bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423054; this version posted December 16, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress,

and invasion.

Anja C. Schlott?2, Ellen Knuepfer®3, Judith L. Green?, Philip Hobson?, Aaron J. Borg®, Julia Morales-Sanfrutos?,

Abigail J. Perrin®, Ambrosius P. Snijders®, Edward W Tate®”" and Anthony A. Holder®"

IMalaria Parasitology Laboratory, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom;
2Molecular Sciences Research Hub, Imperial College, White City Campus Wood Lane, London W12 0BZ, United
Kingdom; 3Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane,
Hatfield, AL9 7TA, United Kingdom; *Flow Cytometry Science Technology Platform, Francis Crick Institute, 1
Midland Rd, London NW1 1AT, United Kingdom; >Mass Spectrometry Proteomics, Francis Crick Institute, 1 Midland
Rd, London NW1 1AT, United Kingdom; ®Malaria Biochemistry Laboratory, Francis Crick Institute, 1 Midland Rd,

London NW1 1AT, United Kingdom; “Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom

.
For correspondence:

Current address: 2Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology

(BIST), 08003, Barcelona, Spain


https://doi.org/10.1101/2020.12.16.423054
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423054; this version posted December 16, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

ABSTRACT

We have combined chemical biology and genetic modification approaches to investigate the importance of protein
myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the
last ten to fifteen hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led
to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized
in the cell, suggesting that rhoptry function is disrupted. We identified sixteen NMT substrates for which
myristoylation was significantly reduced by NMT inhibitor treatment, and of these, six proteins were substantially
reduced in abundance. In a viability screen, we showed that for four of these proteins replacement of the N-terminal
glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one
NMT substrate, glideosome associated protein 45 (GAP45), loss of myristoylation had no impact on protein location
or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation
was essential for erythrocyte invasion. Therefore, there are at least three mechanisms by which inhibition of NMT
can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony
and formation of ‘pseudoschizonts’, which has been described previously; at the end of schizogony, with disruption
of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when
impairment of motor complex function prevents invasion of new erythrocytes. These results underline the

importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.
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INTRODUCTION
The malarial parasite asexual blood stage is largely intra-erythrocytic as the parasite invades, develops and

proliferates within red blood cells (RBCs) over a period of approximately 45 — 48 hours in the case of Plasmodium
falciparum, the most lethal human parasite. Following invasion by the extracellular merozoite the parasite
profoundly modifies the RBC, growing through ring and trophozoite stages and then starting multiple rounds of
nuclear division around 30 hours after invasion, resulting in schizont formation. Coincident with nuclear division,
the parasite constructs a series of subcellular membranous structures that will form the inner membrane complex
(IMC) and apical organelles such as the rhoptries and micronemes of the nascent 20 - 30 daughter merozoites. At
the end of schizogony the multinucleate coenocyte undergoes cytokinesis that draws the parasite plasma
membrane (PM) around each of the developing progeny to form highly polarised merozoites, each with its own
nucleus, a surface pellicle comprised of PM and IMC, and apical organelles for subsequent invasion and modification
of a new RBC. Completion of this process is followed by lysis of the infected RBC and egress of the now extra-
erythrocytic merozoites, which attach to and invade new RBCs to establish the next intra-erythrocytic proliferation
cycle. This stage of the parasite life cycle is responsible for the disease pathology, and therefore is a principal target
for the development of drugs to kill the parasite.
Several parasite proteins synthesized during this cycle are modified by N-myristoyl transferase (NMT).
This enzyme transfers the C14 fatty acid from myristoyl-CoA to the amino terminal glycine of substrate proteins, in
a largely co-translational event following removal of the initiator methionine (Dian, Perez-Dorado et al., 2020).
Substrate proteins have been predicted bioinformatically, using a partially conserved sequence recognition motif
(Castrec, Dian et al., 2018), or identified experimentally by metabolic incorporation of YnMyr, an alkyne-containing
myristate analogue, which provides a convenient means to label such proteins and allow their purification and
identification following the chemical addition of a biorthogonal tag (Broncel, Dominicus et al., 2020, Broncel, Serwa
et al., 2015, Thinon, Serwa et al., 2014, Wright, Clough et al., 2014). Thirty-two N-myristoylated parasite proteins
have been identified experimentally in the P. falciparum asexual blood stages (reviewed in (Schlott, Holder et al.,
2018)). These NMT substrates are targeted to membranous structures such as the PM and the secretory pathway,
which has a key role not only in protein export but also in the biogenesis and function of the IMC and intracellular
organelles as well as protein import into the apicoplast (Schlott et al., 2018). Other myristoylated proteins are
targeted to the nucleus or exported to the host erythrocyte. They function in a diverse range of cellular pathways
such as protein secretion, transport and homeostasis, ion channel regulation and parasite motility, with their known
enzymatic functions including kinase, phosphatase and hydrolase activities (Schlott et al., 2018). About one third of
the experimentally identified NMT substrates were shown to be essential in parasite growth screens using
insertional mutagenesis in P. falciparum (Zhang, Wang et al., 2018) and gene knockout in Plasmodium berghei
(Gomes, Bushell et al., 2015, Schwach, Bushell et al., 2015), however this genetic evidence fails to indicate whether
or not N-myristoylation is essential for the proteins’ function.
NMT inhibitors have been developed that kill the parasite in vitro (Bell, Mills et al., 2012, Rackham,
Brannigan et al., 2014, Yu, Brannigan et al., 2012). Each of these inhibitor classes has been shown to bind to the
protein substrate binding site of NMT, and their mode of action was confirmed using a parasite expressing a variant

NMT with an amino acid substitution that abolishes both inhibition of enzyme activity and inhibition of parasite
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growth (Schlott, Mayclin et al., 2019). One such inhibitor, IMP-1002, when added to a synchronous population of
ring stage parasites, interrupts parasite development irreversibly during early schizont development (four to six
nuclei) and before the formation of the IMC, producing a parasite form that we have termed a ‘pseudoschizont’
(Wright et al., 2014). It is likely that this form results from inhibition of NMT in the trophozoite or early schizont
stages. However, many NMT substrates are expressed abundantly later in schizogony and the consequence of NMT
inhibition during this later stage, during a period of approximately 10 - 15 hours following commencement of nuclear
division, is unknown. Protein myristoylation may result in increased membrane binding affinity; therefore, loss of
myristoylation can cause aberrant subcellular targeting and consequent loss of protein function, and even
degradation (Timms, Zhang et al., 2019). At the cellular level, inhibition of schizont development, for example
through impaired nuclear division or defective formation of intracellular organelles, may prevent merozoite
formation, parasite egress, merozoite invasion and subsequent ring stage development. To investigate these
potential phenotypes, we examined the effect of inhibitor added during schizogony on parasite development, egress
and invasion, and on myristoylated protein location and stability. The results showed that NMT inhibitor (NMTi)
treatment during schizogony did not stop nuclear division, but it did inhibit parasite development before egress. We
then developed a genetic method to examine whether the N-terminal glycine (and hence myristoylation) of a
selected set of six proteins was essential for parasite growth. For members of the chosen panel of NMT substrates,
substitution of N-terminal glycine with alanine was detrimental to parasite growth. From this set of proteins, we
focused on one, glideosome-associated protein 45 (GAP45), to examine the importance of N-myristoylation for its
localization and function. Induced replacement of the N-terminal glycine of GAP45 with alanine, had no effect on
protein targeting to the IMC, the protein’s palmitoylation, or egress, but it did prevent merozoite invasion. We
conclude that protein myristoylation is important at different time periods for nuclear division, merozoite
maturation prior to egress, and for RBC invasion, implying that NMT inhibitors impact multiple facets of parasite

development and are therefore excellent leads for drug development.

RESULTS
To investigate the effect of an NMTi during schizogony, synchronized parasite populations were treated with either
140 nM IMP-1002 (the ECy of the compound (Schlott et al., 2019)) or DMSO during the period from 34 to 45 h post
invasion (Pl), after which the culture medium was exchanged to a drug-free medium at the first sign of parasite
egress in the DMSO-treated culture. Parasite growth, invasiveness and morphology were then assessed by flow
cytometry of Hoechst-stained parasites and microscopy of Giemsa- or antibody-stained fixed parasites, while

parasite proteomics were analysed by mass spectrometry.

Parasite proliferation is decreased significantly by inhibition of NMT during schizont differentiation, blocking
parasite development before egress
Flow cytometry analysis of samples stained with Hoechst dye demonstrated a significant drop in parasite
proliferation resulting from IMP-1002 NMT inhibition compared with DMSO controls (p < 0.0001, Supplementary
Figure 1). Therefore, both ring and schizont populations were examined separately, to determine whether this

decrease resulted from reduced parasite egress from infected erythrocytes or defective invasion into new
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erythrocytes. Using Percoll-purified schizonts, two samples, eight hours (53 h PI) and twenty-eight hours (73 h PI)
after the start of egress of control (DMSO-treated) parasites, were used to determine the growth rate (Figure 1A)
and measure the schizont and ring stage parasitemia in each sample (Figure 1B). The growth rate dropped
significantly in the presence of IMP-1002 compared with DMSO controls (p < 0.0001 for 53 h Pl and p < 0.0003 for
73 h PI). In the DMSO-treated control culture the schizont population decreased and the ring population increased
during the period between 45 and 73 h Pl, indicating merozoite egress and invasion, whereas the schizont
population in IMP-1002 treated samples remained constant and few ring stage parasites were detected by 73 h PI.
These data indicate that NMT inhibition blocks parasite development in the schizont stage, before merozoite egress.

