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Abstract

Understanding the evolutionary dynamics of microbial communities is a key step towards
the goal of predicting and manipulating microbiomes to promote beneficial states. While inter-
actions within microbiomes and between microbes and their environment collectively determine
the community composition and population dynamics, we are often concerned with traits or
functions of a microbiome that link more directly to host health. To study how traits of a
microbiome are impacted by eco-evolutionary dynamics, we recast a classic resource-mediated
population dynamic model into a population genetic framework which incorporates traits. The
relative fitness of each group of microbes can be explicitly written in terms of population dy-
namic parameters, and corresponding evolutionary dynamics emerge. Using several example
systems, we demonstrate how natural selection, mutation, and shifts in the environment work
together to produce changes in traits over time.
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1 Introduction

Understanding the temporal dynamics of microbial communities is a key step towards the goal of
predicting and manipulating microbiomes to promote beneficial states. It is critical to understand
the evolution of microbial communities in response to perturbations such as from anitibiotics, diet
shifts, and environmental changes. Such perturbations can have temporary and reversible effects
or can permanently alter the microbiome. For example, the human gut microbiome can experience
temporary reversible changes in species abundances without large gain or loss of bacterial species
when a person travels between developed and developing countries, whereas enteric infection can
lead to permanent decline and replacement of species [9]. On longer time scales, microbiomes may
coevolve with their hosts [44].

While understanding how communities respond to perturbations is important for predicting
dynamics, traits or functions of a microbiome often link more directly to health than community
composition per se. Examples of such traits or functions include the protective effect against food
allergies [6, 15], and the capacity to chemically modify ingested drugs [53]. The ability to model
how key traits change with community composition is critical for engineering effective microbial
communities that promote health or other beneficial states.

Evolution can affect microbial communities in several ways. Natural selection will drive adap-
tation to both the abiotic and biotic environment (which includes both the host and community
structure). Changes in traits via natural selection have been extensively modeled, primarily via
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Price’s equation or its derivatives. The Price equation expresses the change in a trait as the co-
variance of the trait and fitness [38]. While natural selection erodes genetic variation around an
optimum, mutation acts within the community to provide novel variants. This tension between
selection and mutation should lead to mutation-selection balance in a community. Finally, evo-
lutionary theory has shown the importance of genotype-by-environment (G × E) interactions in
shaping traits [33, 13]. In the context of microbiomes, the community structure is a major contrib-
utor to the environment and can drive G×E effects. Changes in the abundances of species affects
who interacts with whom and how much they interact, thus impacting coevolutionary dynamics
via changing interaction strengths.

Resource competition models pioneered by MacArthur and Tilman have successfully been used
to study macroecological communities [34, 50]. Indeed, many researchers are currently working to
adapt these models for microbial systems. For example, Butler and O’Dwyer presented a consumer-
producer-resource model for competitive interactions, and analyzed the local stability of equilibria
of certain systems [7, 8]. Maslov et al. studied the assembly rules of microbial communities using
conceptual models employing game theory methods [23, 24]. Their studies show that both the
complexity and stability of microbial communities may arise from the mechanisms by which bacteria
utilize resources.

In addition to competition and mutualistic cross-feeding, other types of interactions such as
amensalism, commensalism, predation, and parasitism are important in microbiomes [1, 14, 36].
It has been repeatedly demonstrated that such interactions are context dependent and vary with
the specific environment [4, 5, 11, 25, 32, 48]. This implies that the nature of interactions may
vary over time and space. Thus, flexible modeling frameworks—such as Tilman’s [50]—which can
encompass numerous types of interactions are ideal.

While modeling studies have undoubtedly advanced our understanding of microbial community
dynamics, trait dynamics have been largely unexplored. In this paper, we recast a classic resource-
mediated dynamic model into an evolutionary framework that relies on the Price equation [38]. This
framework of connecting population dynamic models to evolution has been successfully applied in
epidemiology to study, for example, the evolution of virulence [10, 18, 19]. We group microbes
by their functional characteristics, and use the Malthusian fitness of each strain to model the
eco-evolutionary dynamics within the community. Transforming the system in this way reveals
how model parameters affect the three evolutionary forces driving dynamics: natural selection,
mutation, and changes in the environment. Incorporating traits into this framework yields a form
of the Price equation that tracks the dynamics of the mean value of any trait of interest. We begin
by introducing a general resource-mediated model in Section 2. Section 3 illustrates the population-
genetic and trait-based approach. This modeling framework allows us to make predictions about
trait evolution, and to model the non-equilibrium ecological dynamics.

2 Mathematical Model

We extend Tilman’s model of resource competition [50] to incorporate other types of interaction
and the production of metabolic byproducts which may also mediate population dynamics.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422935doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422935
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.1 General model

For a community of M groups of microbes with abundances {Si}Mi=1 and N resources with abun-
dances {Rj}Nj=1, the general model is given by

dSi
dt

= fi(R1, ..., RN )Si − µiSi − ω

Si − M∑
k=1,k 6=i

νkiSk

 ,

dRj
dt

= ρj(t, Rj)−
M∑
i=1

fi(R1, ..., RN )cij(R1, ..., RN )Si − gj(Rj)

+hj(S1, ..., SM , R1, ..., RN ),

(1)

for i = 1, ...,M and j = 1, ..., N (see Table 1 for main notations). Note that the identity of each
group of microbes in this model is determined by its dependence of per capita reproductive rate
on available resources fi(R1, ..., RN ) and mortality rate µi. Our model defines {1, 2, ...,M} as a
set of biological ‘groups’; groups could, for example, be a set of strains of one species, a set of
different species, or a set of m species (m < M) with some species having more than one strain.
We can impose conditions such that inter-species mutations are not allowed. Assume M groups of
microbes consist of L species (L < M), let Ui be the collection of groups/strains of species i, and
G = {1, 2, ...,M} = ∪Ll=1Ul with Ui ∩ Uj = ∅ for i 6= j. If microbes in group i are of one strain of
species I, i ∈ UI , then νki = 0 for k ∈ G \ UI and

∑
i6=k νki = 1.

Let S =
∑M

i=1 Si denote the total abundance of the microbial population. The change in the
proportion of group i, qi = Si

S , can be tracked with

dqi
dt

= qi(ηi − η̄)− ω

qi − M∑
k=1,k 6=i

νkiqk

 = qi(1− qi)λi − ω

qi − M∑
k=1,k 6=i

νkiqk

 , (2)

where
ηi = fi(R1, ..., RN )− µi

is the instantaneous per capita rate of change of the abundance of group i in the absence of mutation
(Malthusian fitness of Si), η̄ =

∑M
i=1 qiηi is the average Malthusian fitness of S, η̃ =

∑N
l=1,l 6=i

ηlql
1−qi

is the average Malthusian fitness of S − Si, and λi = ηi − η̃ is the selection coefficient of group i.
Neglecting mutations, from equation (2) we can see that when there is at least one group present
along with group i, the frequency of group i will increase (or decrease) when the fitness of group i
is higher (or lower) than the average fitness of all other groups.

