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Abstract

Understanding the evolutionary dynamics of microbial communities is a key step towards
the goal of predicting and manipulating microbiomes to promote beneficial states. While inter-
actions within microbiomes and between microbes and their environment collectively determine
the community composition and population dynamics, we are often concerned with traits or
functions of a microbiome that link more directly to host health. To study how traits of a
microbiome are impacted by eco-evolutionary dynamics, we recast a classic resource-mediated
population dynamic model into a population genetic framework which incorporates traits. The
relative fitness of each group of microbes can be explicitly written in terms of population dy-
namic parameters, and corresponding evolutionary dynamics emerge. Using several example
systems, we demonstrate how natural selection, mutation, and shifts in the environment work
together to produce changes in traits over time.
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1 Introduction

Understanding the temporal dynamics of microbial communities is a key step towards the goal of
predicting and manipulating microbiomes to promote beneficial states. It is critical to understand
the evolution of microbial communities in response to perturbations such as from anitibiotics, diet
shifts, and environmental changes. Such perturbations can have temporary and reversible effects
or can permanently alter the microbiome. For example, the human gut microbiome can experience
temporary reversible changes in species abundances without large gain or loss of bacterial species
when a person travels between developed and developing countries, whereas enteric infection can
lead to permanent decline and replacement of species [9]. On longer time scales, microbiomes may
coevolve with their hosts [44].

While understanding how communities respond to perturbations is important for predicting
dynamics, traits or functions of a microbiome often link more directly to health than community
composition per se. Examples of such traits or functions include the protective effect against food
allergies [6, 15], and the capacity to chemically modify ingested drugs [53]. The ability to model
how key traits change with community composition is critical for engineering effective microbial
communities that promote health or other beneficial states.

Evolution can affect microbial communities in several ways. Natural selection will drive adap-
tation to both the abiotic and biotic environment (which includes both the host and community
structure). Changes in traits via natural selection have been extensively modeled, primarily via
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Price’s equation or its derivatives. The Price equation expresses the change in a trait as the co-
variance of the trait and fitness [38]. While natural selection erodes genetic variation around an
optimum, mutation acts within the community to provide novel variants. This tension between
selection and mutation should lead to mutation-selection balance in a community. Finally, evo-
lutionary theory has shown the importance of genotype-by-environment (G x E) interactions in
shaping traits [33, 13]. In the context of microbiomes, the community structure is a major contrib-
utor to the environment and can drive G x E effects. Changes in the abundances of species affects
who interacts with whom and how much they interact, thus impacting coevolutionary dynamics
via changing interaction strengths.

Resource competition models pioneered by MacArthur and Tilman have successfully been used
to study macroecological communities [34, 50]. Indeed, many researchers are currently working to
adapt these models for microbial systems. For example, Butler and O’Dwyer presented a consumer-
producer-resource model for competitive interactions, and analyzed the local stability of equilibria
of certain systems [7, 8]. Maslov et al. studied the assembly rules of microbial communities using
conceptual models employing game theory methods [23, 24]. Their studies show that both the
complexity and stability of microbial communities may arise from the mechanisms by which bacteria
utilize resources.

In addition to competition and mutualistic cross-feeding, other types of interactions such as
amensalism, commensalism, predation, and parasitism are important in microbiomes [1, 14, 36].
It has been repeatedly demonstrated that such interactions are context dependent and vary with
the specific environment [4, 5, 11, 25, 32, 48]. This implies that the nature of interactions may
vary over time and space. Thus, flexible modeling frameworks—such as Tilman’s [50]—which can
encompass numerous types of interactions are ideal.

While modeling studies have undoubtedly advanced our understanding of microbial community
dynamics, trait dynamics have been largely unexplored. In this paper, we recast a classic resource-
mediated dynamic model into an evolutionary framework that relies on the Price equation [38]. This
framework of connecting population dynamic models to evolution has been successfully applied in
epidemiology to study, for example, the evolution of virulence [10, 18, 19]. We group microbes
by their functional characteristics, and use the Malthusian fitness of each strain to model the
eco-evolutionary dynamics within the community. Transforming the system in this way reveals
how model parameters affect the three evolutionary forces driving dynamics: natural selection,
mutation, and changes in the environment. Incorporating traits into this framework yields a form
of the Price equation that tracks the dynamics of the mean value of any trait of interest. We begin
by introducing a general resource-mediated model in Section 2. Section 3 illustrates the population-
genetic and trait-based approach. This modeling framework allows us to make predictions about
trait evolution, and to model the non-equilibrium ecological dynamics.

2 Mathematical Model

We extend Tilman’s model of resource competition [50] to incorporate other types of interaction
and the production of metabolic byproducts which may also mediate population dynamics.
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2.1 General model

For a community of M groups of microbes with abundances {S;}}, and N resources with abun-
dances {R;}%_,, the general model is given by

J=0b
dS; <
g = JilBL e BN)Si — piSi —w | Si - > wkiSe |
k=1,
IR (1)
ditj = Zfz Ry, ..., Rn)cij(Ra, ..., RN)Si — g;(R))

+h (Sl, . SM, Ry, ..., RN),

fori =1,...M and j = 1, ..., N (see Table 1 for main notations). Note that the identity of each
group of microbes in this model is determined by its dependence of per capita reproductive rate
on available resources f;(R1, ..., Ry) and mortality rate u;. Our model defines {1,2,...,M} as a
set of biological ‘groups’; groups could, for example, be a set of strains of one species, a set of
different species, or a set of m species (m < M) with some species having more than one strain.
We can impose conditions such that inter-species mutations are not allowed. Assume M groups of
microbes consist of L species (L < M), let U; be the collection of groups/strains of species i, and
G=A{12,.,M} = UlelUl with U; NU; = 0 for ¢ # j. If microbes in group 7 are of one strain of
species I, i € Uy, then vy; = 0 for k € G\ Uy and Z#k v = 1.