Giemsa staining and microscopy indicated that at 45 and 51 h Pl drug-treated schizonts looked similar
morphologically to the DMSO-treated control parasites (Figure 1C). But at about ten hours after the exchange to a
drug-free medium (at 55 h PI) IMP-1002-treated schizonts started to appear abnormal and there was little evidence
of invasion and new ring stage formation, suggesting that these parasites were not viable (Figure 1C). However, at
62 h Pl some parasites that had escaped IMP-1002 NMT inhibition had developed into healthy-looking trophozoites.
These results, obtained by microscopy, complement those from the flow cytometry analysis and indicate that at
IMP-1002 ECo0, NMT inhibition blocks schizont development before merozoite egress in all but a small fraction of

parasites.

NMT inhibition changes substrate protein solubility and localization and disrupts rhoptry formation

NMT substrates may associate differently with membranes when parasites have been treated with NMTi. To
examine this, schizonts were subjected to sequential solubility fractionation and the distribution of specific proteins
was revealed by western blotting. Both armadillo domain-containing rhoptry protein (ARO) and calcium dependent
protein kinase 1 (CDPK1), proteins that have an N-terminal myristoylation site and an adjacent potential
palmitoylation site, were largely in the membrane-bound fraction prepared from DMSO-treated parasites (Figure
2A). However, following parasite treatment with IMP-1002, the proteins were either completely (in the case of ARO)
or partially (in the case of CDPK1) found in the hypotonic buffer-soluble fraction. The IMC protein, GAP45, which
has an N-terminal myristoylation site, an adjacent palmitoylation site, and an additional palmitoylation site near the
C-terminus (Jones, Collins et al., 2012), showed no difference in its solubility profile following IMP-1002 NMT
inhibition. As controls, we identified the fractions enriched for cytoplasmic heat shock protein 70 (HSP70) and
myosin tail interacting protein (MTIP), a component of the glideosome, formed together with GAP45 and other
proteins. As expected, HSP70 was largely in the soluble fraction and MTIP was in the membrane bound fraction, and
their behaviour was not affected by IMP-1002 NMTi treatment of the parasite.

To examine the effect of NMT inhibition on the subcellular protein location during schizont development,
parasites were analysed using an indirect immunofluorescence assay (IFA) with specific antibodies (Figure 2B to
2D). Following NMTi treatment, the location of ARO and rhoptry neck protein 4 (RON4), changed from being
discrete to very diffuse in the cytoplasm of developing merozoites (Figure 2B). The IMC proteins, GAP45 and
myosin A (MyoA) showed no discernible difference in their location and were present in both DMSO and IMP-1002
treated cells (Figure 2C). The subcellular location of the micronemal protein, erythrocyte binding antigen 175 (EBA-

175), was also unaffected by IMP-1002 treatment, when compared to the DMSO control (Figure 2D).
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These results indicate that schizont treatment with IMP-1002 can affect the membrane binding properties of some

proteins and, for example in the case of ARO, may result in their mislocalization within the cell.

IMP-1002 inhibits protein myristoylation and affects abundance of some NMT-substrates and non-myristoylated
proteins
While the localization of NMT substrates can be studied by cellular fractionation or microscopy-based approaches,
these methods provide no quantitative data on the effect of IMP-1002 inhibition on the modification or abundance
of parasite proteins. Therefore, we used quantitative chemical proteomics to examine further the effect of NMT
inhibition on both myristoylation of its substrates and the abundance of other proteins in the cell. The extent of
myristoylation was studied using metabolic labelling with the myristic acid analogue YnMyr and label-free
quantification (LFQ) by mass spectrometry to determine the relative abundance of individual myristoylated proteins
in samples from parasites treated with either DMSO or IMP-1002 for eleven hours. Proteins were extracted and an
AzTB biotin tag attached to the YnMyr-labelled proteins using click chemistry, then the tagged proteins were
enriched by Neutravidin binding and elution. A total of 609 proteins were identified in the eluate from the
Neutravidin-coated agarose beads (Supplementary Data 1). Sixteen NMT substrates showing a significant decrease
in myristoylation in the presence of IMP-1002 were identified (Figure 3A, Supplementary Data 1). Fourteen of these
sixteen proteins were experimentally verified NMT substrates (Wright et al., 2014), while the two remaining proteins
were a putative kinase (PF3D7_0321400) and a conserved protein of unknown function (PF3D7_0619700) (Figure
4A). The modified N-terminal glycine was also identified for a number of NMT substrates, providing direct
experimental evidence of myristoylation, for example metal-dependent protein phosphatase 6 (PF3D7_1309200)
and putative acylated pleckstrin-homology domain-containing protein (PF3D7_0414600) (Supplementary Figure 2).
Glycosyl phosphatidylinositol (GPI) anchored proteins, which incorporate YnMyr through an ester linkage, and non-
myristoylated IMC proteins were largely unchanged (analysis using adjusted p-values with an FDR of 0.01 and within
group variance So = 0.5, n = 3).

To determine if there was an effect of NMT inhibition on overall protein abundance, the proteome of
schizonts that had been incubated with or without 140 nM IMP-1002 from 34 — 48 h Pl was analysed by mass
spectrometry using tandem mass tag (TMT) labelling as a quantitative method, in combination with an additional
high pH reverse fractionation step to increase coverage of the multiplex sample. A total of 2,484 proteins was
identified (Supplementary Data 2), of which 62 were significantly reduced in abundance by IMP-1002 treatment
(t-test using a false discovery rate (FDR) cut-off of 0.01 and a within-group variance (So) of 0.8) (Figure 3B). Gene
ontology (GO)-term analysis of these 62 proteins revealed six NMT substrates, together with several proteins
involved in DNA replication and chromatin function, as well as a number of exported/secreted proteins (Figure 3C).
The NMT substrates were ARO [GenelD: PF3D7_0414900], CDPK1 [PF3D7_0217500], GAP45 [PF3D7_1222700],
alpha/beta hydrolase S9C [PF3D7_0403800], IMC sub-compartment protein 3 [ISP3; PF3D7_1460600] and
tetratricopeptide-repeat proteins [TRP; PF3D7_0601600, PF3D7_0631000]. In previous studies, three of these
proteins had been either suggested (CDPK1, ARO) (Zhang et al., 2018) or shown (GAP45 (Perrin, Collins et al., 2018))
to be essential for growth of P. falciparum asexual blood stage parasites. Insertional mutagenesis of alpha/beta

hydrolase S9C produces a slow growing phenotype (Zhang et al., 2018) and P. berghei ISP3 is dispensable (Poulin,
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Patzewitz et al., 2013). Of the TRP-encoding genes, PF3D7_0631000 was classified as essential and PF3D7_0601600
was classified as dispensable in a recent P. falciparum mutagenesis screen, (Zhang et al., 2018). However, none of
these earlier studies addressed the essentiality of the N-myristoylation.

These data show that IMP-1002 treatment has a direct effect on the myristoylation of NMT substrates.
Furthermore, there is a reduced abundance of both myristoylated and non-myristoylated proteins in the treated
cells compared to those incubated with DMSO. There were six myristoylated proteins that were significantly
reduced in abundance, suggesting that these NMT substrates are of particular importance. Therefore, we developed
a genetic screen to look specifically at the importance of the N-terminal glycine of these proteins, and hence

myristoylation, on parasite growth.

A G2A/G2G CRISPR-Cas9 screen identifies substrates for which myristoylation is required for parasite viability
The six NMT substrates significantly reduced in abundance by IMP-1002 treatment during schizogony were selected
for further analysis to examine whether or not N-terminal myristoylation is essential for parasite growth. We
developed a CRISPR-Cas9 screen to determine the relative fitness of parasites following integration of a G2A codon
or a G2G replacement codon at the myristoylation site for each of the six substrates. For TRP we used
PF3D7_0631000 for this screen, as it has been shown to be essential for parasite viability (Zhang et al., 2018). For
each gene, Cas9 was used to generate a double-strand break within the coding region close to the 5’ end of the gene
using two different guides (Supplementary Figure 3, Supplementary Table 1), with repair mediated by plasmids
containing either a G2A sequence to prevent myristoylation of the protein or a G2G sequence to allow it. Repair
plasmids were mixed in equal proportion and added together to Cas9/guide plasmids, linearized and used for
parasite transfection. Then at the same time post-transfection, parasite genomic DNA was extracted and
integration-selective primers annealing to the inserted recodonized repair sequence were used to attach adapter
sequences for lllumina sequencing (Supplementary Table 2). The ratio of G2A/G2G sequence reads for each parasite
culture provides an indication of the relative viability of the G2G and G2A variants; with no fitness cost a 1:1 ratio of
the two forms would be expected in the parasite population.

For four of the six genes, almost 100% of the retrieved integrated sequences coded for an N-terminal
glycine, suggesting that the N-terminal glycine is essential for these proteins (Figure 4), although the number of
reads recovered for the CDPK1 gene was small (Supplementary Figure 3). For the TRP gene only 60% of the reads
were for the N-terminal glycine sequence and for ISP3, a 26% incorporation of the G2A variant was detected.
Overall, the screen showed that for four out of the six NMT substrates, myristoylation is likely essential for viability
(GAP45, ARO, CDPK1, and S9C), while for two substrates (ISP3 and TRP) myristoylation might be dispensable. To
carry this analysis further we focused on one protein, GAP45, which has been shown to be essential for motor
complex formation and invasion, and used a genetics-based complementation approach to investigate the

importance of GAP45 N-myristoylation.