With equation (2), we can derive the following equation for the temporal dynamics of η̄:

dη̄

dt
=

M∑
i=1

dqi
dt
ηi +

M∑
i=1

qi
dηi
dt

= (∆ns + ∆m) + ∆ce, (3)

where

∆ns =

M∑
i=1

qi(ηi − η̄)ηi = Var(η)

denotes the effect of natural selection on the change in η̄. The term ∆ns is equal to the variance in
η across all groups and is always non-negative. The term

∆m = −ω

η̄ − M∑
i=1

M∑
k=1,k 6=i

νkiqkηi


3
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denotes the effect of mutation on the change in η̄. It is negative if the average fitness of the mutants∑M
i=1

∑M
k=1,k 6=i νkiqkηi is lower than the average fitness of the total population η̄. The term

∆ce =
M∑
i=1

qi

(
N∑
l=1

∂fi
∂Rl

dRl
dt

)

denotes the effect of the change in the environment on the change in η̄. Note that the environment
includes all the forces (abiotic and biotic factors) other than the force of natural selection at the
specific level. Natural selection tends to increase the mean fitness η̃, but mutation and change
in the environment may have negative impact on the mean fitness. These effects will balance at
equilibrium.

2.2 Trait Dynamics

In addition to the dynamics of the frequencies of different groups of microbes and the dynamics
of mean fitness of the population, we are also interested in the dynamics of microbial phenotypic
characteristics that may impact the ability of microbes to survive in a specific environment. These
characteristics can be morphological, physiological, or behavioral traits such as shape or color of
bacterial colonies, maximal growth rate, the ability to metabolize carbon compounds, or the ability
to survive at different pH level. Let θ denote a quantitative trait of interest. Each group within
the microbiome has a specific value of the focal trait at time t, θi(t), and the mean trait value
across the microbiome, θ̄(t) =

∑N
i=1 qi(t)θi(t), which is affected by the population dynamics of the

microbiome. We can track the dynamics of the mean trait value θ̄ with

dθ̄

dt
= Cov(θ, η) + ω(θ̄m − θ̄) +

dθ

dt
, (4)

where

θ̄m =

N∑
i=1

 N∑
j 6=i,j=1

νjiqj

 θi

is the average value of trait θ among all new mutants, and

dθ

dt
=

N∑
i=1

qi
dθi
dt
.

Equation (4) is a continuous-time derivation of Price’s equation [38] which is simple but informative.
It tells us that the change in the average value of trait θ is driven by three processes given by the
three terms in Eq. (4). First, natural selection on θ is given by the covariance between the trait
and fitness across all groups. The second term is change due to mutation which scales with the
mutation rate and is positive if the average trait value among mutants is larger than the average
trait value of the total population at a given time. The third term represents other factors that
affect the trait value of each strain (e.g., drift, environmental effects).

2.3 Alternative Form and Multi-level Selection

In microbiome studies, it is common to group organisms at different taxonomic levels. Often
operational taxonomic unit (OTU)-based classification is at family, genus, or species levels. It has
been observed in microbiology that strains of a single species vary in their functional capacity, such
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as drug resistance, virulence, or ability to uptake different compounds from environment [26, 40].
These differences among strains may also impact the health of hosts [12]. Motivated by this, we can
rewrite the model in Section 2.1 for the case that individuals in group i can be further divided into
subgroups ik, such that k = 1, ..., Li. Here, the group and related subgroup could be, for example,
genus and species or species and strain.

Let Si denote the abundance of group i and Sik denote the abundance of subgroup ik, with
Si =

∑Li
k=1 Sik, i = 1, ...,M , j = 1, ..., N , k = 1, ..., Li, where Li denotes the total number in

subgroups of group i. Define pik = Sik/Si as the frequency of subgroup ik within group i, and
qi = Si/S as the frequency of group i. Denote ηik, η̄i, and η̃ as the Malthusian fitness of Sik, Si,
and S, respectively. The temporal dynamics of η̃ can be written as

dη̃

dt
=

M∑
i=1

dqi
dt
η̄i︷ ︸︸ ︷

∆ns + ∆m +

M∑
i=1

qi
dη̄i
dt︷︸︸︷

∆ce = ∆ns + ∆m +

∆ce︷ ︸︸ ︷
M∑
i=1

qi(∆ns,i + ∆m,i︸ ︷︷ ︸
Li∑
k=1

dpik
dt

ηik

+ ∆ce,i︸︷︷︸
Li∑
k=1

pik
dηik
dt

) (5)

(derivation in Appendix A). Similar to equation (3), the change in η̃ is driven by three processes:
natural selection between groups (∆ns), mutation (∆m), and change in the environment (∆ce). The
effect of change in the environment can be further decomposed into the same three processes:

∆ce =

Li∑
i=1

qi(∆ns,i + ∆m,i + ∆ce,i),

where ∆ns,i is natural selection between subgroups, ∆m,i is mutation, and ∆ce,i) is the change in
the environment, for each group i.

In this case, the dynamics of η̃ are driven by selection at two levels: selection between groups
(∆ns, ∆m, ∆ce) and selection between subgroups (∆ns,i, ∆m,i, ∆ce,i). Equation (5) can be ex-
panded recursively to represent the change in the mean fitness at different levels of nested groups,
which provides a hierarchical decomposition of selection within and between groups.

3 Simulation Studies

Some in vitro studies suggest that negative interactions dominate synthetic aquatic microcosms
[16] and human microbiota [51]. These negative interactions can be the result of competition
for resources (e.g., nutrients, space) or damage caused by toxins [21, 28, 40]. Some studies suggest
that cooperation and higher-order interactions also impact the functioning of microbial communities
[3, 39].

