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ABSTRACT

Cognitive fMRI research primarily relies on task-averaged responses over many subjects to describe general principles of brain
function. Nonetheless, there exists a large variability between subjects that is also reflected in spontaneous brain activity as
measured by resting state fMRI (rsfMRI). Leveraging this fact, several recent studies have therefore aimed at predicting task
activation from rsfMRI using various machine learning methods within a growing literature on ‘connectome fingerprinting.’ In
reviewing these results, we found lack of an evaluation against robust baselines that reliably supports a novelty of predictions for
this task. On closer examination to reported methods, we found most underperform against trivial baseline model performances
based on massive group averaging when whole-cortex prediction is considered. Here we present a modification to published
methods that remedies this problem to large extent. Our proposed modification is based on a single-vertex approach that
replaces commonly used brain parcellations. We further provide a summary of this model evaluation by characterizing empirical
properties of where prediction for this task appears possible, explaining why some predictions largely fail for certain targets.
Finally, with these empirical observations we investigate whether individual prediction scores explain individual behavioral
differences in a task.

1 Introduction
Functional magnetic resonance imaging (fMRI) offers noninvasive whole-brain activity measurement. Generally, different
experimental paradigms are used to understand aspects of brain function. The two main experimental fMRI paradigms study
the brain in resting-state (rsfMRI) and while performing a controlled task (tfMRI). The first records brain activity usually with
instruction to “keep awake,” “do not think about anything in particular,” and/or “visually fixate upon a crosshair display.” In
contrast, tfMRI measures brain activity evoked by tasks typically seeking to isolate some specific cognitive process, usually
contrasting it to a control condition. These two paradigms are usually treated separately and little is known about how they
precisely relate. However, it was observed that brain activity in both share many features that may help to explain brain
function1–9. Many of these observations show that much of the estimated variance in rsfMRI functional connectivity (FC)
appears to be shared with tfMRI activation maps. These observations are often based on group averages. However, averaging
across groups destroys relevant information10. Therefore, predictions about individual brains are vital for making progress in
neuroscience. The relationship between rsfMRI and tfMRI for individual subject prediction can be captured by a regression
problem, as illustrated in figure 1. This topic has been addressed in numerous studies11–18. Here we re-examined methods
that address this problem using machine learning techniques with only functional data. That is, learning statistical models
mapping rsfMRI and tfMRI data that generalize on unseen test data (individual subjects)19. Problematically, when considering
individual predictions evaluated over the whole-cortex, our benchmark comparison shows that previous methods are extremely
limited beyond predicting better than a trivial baseline of group averaging. This is alarming. In this paper we develop a
modification of previous methods that allows them to jump over baselines in many cases, though some limitations still exist.
These modifications can be briefly summarized as follows: using a regularized regression method that fits and estimates
hyperparameters on a single vertex or voxel basis. This technique is known from previous fMRI studies20, however, has not
been used in this context.

Therefore, the first aim of the present paper is to demonstrate that the methods we propose are capable of superior
prediction. To do so, we provide a benchmark comparison showing how our modifications improve models considerably on a
large Human Connectome Project (HCP) dataset. Following these modifications, model predictions achieve above baseline
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Figure 1. A conceptual model of the problem setup and goal. Both rsfMRI and tfMRI measuresments are acquired using
BOLD echo planar imaging (EPIBOLD) by the Human Connectome Project scanners and acquisition protocols. These
reconstructed and processed images from a single subject are mapped by some encoding model: either resting-state functional
connectivity features (rsFC) by function g f eatures or tfMRI data mapped to a z-statistical map summarizing task activation by
function gGLM . Function f is the model mapping rsfMRI features to task maps. Our goal is to find optimal models g f eatures and
f that give the highest performing whole-cortex prediction of task GLM maps (See evaluation section for metrics describing
how model performance score is measured). Additionally, activity during the acquisition of tfMRI generates some observed
behavior commited during the task. Whether the relative dependence between rsfMRI and tfMRI tell us anything about task
behavior is an important question we sought to answer through improving these models.

performance for a large number of target contrasts. Notably, these results not only predict individual subject differences, i.e.,
‘connectome-fingerprints’21, 22, as many have previously shown12–18, 23; they provide support that whole-cortex prediction by a
model exceeds what any kind of group averaging, i.e., baselines, could achieve–a point we will reiterate the importance of.