The N-terminal glycine of GAP45 is essential for parasite viability
We focused on GAP45, for which myristoylation appears to be essential for viability, for further detailed analysis of

the consequence of lack of myristoylation. The strategy used a genetic complementation approach by further
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modification of an existing parasite that had been engineered to allow an inducible knockout of gap45. The gap45
gene has been shown to be essential in the gap45:ha3:loxP parasite line, which has a loxPint intron after the first 49
base pairs, a loxP site after the stop codon, expresses HA-tagged GAP45 and allows an inducible knockout of the
gene (Perrin et al., 2018). We inserted a second copy of the gap45 gene together with its own promoter sequence
into the pfs47 locus to express either a wild type (WT) GAP45 or GAP45[G2A] gene, and examined whether or not
this second gene complemented the induced knockout of gap45. Construction of these parasite lines is shown in
Supplementary Figure 4. For both transfections, parasites were detected after 22 days and following confirmation
of DNA integration, parasite lines were cloned by limiting dilution. The parasite clones used for complementation
analysis are denoted as gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP::comp_gap45[G2A], respectively.

First we examined protein levels of the gap45:ha3:loxP, gap45:ha3:loxP::comp_gap45[WT] and
gap45:ha3:loxP::comp_gap45[G2A] schizonts by western blotting and IFA using anti-GAP45 antibodies. The HA-
tagged GAP45 is 4.3 kDa larger than GAP45 expressed at the same time from the second gene copy, which has no
HA-tag (Perrin et al., 2018), and therefore both forms were visible on a western blot with anti-GAP45 antibodies
(Figure 5A). In cycle 0, the cycle in which rapamycin treatment was given to induce gene excision (Supplementary
Figure 5), expression of GAP45 in the gap45:ha3:loxP line was undetectable, whereas in the
gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP::comp_gap45[G2A] lines GAP45 was present at
approximately the same levels as in the DMSO treated controls. The IFA analysis confirmed that rapamycin
treatment abolished expression of the HA-tagged protein and that the gene inserted into the Pfs47 locus produces
GAPA45 that is indistinguishable in location from wild type GAP45 (Figure 5B). By morphology, comparing the
gap45:ha3:loxP, gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP::comp_gap45[G2A], these lines developed
normally through cycle 0, confirming the previous observation that full-length GAP45 is not essential for schizont
development (Perrin et al., 2018). This result also demonstrates that loss of N-terminal myristoylation in GAP45 does
not alter the subcellular localization of this modified protein.

In subsequent cycles after rapamycin treatment, however, GAP45 expressed in the
gap45:ha3:loxP::comp_gap45[G2A] integrant was not able to complement the gap45:ha3:loxP defect. After two
cycles, neither rapamycin treated gap45:ha3:loxP nor gap45:ha3:loxP::comp_gap45[G2A] parasites were able to
proliferate (Figure 5C). In contrast, the rapamycin treated gap45:ha3:loxP::comp_gap45[WT] parasites, and all three
parasites treated with DMSO alone, continued to replicate. These data indicate that the N-terminal glycine and

hence the myristoylation of GAP45 is indispensable for the survival of asexual blood-stage parasites.

GAP45[G2A] assembles into an intact glideosome and is S-palmitoylated but not N-myristoylated
With these three parasite lines, we were able to investigate the role of GAP45 in glideosome assembly and its post-
translational acylation. Previously, it had been shown that an N-terminal truncated GAP45, expressed together with
WT GAP45, is incorporated into the glideosome (Ridzuan, Moon et al., 2012), but in the absence of GAP45 the
glideosome does not form (Perrin et al., 2018). In the Plasmodium glideosome model, based on the T. gondii
assembly, the C-terminal domain of GAP45 interacts with MyoA and its light chains, MTIP and ELC, and binds to the
IMC via GAP50, playing a role in motility and host cell invasion (Frenal, Polonais et al., 2010). In the absence of

GAPA45, MTIP and MyoA are present at low levels and are not associated with the IMC (as assessed by IFA), although
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IMC formation is not impaired (Perrin et al., 2018), leading to the conclusion that GAP45 is essential for correct
motor complex assembly, but not for maintaining the structural integrity of the IMC in Plasmodium (Perrin et al.,
2018).

We examined the glideosome structure in gap45:ha3:loxP, gap45:ha3:loxP::comp_gap45[WT] and
gap45:ha3:loxP::comp_gap45[G2A] parasites by IFA and western blot with or without rapamycin treatment. After
rapamycin treatment of gap45:ha3:loxP::comp_gap45[G2A] parasites, both MyoA and MTIP proteins were detected
in the correct location by IFA (Figure 6A) and at normal levels by western blot (Figure 6B), in contrast to the situation
in gap45:ha3:loxP parasites where MyoA and MTIP were not detectable. The location and abundance of GAP50
were unaffected. These findings indicate that although GAPA45 is important for recruiting MyoA and MTIP to the
IMC, its N-terminal glycine and hence its myristoylation is not required for this activity.

To examine myristoylation, gap45:ha3:loxP::comp_gap45[G2A] (2 clones), gap45:ha3:loxP and
gap45:ha3:loxP::comp_gap45[WT] parasites were treated with rapamycin, or DMSO, during cycle 0, metabolically
labelled with YnMyr from 34 h Pl and harvested at 48 h PI. Proteins were extracted and an AzTB biotin tag attached
to the YnMyr-labelled proteins using click chemistry. Tagged proteins were enriched by Neutravidin binding and
then analysed by western blotting (Figure 7A). GAP45 was detected in the lysates and enriched protein fraction from
all parasites treated with DMSO. However, after rapamycin treatment, only the gap45:ha3:loxP::comp_gap45[WT]
parasite expressed the myristoylated protein. As a positive control for myristoylation and the enrichment procedure,
the known NMT substrate, ADP-ribosylation factor (ARF1, PF3D7_1020900), was successfully enriched, the
additional mass of YnMyr conjugated to AzTB resulting in a small mobility shift, whereas, as a negative control the
non-myristoylated endoplasmic reticulum chaperone BiP (PF3D7_0917900), was not enriched. These results
indicate that, as predicted, GAP45[G2A] is not myristoylated.

Since GAP45[G2A] is not myristoylated its modification by palmitoylation was examined. GAP45 has six
cysteines that are potential sites for this modification: one at the N-terminus (Cys5), and five close to the C-terminus,
of which one has been shown experimentally to be palmitoylated (Jones et al., 2012). The four parasite lines were
synchronised, rapamycin treated and metabolically labelled with YnPal (heptadec-17-ynoic acid, also known as
YnC14) to allow a biotin tag to be attached and the proteins enriched with Neutravidin coated beads. Samples were
analysed by western blot using anti-GAP45, anti-CDPK1 (CDPK1 has a single palmitoylation site; a positive control),
and anti-HSP70 (used as a negative control as HSP70 has no palmitoylation site) (Figure 7B). GAP45 was present in
all samples except those from rapamycin treated gap45:ha3:loxP parasites. CDPK1 was present in all fractions
including the enriched palmitoylated sample, whereas HSP70 was absent from the palmitoylated protein fraction.
These results indicate that GAP45[G2A] is palmitoylated, to a similar extent as GAP45[WT], and that this
modification is independent of prior myristoylation of the protein.

Incorporation of YnPal provides no indication of the number of palmitoylated cysteines in individual
proteins. Therefore, to examine how many cysteines are palmitoylated in the different GAP45 proteins, we used
acyl-PEG exchange (APE) methodology (Percher, Ramakrishnan et al., 2016). Proteins in cell extracts were reduced,
reactive cysteine residues capped with N-ethylmaleimide (NEM), and then acyl thioester bonds were cleaved with
hydroxylamine treatment, to allow site-specific alkylation with a 10 kDa methoxy(polyethylene glycol)-maleimide

(mPEG-Mal) mass-tag. Each tag addition to a former palmitoylation site results in a discrete mobility shift detected
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on a western blot with anti-GAP45 antibodies (Figure 7C). The samples were split after NEM treatment and then
either treated with hydroxylamine, or left untreated to reveal the background of mPEG-Mal tagging. The
gap45:ha3:loxP::comp_gap45[G2A] and gap45:ha3:loxP::comp_gap45[WT] parasites were used, with and without
rapamycin treatment. In the absence of rapamycin, HA-tagged GAP45, GAP45[G2A] and GAP45[WT] were all tagged
with mPEG-Mal, and after rapamycin treatment only GAP45[G2A] and GAP45[WT], were labelled. The western blot
suggested two 10 kDa band shifts, consistent with the addition of two mPEG-Mal moieties to both GAP45[WT] and
GAP45[G2A], although the upper band was faint in both cases, and there was no evidence of a third site (Figure 7C).
The intensity of each band quantified with Imagel, confirmed that the single palmitoylation species was the most
abundant modified form of the protein (Supplementary Table 3). CDPK1 was used as a control protein and displayed

a single mPEG-Mal shift, consistent with a single palmitoylation site (Figure 7C, Supplementary Table 3).

Myristoylation of GAP45 is dispensable for egress but essential for RBC invasion

The growth assay over two generations indicated that gap45:ha3:loxP::comp_gap45[G2A] parasites had a severe
growth defect (Figure 5), and previous work has shown that parasites lacking GAP45 are able to egress but not
invade (Perrin et al., 2018). Therefore, the ability of gap45:ha3:loxP::comp_gap45[G2A] parasites to egress and
invade after rapamycin treatment was investigated. Giemsa-stained thin blood smears of rapamycin treated
gap45:ha3:loxP::comp_gap45[G2A] parasites at 48 h Pl revealed increased numbers of free merozoites and a lack
of ring-stage parasites when compared to the DMSO-treated control (Figure 8A), a pattern similar to that observed
with gap45:ha3:loxP parasites. An invasion assay was used to compare gap45:ha3:loxP::comp_gap45[G2A],
gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP parasites, treated with either rapamycin or DMSO.
gap45:ha3:loxP::comp_gap45[WT] parasites were able to invade erythrocytes normally after rapamycin treatment,
but gap45:ha3:loxP::comp_gap45[G2A] and gap45:ha3:loxP showed significantly reduced invasion (parasitemia of
cycle 1 / parasitemia of cycle 0; p = 0.001 and p < 0.0001, respectively; Welch’s unpaired two tailed t-test) (Figure
8B). In an assay with purified schizonts, schizont parasitemia had decreased after 24 h when compared to the
parasitemia at 0 or 4 h, consistent with egress occurring normally (Figure 8C), but following rapamycin treatment
both gap45:ha3:loxP::comp_gap45[G2A] and gap45:ha3:loxP parasite cultures contained significantly fewer new
ring stages after 24h in the first cycle (Welch’s unpaired two tailed t-test; p=0.0042 for
gap45:ha3:loxP::comp_gap45[G2A] and p < 0.0002 for gap45:ha3:loxP). These data indicate that myristoylation of

GAP45 is necessary to generate the functional GAP45 that is essential for successful erythrocyte invasion.