In this section, we apply the approach developed in Section 2 to several models to illustrate the
advantages of this approach. We present simple communities in which microbes compete for abiotic
resources without the production of metabolic byproducts. Cases with metabolic byproducts are
found in Appendix C. These simple communities highlight how interactions affect selective pressures
over time.
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3.1 Competition for a single resource

Microbes can compete for resources such as nutrients, light, or space. These competitive interactions
can occur between a broad genetic range of microbes, from similar strains to members of different
phyla [40]. As a simple example, consider a community of N groups of microbes with abundances
{Si}Ni=1 competing for one externally supplied resource R:

dR

dt
= ρ− σR−R

N∑
l=1

αlSl,

dSi
dt

= εiαiRSi − µiSi − ω

Si − N∑
j=1,j 6=i

νjiSj

 ,

(6)

for i = 1, . . . , N . Here, we assume a linear functional response for growth rate and σ = 0. In this
case, ηi = εiαiR− µi, and ∆ce =

∑N
i=1 qiεiαi

dR
dt .

Note that in our model, the fitness of microbes in a given group depends on the net per capita
reproductive rate γi = εiαi, mortality rate µi, and resource level R, with the parameters γi and
µi driving the evolutionary dynamics of the community. Reproductive and mortality rates of a
given group can be thought of as traits. Utilizing equation (4), we can track the dynamics of
γ̄ =

∑N
i=1 qiγi and µ̄ =

∑N
i=1 qiµi with

dγ̄

dt
dµ̄

dt

 =

(
Var(γ) Cov(γ, µ)

Cov(µ, γ) Var(µ)

)(
R
−1

)
+ ω

(
γ̄m − γ̄
µ̄m − µ̄

)
, (7)

where γm =
∑N

i=1

∑N
j=1,j 6=i qjνjiγi and µ̄m =

∑N
i=1

∑N
j=1,j 6=i qjνjiµi are the average net per capita

reproductive rate and mortality rate among all the mutants, respectively, and (R,−1)T is the
selection gradient. This equation is analogous to quantitative genetics models [29]. It shows that
natural selection favors increased net per capita reproductive rates and the strength of selection is
proportional to the resource abundance, R. It also shows that reduced mortality rate is favored
with a selection strength of -1. The evolution of each trait is constrained by the genetic variance
in the focal trait (direct selection), possible covariance between the focal trait and other traits
(indirect selection), and mutation. It is important to note that the direction of natural selection
changes with changes in the selection gradient (R,−1)T (i.e., R changes in magnitude over time).
Thus, the dynamics of resource and microbial population abundances are driven by both ecological
and evolutionary processes.

When mutation is absent, at equilibrium, model (6) gives R∗i = µi
εiαi

with one value of R∗i for each
group i. Theory predicts that the group with the lowest value of R∗i will competitively displace all
other groups at equilibrium. Two or more groups coexist at equilibrium only if they have identical
value of R∗i [49, 50]. More generally, n groups cannot coexist on fewer than n resources—the
‘competitive exclusion principle’ [2].

Traditional equilibrium and near-equilibrium analyses focus on predicting properties of equi-
libria. The approach we introduced in Section 2 allows us to predict the transient evolutionary
dynamics, which complements the insights gained from equilibrium and near-equilibrium analyses.

Example 1
The first example is a community of three groups of microbes competing for one single resource;

key parameter values and initial conditions are listed in Table 2. When mutation is absent, S3

outcompetes S1 and S2 because it has the highest fitness and consequently the lowest value of
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Table 2: Parameter values and initial conditions used in Figure 1.

Parameter Value Parameter Value Parameter Value Parameter Value

ρ 3.6 µ1 0.7 µ2 0.7 µ3 0.8
{εi}3i=1 0.6 α1 0.6 α2 0.4 α3 0.8
ν12 0.5 ν13 0.5 ν21 0.7 ν23 0.3
ν31 0.4 ν32 0.6 R(0) 2 {Si(0)}3i=1 1

R∗. When mutation is present (∆m ≈ 0), all three groups of microbes co-exist with S1 and
S2 maintaining low abundances. Different evolutionary forces dominate at different stages, and
at steady state these forces balance. In particular, when mutation is present, mutation-selection
balance is reached and selection is nonzero at equilibrium.

We also track the dynamics of three different traits: net per capita reproduction rate γ = εα,
mortality rate µ, and a trait θ that is not directly associated with the fitness of each strain (θ1 = 0.9,
θ2 = 0.3, and θ3 = 0.3) (Figure 2). Eq. (4) shows that the dynamics of a trait depend critically
on the covariance of the trait and fitness across all groups. At equilibrium, mutation and natural
selection will balance. The trait θ is not directly associated with the fitness of microbes. For these
parameter values, the group with smallest value of θ has the highest fitness so that Cov(θ, η) < 0.
Natural selection favors S3 which has lowest value of θi, leading to a decrease in θ̄. In this case,
the average trait value among all new mutants (θ̄m) is higher than the average trait value of the
entire population (θ̄), leading to an increase in θ̄. Natural selection is the dominant evolutionary
force acting on θ.

As for the other two traits that are directly associated with microbial fitness, large values of γ
and small values of µ lead to high fitness. For both of these two traits, effects of natural selection
are positive and effects of mutation are negative, with natural selection being the dominant force
driving trait evolution initially, while mutation is dominant later.

3.2 Resource competition with variable resource supply rate

Normally microbes do not grow in an environment where resources are supplied at a constant rates.
We consider two types of variations in resource availability, the first imposes a temporary shift and
and the second continuous oscillations. In reality, the resource supply rate could vary in any number
of ways, but these two types of variations provide insight into how two types of perturbations affect
dynamics. For simplicity, we use the community shown in Figure 1b as the baseline, start the
simulation with initial condition (R(0), S1(0), S2(0), S3(0)) = (1.687, 0.126, 0.028, 2.559), close to
the equilibrium in the baseline system, and then perturb the system.

3.2.1 Temporary perturbation

First, we perturb the resource supply rate to incorporate a temporary decrease:

ρ(t) =

{
3, 20 ≤ t ≤ 25
3.6, otherwise

. (8)

The temporary decrease in external resource supply rate leads to significant changes in resource
and microbial abundances that deviate from the original steady state. At the later phase of this
temporary decrease in resource supply rate, the rate of decrease in microbial abundance slows down
as resource starts to build up, and the system approaches a new steady state towards the end of
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(a) ω = 0
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(b) ω = 0.02

Figure 1: Resource competition without and with mutation. Numerical simulation of Example 1.
In (a), there is no mutation, while in (b), we allow microbes to emerge by mutation (ω = 0.02).
From (a) to (b), we show the effect of mutation. The left panels show the abundance of resources
and total microbial population (left axis) and frequencies of each group of microbes (right axis) over
time, the right panels show the change in mean fitness η̄ (red dotted line) and effects of different
drivers over time (black solid line: ∆ns, blue dotted line: ∆ce, green dash line: ∆m).
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Figure 2: Resource competition with trait evolution, Example 1 with mutation (the community
shown in Figure 1b). (a) Rate of change in the average value of a focal trait θ (black solid line:
dθ̄
dt ), and effect of selection govern by different forces (cyan dotted line: mutation, magnate dash
line: natural selection Cov(θ, η)). (b) Mean value of different traits over time: net per capita
reproductive rate γ = εα (blue dotted-dash line), mortality rate µ (red dotted line), and trait θ
(black solid line).

this period. As the resource supply goes back to the original rate, microbial abundance starts
to increase once resource abundance is sufficiently high, and the system eventually returns to the
original equilibrium state as in Figure 1. During and after the perturbation, environmental change
is the dominate force driving the dynamics of mean fitness, followed by natural selection, as shown
in Figure 3a. Note that in this case, perturbation has little effect on the proportions of different
groups of microbes. As we assume that the system is well-mixed, individual microbes have equal
access to resource, thus little fluctuation in mean trait value.