Let S = Zf\il S; denote the total abundance of the microbial population. The change in the
proportion of group %, ¢; = % can be tracked with

M M

dag; _

=il =) —w | g - > itk =a(l—a)hi—w|a— Y Vhitk | 2)
k=1,k#i k=1,k#i

where
m = fi(Rb ...,RN) —
is the instantaneous per capita rate of change of the abundance of group 7 in the absence of mutation
(Malthusian fitness of S;), 7 = Zf\il qin; is the average Malthusian fitness of S, 77 = Zfil,l;éi ffgi
is the average Malthusian fitness of S — 5;, and A; = n; — 7 is the selection coefficient of group 1.
Neglecting mutations, from equation (2) we can see that when there is at least one group present
along with group i, the frequency of group ¢ will increase (or decrease) when the fitness of group 4
is higher (or lower) than the average fitness of all other groups.
With equation (2), we can derive the following equation for the temporal dynamics of 7:

M
dn dqz dn;
— ; i = (Aps + Ap) + Ace,
dt Zq +Am) + (3)

i=1

where

Z gi(mi = Var(n)

denotes the effect of natural selection on the change in 7. The term A, is equal to the variance in
n across all groups and is always non-negative. The term

M M
DAp=—w 1= > viae

i=1 k=1,ki
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denotes the effect of mutation on the change in 7. It is negative if the average fitness of the mutants
SM oM ki Vi) is lower than the average fitness of the total population 77. The term

M N
B A df; dR
Ace—z%< aRldt>

i=1 =1

denotes the effect of the change in the environment on the change in 7. Note that the environment
includes all the forces (abiotic and biotic factors) other than the force of natural selection at the
specific level. Natural selection tends to increase the mean fitness 7, but mutation and change
in the environment may have negative impact on the mean fitness. These effects will balance at
equilibrium.

2.2 Trait Dynamics

In addition to the dynamics of the frequencies of different groups of microbes and the dynamics
of mean fitness of the population, we are also interested in the dynamics of microbial phenotypic
characteristics that may impact the ability of microbes to survive in a specific environment. These
characteristics can be morphological, physiological, or behavioral traits such as shape or color of
bacterial colonies, maximal growth rate, the ability to metabolize carbon compounds, or the ability
to survive at different pH level. Let 0 denote a quantitative trait of interest. Each group within
the microbiome has a specific value of the focal trait at time ¢, 6;(¢), and the mean trait value
across the microbiome, 6(t) = SN | ¢;(¢)6;(t), which is affected by the population dynamics of the
microbiome. We can track the dynamics of the mean trait value § with
@ = Cov(8,m) + w(0p, — 0) + %i,

7 (4)

where
N N

émzz Z vjiqj | 0
i=1 \jstij—=1

is the average value of trait # among all new mutants, and
dh i db;
a — ="ar

Equation (4) is a continuous-time derivation of Price’s equation [38] which is simple but informative.
It tells us that the change in the average value of trait 6 is driven by three processes given by the
three terms in Eq. (4). First, natural selection on 6 is given by the covariance between the trait
and fitness across all groups. The second term is change due to mutation which scales with the
mutation rate and is positive if the average trait value among mutants is larger than the average
trait value of the total population at a given time. The third term represents other factors that
affect the trait value of each strain (e.g., drift, environmental effects).

2.3 Alternative Form and Multi-level Selection

In microbiome studies, it is common to group organisms at different taxonomic levels. Often
operational taxonomic unit (OTU)-based classification is at family, genus, or species levels. It has
been observed in microbiology that strains of a single species vary in their functional capacity, such
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as drug resistance, virulence, or ability to uptake different compounds from environment [26, 40].
These differences among strains may also impact the health of hosts [12]. Motivated by this, we can
rewrite the model in Section 2.1 for the case that individuals in group ¢ can be further divided into
subgroups ik, such that £ =1, ..., L;. Here, the group and related subgroup could be, for example,
genus and species or species and strain.

Let S; denote the abundance of group ¢ and S;; denote the abundance of subgroup ik, with
S; = 211;42:1 Sik, © = 1,..., M, j =1,...,N, k = 1,...,L;, where L; denotes the total number in
subgroups of group i. Define p;; = Six/S; as the frequency of subgroup ¢k within group i, and
q; = Si/S as the frequency of group i. Denote n;x, 7;, and 7 as the Malthusian fitness of Si, S;
and S, respectively. The temporal dynamics of 77 can be written as

‘ Enl Z %E Ace
. =1 =1 M
6777 — Ans + Am + Ace - Ans + Am + Z Qi(Ans,i + Am,i + Ace,i ) (5)
4 = —— -
L dpi O di,
Z ar ik Zpik di
k=1 k=1

(derivation in Appendix A). Similar to equation (3), the change in 7 is driven by three processes:
natural selection between groups (Ays), mutation (4A,,), and change in the environment (A.¢). The
effect of change in the environment can be further decomposed into the same three processes:

L;

Ace = Z Qi(Ans,i + Am,i + Ace,i)a
i=1

where A, ; is natural selection between subgroups, A, ; is mutation, and A ;) is the change in
the environment, for each group i. - -

In this case, the dynamics of 7 are driven by selection at two levels: selection between groups
(Ans, Am, Ac) and selection between subgroups (4,,,;, A,,;, A. ;). Equation (5) can be ex-

panded recursively to represent the change in the mean fitness at different levels of nested groups,
which provides a hierarchical decomposition of selection within and between groups.

3 Simulation Studies

Some in vitro studies suggest that negative interactions dominate synthetic aquatic microcosms
[16] and human microbiota [51]. These negative interactions can be the result of competition
for resources (e.g., nutrients, space) or damage caused by toxins [21, 28, 40]. Some studies suggest
that cooperation and higher-order interactions also impact the functioning of microbial communities
[3, 39].

In this section, we apply the approach developed in Section 2 to several models to illustrate the
advantages of this approach. We present simple communities in which microbes compete for abiotic
resources without the production of metabolic byproducts. Cases with metabolic byproducts are
found in Appendix C. These simple communities highlight how interactions affect selective pressures
over time.
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3.1 Competition for a single resource

Microbes can compete for resources such as nutrients, light, or space. These competitive interactions
can occur between a broad genetic range of microbes, from similar strains to members of different
phyla [40]. As a simple example, consider a community of N groups of microbes with abundances
{Sz}f\i ; competing for one externally supplied resource R:

N
dR
E = p_O'R_ RZO&[S[,

=1
S N (6)
dtz = RS — 1S —w | 5 — | Z 'VjiSj ;

J=Lj#
fori =1,..., N. Here, we assume a linear functional response for growth rate and ¢ = 0. In this

case, 1; = €;0; R — p;, and A, = Zf\il qieiai%.