Second, to investigate the benefits of the proposed vertex-wise regression, we consider a set of algorithms for feature
extraction and prediction, see table 1. Besides comparing relevant methods in the literature, we also provide additional insights
into which features are actually predictive and discuss other aspects worth investigating. For instance, we give evidence for
the relevance of the vertex-wise regularization strategy. Also, we found that widely adopted parcellations surprisingly do not
outperform random projections by a considerable margin initially expected for this task.

To arrive at these insights we report additional metrics that we believe should be included in these kinds of studies in the
future. That is, in addition to a widely accepted metric evaluating whole-cortex predictions, we report predictive variance
explained (R2 according to sum of squares) on a single vertex level. This examination allowed us to empirically investigate
where predictions performed well spatially, explaining why predictions of only a certain number of contrasts perform by a
respectable margin above naive baselines.

Finally, recent literature finds correspondence between rest and task activity to be rich in information about individual
subject behavior24. Following this line, we explore the behavioral relevance of the rest-task dependency found by our best
performing method. Namely, we check whether the prediction scores for individual subjects based in rsfMRI carry any
information about their behavior during the tfMRI acquisition. We demonstrate how a model’s prediction score can be taken
as a relative measure of dependency between rest and task measurements. In this way we show that this model may provide
information relevant within a behavioural neuroscience context. We also evaluate these behavioral measures relative to a
group average baseline. Our results show a compelling behavioral correspondence between resting state and a subject’s task
performance in certain contrasts. We believe this can drive further progress in the field.

2 Materials and methods
We consider fMRI data in “grayordinate” space, an HCP-specific standard in a CIFTI data structure separating a surface
cortical space that is vertex-based from subcortical and cerebellar areas that are volumetric or voxel-based. In this study we
use data from the Human Connectome Project (HCP) S900 release25 and use 100 subjects for training and 100 subjects to
make predictions. Here, we consider prediction targets of each subject i to be fixed-effects task GLM maps only on the cortical
surface yi ∈ R59412 defined across 7 different task categories. Performance across these 7 task categories intended to elicit brain
activity diverse enough to provide a vast coverage across the entire cortex26. Together, a total of 47 different contrasts were
included. To model these predictions, we consider methods that first rely on some feature extraction from rsfMRI data. This
feature extraction makes use of the entire grayordinate space, i.e., including the volumetric data component. For each subject
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i we consider the data matrix Xi ∈ Rv×t where v = 91282 is the vertex+voxel dimension in grayordinate space and t is the
number of samples acquired in time. Further details on the pre-processing of Xi and computation of yi are found in section 2.3.

2.1 Evaluation
Before detailing feature extraction and a new modeling approach, we would like to bring attention to important details
regarding how the models are compared against each other. All model evaluation measuring predictive performance is done
only on the 59412 cortical surface vertices within the 100 subject test-set although rsfMRI feature extraction uses the entire
grayordinate space. We exclude volumetric evaluation, i.e., in subcortical regions, primarily to avoid evaluation bias due to the
low signal-to-noise ratios and technical challenges of subcortical imaging27, for visualization purposes, and to be consistent
with previous work, e.g.,12. Individual subject scores were computed as the Pearson correlation score ri for subject i between
prediction ŷi and “true” activation map yi. This image similarity metric is a unit-less measures that provides a concise summary
of whether the overall shape of activation prediction is determined to be accurate28.

This measure alone, however, does not inform us where spatially the model is capable of making accurate predictions. For
that, we include the predictive R2 score, a standard measure to quantify how much variance is explained by the predictive
model29. Given test-set predictions at vertex j as ŷ j ∈ R100 and “true” activation map y j ∈ R100, this score is computed as

R2
j := 1−

||y j− ŷ j||2

||y j− ȳ j||2
(1)

where ȳ j = ∑
100
i yi j is the subject-wise mean over 100 test-subjects. This score indicates where and to what extent prediction

was possible for each vertex of the fitted model. It does so by allowing a standardized comparison, i.e. as an expression of
fraction of variance explained. Note that according to the definition of R2 here, it allows for negative scores. In that case,
the mean of the data being evaluated would provide a better prediction than the fitted model’s output. In other words, where
predictions yield a negative R2 score, predictions do not jump above a simple mean average prediction. For whole-cortex
comparisons, the weighted average R2 across the cortical surface was computed. This was done by weighting each vertex R2 by
the variance of the target sample.