3.2.2 Oscillatory resource supply rate

As shown in Figure 4, oscillatory resource supply rate ρ(t) = 5 sin2( t5 + 0.886) leads to oscillatory
behaviors in abundances, mean trait values, and different evolutionary forces. The change in mean
fitness is mainly driven by changes in environment, and the change in mean trait value is mainly
driven by selection as the microbial fitness depends on resource availability.

3.3 Resource switching

Carbon is one of the main resources for bacterial growth [45] but may come in many different forms
(e.g., there are many types of sugars). When multiple carbon sources are present, bacteria display
two types of growth behavior: these carbon sources can either be simultaneously consumed (e.g.,
co-utilization or co-metabolization) or be utilized in a hierarchical manner (e.g., carbon catabolite
repression) [22]; in other words, bacteria demonstrate preferences for particular carbon sources.
Likewise, bacteria can also switch between aerobic and anaerobic metabolic pathways which have
different resource utilization [52] but typically prefer aerobic metabolism when feasible.

As a toy example of metabolic mechanism switching, we construct a community of M groups of
microbes and N interchangeable resources such that each group i corresponds to a distinct species,
assume any individual can only consume one resource at a time, and individuals are allowed to
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Figure 3: Numerical simulation of Example 1 with non-constant resource supply rate given
in (8), initial condition is (R(0), S1(0), S2(0), S3(0)) = (1.687, 0.126, 0.028, 2.559), other parameter
values are the same as used for Figure 1b.
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Figure 4: Numerical simulation of Example 1 with periodic resource supply rate ρ(t) =
5 sin2( t5 + 0.886), initial condition is (R(0), S1(0), S2(0), S3(0)) = (1.687, 0.126, 0.028, 2.559), other
parameter values are the same as used for Figure 1b.
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switch between different resources based on their preference and resource availability. We can track
the abundance of species i consuming resource j (i.e., strain j of species i), Sij , and the abundance
of resource j, Rj , using the following model:

dRj
dt

= ρj −Rj
M∑
l=1

αljSlj ,

dSij
dt

= εijαijRjSij − µiSij + βεijαijRj

N∑
k=1,k 6=j

Sik − βSij
N∑

k=1,k 6=j
εikαikRk,

dSi
dt

=
N∑
j=1

εijαijRjSij − µiSi,

(9)

for i = 1, ...,M , and j = 1, ..., N , where ρj is influx rate of resource j, αij represents the rate of
consumption of resource j by species i, εij characterizes the resource conversion rate of species i on
resource j, and β represents the resource switching rate.

Similar as in Section 2.3, let pij =
Sij

Si
be the frequency of strain j of species i, qi = Si

S the
proportion of species i to the total population, we can rewrite the model (9) as

dRj
dt

= ρj −Rj
M∑
l=1

αljSlj ,

dS

dt
= (F − µ̃)S,

dpij
dt

= pij(ηij − η̄i)− ψij(β)

pij − N∑
k=1,k 6=j

σikjpik

 ,

dqi
dt

= qi(η̄i − η̃),

where ηij = εijαijRj −µi is the Malthusian fitness of Sij , η̄i =
∑N

k=1 pikηik is the mean Malthusian

fitness of Si; η̃ =
∑M

l=1 qlη̄l is the mean Malthusian fitness of S, µ̃ =
∑M

i=1 qiµi is the average

mortality rate over the entire population, F =
∑M

i=1 qi(
∑N

j=1 pijεijαijRj) is the average per capita
reproduction rate over the entire population,

ψij(β) = β
N∑

k=1,k 6=j
εikαikRk, and σikj =

εijαijRj
N∑

k=1,k 6=j
εikαikRk

are analogous to the mutation rate, ω, and probability that Sil mutate into Sik, νlk, in model
(10), respectively. Note that ψij(β) and σikj are time-dependent here. Similarly, differentiating the
expression for η̃ with respect to time, we obtain

dη̃

dt
= ∆ns + ∆ce = ∆ns +

M∑
i=1

qi(∆ns,i + ∆rs,i + ∆ce,i),
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where

∆ns =
M∑
i=1

qi(η̄i − η̃)η̄i = Var(η̄), ∆ce =
N∑
i=1

qi(∆ns,i + ∆m,i + ∆ce,i),

∆ns,i =

N∑
j=1

pij(ηij − η̄i)ηij = Vari(η), ∆ce,i =

N∑
j=1

pijεijαij
dRj
dt

,

∆rs,i =
N∑
j=1

ψij(β)

−pijηij +
N∑

k=1,k 6=j
σikjpikηij

 .

Note that ∆rs,i here denotes the effect of resource switching on the change in η̄i, and it is analogous

to ∆m,i in equation (5). If microbes are not allowed to switch to a different resource, β = 0,

then ω(β) = 0 and ∆rs,i = 0, the temporal dynamics of η̃ is driven by natural selection and
changes in the environment only. Further, if we assume the dynamics of resources are much faster
than the dynamics of microbial population and apply separation of timescale, i.e., set

dRj

dt = 0

for j ∈ {1, ..., N} then substitute the resulting algebraic constraints into
dSij

dt , the environmental
dependence of η̄i is absent, ∆ce,i = 0, and the environmental dependence of η̃ is simplified into the

effect of natural selection between subgroups, ∆ce =
∑M

i=1 qi∆ns,i.
Example 2
Consider a community of 3 microbial species and 2 substitutable resources, in which individuals

can only consume one resource at a time and can switch between those two resources based on
their preference, as shown in Figure 5. For simplicity, we assume that the resource conversion rates
are the same for all the species on all resources, εij = ε for all i and j, with M = 3 and N = 2 in
model (9).