Discussion

The consequences of NMT inhibition with IMP-1002 for Plasmodium falciparum depend on the length of incubation
with the inhibitor and its concentration, as well as the stage of parasite development to which the inhibitor is
added. Over 30 different NMT substrates have been identified experimentally in the asexual erythrocytic stage and
just over 100 proteins of the total Plasmodium proteome are predicted to be myristoylated (Wright et al., 2014).
Whilst many of the known NMT substrates likely have an essential function for the erythrocyte life cycle, the
importance of N-myristoylation for that function is less clear, making it difficult to determine the key abnormalities

resulting from NMT inhibition. One consequence of NMT inhibition for intra-erythrocytic stages was the failure to
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assemble the IMC during early schizogony, leading to a block in development. This is likely due to the lack of
myristoylation of IMC components such as GAP45, ISP1 and ISP3 resulting in the formation of pseudoschizonts -
cells with only four to five nuclei which fail to undergo further karyogenesis and cytokinesis (Wright et al., 2014).
However, many proteins that are N-myristoylated are highly expressed during schizogony, in the last phase of
intraerythrocytic development, and therefore we wished to examine in detail the consequence of treatment with

NMTi specifically at this stage.

When IMP-1002 treatment was restricted to the last eleven hours of the cycle, parasites developed to
schizonts that appeared morphologically fully mature, but parasite egress was prevented, leading to a significant
drop in parasitemia in the subsequent cycle. Although there was no visible morphological change in parasites
stained with Giemsa’s reagent, subcellular protein fractionation and immunofluorescence analysis showed that
IMP-1002 treatment led to protein mislocalization. For example, the NMT substrate ARO is typically found in the
membrane fraction, but in the presence of IMP-1002 it was soluble. A similar change in membrane association was
displayed by CDPK1, but not by GAP45, which remained membrane bound, likely due to its additional S-
palmitoylation close to the C-terminus. Immunofluorescence images using antibodies to ARO and RON4, suggested
that the localization of rhoptries was impaired by IMP-1002 treatment. By homology with T. gondii ARO, the N-
myristoylated ARO is involved in the correct positioning of rhoptries at the apical end of developing merozoites
(Mueller, Samoo et al., 2016), and therefore NMT inhibition might lead to defective or mislocalized rhoptries. Such
a mislocalization of rhoptries has been observed after parasite treatment with 2-bromopalmitate (2-BP) (Jones et
al., 2012), which is a highly promiscuous inhibitor of lipid metabolism, with impacts on S-acylation (Davda, El
Azzouny et al., 2013, Lanyon-Hogg, Faronato et al., 2017). ARO has two cysteines (Cys5 and Cys6) which are likely
palmitoylated (Cabrera, Herrmann et al., 2012) and, together with the N-terminal myristoylation, involved in
membrane anchoring and rhoptry positioning. These findings support the idea that loss of myristoylation of ARO
changes the localization of the protein, and of the rhoptries away from the apical end of developing merozoites.
RON4 is not N-myristoylated but is contained within rhoptries, and its mislocalization is consistent with the whole
organelle being affected. In contrast to the effect on the rhoptries, IMP-1002 treatment during schizogony

appeared to have no gross effect on either IMC formation or the localization of a micronemal marker.

The presence of IMP-1002 had a direct effect on protein N-myristoylation and abundance, as shown by
two proteomic approaches that revealed differences in behaviour of some substrates following NMT inhibition
compared with the DMSO control. Using chemical proteomics to examine proteins modified by YnMyr, N-
myristoylation of sixteen proteins was significantly reduced during NMT inhibition compared with the DMSO-
treated control. The YnMyr modified N-terminal peptide of several NMT substrates was also identified directly,
including that of a metal-dependent protein phosphatase (PPM6) and a putative acylated pleckstrin-homology
domain containing protein (APH), which had not been identified previously (Wright et al., 2014). Due to the co-
translational nature of N-myristoylation, only those proteins synthesized during the YnMyr labelling window would
have been purified and detected. Six of these substrates also showed a significant difference in protein abundance
after IMP-1002 treatment compared with DMSO treatment, suggesting that NMT inhibition affects their overall
stability. In addition to NMT substrates, other proteins were also decreased in abundance as a result of NMT

inhibition. For example, IMP-1002 treatment led to a significant reduction of proteins involved in DNA chromatin
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organization and assembly, such as histones, and proteins involved in DNA replication, transcription and protein
translation. A second large group included secreted and exported proteins, especially some targeted to the
erythrocyte membrane. The export of parasite proteins to the erythrocyte is maximal in early erythrocyte asexual
stages, but some proteins are also expressed in schizonts, stored in the apical organelles and then transferred to
the erythrocyte at invasion (Marti, Baum et al., 2005). The observed changes in protein abundance may be due to

a combination of altered transcription, protein synthesis and protein degradation rates.

During intraerythrocytic development, protein synthesis starts to accelerate at around 18 to 24 hours post
invasion (Holder & Freeman, 1982), with the peak during schizogony. Total protein synthesis, as measured by
metabolic incorporation of a methionine analogue, is not directly affected by NMTi (Wright et al., 2014), consistent
with a selectivity and mode of action distinct from a direct effect on translation. However, since N-myristoylation
is a co-translational process, it is possible that NMTi and protein synthesis inhibition may be connected through
common essential downstream factors or pathways. In the whole proteome analysis, proteins involved in DNA
synthesis, transcription, translation and chromatin organisation were less abundant following IMP-1002 NMT
inhibition compared with DMSO treatment, strengthening the hypothesis of a connection between DNA and
protein synthesis and NMT inhibition. NMT inhibition may also delay parasite development, even though there
was no observed effect on nuclear division, slowing down essential processes during schizogony and leading to
changes in protein abundance.

In addition to causing protein mislocalization as observed for ARO, inhibition of NMT may also result in the
misfolding of its substrates, leading to their degradation and reduced abundance. For example, NMT inhibition leads
to death through apoptosis of several cancerous cell types, potentially as a result of endoplasmic reticulum (ER)
stress and an unfolded protein response (Thinon, Morales-Sanfrutos et al., 2016). Inhibition of NMT may also lead
to an imbalance in favour of other N-terminal protein modifications (NPMs) such as N-a-acetylation (NAT) carried
out by N-terminal acetyltransferase (NATs) (Starheim, Gevaert et al., 2012), or N-terminal ubiquitination
(Ciechanover & Ben-Saadon, 2004, Timms et al., 2019). Usually these NPMs occur co-translationally through
ribosome-associated protein biogenesis factors (RPBs) that interact with the ribosome and show a degree of
competition in their binding (Giglione, Fieulaine et al., 2015). For example, there is some indication of competition
between N-a-acetylation and N-myristoylation (Castrec et al., 2018, Utsumi, Sato et al., 2001). Additional
experiments are necessary to investigate this further. In summary, treatment with NMTi results in mislocalization
and reduced abundance of certain substrates that together may be responsible for the observed phenotype. An
NMT inhibitor used to study myristoylation has an effect on many substrates simultaneously and the phenotype
reflects the resultant pleiotropic consequences.

Because it is difficult to draw conclusions as to which of the myristoylation provides the greatest
contribution to the observed phenotypes, we supplemented the inhibitor studies with genetic approaches. We
expected that proteins with the greatest reduction in YnMyr labelling and abundance are those most affected by
NMT inhibition, and these might contribute most to the observed phenotypes. In order to study N-myristoylation of
particular substrates in isolation, the proteomic data sets were used to select six NMT substrates for a G2A
substitution screen to determine the essentiality of the N-terminal glycine. To address individually the importance

of myristoylation for these substrates, we developed a competition screen to study parasite viability following the
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integration of N-terminal glycine or N-terminal alanine constructs to repair a double strand break induced by CRIPSR-
Cas9. This screen showed that for four out of six substrates the parasites preferentially incorporated the glycine
codon at the second position with a ratio of greater than 80%, and for ARO, GAP45 and S9C nearly 100%. This
strongly suggests the essentiality of myristoylation for at least four of the tested substrates. This approach does not
allow phenotypic characterization of parasites lacking the N-terminal glycine in a specific substrate; therefore,
GAP45 was selected for further analysis using a gene complementation approach to study the phenotype that results
from the lack of myristoylation of this NMT substrate.