Note that we do not report higher intra-subject vs. inter-subject prediction scores as an evaluation criterion as was done
in12. We do not believe this observation is particularly constructive beyond the two evaluation metrics above we use. This
position is based on the following observations. We understand intra-subject dependence between separate, spatially normalized
whole-brain measurements exists to the extent it allows highly accurate subject identification from both rsfMRI and tfMRI-based
measurements22, 30. We could expect that an output derived from an arbitrary encoding model of rsfMRI compared to tfMRI
activation maps could reveal higher intra-subject correlation than inter-subject, preserving the dependency structure defining
rsfMRI and tfMRI are both acquired from the same individual brain. Yet, that prediction can be vastly poorer than a naive,
unfitted baseline model in terms of whole-cortex evaluation. Supplementary figure S1 illustrates that an arbitrary FC encoding
of rsfMRI can demonstrate exactly this. A correlation map produced by a random averaging can show higher intra-subject
than inter-subject scores to task activation maps clearly marked. This illustrates that inter-subject differences exist despite
explaining no variance on a vertex-wise level and vastly underperforming baseline scores. While this observation still reveals
individual features unique to the subject are preserved, we hesitate to claim it is evidence of a successful prediction about
something unknown. Instead, we believe it reiterates what we know from the very outset of the problem: both rsfMRI and
tfMRI are measured from the same brain. Therefore, we try to place our claims of predictability by emphasizing comparison
against models of massive subject averaging. Our goal is that our prediction performance exceed these simple subject averaged
baselines across the whole cortex.

Also note that we specifically choose not to evaluate any model performance based on a measure of suprathreshold extent,
e.g., thresholded maps and their overlap indices–Jaccard or Dice. We also do not report any qualitative comparisons based
on suprathreshold extent as we believe it can be misleading. We found results based on these indices to be highly dependent
on their chosen threshold, which acts as a nonlinear transform to spatial maps. Further, we also found that group results
are highly dependent on the number of subjects used in a manner that is atypical of increasing sample size influence on
model performances. That is, an increasing number of subjects used for Group Z-stat or Group Z-stat (TFCE) biases Dice
coefficients scores downward when thresholds become conservative, e.g., from Gaussian mixture model thresholding. An
empirical demonstration of these influences from chosen thresholds and number of subjects used on predictive versus group
averaged models is provided in the supplements, figures S2, S3. These observations together provide the basis why using these
two metrics appear inappropriate. Therefore, we do not use them to measure any model performance, which deviates from
previous reports.

2.2 Modeling
The subsections below will detail various feature extraction methods used in the benchmark evaluation. For making predictions
we are comparing a number of existing methods, as listed in table 1.
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Model Name Proposed Parcellation - Feature Extraction Type of Fitting # of features
here

MMP-RR-PCR 3 MMP - Partial Correlations SV Ridge Regression 379
Rest-Task GICA RR 3 ICA on Task Data SV Ridge Regression 80
Rest-Rest GICA RR 3 ICA on Rest Data SV Ridge Regression 80
MMP-RR-DR 3 MMP w/ Dual Regression SV Ridge Regression 379
MMP-RR 3 MMP SV Ridge Regression 379
GPR-RR 3 Random Projection SV Ridge Regression 379
AF-Mod 3 Mean Activation Maps SV Linear Regression 1
GICA-DR-OLS12 7 ICA w/ Dual Regression Parcel-wise Linear Regression 50
MMP-ParcelRR23 7 MMP Parcel-wise Ridge Regression 360
MMP-OLS 3 MMP SV Linear Regression 379
AF13 7 Mean Activation Maps None /0

Table 1. An overview of all methods we compare and benchmark. The names are composed of parts for feature extraction
(MMP, PCR, GPR, GICA, AF) and regression model (RR, OLS), see Methods for details.

Vertex-wise Ridge Regression Model. We propose to use a regression model for each vertex j independently, each with its
own hyperparameters. We use a ridge regression model fit over all train subjects n = 100 to estimate vertex j model coefficients
w as

ŵ j := argmin
w j

||y j−G jw j||22 +λ j||w j||22 (2)

where y j is an n-dimensional vector of task activation belonging to vertex j (here j = 1, ...,59412) on the cortical surface. G j is
the n× f feature matrix of extracted f number of rsfMRI features, as detailed below. Any model making use of this vertex-wise
ridge regression is denoted by RR in its complete model title. Since the regression model is typically under-determined,
regularization is essential for generalization of the model. We chose a quadratic regularization with hyperparameters λ j
controlling the degree of regularization separately for each j vertex. The values λ j were chosen via a generalized cross-
validation procedure over the training-set data31. We suspected that any method offering some degree of shrinkage would be
suitable15, 20.