Note that in our model, the fitness of microbes in a given group depends on the net per capita
reproductive rate v; = €;;, mortality rate u;, and resource level R, with the parameters +; and
i driving the evolutionary dynamics of the community. Reproductive and mortality rates of a
given group can be thought of as traits. Utilizing equation (4), we can track the dynamics of

=" v and i = SN | gip; with

dj - _
) = (e ) () =+ (23 "
dt

where 7,, = Zf\il Z;V:L#i qjviiyi and fiy, = ZZ]\LI Z?LL#Z- q;vjip are the average net per capita
reproductive rate and mortality rate among all the mutants, respectively, and (R, —1)7 is the
selection gradient. This equation is analogous to quantitative genetics models [29]. It shows that
natural selection favors increased net per capita reproductive rates and the strength of selection is
proportional to the resource abundance, R. It also shows that reduced mortality rate is favored
with a selection strength of -1. The evolution of each trait is constrained by the genetic variance
in the focal trait (direct selection), possible covariance between the focal trait and other traits
(indirect selection), and mutation. It is important to note that the direction of natural selection
changes with changes in the selection gradient (R, —1)7 (i.e., R changes in magnitude over time).
Thus, the dynamics of resource and microbial population abundances are driven by both ecological
and evolutionary processes.

When mutation is absent, at equilibrium, model (6) gives R} = -£- with one value of R} for each
group ¢. Theory predicts that the group with the lowest value of R;‘ will competitively dlsplace all
other groups at equilibrium. Two or more groups coexist at equilibrium only if they have identical
value of R} [49, 50]. More generally, n groups cannot coexist on fewer than n resources—the
‘competitive exclusion principle’ [2].

Traditional equilibrium and near-equilibrium analyses focus on predicting properties of equi-
libria. The approach we introduced in Section 2 allows us to predict the transient evolutionary
dynamics, which complements the insights gained from equilibrium and near-equilibrium analyses.

Example 1

The first example is a community of three groups of microbes competing for one single resource;
key parameter values and initial conditions are listed in Table 2. When mutation is absent, Ss
outcompetes S7 and S because it has the highest fitness and consequently the lowest value of
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Table 2: Parameter values and initial conditions used in Figure 1.

Parameter Value | Parameter Value | Parameter Value | Parameter Value
p 3.6 1 0.7 142 0.7 143 0.8
{e:}3_, 0.6 ay 0.6 Qo 0.4 as 0.8
V12 0.5 V13 0.5 V21 0.7 23 0.3
v31 0.4 V32 0.6 R(0) 2 {S:(0)}3_, 1

R*. When mutation is present (A,, &~ 0), all three groups of microbes co-exist with S; and
So maintaining low abundances. Different evolutionary forces dominate at different stages, and
at steady state these forces balance. In particular, when mutation is present, mutation-selection
balance is reached and selection is nonzero at equilibrium.

We also track the dynamics of three different traits: net per capita reproduction rate v = eq;,
mortality rate p, and a trait 6 that is not directly associated with the fitness of each strain (6, = 0.9,
02 = 0.3, and 03 = 0.3) (Figure 2). Eq. (4) shows that the dynamics of a trait depend critically
on the covariance of the trait and fitness across all groups. At equilibrium, mutation and natural
selection will balance. The trait € is not directly associated with the fitness of microbes. For these
parameter values, the group with smallest value of § has the highest fitness so that Cov(6,7n) < 0.
Natural selection favors S3 which has lowest value of 6;, leading to a decrease in #. In this case,
the average trait value among all new mutants (f,,,) is higher than the average trait value of the
entire population (f), leading to an increase in . Natural selection is the dominant evolutionary
force acting on 6.

As for the other two traits that are directly associated with microbial fitness, large values of ~
and small values of p lead to high fitness. For both of these two traits, effects of natural selection
are positive and effects of mutation are negative, with natural selection being the dominant force
driving trait evolution initially, while mutation is dominant later.

3.2 Resource competition with variable resource supply rate

Normally microbes do not grow in an environment where resources are supplied at a constant rates.
We consider two types of variations in resource availability, the first imposes a temporary shift and
and the second continuous oscillations. In reality, the resource supply rate could vary in any number
of ways, but these two types of variations provide insight into how two types of perturbations affect
dynamics. For simplicity, we use the community shown in Figure 1b as the baseline, start the
simulation with initial condition (R(0),S1(0),S2(0),S55(0)) = (1.687,0.126,0.028,2.559), close to
the equilibrium in the baseline system, and then perturb the system.

3.2.1 Temporary perturbation

First, we perturb the resource supply rate to incorporate a temporary decrease:

(8)

(t) = 3, 20<t<25
P = 3.6, otherwise

The temporary decrease in external resource supply rate leads to significant changes in resource
and microbial abundances that deviate from the original steady state. At the later phase of this
temporary decrease in resource supply rate, the rate of decrease in microbial abundance slows down
as resource starts to build up, and the system approaches a new steady state towards the end of
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Figure 1: Resource competition without and with mutation. Numerical simulation of Example 1.
In (a), there is no mutation, while in (b), we allow microbes to emerge by mutation (w = 0.02).
From (a) to (b), we show the effect of mutation. The left panels show the abundance of resources
and total microbial population (left axis) and frequencies of each group of microbes (right axis) over
time, the right panels show the change in mean fitness 77 (red dotted line) and effects of different
drivers over time (black solid line: A, blue dotted line: A, green dash line: A,,).
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Figure 2: Resource competition with trait evolution, Example 1 with mutation (the community
shown in Figure 1b). (a) Rate of change in the average value of a focal trait 6 (black solid line:
%), and effect of selection govern by different forces (cyan dotted line: mutation, magnate dash
line: natural selection Cov(¢,7)). (b) Mean value of different traits over time: net per capita
reproductive rate v = ea (blue dotted-dash line), mortality rate u (red dotted line), and trait 6

(black solid line).

this period. As the resource supply goes back to the original rate, microbial abundance starts
to increase once resource abundance is sufficiently high, and the system eventually returns to the
original equilibrium state as in Figure 1. During and after the perturbation, environmental change
is the dominate force driving the dynamics of mean fitness, followed by natural selection, as shown
in Figure 3a. Note that in this case, perturbation has little effect on the proportions of different
groups of microbes. As we assume that the system is well-mixed, individual microbes have equal
access to resource, thus little fluctuation in mean trait value.