GAP45 is essential for glideosome assembly and erythrocyte invasion, as shown recently by using an
inducible DiCre system to knockout the gene (Perrin et al., 2018). To complement this knockout, we placed the
GAPA45 gene in the Pfs47 gene locus, using two forms of the gene: one in which the second codon of the open
reading frame encoded glycine, and a second in which the second codon encoded alanine. Interestingly, in both
these constructs GAP45 appeared to be correctly targeted within the cell and allowed assembly of the glideosome
as indicated by the correct location of MyoA and MTIP, which are not present in the absence of the complementing
GAP45 gene copy. Although only the WT and not the G2A protein was myristoylated, both the G2A and WT GAP45
proteins were palmitoylated to a similar extent. Therefore, the single point mutation in the GAP45 gene, resulting
in the presence or absence of the N-terminal myristoylated glycine, had a profound effect on parasite invasion,
indicating that GAP45 myristoylation is essential for the function of the motor in invasion but not for motor
assembly. It is possible that a low affinity interaction between GAP45 and the PM is essential, but to facilitate the
dynamic changes that may be necessary for motor function (such as the passage along the membrane of the
moving junction between parasite and RBC) the strength of the interaction needs to be modulated by differential
palmitoylation/depalmitoylation of the cysteine close to the N-terminus or by GAP45 interaction with other
proteins. The requirement for GAP45 myristoylation in invasion is clear but further work is needed to clarify the
importance of further mechanisms. For example, the role of Cys5 palmitoylation should be addressed in future
experiments to investigate the necessity of a second modification of the protein to complement myristoylation
for dynamic membrane binding (Peitzsch & McLaughlin, 1993).

In conclusion, using small molecule inhibitors of NMT and genetic methods to replace the N-terminal
glycine in NMT substrates, we have shown the importance of these substrates and their myristoylation at different
stages in parasite development. As a consequence of these multiple effects, inhibitors targeting NMT provide

outstanding antimalarial parasite activity.

MATERIALS AND METHODS

Parasite culture

P. falciparum 3D7 parasites were cultured in vitro in RPMI 1640 medium containing 0.5 % (w/v) Albumax Il at 2-5 %
hematocrit as described (Trager & Jensen, 1976). Parasites cultures were gassed with 90 % N2, 5 % CO2 and 5 % O2
and incubated at 37 °C. Parasites were synchronized using 70 % Percoll gradients to purify schizont stages, with a

subsequent reinvasion followed by sorbitol treatment as described (Knuepfer, Napiorkowska et al., 2017).
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Determination of parasitemia by flow cytometry
Synchronized parasites were incubated with DMSO or IMP-1002 and samples were fixed in 4% paraformaldehyde
(PFA), 0.2 % glutaraldehyde for one hour at 45 h PI. Then, samples were washed in phosphate buffered saline (PBS)
and labelled with 1:500 of 10mg/mL Hoechst 33342 (New England Biolabs, Cat# 4082S) for 10 min with a subsequent
wash in PBS. For flow cytometry analysis, a BD CL1 Fortessa D Analyzer or Aria Fusion Sorter and Analyzer with
FACSDiva software v8.0.1 were used with the 450-50 filter, counting 50,000 RBCs per sample. Data were analysed
using FlowJo LLC 2006-2015. Gating for RBCs was achieved by plots of forward scatter area against side scatter area
(gate = P1). Doublet discrimination required gating on a plot of forward scatter height against forward scatter width
(gate = P2) followed by a plot of side scatter height against side scatter width (gate = P3). A Hoechst-stained
uninfected RBC sample was used as a negative control to gate on the infected population only on a forward scanner
area against UVA fluorescence with 450-50 standard filter (gate = P4). Parasitemia was determined by the number
of cells identified in gate P4 as a percentage of those in gate P3. The median fluorescence intensity (MFI) of each
sample was used to determine the median number of nuclei per sample by normalizing it to the MFI of a control

sample containing synchronized rings with a known MFI corresponding to one nucleus.

Subcellular fractionation
Parasites were subjected to sequential fractionation to determine the solubility of proteins, using a method
described previously (Ezougou, Ben-Rached et al., 2014). Schizont proteins were fractionated by sequential
solubilisation using hypotonic and high salt buffers to release soluble cytosolic proteins, followed by a high pH
sodium carbonate extraction to solubilise peripheral membrane proteins (carbonate-soluble) but not tightly
associated membrane proteins such as integral membrane proteins (carbonate-insoluble). The distribution of

specific proteins in the different fractions was revealed by western blotting.

Western blot analysis
Proteins separated by SDS-PAGE were transferred to nitrocellulose membrane using the iBLOT Transfer system
(ThermofFisher Scientific). Following blocking overnight at 4°C in 5 % (w/v) dried milk, 0.05% (v/v) Tween20 in PBS
(PBS-T), membranes were incubated with primary antibody for 1 hr at RT in 5 % milk in PBS-T, followed by three
5 min washes in PBS-T and a subsequent incubation with species-specific secondary antibody (goat-anti-
rabbit/rat/mouse IgG-HRP, Invitrogen 1:2500) for 1 h in 5% milk in PBS-T. After a final three 5 min washes, the
membrane was incubated with either 1 ml of Amersham ECL substrate western blotting detection reagent (GE
Healthcare lot# 9622301) or for higher sensitivity, BioRad Clarity Western ECL substrate (Cat # 170-5060), used

according to the manufacturers’ instructions. The signal was visualized on a BioRad ChemiDoc MP Imaging System.

Indirect immunofluorescence assay (IFA)
For IFA, thin smears of parasitized RBC on slides were air dried, fixed in 4 % PFA in PBS for 10 to 20 min, permeablized
in 0.1 % (v/v) Triton X-100 in PBS for 10 min, and blocked with 3 % bovine serum albumin (BSA) in PBS for at least
30 min at 4 °C. Slides were then probed with the appropriate dilution of primary antibody in a humidified chamber

at room temperature (RT) for 1 h before being washed three times in PBS. Secondary antibody conjugated with
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Alexa Fluor 488 or 594 was added for one hour at the appropriate dilution, followed by three washes in PBS. Slides
were mounted in ProLong® Gold Antifade mounting medium containing DAPI (4’,6-diamidino-2-phenylindole), and
viewed on a Nikon Eclipse Ni-E imaging system with a Hamamatsu Orca-flash 4.0 digital camera and a Plan apo A
100x/1.45 oil immersion objective. Images were captured using Nikon NIS-Elements software, generating Z-stack
images of individual parasites, using deconvolution options and exporting the image as a tiff file. Alternatively,
images were processed using Fiji software (Schindelin, Arganda-Carreras et al., 2012). Identical exposure conditions

were used for each wavelength in treated (rapamycin or IMP-1002) and control (DMSO) samples.

Metabolic tagging of parasites in the presence or absence of IMP-1002
For YnMyr (also known as YnC12 or Alk-14; tetradec-13-ynoic acid) tagging experiments, purified parasites were
labelled metabolically using 25 UM YnMyr added to the culture medium. For YnPal (also known as YnC14 or Alk-16;
heptadec-17-ynoic acid) labelling, the compound was stabilized by base treatment and absorbed to BSA to maximize
its uptake and incorporation (Thinon, Fernandez et al., 2018). The required amount (for example, 120 pl of a 50 mM

stock of YnPal for 240 ml RPMI 1640) was combined with 600 pl of 0.01M NaOH and warmed to 70°C for 3 to 4 min,

then 1.5 ml of warm 5 % BSA solution was added and the mix maintained at 37 °C for 3 to 4 min. The solution was

added to the RPMI 1640 culture medium, filtered through a 0.2 um filter, and then the parasites were fed with the

YnCPal-containing medium. In all experiments, the final DMSO percentage did not exceed 0.05 %.

Preparation of P. falciparum proteins and copper(l)-catalyzed alkyne-azide cycloaddition (CuAAC) labelling
Parasites of the appropriate stage were either purified through Percoll, washed and pelleted or directly pelleted
without purification. The cell pellet was lysed in 0.15 % saponin, using one and a half times the pellet volume for
10 min on ice. Following centrifugation, the pellet was washed further with PBS until the supernatant was free of
hemoglobin and stored at -80°C until use. The pellet was thawed in ten times its volume of 1 % (v/v) Triton X-100,
0.1 % (w/v) SDS in PBS containing protease inhibitors but without EDTA, sonicated for 1 min and then left on ice for
20 min. Insoluble material was removed by centrifugation and the supernatant was snap frozen and stored at -80°C.
The protein concentration of the lysate was measured using a Pierce™ BCA Protein Assay Kit (23225, ThermoFisher
Scientific) following the manufacturer’s instructions.

The lysate was adjusted to 1 mg/mL protein with PBS, and premixed click reagents [100 uM azido-TAMRA-
biotin (AzTB) capture reagent, 1 mM CuSOs, 1 mM Tris(2-carboxyethyl)phosphine (TCEP), 100 uM Tris[(1-benzyl-1H-
1,2,3-triazol-4-yl)methyl]amine (TBTA); mixed in the order stated and pre-incubated for 2 min] were added at the
equivalent of 6 pl click reaction mix to 100 pl protein solution (Mousnier, Bell et al., 2018, Wright et al., 2014). The
sample was vortexed for 1 h at RT and the reaction quenched by the addition of 10 mM EDTA. Protein was
precipitated with 2 volumes of methanol, 0.5 volumes of chloroform and 1 volume of water. After centrifugation for
10 min at 17,000 g, the top methanol/water layer was removed and 0.5 ml ice-cold methanol was added prior to
vortexing and sonication to break up and disperse the protein disc. The protein was collected by centrifugation
(17,000 g for 10 min at 4 °C) and air-dried for ~15 min, then re-dissolved to 10 to 20 mg/ml in PBS containing 2 %
SDS, 10 mM DTT, with vortexing for 15 — 30 min.
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Protein enrichment for immunoblot analysis
For analysis of affinity purified proteins by SDS PAGE, precipitated samples were enriched using 25 pl of Neutravidin
Agarose Resin for lysate containing 150 pg of protein. The resin was pre-washed 3x with 0.2 % SDS in PBS followed
by an enrichment of the labelled proteins from the lysate. Following the pull down for two hours at RT with shaking,
the supernatant was removed, and the beads were washed three times with 0.2 % SDS in PBS. Proteins were eluted
by treatment of the beads with SDS-PAGE sample loading buffer containing DTT (at a final 100 mM concentration)
and boiling for 10 min. Following a centrifugation step to remove any insoluble material, supernatants were loaded

on the gel.