When resources are supplied at constant rates and resources are abundant, the community
reaches equilibrium state, decreasing resource supply rate will increase the time it takes for the
community to reach equilibrium, if there is one, and can lead to instability when the resource supply
rate is sufficiently low (simulation results not shown here). If the supply rate of one resource is time-
dependent, ρ1(t) for R1 in this case, the abundances of the other resource and all microbial species
as well as strain frequencies also isolate over time, as shown in Figure 13 (note that R2 appears
to reach equilibrium state in Figure 13a, but it actually fluctuate over time with much smaller
magnitude). S2 and S3 dominate the population at different time intervals while S1 remains at low
abundance and eventually approaching zero. From Figure 6 we can see that the change in mean
fitness for different species fluctuate as well due to the time-dependent supply of R1, and slight time
delay is observed in the effects of natural selection and mutation in comparison to the change in the
environment. The magnitude of changes in individual species fitness are different, the magnitude of
changes in η̄1 is the highest, and η̄3 is the lowest. If the system begins away from equilibrium state,
the patterns of evolutionary dynamics between different species are different (results not shown
here).

4 Discussion

We provide a general framework to study the evolutionary dynamics of microbial communities and
associated traits. Encouraged by the success of integrating population genetics into epidemiology
[10, 18, 19], we first recast a classic resource-mediated population dynamic model in terms of
evolutionary forces and then add traits to this framework. These models are particularly insightful
if the dynamics of mean fitness and/or traits are of interest. This approach complements studies of
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Figure 5: Illustration of the topological structure of the microbial community discussed in Example
3.

Table 3: Parameter values and initial condition used in Figure 6.

Parameter Value Parameter Value Parameter Value Parameter Value

ρ1 sin2( t+100
50 ) ρ2 1 β 0.05 ε 0.8

µ1 0.125 µ2 0.1 µ3 0.125
α11 0.12 α12 0.04 α21 0.1
α22 0.06 α31 0.08 α32 0.08
R1(0) 1.1966 R2(0) 1.9965 S11(0) 1.9363 S12(0) 0.0955
S21(0) 4.2530 S22(0) 1.9428 S31(0) 0.5201 S32(0) 4.7574

long-term system behavior as it allows for the analysis of transient dynamics and reinterpretation
of predictions derived from equilibrium analyses.

Rewriting population dynamic equations in terms of the proportion of microbial abundance in a
given group uncovers relationships governing the evolutionary dynamics of the system explicitly in
terms of the fitness of each group relative to the mean fitness of the entire population. Specifically,
the dynamics of the mean fitness of the entire population are driven by three processes: natural
selection, mutation, and changes in the environment. At equilibrium, these three forces balance.
Given perturbations, different forces dominate depending on the nature of the perturbation. These
forces are intertwined in that modulating one (e.g., introduction of novel species or changes in
resource supply levels) lead to dynamics changes in the other forces.

We also provide an alternative form of the general model that reflects multi-level selection.
We show that the strength of these three evolutionary forces may vary between subgroups (strains,
species, etc). This approach helps to understand the impact of variable environmental conditions on
community dynamics and compositions via feedback between ecological and evolutionary dynamics.

Our work is based on an extension of Tilman’s classic resource competition model [50]. It incor-
porates metabolic byproducts and numerous types of interactions (e.g., competition, mutualism,
commensalism, amensalism). In our model, microbial interactions are indirect and mediated by
molecules in the environment (e.g., nutrients, toxins), rather than direct and constant as assumed
in generalized Lotka-Volterra and multivariate autoregressive models. These molecules include re-
sources that are externally supplied as well as metabolic byproducts, and could easily be extended
to include other molecules such as nutrients and toxins.

Different environmental conditions and resource levels will allow the growth of some microbes
but not others, leading to the selection of certain microbial traits for survival. In population ge-
netics, Price’s equation decouples the evolutionary change in frequency of a trait into two sources.
First, the covariance between fitness and trait represents selection on the trait. Second, an in-
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Figure 6: Numerical simulation of the community in Example 3. The evolutionary forces on mean
fitness can be decomposed at both the species level ((a)) and strain level ((b)-(d)). In (a) we plot
the change in mean microbial population fitness, dη̄

dt (red dotted lines), and distinguish the effects
of natural selection, ∆ns (black solid line), and changes in the environment, ∆ce (blue dotted-dash
line). In (b)-(d), we plot the changes in mean fitness of each group of microbes, dηi

dt (red dotted
lines), and distinguish the effects of natural selection, ∆ns,i (black solid lines), changes in the
environment, ∆ce,i (blue dotted-dash line), and resource switching, ∆rs,i (green dash lines). Note
that because the environment includes both biotic and abiotic forces, the effect of environmental
change on the average fitness of the population can be further decomposed into strain level effects.
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tragroup expectation term represents trait evolution due to other factors besides selection (e.g.,
mutation) [38]. Here, we derive an equation that tracks the rate of change of the average value
of any quantitative trait of interest, leading to a continuous-time version of Price’s equation (Eq.
(4)). Because this form of Price’s equation is written in terms of mechanistic model parameters, it
gives insight into which factors drive trait dynamics. For example, one would think intuitively that
the group of microbes with the lowest mortality rate should be the winner in a competition. But
recall in Example 1, the group of microbes with higher mortality rate (S3) won the competition
(Figures 1b and 2b), because the Malthusian fitness also depends on per capita reproduction rate
and resource availability.

In our simulations, we focus on a few canonical interaction types commonly encountered in
microbial communities. We begin with the classical case where microbes compete for nutrients
with no metabolic byproducts. We were able to verify the competitive exclusion principle (n groups
cannot coexist on fewer than n resources at stationary state) [2, 31] when mutation is absent. With
mutation, groups that would otherwise go extinct can maintain low abundance (Example 1).

Studies have shown that perturbations of microbiomes can disrupt the balance of microbial
communities and the symbiotic relationship between the host and associated microbes. Function-
ally, these perturbations can result in diseases such as inflammatory bowel disease [47], obesity [37],
and colon cancer [41]. An understanding of transient dynamics is required to predict transitions
from healthy states to states associated with dysbioses. Our model captures the transient dynam-
ics when the system is not at equilibrium, e.g., the temporal bloom of certain groups of microbes
that eventually are out-competed by other groups (Example B1). Given sufficient information on
parameter values, our model can be used to make predictions about these transient dynamics.