3.2.2 Oscillatory resource supply rate

As shown in Figure 4, oscillatory resource supply rate p(t) = 5sin2(% + 0.886) leads to oscillatory
behaviors in abundances, mean trait values, and different evolutionary forces. The change in mean
fitness is mainly driven by changes in environment, and the change in mean trait value is mainly
driven by selection as the microbial fitness depends on resource availability.

3.3 Resource switching

Carbon is one of the main resources for bacterial growth [45] but may come in many different forms
(e.g., there are many types of sugars). When multiple carbon sources are present, bacteria display
two types of growth behavior: these carbon sources can either be simultaneously consumed (e.g.,
co-utilization or co-metabolization) or be utilized in a hierarchical manner (e.g., carbon catabolite
repression) [22]; in other words, bacteria demonstrate preferences for particular carbon sources.
Likewise, bacteria can also switch between aerobic and anaerobic metabolic pathways which have
different resource utilization [52] but typically prefer aerobic metabolism when feasible.

As a toy example of metabolic mechanism switching, we construct a community of M groups of
microbes and N interchangeable resources such that each group i corresponds to a distinct species,
assume any individual can only consume one resource at a time, and individuals are allowed to

10


https://doi.org/10.1101/2020.12.15.422935
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.15.422935; this version posted December 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

NN
A o @

Abundance
N
[Ny

18

16

145

available under aCC-BY-NC-ND 4.0 International license.

N
T

: 1 0.3
—R L i l/ Ans
[ i
""" S H i 0.2 AV
H i 10.8 A
i H 1) - = Ay
9 v 8 d
! c m
_____ q \ i = Ol CLTTTTTT T,
2 \./ 1o » & dt
. Q c
.......... q3 5 8 !’\\
= = 0 R
I
g = }1
104 o o i
2.01 g oo i
g . —d
\ 102 02t EAF-- -4
-0.01 i
20 25 30
; ; . } 0 03 . . . ;
10 20 30 40 50 0 10 20 30 40 50
Time Time
(a) (b)
4 %107
dé
% 2t dt
2 ---Couv(6,n)
I mutation
=
c Or
©
(5]
=
£
82
c Y
[ AN
Ky ~
5} AT "
Se—n TN
4 - R I I
v !
L ‘l L L
0 10 20 30 40 50
Time
(c)

Figure 3: Numerical simulation of Example 1 with non-constant resource supply rate given
in (8), initial condition is (R(0),S1(0), S2(0),S3(0)) = (1.687,0.126,0.028, 2.559), other parameter
values are the same as used for Figure 1b.
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5sin?(L + 0.886), initial condition is (R(0),51(0), S2(0), S3(0)) = (1.687,0.126,0.028,2.559), other
parameter values are the same as used for Figure 1b.
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switch between different resources based on their preference and resource availability. We can track
the abundance of species i consuming resource j (i.e., strain j of species ), S;;, and the abundance
of resource j, R;, using the following model:

M
dR;
=i R ) oSy,
=1
Ss. N N
7dtw = €0 Ry Sij — iSij + Beijoi Ry > Sig—BSi; Y €wcirRy, (9)
[y [y
N
dsS;
T jzzlﬁijoéinjSij — 1iSi,

fori =1,..,M, and j = 1,..., N, where p; is influx rate of resource j, o;; represents the rate of
consumption of resource j by species 4, €;; characterizes the resource conversion rate of species ¢ on
resource j, and 3 represents the resource switching rate.

Similar as in Section 2.3, let p;; = %Z be the frequency of strain j of species ¢, q¢; = % the
proportion of species i to the total population, we can rewrite the model (9) as

M
dR;
ditj =pj — Rj;aljslﬁ
ds
_ = F — 1 S
o = EF S,
dp;i al
df = pii(mij — ) — i (B) | pis — D Gikgpir | »
dgi
E = 2(771 7’)7

where 7;; = €;;0;R; — i; is the Malthusian fitness of S;;, ; = Zszl DPikMik 1s the mean Malthusian
fitness of S;; 71 = Zl]‘il qiM; is the mean Malthusian fitness of S, i = Zf\il qilb; is the average
mortality rate over the entire population, F' = Zi\il %(Z;-V:l pij€ijaijR;) is the average per capita
reproduction rate over the entire population,

N
Yij(B) =B Z eirair Ry, and ojpj = —————7
k=1kj
77 > cinoiRy
p——

are analogous to the mutation rate, w, and probability that S; mutate into S;;, vy, in model
(10), respectively. Note that v;;() and oy are time-dependent here. Similarly, differentiating the
expression for 7 with respect to time, we obtain

- M

dn
7:An5 Ace:Ans iAnsi Arsi Acei’
y + +;q( i+ Drit+ Dees)
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where

M N
Ans = Z Q’L(ﬁz - 77/)77/1 = Var(ﬁ), Ace = Z Qi(Ans,i + Am,i + Ace,i);
=1

= ‘:1
N ' N dR.
A .= (i — )i = Var;(n), A = ey 37
ns,i jz_;pzj (nw 771)7723 arz(n) ce,i ;pmezgam dt
N N
Avei =Y 9ii(B) | =pijmis + > OikDiktlis
Jj=1 k=1,k#j

Note that A, ; here denotes the effect of resource switching on the change in 7;, and it is analogous

to Ay, in equation (5). If microbes are not allowed to switch to a different resource, § = 0,

then w(8) = 0 and A,s; = 0, the temporal dynamics of 7 is driven by natural selection and
changes in the environment only. Further, if we assume the dynamics of resources are much faster
than the dynamics of microbial population and apply separation of timescale, i.e., set % =0
for j € {1,..., N} then substitute the resulting algebraic constraints into dgz-]-7 the environmental
dependence of 7; is absent, A ; = 0, and the environmental dependence of 7 is simplified into the

effect of natural selection between subgroups, A, = Zf\i 14D s

Example 2 -

Consider a community of 3 microbial species and 2 substitutable resources, in which individuals
can only consume one resource at a time and can switch between those two resources based on
their preference, as shown in Figure 5. For simplicity, we assume that the resource conversion rates
are the same for all the species on all resources, €;; = € for all 7 and j, with M =3 and N = 2 in
model (9).