Affinity purification of labelled proteins and proteomic sample preparation
After click chemistry, precipitation, and dissolution in 2% SDS in PBS, samples were diluted with PBS to 1 mg/ml
protein. For proteomic analysis, labelled proteins were first enriched. An agarose mixture comprised of one
third Neutravidin Agarose resin and two thirds Pierce Control Agarose resin (ThermoFisher Scientific) was prepared
to minimize contamination of samples with neutravidin from the beads, and 30 pl of this resin mixture was used to
enrich labelled protein from lysate containing up to 300 ug protein. The resin mixture was pre-washed three times
with 0.2% SDS in PBS using at least five times the bead volume, then the protein solution was incubated with the
resin for two hours at RT, with shaking. The resin was washed sequentially three times with 5 to 10 volumes of 1%
SDS in PBS, twice with 50 mM ammonium bicarbonate (AMBIC) containing 4 M urea, and a further three times with
50 mM AMBIC followed by sample processing as described previously (Broncel, Serwa et al., 2016). To improve
detection of cysteine-containing peptides, thiols were reduced and alkylated; proteins were reduced with 10 mM
DTT in 50 mM AMBIC for 30 min at 55 °C and alkylated with 10 mM iodoacetamide (IAA) in 50 mM AMBIC for 30 min
at RTin the dark. Proteins were digested with trypsin overnight (0.12 pg Trypsin Gold [Promega UK Ltd, Cat. #V5280]
for 300 pg protein). 1.5 % (v/v) trifluoroacetic acid (TFA; ThermoScientific Cat. #28902) was added to inactivate the
trypsin and peptides were desalted using stop-and-go extraction (STAGE) tips and reverse phase C18
poly(styrenedivinylbenzene) polymer cation exchange (SDB-XC) membranes. The peptides were eluted in 79 %
acetonitrile (MeCN)/21 % water and dried using a Speed Vac concentrator. Prior to liquid chromatography-tandem
mass spectrometry (LC-MS/MS) analysis, samples were dissolved in 15 pl of 0.5 % TFA, 2 % MeCN in water using
vortex, brief sonication and a final centrifugation step at 17,000 g for 10 min at 15 °C to remove insoluble material.

Eleven pl of each sample was transferred to an autosampler-compatible vial.

Global proteome analysis: Tandem Mass Tag (TMT) labelling of peptides and high pH reverse fractionation
Fifty microliters of lysate from parasites grown with or without IMP-1002 were treated with
methanol:chloroform:water. Precipitated protein was washed with 200 ul methanol, collected by centrifugation
(17,000 g for 10 min at 4°C) and solubilized in 20 ul 50 mM TEAB containing 0.2 % ProteaseMAX™ Surfactant
(Promega UK Ltd, Cat. # V2071) for 1-2 h with vortex and occasional sonication. The samples were reduced with
5 mM DTT in 50 mM TEAB for 20 min at 56 °C and alkylated with 14.85 mM IAA in 50 mM TEAB for 30 min at RT in
the dark. Samples were trypsin-treated (1.8 pg Trypsin Gold for 50 pg protein) in 0.05 % ProteaseMAX and then TFA

was added to a final concentration of 0.5 %, and incubated for 5 min at RT, to inactivate the trypsin. Peptides were
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purified by STAGE-tip and reverse phase C18 SDB-XC membrane, with elution in 70 % MeCN and 30% water, and
dried.

The TMT10plex Label Reagent Set (ThermoFisher Scientific, Cat # 90309) was used according to the
manufacturer’s instructions. Immediately before use, the reagents were equilibrated to RT and dissolved in
anhydrous MeCN. Peptides were dissolved in 25 ul 50 mM TEAB with sonication for 10 min, and then 0.2 mg TMT
label reagent was added and each sample incubated for 1 h. To quench the reaction, 8 ul 5 % hydroxylamine were
added to the sample and incubated for 15 min. A small quantity (about 5 %) of each sample was used to check the
labelling through an initial liquid chromatography-mass spectrometry (LC-MS) analysis to determine the ratio of
labelled reporter ions. Prior to mixing, the ratio was corrected for any differences in labelling efficiency. Samples
were combined into one tube in equal amounts and peptides were initially separated by high pH reverse
fractionation with a gradient step wise elution from 5 — 50 % MeCN to increase the proteome coverage, using the
ThermoFisher Scientific kit (Cat # 84868) according to the manufacturer’s instructions. Each fraction was then dried

and redissolved in 15 pl 0.1 % TFA to allow 10 pl per injection.

Proteomic data acquisition and analysis

For the peptides from proteins labelled with YnMyr in the presence or absence of IMP-1002, data were acquired on
a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific) with a 120-minute acquisition
time. Peptides were resolved chromatographically on an Ultimate 3000 RS-LC nano system (Thermo Scientific) using
a 50 cm x 75 pm EASY-Spray™ C18 column (Thermo Scientific) at a flow rate of 250 nl/min. The elution conditions
comprised a gradient of solutions A (0.1 % aqueous formic acid [FA] in water) and B (0.1 % FA in MeCN) over 2 h. Via
nano electrospray ionization, the eluent was introduced to the Q Exactive, which was operated in data-dependent
mode using a survey scan of 350 — 1650 m/z at a resolution of 70,000. Up to 10 of the most abundant isotope
patterns with 2+ charge or higher from the survey scan were selected with an isolation window of 2.0 m/z and
fragmented by HCD with normalized collision energies of 25%. Subsequent scans were acquired at a resolution of

17,500 from m/z 200 - 2000.

For the whole proteome, analysis was performed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo
Scientific) with a 120-minute acquisition time. Peptides were resolved chromatographically on an Ultimate 3000
RS-LC-nano System (Thermo Scientific), using a 50 cm x 75 um EASY-Spray C18 column (Thermo Scientific) at a flow
rate of 300 nl/min. The elution conditions comprised a gradient starting at 2 % B (0.1 % FA, 80 % MeCN and water)
and 98 % A (0.1 % FA in water) and increasing to 27.5 % B over 110 min followed by an increase to 40 % B over 10
min, and a final increase to 90 % B over 1 min. Via nano electrospray ionization, the eluent was introduced into the
Orbitrap Fusion Lumos, which was operated in ‘TMT acquisition mode’ and peptides were analysed using a 375—
1500 m/z scan range using quadrupole isolation at 120,000 resolution for an ion at 200 m/z. Tandem mass spectra
were first collected using the ion trap and fragmented using 35 % collisional induced dissociation (CID). A dynamic
exclusion list was employed to prevent repeat sampling (repeat count of 2, repeat duration of 15 seconds, exclusion

list size 100, and exclusion duration of 30 seconds).
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Proteome data analysis
Peptides identification and quantification were conducted using MaxQuant software (versions 1.5.3.8 for YnMyr
labelling and label free quantitation, and 1.6.0.13 for the whole proteome with TMT quantitation) using the
PlasmoDB-29_Plasmodium3D7_Annotated Protein database. All mass spectrometry ‘.raw’ files were loaded directly
into the MaxQuant software. Protein intensity values were calculated based on the intensities of their corresponding
peptides, and analyses of both LFQ (YnMyr labelling) and TMT (whole proteome) experiments in MaxQuant were
performed using the built-in algorithms. Cysteine carbamidomethylation was selected as a fixed modification, and
methionine oxidation and N-terminal acetylation as variable modifications. For the YnMyr labelling and purification
experiment, myristoylation was set as a variable modification using a composition of C(22) H(37) N(7) O(4) with a
monoisotopic mass of 463.2907 on any N-terminus. For enzyme digestion, trypsin was selected, which allows
cleavage C-terminal of Arg and Lys residues and LysC which allows cleavage after Lys residues. Up to two missed
cleavages were allowed. The false discovery rate (FDR) was set to 0.01 for peptides, proteins and sites. Other
parameters were used as pre-set in the software. 'Unique and razor peptides’ mode was selected to allow
identification and quantification of proteins in groups (razor peptides are uniquely assigned to protein groups and
not to individual proteins), and all identifications were based on at least two unique peptides. The data were

analysed using Perseus version 1.5.6.0, Microsoft Excel 2010 and GraphPad Prism version 8 for all experiments.

MS data were also processed with PEAKS X+, which as a default performs de novo peptide sequencing prior to
database searches, in order to improve the accuracy of the results. The software also searches for common PTMs
(PEAKS PTM) and point mutations (SPIDER). The data were searched against the same database used in MaxQuant
analyses. Trypsin was selected for database searches. The maximal mass error was set to 5 ppm for precursor ions
and 0.01 Da for product ions. Cysteine carbamidomethylation was set as fixed modification and methionine
oxidation and myristoylation (463.2907 on any N-terminus) were set as variable modifications. The maximal number
of modifications per peptide was set as three. The false discovery rate was set to 0.01 for peptides and a minimum

of 1 unique peptide per protein was required.