2.2.1 Baseline Models
Three baseline models were used to judge the actual prediction performance of all models lists in table 1. A first and most
obvious choice is simply the mean (Group Mean) of our targets computed from the training set data. Further, we computed
group-level Z-statistics with multiple comparison correction (Group Z-Stat (TFCE)) and without multiple comparison
correction (Group Z-Stat) for every contrast. Group Z-Stat (TFCE) results were only used to investigate the results based on
suprathreshold extent. Details on the computation of Group Z-Stat (TFCE) and Group Z-Stat is provided in the supplemental
material.

Finally, as an additional baseline model, we fit a ridge regression model separately for each surface vertex with 6 anatomical
features (Anatomical RR). The motivation for including the anatomical baseline stems from speculation that most variance of
task-activation shapes can be explained by the subject’s anatomical features. These anatomical features are the mean image
across the RL-phase and LR-phase (encoded EPI resting-state session-1 runs) and 4 anatomical T1w features extracted from
Freesurfer segmentations (recon-all): cortical (quasi) myelin, sulcal depth, curvature, and thickness maps.

2.2.2 Resting-state Feature Extraction
All resting-state models we consider rely on some functional covariance-based (FC) feature extraction of resting-state data of
the entire grayordinate space. For each subject i the normalized data matrix Xi ∈ Rv×t is converted into the feature matrix Gi in
the general form as:

Gi := AT XiXT
i (3)

where A ∈ Rv× f . A projects the subject-sample covariance matrix into a lower dimensional space f (number of features).
Gi is also known as a “semi-dense connectome”. Matrix A is selected either based on predefined Regions of Interest (ROI),
e.g. parcellations, on group-based ICA, or on selecting specific features directly, e.g., random projections or mean task activity.
Note, that no smoothing of data matrix Xi was applied before any feature computation in any of methods examined.
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Multimodal Parcellations. Let us first consider the case of predefined brain regions using Multimodal Parcellations32 (MMP)
with f = 379 and A ∈ {0,1}. In other words A averages over the activity in spatial regions. As an additional modification we
include an additional step of Dual Regression for feature extraction33 denoted as DR.

ICA-based. For the case of ICA methods we consider the method of computing A via Multi-subject/Group Independent
Component Analysis (GICA) for calculating Gi following the algorithm (Canonical ICA) outlined in34. This was done to
compare group maps extracted either between rest or task. That is, GICA features were either derived from rsfMRI or
tfMRI data for models Rest-Rest GICA RR or Rest-Task GICA RR, respectively. In the tfMRI case, separate features were
calculated by selecting only 6 of the 7 tfMRI datasets, leaving out the tfMRI measurement of the to-be predicted GLM task
contrast. Doing this excludes circularity. These group-level maps were computed over the 100 training subjects. Briefly,
the estimation involved a separation of subject-level noise by applying PCA in the time dimension. These subject-level PCs
were then concatenated to estimate group-level patterns via Canonical Correlation Analysis (CCA). Group-level PCs were
then finally decomposed into group-level independent sources with ICA via FastICA35. The number of both subject-level and
group-level components selected was 8036. Note, we did not apply further region extraction from these group-level maps to
obtain non-overlapping, parcellations. Hence, the number of features remains at 80.

Activity Flow. A method called “Activity Flow”, AF13 uses a group-mean task-activation pattern computed across the training
set and uses it directly for prediction for held-out regions of the cortex (as defined by some parcellation) without data-driven
fitting. Note, like all other models, we do not perform spatial smoothing on the rsfMRI data. We add a version where this is
selected as a single feature used for regression called AF-Mod.

Random projections replacing parcels. To assess the impact of the parcellation, we replaced the standard parcellation with
a random projection scheme. Random projections are a technique for dimensionality reduction using a random matrix having
unit column norms such that the projected lower-dimensional subspace approximates the original distances between data points.
Provably, if data points in a vector space are projected onto a randomly selected subspace that is sufficiently large, distances
between data points are approximately preserved37. In our case A is a randomly generated matrix drawn from N (0,1/ f )
denoted as Gaussian Random Projection (GRP).