Incorporating metabolic byproducts into the model allows us to explore a broader range of
community dynamics for small communities with basic interaction types. We show that more than
one group of microbes can be supported by one externally supplied resource through interactions
such as cross-feeding, and that environmental conditions can influence species dynamics and long-
term equilibrium composition. If resources are supplied at sufficiently low constant rates, the
community may collapse; as resource supply rates increase to a sufficiently high level, the community
will reach an equilibrium state and stabilize. The time needed to reach equilibrium decreases as the
resource supply rates increase and with overall higher microbial abundances. Butler and O’Dwyer
also identified the role of external supply rate on community stability in their model of competition
through exchange of resource [8]. On the other hand, time-varying resource supply rates lead to
fluctuations in microbial community dynamics, as shown in Section 3.2-3.3. This framework allows
us to explore how changes in the environment affect community dynamics, microbial interactions,
and even coexistence, as normally microbes do not grow in a resource replete environment and
therefore resources are not supplied at constant rates as in a chemostat.

We demonstrated that some traits may drive evolution directly, such as the net reproductive
rate γ = εα and mortality rate µ. We can also track the dynamics of the mean value of traits that
do not directly drive selection and predict the rate of evolution. For example, different groups of
microbes may have different antibiotic tolerance levels, which is not the direct force driving selection
in an antibiotic-free environment. Yet we can still track the mean value of antibiotic tolerance of the
microbiome over time which could be useful to predict how this particular microbiome will with-
stand the introduction of antibiotics. Price’s equation provides an informative perspective on the
relationship between trait dynamics and community dynamics, it also allows us to explore whether
interventions such as modifying the microbial composition can promote health. A quantitative
measure of traits associated with each microbial strain and knowledge of their population dynam-
ics will allow us to predict the speed of evolution, and thus shed light on the link between microbial
community composition and community function. There is an increasing interest in applications
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of trait-based approaches in microbial studies [30, 35], and a growing set of tools to evaluate and
study microbial traits such as the Biolog Plates Technique [20, 46] and functional profiling with
metagenomics and -omics data [17]. These tools offer great potential to identify microbial traits
that are important to ecosystem functions and measure these functional traits.

Our work relies on several assumptions. One assumption is that the systems are well-mixed.
That is, individual microbes have equal access to nutrients and toxins and interact with equal prob-
ability with all other microbes. We further assume that microbes in the same group have the same
functional response and values of parameters such as reproduction rate, mortality rate, metabolic-
byproduct excretion rate, and trait values. A natural extension of this framework would be to
account for spatial and/or temporal heterogeneity. In our simulation studies, another assumption
is that the growth rate function takes the form of a linear functional response. Toxins are assumed
to increase mortality rather than decrease growth rate. Our model can be extended to include
more realistic and complex functional responses, such as allowing for the saturation of resource
utilization and different types of inhibition, incorporating more realistic metabolic networks such
as co-limitation by multiple resources [27, 43].

While this model provides a robust conceptual framework, it will be challenging to connect it
to data for particular systems as many parameters may be unknown. For example, the ability to
metabolize complex compounds and the metabolic byproducts that each strain produces in a gut
microbiome will typically be unknown. Additionally, not all bacteria can be grown in the laboratory
with current techniques, and these unculturable bacteria may play critical role in maintaining the
balance of ecosystems and health of their hosts. Yet the modeling framework presented in this paper
highlights the key parameters that should be measured to assess potential intervention strategies.
As more types of data become commonly collected in conjunction with microbial abundance data,
trait databases could be constructed. Such tools could then lead to a more comprehensive un-
derstanding of the interactions governing the dynamics of microbial species and their surrounding
environment, which is the key to building predictive models linking microbial community com-
position to functional response. Our framework can be adapted to microbial communities where
manipulation to provide specific ecosystem services is desired, thereby facilitating the development
of effective and precise microbiome-based interventions to promote health or other beneficial states.
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A Alternative Form and Multi-level Selection

Let Si denote the abundance of group i and Sik denote the abundance of subgroup ik, with Si =∑Li
k=1 Sik. Model (1) can be rewritten as

dSik
dt

= fik(R1, ..., RN )Sik − µikSik − ω

Sik − Li∑
l=1,l 6=k

νlkSil

 ,

dSi
dt

=

Li∑
k=1

(fik(R1, ..., RN )− µik)Sik − ω

Si − M∑
l=1,l 6=i

νliSl

 ,

dRj
dt

= ρj(t, Rj)−
M∑
i=1

Li∑
k=1

fik(R1, ..., RN )cijk(R1, ..., RN )Sik − gj(Rj)

+hj(S11, ..., S1L1 , ..., SM1, ..., SMLM
, R1, ..., RN ),

(10)

for i = 1, ...,M , j = 1, ..., N , k = 1, ..., Li, where Li denotes the total number in subgroups of group
i, ω denotes the mutation rate of each subgroup, νlk denotes the probability that Sil mutate into
Sik, ω denotes the mutation rate of each group, νli denotes the probability that Sl mutate into Si.
Define S =

∑M
i=1 Si as the total population, pik = Sik/Si as the frequency of subgroup ik within

group i, qi = Si/S as the frequency of group i, we obtain

dpik
dt

= pik(ηik − η̄i)− ω

pik − Li∑
l=1,l 6=k

νlkpil

 ,

dqi
dt

= qi(η̄i − η̃)− ω

qi − M∑
l=1,l 6=i

νliql

 ,

where
ηik = fik(R1, ..., RN )− µik

is the Malthusian fitness of Sik, η̄i =
∑Li

k=1 pikηik is the average Malthusian fitness of Si, and

η̃ =
∑M

i=1 qiη̄i is the average Malthusian fitness of S. The temporal dynamics of η̃ are now

dη̃

dt
=

M∑
i=1

dqi
dt
η̄i︷ ︸︸ ︷

∆ns + ∆m +

M∑
i=1

qi
dη̄i
dt︷︸︸︷

∆ce = ∆ns + ∆m +

∆ce︷ ︸︸ ︷
M∑
i=1

qi(∆ns,i + ∆m,i︸ ︷︷ ︸
Li∑
k=1

dpik
dt

ηik

+ ∆ce,i︸︷︷︸
Li∑
k=1

pik
dηik
dt

) .

B Competition without metabolic byproducts

Example B1
In this example, two groups of microbes compete for a single resource, no mutation is allowed,

that is, N = 2 and ω = 0 in (6), other parameter values and initial condition are listed in Table 4. At
equilibrium, S1 has the lowest value of R∗, the numerical simulation confirms that S1 outcompete

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422935doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422935
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4: Parameter values and initial condition used in Figure 7.