When resources are supplied at constant rates and resources are abundant, the community
reaches equilibrium state, decreasing resource supply rate will increase the time it takes for the
community to reach equilibrium, if there is one, and can lead to instability when the resource supply
rate is sufficiently low (simulation results not shown here). If the supply rate of one resource is time-
dependent, p;(t) for Ry in this case, the abundances of the other resource and all microbial species
as well as strain frequencies also isolate over time, as shown in Figure 13 (note that Ry appears
to reach equilibrium state in Figure 13a, but it actually fluctuate over time with much smaller
magnitude). Sy and S3 dominate the population at different time intervals while S; remains at low
abundance and eventually approaching zero. From Figure 6 we can see that the change in mean
fitness for different species fluctuate as well due to the time-dependent supply of R1, and slight time
delay is observed in the effects of natural selection and mutation in comparison to the change in the
environment. The magnitude of changes in individual species fitness are different, the magnitude of
changes in 7; is the highest, and 73 is the lowest. If the system begins away from equilibrium state,
the patterns of evolutionary dynamics between different species are different (results not shown
here).

4 Discussion

We provide a general framework to study the evolutionary dynamics of microbial communities and
associated traits. Encouraged by the success of integrating population genetics into epidemiology
[10, 18, 19], we first recast a classic resource-mediated population dynamic model in terms of
evolutionary forces and then add traits to this framework. These models are particularly insightful
if the dynamics of mean fitness and/or traits are of interest. This approach complements studies of
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Figure 5: Ilustration of the topological structure of the microbial community discussed in Example

3.

Table 3: Parameter values and initial condition used in Figure 6.

Parameter Value Parameter Value | Parameter Value | Parameter Value
o1 sinQ(%) 02 1 6] 0.05 € 0.8
11 0.125 142 0.1 13 0.125
11 0.12 192 0.04 21 0.1
Q929 0.06 31 0.08 Q32 0.08
R1(0) 1.1966 R5(0) 1.9965 S11(0) 1.9363 S12(0) 0.0955
S21(0) 4.2530 S22(0) 1.9428 S31(0) 0.5201 S32(0) 4.7574

long-term system behavior as it allows for the analysis of transient dynamics and reinterpretation
of predictions derived from equilibrium analyses.

Rewriting population dynamic equations in terms of the proportion of microbial abundance in a
given group uncovers relationships governing the evolutionary dynamics of the system explicitly in
terms of the fitness of each group relative to the mean fitness of the entire population. Specifically,
the dynamics of the mean fitness of the entire population are driven by three processes: natural
selection, mutation, and changes in the environment. At equilibrium, these three forces balance.
Given perturbations, different forces dominate depending on the nature of the perturbation. These
forces are intertwined in that modulating one (e.g., introduction of novel species or changes in
resource supply levels) lead to dynamics changes in the other forces.

We also provide an alternative form of the general model that reflects multi-level selection.
We show that the strength of these three evolutionary forces may vary between subgroups (strains,
species, etc). This approach helps to understand the impact of variable environmental conditions on
community dynamics and compositions via feedback between ecological and evolutionary dynamics.

Our work is based on an extension of Tilman’s classic resource competition model [50]. It incor-
porates metabolic byproducts and numerous types of interactions (e.g., competition, mutualism,
commensalism, amensalism). In our model, microbial interactions are indirect and mediated by
molecules in the environment (e.g., nutrients, toxins), rather than direct and constant as assumed
in generalized Lotka-Volterra and multivariate autoregressive models. These molecules include re-
sources that are externally supplied as well as metabolic byproducts, and could easily be extended
to include other molecules such as nutrients and toxins.

Different environmental conditions and resource levels will allow the growth of some microbes
but not others, leading to the selection of certain microbial traits for survival. In population ge-
netics, Price’s equation decouples the evolutionary change in frequency of a trait into two sources.
First, the covariance between fitness and trait represents selection on the trait. Second, an in-
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Figure 6: Numerical simulation of the community in Example 3. The evolutionary forces on mean
fitness can be decomposed at both the species level ((a)) and strain level ((b)-(d)). In (a) we plot
the change in mean microbial population fitness, % (red dotted lines), and distinguish the effects
of natural selection, A, (black solid line), and changes in the environment, A.. (blue dotted-dash
line). In (b)-(d), we plot the changes in mean fitness of each group of microbes, CZZ;' (red dotted
lines), and distinguish the effects of natural selection, A,; (black solid lines), changes in the
environment, A..; (blue dotted-dash line), and resource switching, A,,; (green dash lines). Note
that because the environment includes both biotic and abiotic forces, the effect of environmental
change on the average fitness of the population can be further decomposed into strain level effects.
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tragroup expectation term represents trait evolution due to other factors besides selection (e.g.,
mutation) [38]. Here, we derive an equation that tracks the rate of change of the average value
of any quantitative trait of interest, leading to a continuous-time version of Price’s equation (Eq.
(4)). Because this form of Price’s equation is written in terms of mechanistic model parameters, it
gives insight into which factors drive trait dynamics. For example, one would think intuitively that
the group of microbes with the lowest mortality rate should be the winner in a competition. But
recall in Example 1, the group of microbes with higher mortality rate (S3) won the competition
(Figures 1b and 2b), because the Malthusian fitness also depends on per capita reproduction rate
and resource availability.

In our simulations, we focus on a few canonical interaction types commonly encountered in
microbial communities. We begin with the classical case where microbes compete for nutrients
with no metabolic byproducts. We were able to verify the competitive exclusion principle (n groups
cannot coexist on fewer than n resources at stationary state) [2, 31] when mutation is absent. With
mutation, groups that would otherwise go extinct can maintain low abundance (Example 1).

Studies have shown that perturbations of microbiomes can disrupt the balance of microbial
communities and the symbiotic relationship between the host and associated microbes. Function-
ally, these perturbations can result in diseases such as inflammatory bowel disease [47], obesity [37],
and colon cancer [41]. An understanding of transient dynamics is required to predict transitions
from healthy states to states associated with dysbioses. Our model captures the transient dynam-
ics when the system is not at equilibrium, e.g., the temporal bloom of certain groups of microbes
that eventually are out-competed by other groups (Example B1). Given sufficient information on
parameter values, our model can be used to make predictions about these transient dynamics.