Principle Component Regression. Functional correlation features extracted from MMP models so far do not distinguish
between direct and indirect interactions of whole-cortex brain activity to time-dependent signals averaged within parcels.
In order to compute features that resemble direct interactions more closely, principle component regression PCR is used to
compute a semi-partial covariance feature matrix Gi for each subject13, 38. This was accomplished by masking vertices for
exclusion within a crucial area surrounding each parcel. Since neighboring vertices are spatially autocorrelated, this step is
essential. In detail, MMP partial covariance matrices were computed for each subject by projecting a masked data matrix
X̂k

i for each ROI, k = {1, ...,379} belonging to the MMP parcellation and masking all surrounding vertices within a 10mm
neighborhood of vertices belonging to the kth ROI. Surface cortical distances were estimated as their geodesic distances on a
group-averaged (all 200 subjects) midthickness surface mesh. Subcortical distances were estimated by their Euclidian distance
within MNI space. For every masked ROI, 512 principle components (PC) were computed via a randomized singular value
decomposition (SVD)39. These selected PC covariates were then regressed using ordinary least squares (OLS) onto the selected
k ROI mean signal averaged time-series. Estimated regression coefficients from this regression were then projected back into
the original 91282 dimension space of the original data matrix Xi. This together results in a same sized subject feature matrix
Gi based on MMP as used in other models that only compute covariances.

2.2.3 Modified Activity Flow Model
As mentioned above, the Activity Flow model performs no statistical fitting to task activation maps. We include our technique
of vertex-wise regression to the AF model, denoted as AF-mod. In detail it is learning a simple two parameter OLS model fit
of Gi ∈ R59412 to task maps for each surface vertex. This was similar to our other vertex-wise models. Additionally, model
AF-mod does not perform spatial masking of vertices surrounding the ’to-be’ predicted vertex as done in the original Activity
Flow conceptualization. We do not perform region or vertex prediction in held-out regions.

2.2.4 Remarks on Method Choices
Importantly, we only use BOLD data features for all resting-state data model evaluations since this is what underlies our
significance claims, deviating from12. Also, a 100/100 train/test split was used rather than the leave-one-out cross validation
employed in12, 13, 15. In all cases, all features for each subject were normalized to zero mean and unit norm. Note that we
did not seek to use an optimal cross-validation strategy to maximize the performance available on the whole dataset, but
provide a robust comparison of generalization performance across models given a large test sample size case. Lastly, due to the
enormous computational burden of computing a vertex-wise semi-partial covariance matrix, we do not to implement the partial
covariance model described in13. To do so would be an enormous computational burden that would require downsampling
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the data since a PCR would need to be computed at each vertex for each subject. Additionally, downsampling the data would
render model comparison unfair between models. All evaluations of all model performances were across the same sized data
with no additional smoothing applied. Further details regarding model implementation of the Group ICA dual regression OLS
model GICA-DR-OLS, vertex-wise Activity Flow AF, and a ridge regression model fit over parcellations rather than single
vertices/voxels MMP-ParcelRR may be found in12,13,15, respectively.

2.3 fMRI Data and Processing
All data analyzed in this study is from the Human Connectome Project (HCP) S900 release25. To limit a number of covariates
that are known to be severe confounds to any of the inter-subject analyses, we selected 200 unrelated subjects, i.e., no family
relatives, with a T1, T2, complete rsfMRI, complete tfMRI, and physiological data acquired. Additionally, we selected subjects
with functional data reconstructed exclusively with algorithm r227. From these available subjects, a random selection of 100
males and 100 females were made.

The study was performed using data provided by the Human Connectome Project (HCP). All data accessed, downloaded,
and used by this study was in accordance with WU-Minn HCP Consortium Open Access Data Use Terms
(https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-restricted-data-use-terms). The
study was performed in agreement with those terms. By agreeing with those use terms, no further ethics approval was required
at our local institute to use the data. The HCP project (http://www.humanconnectomeproject.org) is an open Na-
tional Institutes of Health (NIH) initiative and received the required ethics approval for data acquisition and public distribution.
All subjects who participated gave written, informed consent according to the protocol by the HCP consortium as approved by
the Washington University in St. Louis Institutional Review Board (IRB). All human data was acquired in accordance with
these experimental procedures adhering to these IRB processes by the HCP. These can be found in further detail25.

All results in this manuscript are performed on a random train-test split (100/100 subjects) of the 200 selected subjects.
Functional data was acquired with highly accelerated gradient echo type echo-planar imaging (GRE-EPI) in 2 sessions on 2

separate days with 2 two different phase encoding directions (left-right and right-left). These 4 runs, 15 minutes each, were
acquired with the behavioral instruction to keep eyes open with fixation on a projected cross-hair40. All runs were concatenated
together prior to deriving rsfMRI features. 7 tasks were performed during the task functional acquisition (IDs: emotion,
language, motor, social, gambling, relational, working memory). Further details regarding the tfMRI paradigms and the extent
of their brain coverage is found in26. Due to some of the potential benefits offered by particular HCP data acquisition choices,
data used for our analyses were exclusively in the standard CIFTI-grayordinate space form. This form allows combined cortical
surface and subcortical volume analyses without enormous storage and processing burdens among increases in SNR due to
surface smoothing and and better cortical fold alignments41.