Generation of repair and Cas-9 plasmids for the G2A/G2G competition screen of ARO, CDPK1, GAP45, ISP3, S9C
and TRP
For each locus a rescue plasmid was used with 200 base pair homology regions either side of the G2A mutation and
guide sequence. The sequence between the G2A mutation and the guides was recodonized using the Codon Usage
Table from PlasmoDB (Aurrecoechea, Brestelli et al., 2009). The tool on the ctegd.uga.edu/ website was used to
determine two guides for each target gene based on close proximity to the G2A mutation, total score as calculated
by use of an efficiency score (Doench, Hartenian et al., 2014) and the CRISPRRater (Labuhn, Adams et al., 2018).
Each construct was flanked by unique restriction sites (Sacl and Sacll) not present in any of the constructs or the
pMK-RQ kanamycin resistance plasmid from GeneArt, for linearization prior to transfection. For each construct a
second plasmid contained the same homology arms and retained a codon for glycine at position 2 with a

synonymous mutation from the endogenous sequence.
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Analysis of the G2A screen by DNA sequencing
The G2A screen was analysed by lllumina MiSeq. Parasite genomic DNA was extracted and specific integration-
selective primers containing a MiSeq adapter sequence were used to amplify a 289-466 bp fragment (depending on
construct) around the codon encoding G2A/G2G. The PCR was performed and samples were cleaned as
recommended by the manufacturer for preparation of the 16S Metagenomic sequencing library (Part # 15044223).
To increase the number of sequence reads per sample, the KAPA HyperPrep kit was used according to the
manufacturer’s instructions to label the PCR fragments by ligating indices at each end creating a unique barcode for
each sample. A nine bp sequence around the glycine or alanine codon was used to determine the ratio of integrated

G2A versus G2G.

Cloning of constructs and transfection of P. falciparum
The gap45:ha3:loxP::comp_gap45[G2A] construct was generated through PCR, digest, ligation and cloning using the
gap45:ha3:loxP::comp_gap45 construct and the same guide (Perrin et al.,, 2018), and cloned into the
pDC2-cam-Cas9-U6-hDHFRyFCU-plasmid (Knuepfer et al., 2017, Lim, LaMonte et al., 2016, MacPherson & Scherf,
2015). Guide and rescue plasmids were paired and ethanol precipitated prior to transfection. P. falciparum
gap45:ha3:loxP (B11 background) (Perrin et al., 2018) or 3D7 parasites were used. For transfection, mature schizonts
were electroporated using the Amaxa 4D electroporator (Lonza) and the P3 Primary cell 4D Nucleofector X Kit L
(Lonza) and program FP158 (Moon, Hall et al., 2013), with 60 ug of linearized rescue plasmid and 20 ug of the
CRISPR/Cas9 plasmid carrying the respective guide RNA. Selections were carried out as recently described (Knuepfer
et al., 2017); parasites were cultured in the presence of 2.5 nM WR99210 for five days to select for parasites with
the Cas9/guide plasmid. Transfected parasites were detected after 22 days, and DNA integration was confirmed by
PCR amplification. Parasites were then treated with 1 uM 5-fluorocytosine (Ancotil) to remove residual Cas9/guide
plasmid and cloned by limiting dilution after 37 days (Rosario, 1981). Individual clones were then screened by PCR

amplification to confirm integration of the required DNA sequence.

Analysis of parasite growth and invasion
To analyse the growth of gap45:ha3:loxP::comp_gap45[G2A] Clone 01 and Clone 02 as well as gap45:ha3:loxP and
gap45:ha3:loxP::comp_gap45[WT] parasites were adjusted to a parasitemia of 0.1 % and treated with rapamycin or
DMSO. At the beginning of the assay (in cycle 0) and at 72 h (cycle one) and 120 h (cycle two) post invasion, when
parasites were at a late ring/early trophozoite stage, samples were processed and analysed by flow cytometry. Each
experiment was set up in triplicate, and these biological replicates were complemented with the use of the two

clones, which served as an additional biological repeat.

The invasive capacity of genetically modified parasites (gap45:ha3:loxP |/ gap45:ha3:loxP::comp_gap45[WT] and
gap45:ha3:loxP::comp_gap45[G2A] treated with either DMSO or rapamycin), and 3D7 parasites treated with either
140 nM IMP-1002 or DMSO, was measured using Percoll-purified synchronized mature schizonts added to RBC at
1% hematocrit and a parasitemia of 1 to 3%. Samples were fixed with 4% PFA and 0.02% glutaraldehyde at 0, 4, and

24 h later, enabling the percentage of newly formed ring-infected RBCs to be determined by Hoechst-staining and
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flow cytometry. Experiments were performed in triplicate with blood from three different donors. The data were
analysed with FlowJo and GraphPad Prism software to determine the standard deviation and perform a t-test for

statistical significance of differences between the samples.

Acyl-PEG exchange (APE) analysis of protein thioesters
For Acyl-PEG exchange (APE) analysis, a parasite lysate (in 1% Triton X-100, 0.1% SDS, and EDTA-free protease
inhibitor cocktail) was treated as described previously (Percher et al., 2016). Each lysate was adjusted to 2 mg/ml
protein and 92.5 ul of samples per condition were treated to reduce Cys residues with 5 pl neutralized TCEP at a
final concentration of 10 mM for 30 min with nutation. These free Cys residues were then blocked by alkylation with
2.5 ul of N-ethylmaleimide (NEM) (freshly prepared 1 M solution, diluted to 25 mM final concentration). The
reaction was stopped by protein precipitation using methanol-chloroform-water (4:1.5:3) with sequential addition
of 400 ul methanol, 150 pl chloroform and 300 pl water (all pre-chilled on ice). Following centrifugation (20,000 g
for 5 min at 4 °C), the methanol/aqueous layer was removed, 1 ml pre-chilled methanol was added, and after mixing,
the protein was pelleted by centrifugation at 20,000 g for 3 min at 4 °C. The pellet was washed again with pre-chilled
methanol and dried under vacuum (Centrivap Concentrator, Labconco). To ensure complete removal of NEM from
the protein pellet, each sample was resuspended in 100 pul 50 mM triethanolamine, pH 7.3, 150 mM NaCl containing
1x protease inhibitor mixture (Roche), 5 mM PMSF (Sigma), 5 mM EDTA (Fischer), and 1,500 units/mL benzonase
(TEA buffer)(Percher et al., 2016), containing 4 % SDS, warmed to 37 °C for 10 min, and briefly (~5 sec) sonicated
(Ultrasonic Cleaner, VWR), with two additional rounds of methanol-chloroform-water precipitation.

For hydroxylamine (NH,OH) cleavage of palmitoyl thioester bonds and subsequent alkylation of the
cysteines with methoxy(polyethylene glycol)-maleimide (mPEG-Mal), the protein pellet was redissolved in 100 pl
TEA buffer containing 4 % SDS, 4 mM EDTA and split into two 50 pl samples. One sample was treated with 150 pl
TEA buffer pH 7.3, containing 0.2 % Triton X-100 and 3 M NH20H at a final concentration of 0.75 M NH20H. The
second control sample was not treated with NH.OH but diluted with 150 ul of TEA buffer, 0.2 % Triton X-100. After
incubation at RT for 1 h with nutation, the protein was precipitated with methanol-chloroform-water and
redissolved in 100 pul TEA containing 4 % SDS, 4 mM EDTA, warmed to 37 °C for 10 min, and briefly (~5 s) sonicated.
Next, to each sample was added 150 ul TEA buffer containing 0.2 % Triton X-100 and 4 mM mPEG-Mal (10 kDa;
Sigma) for a final concentration of 1 mM mPEG-Mal. Samples were incubated for 2 h at RT with nutation before a
final methanol-chloroform-water precipitation. The protein precipitate was re-dissolved as described above, and
samples containing 10 pg protein were resolved by 3 to 12 % gradient Bis-Tris SDS-PAGE. and analysed by Western
blot using rabbit anti-GAP45 and anti-CDPK1 antibodies.
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Figure 1. Inhibition of NMT during schizogony leads to a block in parasite development before merozoite egress
from infected erythrocytes.
A. The parasite ratio (parasitemia of cycle 1/ parasitemia of cycle 0) at 53 and 73 hours post infection (h PI) measured
by flow cytometry. Equal numbers of IMP-1002- and DMSO-treated parasites, collected at 45 h Pl and Percoll
purified, were mixed with fresh erythrocytes for a growth assay. The growth of IMP-1002-treated parasites was
significantly lower (p < 0.0001 for 53 h Pl and p < 0.0003 for 73 h PI: unpaired Student t-test with Welch’s correction
not assuming an equal SD, n = 3; 50.000 RBC counted per sample). B. Percentage of schizonts and rings in the growth
assay samples. While the number of schizonts remained the same during the period from 45 h Pl to 73 h Pl and few
rings were detected even at 73 h Pl in the IMP-1002 inhibitor treated samples, the size of the schizont population
dropped and the ring population increased substantially in the DMSO-treated control culture (n=3). C. Giemsa
staining to reveal parasite morphology after eleven-hour drug treatment. While there was no visible morphological
difference between IMP-1002- and DMSO-treated schizonts at 45 and 51 h PI, by 55 h Pl abnormalities in schizont
morphology became apparent in the drug-treated culture. There is an abnormal distribution of merozoites around
the hemozoin in combination with a less spherical structure of the PM/PVM. Parasites that survived drug treatment

developed normally into trophozoites (shown at 62 h Pl) (20 fields of view per sample, n = 3). . Scale bar = 10um.
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Figure 2. IMP-1002 treatment during schizogony changes the differential solubility of ARO and CDPK1 and the
subcellular location of ARO and RON4.
A. To examine the differential solubility of proteins present in IMP-1002-treated and untreated parasites, Percoll-
purified schizonts were lysed and sequentially fractionated using hypotonic and high salt buffers, sodium carbonate,
and a buffer containing 1% Triton X100 and 0.1% SDS. These fractions together with the insoluble pellet, were
analysed by western blot using antibodies to ARO, CDPK1, GAP45, HSP70, MSP7 and MTIP. In the presence or
absence of IMP-1002 ARO was largely in the hypotonic soluble and carbonate insoluble fractions, respectively;
CDPK1 was distributed in the hypotonic/high salt soluble and carbonate insoluble fractions, respectively, under the
same conditions. Microscopy images are from indirect immunofluorescence assays (IFAs) performed in duplicate on
three separate occasions with fixed parasites from DMSO (control) and IMP-1002-treated parasites, and protein-
specific antibodies. Panels show the differential interference contrast (DIC) image, the specific antibody location
(green or red) and a merged image of the antibody staining with DAPI staining of nuclei. Scale bar =5 um. B. ARO
and RON4 localization was affected by drug treatment, with the proteins distributed throughout the cytoplasm of
developing merozoites and loss of distinct rhoptry staining. C. The location of GAP45 and MyoA at the inner
membrane complex (IMC) appeared largely unchanged. D. The location of the micronemal protein EBA-175 was not