Parameter Value Parameter Value Parameter Value Parameter Value

ρ 3 µ1 0.59 µ2 0.8 R(0) 1.6
ε1, ε2 0.6 α1 0.6 α2 0.78 S1(0), S2(0) 0.5

S2 in the end, as shown in Figures 7a. But the values of R∗ does not provide information on
the short term evolutionary dynamics of the competing groups of microbes before reaching the
equilibrium.

Recall equation (7), natural selection favors in net reproductive rate favors S2 (ε1α1 > ε2α2),
and in mortality rate favors S1 (µ1 < µ2). But high reproductive rate may be associated with
high mortality rate, thus overall fitness may be low, as S2 in this example. Direct selection pulls
net reproductive rate upwards with strength proportional to the resource abundance, R, while
indirect selection drives net reproductive rate downwards with strength -1; for mortality rate,
direct selection drives it downwards with strength -1, while indirect selection pulls it upwards with
strength proportional to the resource abundance. Initially resource is abundant, there is little
competition and both groups of microbes are able to grow at their maximal rate, the frequency of
the group with the lowest fitness (S1) decreases, as indicated by the negative selection coefficient
λ1 in equation (2). As the abundance of total population increases, the resource becomes scarce
and microbes need to compete for resource. Initially, S2 reaches the highest frequency despite the
fact that it has higher value of R∗ than S1, because the resource abundance is relatively high, and
the selection towards high εα is stronger than the selection towards low µ, in other words, S2 has
a higher fitness than S1. But later on, the resource abundance decreases to be lower than R∗ for
S2, and the selection begins to favor S1 as it has higher fitness than S2 in this case, as shown in
Figure 7a.

In short, the approach we introduced in Section 2 captures the transient dynamics which would
be missed by the traditional equilibrium and near-equilibrium analysis, i.e., the temporal bloom
of S2 which outcompete by S1 eventually in this case. This approach provides an explanation for
the transient competitive advantage of certain group(s) of microbes, and allows us to predict the
speed of evolution via equations (2)-(4), which can be valuable when making predictions about
experimental manipulation of microbial communities with regard to health interventions.

C Basic interaction types with metabolic byproducts

We now proceed to the extended case which include production of metabolic byproducts. As
mentioned earlier, higher-order interactions also have impact on the functioning of microbial com-
munities. Microbes can interfere or damage other microbes through production of toxic metabolites
[21, 28, 40]. Some microbes may benefit from the metabolites secreted by other microbes [42]. For
simplicity, we set mutation rate to be zero. Here we illustrate four basic types of interaction
with metabolic byproducts, namely competition, mutualism, commensalism, and amensalism, as
illustrated in Figure 8.

C.1 Competition with inhibition

In this example, 2 groups of microbes {Si}2i=1 compete for 1 externally supplied resource, Si release
toxic metabolic byproduct R1 which have negative impacts on S2. R1 can be a toxin that inhibit
the growth of S2, or kill S2. For simplicity, we assume that the presence of R1 will increase the
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Figure 7: Classical resource competition. Numerical simulation of Example B1 shows the outcome
of two groups of microbes compete for one resource, no mutation is allowed. (a) Abundance of
resources and total microbial population (left axis) and frequencies of each group of microbes
(right axis) over time. (b) Change in mean fitness η̄ and effects of different drivers over time.
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Figure 8: Illustration of the topological structure of the microbial communities discussed in Ap-
pendix C. Squared nodes denote externally supplied resources, circled nodes denote microbes,
diamond nodes denote metabolic byproducts. Interactions are directed, positive interaction with
an arrow head and negative interaction with a bar head.
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Table 5: Key parameter values and initial condition for the model (11) to produce solutions in
Figure 9.

Parameter Value Parameter Value Parameter Value Parameter Value

µ1, µ2 0.08 ε1, ε2 0.5 α10 0.35 α20 0.4
c 0.02 d21 0.04 R0(0) 0.5 R1(0) 0

S1(0) 0.03 S2(0) 0.02

mortality rate of S2 by d21, as shown in Figure 8a. The model is as follows,

dR0

dt
= ρ−R0

2∑
l=1

αlSl,

dR1

dt
= c11S1R0,

dS1

dt
= ε10α10R0S1 − µ1S1,

dS2

dt
= ε20α20R0S2 − µ2S2 − d21S2R1.

(11)

Key parameter values of the microbial groups are listed in Table 5. In the absence of the metabolic
byproduct R1, S2 will outcompete S1 as it has lower value of R∗. When the influx rate of R0 is
low, ρ = 0.01, the abundance of the metabolic byproduct R1 is very low, its negative effect on the
growth of S2 is relatively low, S2 still has higher fitness than S1 and thus outcompete S1, as shown
in Figure 9a. When we increase the influx rate of R0 to ρ = 0.1, initially R0 is abundant and both
groups of microbes can grow at their maximum rate, the frequency of S2 increases as it has higher
fitness. As the abundance of S1 increases, it produces more R1, and the strength of its negative
impact on S2 increases which lead to a decrease in the fitness of S2. Once the accumulation of R1

reaches certain point such that the fitness of S2 is lower than that of S1, the frequency of S1 begins
to increase and eventually outcompete S2, as shown in Figure 9b.

Note that if the growth rate function takes the form of the Holling Type II response, we can
further consider the metabolic byproduct R1 as different types of inhibitors. If R1 is a competitive
inhibitor to S2, then the growth rate of S2 in the presence of R0 and R1 is

a2(R0, R1) =
a21,maxR0

R0 + k21(1 + R1
ki

)
,

where ki is the inhibitory constant; if R1 is a non-competitive inhibitor to S2, then

a2(R0, R1) =

a21,max

1+
R1
ki

R0

R0 + k21
;

and if R1 is uncompetitive inhibitor to S2, then

a2(R0, R1) =

a21,max

1+
R1
ki

R0

R0 + k21(1 + R1
ki

)
.

C.2 Mutualism

This example consists 2 groups of microbes S1 and S2, each consumes one externally supplied
resource R1 and R2, respectively. Each group of microbe releases one metabolic byproduct that
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(a) ρ = 0.01

(b) ρ = 0.1

Figure 9: Numerical simulation of the competitive community, model (11). The values of the initial
condition and all parameters except ρ are the same in both cases, as listed in Table 5. From (a)
to (b), the resource supply rate, ρ, is increased by a factor of 10. Note that in the left two panels,
solid lines denote resource, dotted lines denote metabolic byproduct, and dotted-dash lines denote
microbial groups.
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Table 6: Parameter values and initial condition for the model (12) to produce solutions in Figure
10.