Minimally preprocessed ICA-FIX denoised data of the HCP was used for our analysis. Details and code of those pipelines
can be found in41 and42, respectively. Each measurement had its first 5 repetitions discarded before any local processing. All
data prior to being applied in any of the models implemented were demeaned and variance normalized (unit-noise variance)
feature-wise. No additional preprocessing procedures, e.g., filtering or smoothing, were applied.

Prediction targets were fixed-effects (2 Sessions) GLM estimated contrast maps over all 7 tasks with a surface smoothing
kernel FWHM of 4 mm applied. Fixed-effects GLM results were computed by HCP tfMRI pipelines in CIFTI-greyordinate
space and z-transformed42. All HCP tfMRI pre-computed GLM contrasts from these tasks are used such that no redundant
predictions would be made, e.g., from sign flipping the contrast vector. This selection follows12 such that 47 contrast map
targets are used.

A cortical parcellation with 360 regions generated by the work of32 was used for the left, right cortical surfaces, and we
refer to this parcellation as MMP (MultiModal Parcellation). Additionally, for completeness and to utilize the volumetric data
component of CIFTI-greyordinate space data for feature extraction, we used an additional 19 sub-cortical regions parcellation
given by the HCP release, available at42. This results in a total of 379 regions.

2.4 Behavioral Data
An assessment of cognitive ability of individual subjects was provided by measures tested during tfMRI acquisition (downloaded
at https://db.humanconnectome.org). This is used to understand whether individual predictions scores are related
to the amount of correspondence between rest and task. Here, we correlate prediction scores (See Evaluation section) to
individual behavior measures of cognitive ability. The cognitive tasks for our analysis are behavioral measurements during:
working memory, language, and relational processing tasks performed while inside the scanner. Following24, these tasks were
selected primarily because they fulfill normality assumptions. Additionally, they provide the most complete tasks associated
with the contrasts we choose for predictions. Pearson R correlation prediction scores were all Fischer-z transformed across all
subjects, a variance-stabilizing transformation, before computing further correlations between the behavioral measures.
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Figure 2. Pearson r correlation score benchmark results for 100 subject test set: Colorbar indicates mean r score across all
test subjects for given contrast and model. Dashed black boxes indicate where model performance is significantly greater than
test-subjects’s baseline (mean) model performance (one-sided paired sample t-test, p < 0.05, 5000 permutations, Bonferroni
corrected across contrast comparisons). Boxes in the left column mark baseline models. Scores are ordered top (best) to bottom
(worst) by their subject-wise mean score computed across all 47 different contrasts (left-most column).

Software Implementation and Usage
Python was used for all reported experiments and implementations with the exception of model GICA-DR-ICA. This model
was implemented in Matlab using code shared from the authors12. Scikit-learn provided state-of-the-art statistical learning
algorithms (http://scikitlearn.org)43. Additional experiments used code modified from the nilearn library for high-dimensional
neuroimaging datasets (http://github.com/nilearn/nilearn)44. Flatmap cortical visualizations used code modified from45. The
neuroinformatics platform that allowed downloading large datasets and a tool for 3D cortical visualizations used software
provided by HCP46. Our public code is available at https://gitlab.com/elacosse/cf-benchmark-dev).

3 Results
3.1 Benchmarking: Which Methods Jump over the Baseline?
First, we investigate the accuracy of predictions using the described methods based on Pearson r correlation score for individual
subject prediction. We provide a comprehensive performance benchmark comparison with a total of 14 different models.
These are compared across the 47 contrast-map targets provided by the HCP S900 dataset. Note that we only focus on model
prediction of a single contrast map; this does not leverage any additional information provided by incorporating multiple maps
for prediction across subjects.

Our benchmark evaluation compares models using resting-state data against each other and, importantly, against simple
baselines models. This is reported in two figures 2, 4, summarizing results across the entire cortex according to either Pearson r
correlation scores or vertex predictive R2 scores (Eq. 1). The scores displayed in figure 2 are provided in the supplements table
S1. All models were evaluated with the same test-set consisting of 100 subjects. This allows to report statistical significance
with a one-sample paired t-test. Importantly, Group Z-Stat (r = 0.540± 0.044) shows Pearson r correlation score mean
performance worse than Group Mean (r = 0.561±0.047) for the vast majority of contrasts; only four (three making up the
worst performing contrasts) from Group Z-Stat performed significantly better than Group Mean. Additionally, a model fit
only from anatomical features Anatomical-RR does not generalize better than Group Mean baseline across all but one, the
highest scoring contrast (REL). Therefore, comparisons are made against Group Mean, the highest performing baseline model.
Many methods, especially from previous approaches, fall short of jumping over this trivial baseline, meaning whole-cortex
prediction from the resting state are problematic. That is, despite many of these contrast’s Pearson correlation scores appearing
quite high. However, results marked in figure 2 by significance boxes reveal that only a limited subset of the 47 contrasts do
significantly better than a group mean baseline, Group Mean. The margin of difference between predicted score and mean
baseline is shown in supplementary figure S5.