affected by IMP-1002 treatment.
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Figure 3. NMT inhibition changes the abundance of both myristoylated and non-myristoylated proteins.
A. Parasite proteins were metabolically labelled with YnMyr for eleven hours during schizogony, coupled to AzTB
and enriched on Neutravidin coated agarose beads. Label-free quantification (LFQ) analysis was used to measure
the abundance of enriched proteins labelled in the presence or absence of IMP-1002. A two-sample t-test
(permutation-based false discovery rate [FDR], 250 permutations [number of randomizations], FDR 0.01, SO = 0.5
[within groups variance]; n = 3 biological replicates, each with three technical replicates) revealed significant
differences in myristoylated protein abundance between IMP-1002-treated and control (DMSO) samples. The lines
on the graph indicate t-test significance cut off. The identity of some proteins is shown on the plot; symbols and
colour coding of individual proteins are explained below the plot. Full data are in Supplementary Data 1. B.
Quantitative whole proteome analysis using tandem mass tag (TMT) protein labelling to measure protein abundance
in parasite samples treated with either DMSO or 140 nM IMP-1002 and subsequent saponin lysis. A two-sample t-
test (permutation-based FDR, 250 permutations, FDR 0.01, SO = 0.8 [within groups variance], n = 3) revealed
significant changes in overall protein abundance between the inhibitor-treated and control (DMSO-treated)
parasites. The identity of some proteins is shown on the plot; symbols and colour coding of individual proteins are
explained below the plot. Full data are in Supplementary Data 2. C. Pie chart presentation of the 62 proteins
significantly reduced in abundance following IMP-1002 treatment of schizonts from 34 to 45 h PI, with their

associated grouping based on GO term analysis from PlasmoDB (Release 44, July 2019).
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Figure 4. A viability screen of parasites containing either G2G or G2A at the myristoylation site in NMT substrates.
A CRISPR-Cas9 approach was used to insert G2A or G2G codons at the start of selected genes (see Supplementary
Figure 3 for details). Six genes were targeted using a 50:50 ratio of repair plasmids carrying a codon for G2G (Gly;
silent mutation) or G2A (Ala, abolishing the myristoylation site). lllumina sequencing of products amplified using
integration specific PCR primers was used to determine the distribution of each form in the parasite population
following transfection. Each gene targeting was performed at least twice (gap45, n = 3) with two different guides

(except for aro and gap45 when two transfections with the same guide were performed).
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Figure 5. GAP45[G2A] is at the same subcellular location as GAP45, but the parasite has a growth defect.
A. Western blots showing successful rapamycin-inducible ablation of gap45:ha3:loxP expression, but expression of
wild type (WT) and G2A GAPA45 from the Pfs47 site is unaffected. Note that HA3-tagged GAP45 adds additional mass
to the protein resulting in a lower mobility in the gel. After rapamycin treatment, in GAP45[WT] and both
GAP45[G2A] parasite clones the endogenous GAP45-HA3 is deleted but the second copy of the gene is still expressed
(experiment performed in duplicate with two independent clones). B. In the presence of rapamycin, the endogenous
HA-tagged GAP45 protein is no longer present but GAP45 expressed from the second gene copy in the Pfs47 locus
is located at the periphery of the developing intracellular merozoites, as judged by IFA. In the presence of DMSO,
GAP45-HA3 is expressed at this subcellular location as are GAP45[WT] and GAP45[G2A] in the presence or absence
of rapamycin and DMSO for the gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP::comp_gap45[G2A]
parasite clones, respectively (experiment performed in duplicate with two independent clones). Scale bar, 5 um. C.
Growth of parasite lines following rapamycin or DMSO treatment over two cycles of development. Growth curves
showing replication of the gap45:ha3:loxP parasite line following rapamycin or DMSO treatment. Rapamycin
induced excision of the gap45:ha3:loxP locus produced parasites that were unable to replicate in vitro which can be
complemented by the gap45:ha3:loxP::comp_gap45[WT] but not by either of the two
gap45:ha3:loxP::comp_gap45[G2A] clones (gap45[G2A] Cl. 01 and Cl. 02). Means from three replicates plotted.

Error bars show standard deviation.
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Figure 6. GAP45[G2A] parasites have a correctly localized glideosome.
A. GAP45[G2A] parasites show no defects in expression of the glideosome components MyoA and MTIP, and which
localized correctly at the periphery of merozoites. IFA showing the subcellular localization of GAP45-HA3, MyoA,
MTIP and GAP50 in segmented schizonts of AGAP45 (gap45:ha3:loxP) and  GAP45[G2A]
(gap45:ha3:loxP::comp_gap45[G2A]) in rapamycin and mock-treated (DMSO) parasites. Loss of GAP45 resulted in
loss of detection of MTIP and MyoA at the IMC upon rapamycin treatment, while GAP45[G2A] is still able to recruit
MTIP and MyoA. GAPS50 staining is unchanged in both lines after rapamycin treatment (experiment performed in
duplicate with two independent clones). Scale bars, 5 um.
B. Deletion of the GAP45 gene results in loss of the glideosome proteins, MTIP and MyoA in the gap45:ha3:loxP line
after rapamycin treatment, but they are retained in the gap45:ha3:loxP::comp_gap45[WT] and
gap45:ha3:loxP::comp_gap45[G2A] lines, as revealed by Western blotting. GAP50, another glideosome protein and
the endoplasmic reticulum protein, Bip are unaffected by the GAP45 gene deletion. Experiment performed in

duplicate with two independent clones.
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Figure 7. GAP45[G2A] is not myristoylated but is palmitoylated at a level similar to that of GAP45[WT]

Parasites were metabolically labelled in the presence or absence of rapamycin with either YnMyr (panel A.,
myristoylation) or YnPal (Panel B., palmitoylation), then the capture reagent AzTB was attached using CuAAC (click)-
chemistry and the labelled proteins were enriched on Neutravidin. A. Western blot with anti-GAP45, anti-ARF1 and
anti-BIP antibodies of enriched myristoylated proteins; a: lysate before enrichment, b: after enrichment: bound and
eluted. B. Western blots with anti-GAP45, anti-CDPK1 and anti-HSP70 antibodies of enriched palmitoylated proteins;
a: lysate before enrichment, b: after enrichment: bound and eluted. After rapamycin treatment only the
gap45:ha3:loxP::comp_gap45[WT] clone contained myristoylated GAP45. All other parasites showed no signal with
the anti-GAP45 antibody after rapamycin treatment. The NMT substrate ARF1 was used as a positive control and
was enriched from all four parasite clones, while the negative control BIP was not enriched as it is not myristoylated.
All parasite clones except gap45:ha3:loxP expressed enriched palmitoylated GAP45 after rapamycin treatment,
indicating palmitoylation of GAP45[G2A]. CDPK1 was used as a positive control and was enriched for all four clones,
while HSP70 was not enriched as it is not palmitoylated. The experiment was carried out with two independent
clones of gap45:ha3:loxP::comp_gap45[G2A]. C. Acyl-PEG exchange (APE) reveals site-specific S-fatty acid acylation
of GAP45[G2A] at a similar level to that of GAP45. gap45:ha3:loxP::comp_gap45[WT] and
gap45:ha3:loxP::comp_gap45[G2A] parasites were treated with either rapamycin or DMSO and lysed at 48 h PI.
Lysates were then subjected to APE, with or without hydroxylamine treatment to cleave esters, separated by
SDS/PAGE, and analysed by Western blot with antibodies to either GAP45 or CDPK1. The mass of GAP45 is shifted
by addition of the HA tag to the protein expressed from the endogenous locus, which is absent from the protein
expressed from the pfs47 locus. The number of PEGylation events is indicated. There was no evidence for a third
palmitoylation of GAP45. CDPK1 was used a positive control; it has one palmitoylation site, visualised by the one

PEGylation.
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Figure 8. Parasites expressing GAP45[G2A] are not blocked at egress but show a defect in invasion.
A. Giemsa-stained thin blood smears of gap45:ha3:loxP and gap45:ha3:loxP::comp_gap45[G2A] clones treated with
DMSO or rapamycin, showing the absence of newly invaded ring stages after rapamycin treatment in both lines,
while invasion occurs in the DMSO control (red arrows). Despite no invasion after rapamycin treatment there is an
abundance of extracellular merozoites visible with some apparently attached to erythrocytes (black arrows)
indicating egress had occurred. B. Invasion assay of gap45:ha3:loxP::comp_gap45[WT] (GAP45[WT]),
gap45:ha3:loxP (AGAP45), and gap45:ha3:loxP::comp_gap45[G2A] (GAP45[G2A]), and showing the parasite ratio
(parasitemia of cycle 1 / parasitemia of cycle 0) with and without rapamycin treatment (n = 3, Welch’s unpaired two
tailed p < 0.0001 for KO and p = 0.001 for G2A); error bars show standard deviation. C. Percentage parasitemia of
schizonts and rings in gap45:ha3:loxP (AGAPA45) and gap45:ha3:loxP::comp_gap45[G2A] (GAP45[G2A) parasites at
0, 4, and 24 h after culture of schizonts grown in the presence of DMSO or rapamycin (n = 3 technical replicates with
two independent clones, Welch’s unpaired two tailed t-test p < 0.0002 for KO and p = 0.0042 for G2A); error bars

show standard deviation.
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