Incorporating metabolic byproducts into the model allows us to explore a broader range of
community dynamics for small communities with basic interaction types. We show that more than
one group of microbes can be supported by one externally supplied resource through interactions
such as cross-feeding, and that environmental conditions can influence species dynamics and long-
term equilibrium composition. If resources are supplied at sufficiently low constant rates, the
community may collapse; as resource supply rates increase to a sufficiently high level, the community
will reach an equilibrium state and stabilize. The time needed to reach equilibrium decreases as the
resource supply rates increase and with overall higher microbial abundances. Butler and O’Dwyer
also identified the role of external supply rate on community stability in their model of competition
through exchange of resource [8]. On the other hand, time-varying resource supply rates lead to
fluctuations in microbial community dynamics, as shown in Section 3.2-3.3. This framework allows
us to explore how changes in the environment affect community dynamics, microbial interactions,
and even coexistence, as normally microbes do not grow in a resource replete environment and
therefore resources are not supplied at constant rates as in a chemostat.

We demonstrated that some traits may drive evolution directly, such as the net reproductive
rate 7 = ear and mortality rate u. We can also track the dynamics of the mean value of traits that
do not directly drive selection and predict the rate of evolution. For example, different groups of
microbes may have different antibiotic tolerance levels, which is not the direct force driving selection
in an antibiotic-free environment. Yet we can still track the mean value of antibiotic tolerance of the
microbiome over time which could be useful to predict how this particular microbiome will with-
stand the introduction of antibiotics. Price’s equation provides an informative perspective on the
relationship between trait dynamics and community dynamics, it also allows us to explore whether
interventions such as modifying the microbial composition can promote health. A quantitative
measure of traits associated with each microbial strain and knowledge of their population dynam-
ics will allow us to predict the speed of evolution, and thus shed light on the link between microbial
community composition and community function. There is an increasing interest in applications
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of trait-based approaches in microbial studies [30, 35], and a growing set of tools to evaluate and
study microbial traits such as the Biolog Plates Technique [20, 46] and functional profiling with
metagenomics and -omics data [17]. These tools offer great potential to identify microbial traits
that are important to ecosystem functions and measure these functional traits.

Our work relies on several assumptions. One assumption is that the systems are well-mixed.
That is, individual microbes have equal access to nutrients and toxins and interact with equal prob-
ability with all other microbes. We further assume that microbes in the same group have the same
functional response and values of parameters such as reproduction rate, mortality rate, metabolic-
byproduct excretion rate, and trait values. A natural extension of this framework would be to
account for spatial and/or temporal heterogeneity. In our simulation studies, another assumption
is that the growth rate function takes the form of a linear functional response. Toxins are assumed
to increase mortality rather than decrease growth rate. Our model can be extended to include
more realistic and complex functional responses, such as allowing for the saturation of resource
utilization and different types of inhibition, incorporating more realistic metabolic networks such
as co-limitation by multiple resources [27, 43].

While this model provides a robust conceptual framework, it will be challenging to connect it
to data for particular systems as many parameters may be unknown. For example, the ability to
metabolize complex compounds and the metabolic byproducts that each strain produces in a gut
microbiome will typically be unknown. Additionally, not all bacteria can be grown in the laboratory
with current techniques, and these unculturable bacteria may play critical role in maintaining the
balance of ecosystems and health of their hosts. Yet the modeling framework presented in this paper
highlights the key parameters that should be measured to assess potential intervention strategies.
As more types of data become commonly collected in conjunction with microbial abundance data,
trait databases could be constructed. Such tools could then lead to a more comprehensive un-
derstanding of the interactions governing the dynamics of microbial species and their surrounding
environment, which is the key to building predictive models linking microbial community com-
position to functional response. Our framework can be adapted to microbial communities where
manipulation to provide specific ecosystem services is desired, thereby facilitating the development
of effective and precise microbiome-based interventions to promote health or other beneficial states.
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A Alternative Form and Multi-level Selection

Let S; denote the abundance of group ¢ and S;;, denote the abundance of subgroup ik, with S; =
251:1 Sik- Model (1) can be rewritten as

L.
ds; z
dtk = fit(R1, ..., RN)Sit — pirSik — w | Sir — Z viSi | s
=114k
L M
ds; :
7 (fir(Ra, ooy RN) = prig) Sir —w | Si— Y Al/liSl : (10)
=1 I=1,1i
dR; L
= = = p;i(t, Rj) Zz,fzk (R1, ..., RN)ciji(R1, ..., Rn)Sik — 9;(Ry)

=1 k=1
+hi(S11s e, S1Lys ooy SM1s oo, SMLy R1, -y RN,

fori=1,...M,5=1,...,.N, k=1,..., L;, where L; denotes the total number in subgroups of group
i, w denotes the mutation rate of each subgroup, v;;. denotes the probability that S; mutate into
Sik, w denotes the mutation rate of each group, v;; denotes the probability that S; mutate into .S;.
Define S = Zf\il S; as the total population, p;r = Six/S; as the frequency of subgroup ik within
group i, ¢; = S;/S as the frequency of group i, we obtain

L
dpik _ :
d; = pit(Mik — M) —w | ik — Z VPl | »
I=1,l#k
dg; M
ditl =qi(i — 1) —w | ¢ — Z ‘VleI )
I=1,l#i

where

Nik = fir(R1, s BN) — pik
is the Malthusian fitness of S, 7; = 251:1 piTik 1s the average Malthusian fitness of .5;, and
n= Zf\il @;7; is the average Malthusian fitness of S. The temporal dynamics of 7 are now

M
sz dm A
. 7 <
B =1 z:l M
dn _~—"—
% = Ans + Am + Ace = Ans + Am + Z Qi(Ans7i + Am,i + Ace,i ) .
i—1 —— Ny
L; L;
dpik, S n dnig
dt Nik Dik dt

k=1 k=1

B Competition without metabolic byproducts

Example B1

In this example, two groups of microbes compete for a single resource, no mutation is allowed,
that is, N = 2 and w = 0 in (6), other parameter values and initial condition are listed in Table 4. At
equilibrium, S7 has the lowest value of R*, the numerical simulation confirms that S; outcompete
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Table 4: Parameter values and initial condition used in Figure 7.

