PMI). 10 
 11 
Extended Data Figure 2 | Quality Control Measures. a. Sequencing batch parameters. b. Sequencing batches 12 
(top) and sequencing statistics (bottom) by region and diagnosis. c. Top 15 expression PCs (gene and isoform, 13 
with % of variance explained denoted) association with meta data (top) and sequencing statistics (bottom). 14 
 15 
Extended Data Figure 3 | Model Covariates and Previous Studies Across 11 Cortical Regions. a. For the 16 
covariates selected for the gene (left) and isoform (right) linear mixed models, % of expression variance 17 
explained across all genes/isoforms. b-c. For the Voineagu et al. and Parikshak et al. studies, b. ASD associated 18 
gene module ASD effect (standard error bars and cortical lobes indicated) and c. ASD log2 FC of DE genes 19 
identified in these studies, compared to this dataset (Spearman’s correlation rho, R, is plotted along with the 20 
linear least squares regression best fit line). 21 
 22 
Extended Data Figure 4 | Transcriptomic Changes Across 11 Cortical Regions. a. Overlap of Whole-Cortex 23 
DE ASD genes and isoforms (blue) with other cortical region DE genes (no color). Regions with no third numeric 24 
label on the right completely overlap with the Whole-Cortex DE genes. b. For the Whole-Cortex DE, overlap of 25 
genes and isoforms. Regions not shown have no unique DE. c. log2(FC) (top) and standard error (SE, bottom) 26 
of the Whole-Cortex ASD DE overlapping and distinct genes and isoforms. d. Overlap in DE ASD and dup15q 27 
genes and isoforms. e. For regions with DE ASD genes (left) and isoforms (right), ASD log2(FC) v. dup15q 28 
log2(FC) for specific regions (with principal components regression slope, S). 29 
 30 
Extended Data Figure 5 | Transcriptomic Regional Identity Attenuation in ASD. a. Mean-centered 31 
distribution of 10,000 permutations for the significantly attenuated regional comparisons in ASD. Red bar = true 32 
difference in the number of DE genes between controls and ASD. b. Sample size for all regional comparisons. 33 
c. Permutation p-values for all regional comparisons. d. For 10,000 regional comparison bootstraps, ratio of DE 34 
genes in ASD compared to controls. e. Number of DE genes between pairs of regions in this study (mean across 35 
bootstraps in controls, y-axis) compared to the Allen Brain Atlas (ref. 10, mean across matched regions, x-axis; 36 
see Methods for matched regions). This Allen Brain Atlas dataset, with only 2 unique brains, is the best publicly 37 
available dataset for comparison (linear least squares regression best fit line plotted). 38 
 39 
Extended Data Figure 6 | Additional ARI gene dysregulation. a. First principal component (PC1) of posteriorly 40 
downregulated (1,881, left) and upregulated (1,695, right) ARI genes identified in ASD, plotted in Controls and 41 
dup15q (loess regression line plotted). b. For each significantly attenuated regional comparison, the identified 42 
attenuated regional identity (ARI) genes. At center, number of ARI genes with greater neurotypical expression 43 
in each pair of regions. On either side of the barplot, the PC1 of the genes with greater neurotypical anterior (left) 44 
or posterior (right) expression is plotted across the pair of regions in Controls and ASD. The Wilcoxon signed-45 
rank test (unpaired) p-value is shown. 46 
 47 
Extended Data Figure 7 | Gene-level Co-Expression Network Analysis Module Associations. Top: 48 
average-linkage hierarchical clustering of module eigengene biweight midcorrelations. Significant FDR corrected 49 
p-values are indicated (FDR < 0.05; for GWAS, FDR < 0.1). Any signed –log10(p) colors greater or less than 5/-50 
5 are set at a max/min of 5/-5 . For ASD, dup15q, and Age covariates, FDR p-value from the linear mixed model 51 
testing the association of these covariates with module eigengenes is depicted. For the ASD and dup15q region-52 
specific comparisons, cortical lobule colors are indicated (Fig. 1a), and bold-italic FDR p-values indicate that 53 
these regions are effected with significantly greater magnitude than the ASD whole-cortex (Methods). For gene 54 
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biotypes, both positive and negative enrichment is shown (Methods). Positive enrichment is shown for cell-type, 1 
neuronal subtype (ref: Hodge et al, Nature 2019), ARI gene, GWAS, and rare variant enrichment (Methods). 2 
 3 
Extended Data Figure 8 | Isoform-level Co-Expression Network Analysis Module Associations. Top: 4 
average-linkage hierarchical clustering of module eigengene biweight midcorrelations. Significant FDR corrected 5 
p-values are indicated (FDR < 0.05; for GWAS, FDR < 0.1). Any signed –log10(p) colors greater or less than 5/-6 
5 are set at a max/min of 5/-5 . For ASD, dup15q, and Age covariates, FDR p-value from the linear mixed model 7 
testing the association of these covariates with module eigengenes is depicted. For the ASD and dup15q region-8 
specific comparisons, cortical lobule colors are indicated (Fig. 1a). For gene biotypes, both positive and negative 9 
enrichment is shown (Methods). Positive enrichment is shown for cell-type, GWAS, and rare variant enrichments 10 
(Methods). 11 
 12 
Extended Data Figure 9 | Neuronal Density Associations, snRNA-seq, and Cell-type Deconvolution. a. 13 
Macaque neuronal density v. module eigengene ASD effect for modules featured in Fig. 4c-d (linear least 14 
squares regression). Both p-value and FDR corrected p-value are plotted. b. P-value histogram of all gene 15 
modules’ linear least squares regression with macaque region-specific neuronal density. c. UMAP plots of 16 
snRNA-seq with cell sub-types (top) and brain regions (bottom) depicted. d. Number of genes differentially 17 
expressed in ASD in each cell subtype. Upregulated genes are above 0 (red arrow) and downregulated genes 18 
are below 0 (blue arrow). e. Average proportion of each broad cell-type in each diagnosis x cortical lobule group, 19 
derived directly from the snRNA-seq data. f. Additional significant (Bonferroni corrected p-value < 0.05) cell-type 20 
proportion differences in ASD from cell-type deconvolution. Region and cell-type are indicated in the title of each 21 
plot. g. For two example cell-types, cell-type proportion attenuation in ASD across regions. ANOVA p-values 22 
stratified by diagnosis are shown. 23 
 24 
Extended Data Figure 10 | Results Summary. Overview of RNA-sequencing experiment and results. Region-25 
specific dysregulation scale in the top right corner and the leftmost portion of the bottom panel depict the region-26 
specific slopes compared to the whole cortex effect from Fig 1d. Median PC 1 of the ARI dysregulated genes is 27 
plotted in the middle panel. In the right portion of the bottom panel, the median ME of GeneM4 (left) and GeneM3 28 
(right) is depicted. 29 
 30 

  31 
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