3.1.1 Improved predictions by vertex-wise models
All methods with the proposed vertex-wise fitting procedure demonstrate subject predictions (averaged across contrasts) above
the mean baseline prediction (Group Mean), figure 2 (one-sided paired sample t-test, p < 0.05, Bonferroni corrected across all
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other. Individual subject scores from the test-set are plotted along with box-whisker plots showing quartiles of prediction score
distribution.
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Figure 4. Predictive R2 score benchmark results: scores indicate the mean of cortical surface R2, see Eq. 1, weighted by the
variance of each surface vertex. The colorbar indicates this measure. Roughly half of contrast targets have mean cortical R2

below 0 since predictive R2 can be arbitrarily negative. Math-Story stands out as the easiest contrast to predict. A discussion
providing a reason why is provided in section Spatially resolved predictability. Column and row ordering are not sorted by
performance and remains identical to figure 2. The left most column is the mean score across all contrasts.
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47 contrasts, 5000 permutations) and figure S5.
Our model MMP-RR-PCR yields both the highest mean performance of subject scores averaged over all contrast targets

(r = 0.582±0.048) with the highest number of significant prediction performance, see figure 2. Additionally, this model holds
the highest performance in 31 of the 47 contrasts (see table S1). However, several other models augmented with our vertex-wise
regression method show only slightly worse performance, as figure 3 highlights. A direct comparison between the classical
way of tuning the ridge regression parameter and our vertex-wise method is seen by comparing MMP-RR (r = 0.574±0.048)
versus MMP-ParcelRR (r = 0.550±0.049), showing a significant gain (one-sided paired sample t-test, p < 0.001, t = 15.77,
5000 permutations).

To understand the importance of regularization, we can compare MMP-RR (r = 0.574± 0.048) and MMP-OLS (r =
0.409± 0.047), where the latter only relies on ordinary least squares fits. This notable performance difference shows that
regularization is essential for successful generalization when the number of rsfMRI features is very large. However, a complex
model is not necessarily needed for successful prediction; Model AF-mod (r = 0.571±0.049) generalizes comparatively well
and has proven to be one of the best performing models despite its simplicity. From our analysis, we expect many methods with
some degree of shrinkage would reveal comparable performance when trained on a single-vertex level15, 20.

3.1.2 Effects of Feature Extraction and Parcellation
We investigate the effect of various feature extraction strategies for determining A in eq. 3. First, A derived from task Rest-Task
GICA data yields a very small improvement over model Rest-Rest GICA derived only from resting-state data, see table S1.
This motivated us to investigate other effects of selecting A. Specifically, we replaced the expert-based parcellation MMP with
a random projection A. Again, the advantage of a expert-based parcellation over a random projection is surprisingly small:
GPR-RR r = 0.568±0.048 vs. MMP-RR r = 0.574±0.048. This result suggests that in many cases random projections for
generating features appears to be sufficient. It simply provides a means of performing dimensionality reduction akin to perhaps
any arbitrary parcellation scheme, an observation consistent with15.

Lastly, we investigate whether deriving more subject specific features via dual regression yielded any appreciable improve-
ment. Model MMP-RR-DR over MMP-RR shows a statistically significant, yet small, improvement over subject predictions
averaged across contrasts (one-sided paired sample t-test, p < 0.001). For small sample sizes, however, the use of dual
regression appears to be promising, see supplementary figure S9.

3.2 Predictive R2 Evaluation
In addition to Pearson r correlation scores, we examine the variance explained on a vertex level (equation 1) evaluated on the
same test set. This evaluation is summarized in figure 4 and provides a complementary measure of prediction performance.
The scores displayed in figure 4 are provided in the supplements table S2. To quantify one number per contrast we report the
variance-weighted average of the R2 scores across the cortical surface. This number is color-coded in figure 4 and quantifies to
which degree and in which contrasts predictions about individuals can be made. Models and contrast targets with a positive R2

aligns well with the ordering of previous figure 2 results and supports how the use of single-vertex regression based methods
yields a considerable performance boost and valuable predictions. Nevertheless, figure 4 emphasizes that it is only roughly half
of the contrast targets that show considerable predictability.