Parameter Value | Parameter Value | Parameter Value | Parameter Value
p 3 1 0.59 12 0.8 R(0) 1.6
€1, €2 0.6 (05} 0.6 a9 0.78 51(0),52(0) 0.5

So in the end, as shown in Figures 7a. But the values of R* does not provide information on
the short term evolutionary dynamics of the competing groups of microbes before reaching the
equilibrium.

Recall equation (7), natural selection favors in net reproductive rate favors Ss (€11 > €eaa),
and in mortality rate favors S; (u1 < pe). But high reproductive rate may be associated with
high mortality rate, thus overall fitness may be low, as S in this example. Direct selection pulls
net reproductive rate upwards with strength proportional to the resource abundance, R, while
indirect selection drives net reproductive rate downwards with strength -1; for mortality rate,
direct selection drives it downwards with strength -1, while indirect selection pulls it upwards with
strength proportional to the resource abundance. Initially resource is abundant, there is little
competition and both groups of microbes are able to grow at their maximal rate, the frequency of
the group with the lowest fitness (S7) decreases, as indicated by the negative selection coefficient
A1 in equation (2). As the abundance of total population increases, the resource becomes scarce
and microbes need to compete for resource. Initially, So reaches the highest frequency despite the
fact that it has higher value of R* than S7, because the resource abundance is relatively high, and
the selection towards high e« is stronger than the selection towards low p, in other words, S5 has
a higher fitness than S;. But later on, the resource abundance decreases to be lower than R* for
So, and the selection begins to favor S as it has higher fitness than S5 in this case, as shown in
Figure 7a.

In short, the approach we introduced in Section 2 captures the transient dynamics which would
be missed by the traditional equilibrium and near-equilibrium analysis, i.e., the temporal bloom
of So which outcompete by S; eventually in this case. This approach provides an explanation for
the transient competitive advantage of certain group(s) of microbes, and allows us to predict the
speed of evolution via equations (2)-(4), which can be valuable when making predictions about
experimental manipulation of microbial communities with regard to health interventions.

C Basic interaction types with metabolic byproducts

We now proceed to the extended case which include production of metabolic byproducts. As
mentioned earlier, higher-order interactions also have impact on the functioning of microbial com-
munities. Microbes can interfere or damage other microbes through production of toxic metabolites
[21, 28, 40]. Some microbes may benefit from the metabolites secreted by other microbes [42]. For
simplicity, we set mutation rate to be zero. Here we illustrate four basic types of interaction
with metabolic byproducts, namely competition, mutualism, commensalism, and amensalism, as
illustrated in Figure 8.

C.1 Competition with inhibition

In this example, 2 groups of microbes {S;}7_; compete for 1 externally supplied resource, S; release
toxic metabolic byproduct R; which have negative impacts on S3. R; can be a toxin that inhibit
the growth of Sy, or kill S5. For simplicity, we assume that the presence of R; will increase the
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Figure 7: Classical resource competition. Numerical simulation of Example B1 shows the outcome
of two groups of microbes compete for one resource, no mutation is allowed. (a) Abundance of
resources and total microbial population (left axis) and frequencies of each group of microbes
(right axis) over time. (b) Change in mean fitness 77 and effects of different drivers over time.

(a) Competition
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Figure 8: Illustration of the topological structure of the microbial communities discussed in Ap-
pendix C. Squared nodes denote externally supplied resources, circled nodes denote microbes,
diamond nodes denote metabolic byproducts. Interactions are directed, positive interaction with
an arrow head and negative interaction with a bar head.
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Table 5: Key parameter values and initial condition for the model (11) to produce solutions in
Figure 9.

Parameter Value | Parameter Value | Parameter Value | Parameter Value
M1, 12 0.08 €1, €2 0.5 10 0.35 a0 0.4
c 0.02 do1 0.04 Ry(0) 0.5 R1(0) 0
S1(0) 0.03 S2(0) 0.02

mortality rate of Se by ds1, as shown in Figure 8a. The model is as follows,

2
dR
TtO =p— RO;QZSZJ
dR;
o = c1151 Ro, (11)
ds
d—tl = e1pa10R0S1 — M1S17
dS
d—; = €900 RS2 — M252 — d2152Ry.

Key parameter values of the microbial groups are listed in Table 5. In the absence of the metabolic
byproduct Rp, So will outcompete S; as it has lower value of R*. When the influx rate of Ry is
low, p = 0.01, the abundance of the metabolic byproduct R; is very low, its negative effect on the
growth of S5 is relatively low, So still has higher fitness than S; and thus outcompete S1, as shown
in Figure 9a. When we increase the influx rate of Ry to p = 0.1, initially Ry is abundant and both
groups of microbes can grow at their maximum rate, the frequency of S increases as it has higher
fitness. As the abundance of S increases, it produces more Ry, and the strength of its negative
impact on Ss increases which lead to a decrease in the fitness of S3. Once the accumulation of R
reaches certain point such that the fitness of S5 is lower than that of Sy, the frequency of Sy begins
to increase and eventually outcompete S, as shown in Figure 9b.

Note that if the growth rate function takes the form of the Holling Type II response, we can
further consider the metabolic byproduct R; as different types of inhibitors. If R; is a competitive
inhibitor to S, then the growth rate of S in the presence of Ry and R; is

a21,maz 0
as(Ro, R1) = : ,
2< 0 1) Ro+k21(1+%)

where k; is the inhibitory constant; if Ry is a non-competitive inhibitor to Ss, then

afl,'rgi,z RO
(Ro, Ry) = — "
a — Rk
2 0, £11 RO + ]{321 )
and if R; is uncompetitive inhibitor to Ss, then
a21,mazx
L5 Ho

as(Ro, R1)

B Ro-l—kzl(l-i-%).