Parameter Value Parameter Value Parameter Value Parameter Value

µ1, µ2 0.08 α11 0.5 α23 0.6 R0(0), R1(0) 0.1
c13 0.04 α22 0.2 ε11, ε22 0.5 R3(0), R4(0) 0
c24 0.02 α14 0.4 ε14, ε23 0.7 S1(0), S2(0) 0.5

will be utilized by the other microbe, as shown in Figure 8b. Assume that the effects from different
resource on a focal microbe group are additive, we can derive the dynamic model of this community
as

dR1

dt
= ρ1 −R1α11S1,

dR2

dt
= ρ2 −R2α22S2,

dR3

dt
= c13S1R1 − α23S2R3,

dR4

dt
= c24S2R2 − α14S1R4,

dS1

dt
= ε11α11R1S1 − µ1S1 + ε14α14S1R4,

dS2

dt
= ε22α22R2S2 − µ2S2 + ε23α23S2R3.

(12)

Here S1 and S2 will coexist because they don’t compete for resources. When the resource influx rates
are low, ρ1 = ρ2 = 0.005, resources are scarce, the abundances of both groups of microbes decreases
initially and then fluctuate, because they can utilize the limited amount of metabolic byproducts
produced by the other group of microbes in addition to the externally supplied resources. But the
overall abundance is low, as shown in Figure 10a. Note that even though change in the environment
is the main driver of the change in mean fitness, with some small time ranges natural selection
might be the dominant force. When we increase the resource influx rates to ρ1 = ρ2 = 0.05,
initially the abundances of both groups of microbes decrease, as the resources are not abundant.
But as resources are not as scarce as the first case, both groups of microbes are able to maintain
relative higher abundance and produce more byproducts that can be utilized by the other group,
the system reaches equilibrium state much quicker, as shown in Figure 10b.

C.3 Commensalism

The fourth example consists 2 groups of microbes S1 and S2, and one externally supplied resourceR1

which can be utilized by S1 and has negative impact on S2, respectively, and S1 releases metabolic
byproduct R1 which can be utilized by S2, as shown in Figure 8c. Assume that the presence of R0
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(a) ρ1 = ρ2 = 0.005

(b) ρ1 = ρ2 = 0.05

Figure 10: Numerical simulation of the mutualistic community, model (12). Key parameter values
and initial conditions are listed in Table 6. From (a) to (b), the resource supply rates, ρ1, ρ2, are
increased by a factor of 10. Note that in the left two panels, solid lines denote resource, dotted
lines denote metabolic byproduct, and dotted-dash lines denote microbial groups.
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Table 7: Parameter values and initial condition for the model (13) to produce solutions in Figure
11.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

µ1, µ2 0.08 α10 0.5 α21 0.4 d20 0.01 c11 0.04
ε10 0.5 ε21 0.7 R0(0) 0.04 R1(0) 0 S1(0), S2(0) 0.5

leads to increased mortality of S2 at the rate d20, we have

dR0

dt
= ρ0 −R0α10Sl,

dR1

dt
= c11S1R0 −R1α21S2,

dS1

dt
= ε10α10R0S1 − µ1S1,

dS2

dt
= ε21α21R1S2 − µ2S2 − d20S2R0.

(13)

When R1 is absent or rare, S2 will go extinct. In Figure 11a, the influx rate of R0 is low,
ρ0 = 0.01, and R0 is scarce initially (R0(0) = 0.04), abundances of both S1 and S2 decreases
initially. During this phase, the amount of R1 produced by S1 is very low that it could not offset
the negative impact of R0 on S2, so the abundance of S2 decreases quickly to zero. S1 dominates
but with a low abundance, as shown in Figue 11a. When we increase the influx rate of R0 to
ρ0 = 0.1, the external supplied resource R0 quickly build up, S1 can grow at its maximal rate
shortly after the initial decrease phase, and produce enough R1 to support S2. In this case, S1

still dominate the population but both groups of microbes coexist and with higher abundances, as
shown in Figure 11b.

C.4 Amensalism

This example consists 2 groups of microbes S1 and S2, each consumes one externally supplied
resource R1 and R2, respectively. S1 releases one metabolic byproduct R3 which have a negative
impact on S2, as shown in Figure 8d.

dR1

dt
= ρ1 −R1α11Sl,

dR2

dt
= ρ2 −R2α22S2,

dR3

dt
= c13S1R1,

dS1

dt
= ε11α11R1S1 − µ1S1

dS2

dt
= ε22α22R2S2 − µ2S2 − d23R3S2.

(14)

In the first case, ρ1 = ρ2 = 0.005, both resources are scarce. S1 maintain at a relatively low
abundance, the amount of S3 accumulates in the environment is relatively low during the timespan
in the simulation, and its negative impact on S2 is very small, both groups of microbes maintain
at relatively low abundance, as shown in Figure 12a. When we increase the flux rate of R1 to
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(a) ρ0 = 0.01
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(b) ρ0 = 0.1

Figure 11: Numerical simulation of the commensalism community, model (13). Key parameter
values and initial conditions are listed in Table 7. From (a) to (b), the resource supply rate, ρ0,
is increased by a factor of 10. Note that in the left two panels, solid lines denote resource, dotted
lines denote metabolic byproduct, and dotted-dash lines denote microbial groups.

Table 8: Parameter values and initial condition for the model (14) to produce solutions in Figure
12.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

µ1 0.08 µ2 0.08 α11 0.4 α22 0.6 ρ2 0.005
ε11 0.5 ε22 0.5 d23 0.01 c13 0.02
R0(0) 0.5 R1(0) 0.2 R3(0) 0 S1(0) 0.03 S2(0) 0.02
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(a) ρ1 = 0.005
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(b) ρ1 = 0.05

Figure 12: Numerical simulation of the amensalism community, model (14). Key parameter values
and initial conditions are listed in Table 8. From (a) to (b), the resource supply rate, ρ1, is increased
by a factor of 10. Note that in the left two panels, solid lines denote resource, dotted lines denote
metabolic byproduct, and dotted-dash lines denote microbial groups.
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ρ1 = 0.05, S1 is able to maintain a higher abundance and produce more R3, which drives the
abundance of S2 to decrease quickly, as shown in Figure 12b.

The communities in the examples shown in this paper are simple, as each one shows a different
type of interaction. The method we presented can be used to explore the evolutionary and ecological
dynamics of complex communities that incorporate multiple types of interactions.

D Resource switching

Abundances and proportions of the community in Example 2.
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Figure 13: Numerical simulation of the community in Example 2. (a) Abundances of resources
and microbes in different groups. (b) Proportions of microbes in different groups (solid lines) and
subgroups that consume resource R1 (dotted-dash lines), the color of the lines identifies the group
of microbes as in (a).
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