C.2 Mutualism

This example consists 2 groups of microbes S and S5, each consumes one externally supplied
resource R and Ra, respectively. Each group of microbe releases one metabolic byproduct that
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Figure 9: Numerical simulation of the competitive community, model (11). The values of the initial
condition and all parameters except p are the same in both cases, as listed in Table 5. From (a)
to (b), the resource supply rate, p, is increased by a factor of 10. Note that in the left two panels,
solid lines denote resource, dotted lines denote metabolic byproduct, and dotted-dash lines denote

microbial groups.
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Table 6: Parameter values and initial condition for the model (12) to produce solutions in Figure

10.
Parameter Value | Parameter Value | Parameter Value | Parameter  Value
M1, U2 0.08 a1 0.5 23 0.6 R()(O),Rl(()) 0.1
C13 0.04 a9 0.2 €11, €22 0.5 R3(0),R4(0) 0
C24 0.02 14 0.4 €14, €23 0.7 51(0),52(0) 0.5

will be utilized by the other microbe, as shown in Figure 8b. Assume that the effects from different
resource on a focal microbe group are additive, we can derive the dynamic model of this community
as

dR;

o M Rio1151,
dRy

T2 s~ RaansS
dt P2 2042202,
dR3

o c1351R1 — 2352 3,
(12)

dR

7; = 2452 Ry — 011451 Ry,

ds

T; = ellallR]_S]_ — ,LL]_S]_ + 61405]_45'1‘R47
dS

ditQ = €22022 952 — p2Sy + €23002352 3.

Here S1 and S5 will coexist because they don’t compete for resources. When the resource influx rates
are low, p; = ps = 0.005, resources are scarce, the abundances of both groups of microbes decreases
initially and then fluctuate, because they can utilize the limited amount of metabolic byproducts
produced by the other group of microbes in addition to the externally supplied resources. But the
overall abundance is low, as shown in Figure 10a. Note that even though change in the environment
is the main driver of the change in mean fitness, with some small time ranges natural selection
might be the dominant force. When we increase the resource influx rates to p; = p2 = 0.05,
initially the abundances of both groups of microbes decrease, as the resources are not abundant.
But as resources are not as scarce as the first case, both groups of microbes are able to maintain
relative higher abundance and produce more byproducts that can be utilized by the other group,
the system reaches equilibrium state much quicker, as shown in Figure 10b.

C.3 Commensalism

The fourth example consists 2 groups of microbes S1 and So, and one externally supplied resource Ry
which can be utilized by 57 and has negative impact on Sy, respectively, and S releases metabolic
byproduct R; which can be utilized by S5, as shown in Figure 8c. Assume that the presence of Ry
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Figure 10: Numerical simulation of the mutualistic community, model (12). Key parameter values
and initial conditions are listed in Table 6. From (a) to (b), the resource supply rates, p1, p2, are
increased by a factor of 10. Note that in the left two panels, solid lines denote resource, dotted
lines denote metabolic byproduct, and dotted-dash lines denote microbial groups.
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Table 7: Parameter values and initial condition for the model (13) to produce solutions in Figure
11.

Parameter Value | Parameter Value | Parameter Value | Parameter Value | Parameter Value
M1, U2 0.08 10 0.5 a1 0.4 d20 0.01 C11 0.04
€10 0.5 €91 0.7 Ry(0) 0.04 R1(0) 0 S1(0), S2(0) 0.5

leads to increased mortality of So at the rate dog, we have

% = po — Roa10S;,

% = c1151Ro — R1a215,

45, (13)
e e10a10R051 — p151,

% = €g1021 152 — 11252 — dao S2 Ro.

When R; is absent or rare, Sy will go extinct. In Figure 1la, the influx rate of Ry is low,
po = 0.01, and Ry is scarce initially (Ro(0) = 0.04), abundances of both S; and S decreases
initially. During this phase, the amount of R; produced by S; is very low that it could not offset
the negative impact of Rg on So, so the abundance of S5 decreases quickly to zero. S; dominates
but with a low abundance, as shown in Figue 1la. When we increase the influx rate of Ry to
po = 0.1, the external supplied resource Ry quickly build up, S7 can grow at its maximal rate
shortly after the initial decrease phase, and produce enough R; to support Se. In this case, 51
still dominate the population but both groups of microbes coexist and with higher abundances, as
shown in Figure 11b.

C.4 Amensalism

This example consists 2 groups of microbes S and S5, each consumes one externally supplied
resource R; and Ry, respectively. S releases one metabolic byproduct Rs which have a negative
impact on Ss, as shown in Figure 8d.

% = p1 — R10115;,

% = p2 — Raa225,

% = 1351 1, (14)
% = entar1 ST — 1St

% = €99029 R2S9 — p2Ss — da3 R3Ss.

In the first case, p1 = p2 = 0.005, both resources are scarce. S7 maintain at a relatively low
abundance, the amount of S3 accumulates in the environment is relatively low during the timespan
in the simulation, and its negative impact on Sy is very small, both groups of microbes maintain
at relatively low abundance, as shown in Figure 12a. When we increase the flux rate of R; to
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model (13). Key parameter

values and initial conditions are listed in Table 7. From (a) to (b), the resource supply rate, po,
is increased by a factor of 10. Note that in the left two panels, solid lines denote resource, dotted
lines denote metabolic byproduct, and dotted-dash lines denote microbial groups.

Table 8: Parameter values and initial condition for the model (14) to produce solutions in Figure

12.
Parameter Value | Parameter Value | Parameter Value | Parameter Value | Parameter Value
1251 0.08 125) 0.08 a11 0.4 29 0.6 P2 0.005

€11 0.5 €99 0.5 do3 0.01 c13 0.02
R(0) 0.5 R1(0) 0.2 R3(0) 0 S1(0) 0.03 S2(0) 0.02
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Figure 12: Numerical simulation of the amensalism community, model (14). Key parameter values
and initial conditions are listed in Table 8. From (a) to (b), the resource supply rate, p1, is increased
by a factor of 10. Note that in the left two panels, solid lines denote resource, dotted lines denote
metabolic byproduct, and dotted-dash lines denote microbial groups.
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p1 = 0.05, S7 is able to maintain a higher abundance and produce more Rs, which drives the
abundance of S2 to decrease quickly, as shown in Figure 12b.

The communities in the examples shown in this paper are simple, as each one shows a different
type of interaction. The method we presented can be used to explore the evolutionary and ecological
dynamics of complex communities that incorporate multiple types of interactions.

D Resource switching

Abundances and proportions of the community in Example 2.
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Figure 13: Numerical simulation of the community in Example 2. (a) Abundances of resources
and microbes in different groups. (b) Proportions of microbes in different groups (solid lines) and
subgroups that consume resource R; (dotted-dash lines), the color of the lines identifies the group

of microbes as in (a).
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