3.2.1 Spatially resolved predictability
Figure 4 shows considerable variability between predictive performance of certain contrasts. This can be explained due to
the fact that only certain regions of the cortex drive a model’s prediction ability above the baseline. This becomes clearer
with an investigation of where on the cortical surface we observe positive R2 values. To report this concisely, we render the
cortical surface with a mean averaged R2 score across the 47 contrasts of model MMP-RR-PCR in figure 5. An additional plot
showing individual contrast R2 across each task category separately is shown in figure S4. The surface plot reveals that only a
limited subset of vertices lying outside of the primary-sensory regions can explain the 100 test-sample variance. These remain
confined within the association cortex where most inter-subject variability of rsfMRI functional connectivity lies47. Regions of
high inter-subject variability as measured by either rsfMRI features, task activation maps, or sulcal depth of a subject’s brain
anatomy are associated with the predictability, see figure S6. This outlines that regions where subject differences in the cortical
functional anatomy are highest are the regions where subject rsfMRI features or task activations also differentiate themselves
the most. Supplementary figure S7 shows this spatially in flatmap visualization.

To give a better empirical characterization of the spatial dependency of model parameters and prediction quality, we
report several metrics per vertex for the MMP-RR-PCR model. For visualization we use flatmap cortical projections of the
entire cortex, as shown in figure 6. We consider the root mean square errors (RMSE) in figure 6(A) and see that the highest
RMSE appears primarily concentrated around the visual cortex. The vertex-wise strength of regularization λ determined via
cross-validation over the training-set is shown in figure 6(B). Strong regularization is employed in primary-sensory regions
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Figure 5. Mean R2 Score of MMP-RR-PCR across all contrast targets. Plotted are the R2 values averaged over the 100 test
subjects. This is rendered on the a 200 subject averaged midthickness surface map of left and right cortical hemispheres.
Positive values (red and yellow) indicate where prediction is possible. Note that prediction accuracy is best outside the primary
sensory regions.

where predictions perform poorly. The optimal regularization is inversely proportional to the explained variance shown in
figure 6(C,D). We show R2 on the training subjects (C) and on the 100 test-subjects (D).

3.3 How many subjects are needed?
To examine top performing models closer and according to their capacity, we investigate the impact the number of training
samples on 4 of the best models (MMP-RR-PCR, Rest-Task GICA-RR, MMP-RR-DR, AF-Mod) as defined by their median
contrast score (left most column in 2. We included two baseline models Mean (Baseline), Group Z-stat for comparison.
These models were all evaluated on the 100 subject test set. 3 contrast targets were arbitrarily chosen because of their poor,
mediocre, good performance as contrasts Motor–Right Hand, Emotion–Faces, Language–Math-Story, respectively. Pearson r
correlation scores and predictive R2 score with respect to the number of subjects (3-100) are reported in figure 7 and figure 8,
respectively.

All curves of model performance with respect to the number of samples follow typical generalization curves, i.e., an inverse
power law, where a rapid increase is seen to a slow saturation when sample size increases48. As shown in both figure 7 and
figure 2, Group Z-stats consistently underperforms its Group Mean counterpart by a considerable margin, especially at lower
sample sizes. Top performing models largely yield the same performance as the training set increases above 40 subjects.

3.4 Behavioral Results
Prediction scores may provide a powerful means of summarizing rest-task dependency. We therefore hypothesized that
prediction scores may be a means for discriminating behaviorally relevant information about the task performed. It was
previously speculated that the degree to which brain activity departs from rest may provide information about individual
behavioral performance24. Within the network neuroscience community, this phenomenon is recognized as reconfiguration
efficiency: high-performing individuals may have brain connectivity that more efficiently updates to the task at hand by not
having to produce greater changes in a task functional network organization required to perform the task.

We therefore speculated that if our resting-task model performance for individual subjects could be taken as a relative
measure of rest-task dependence, we would see a clear pattern of higher behavioral performance correlating with higher tfMRI
prediction scores.

To test this idea, we turn to three behavioral measures of general cognitive ability from Human Connectome Data measured
during tfMRI acquisition: working memory, language, and reasoning task. We selected contrasts 2BK-0BK, Math-Story, and
Match-Relation since they provided the most general and complete summary of the task and its behavioral data. To see whether
prediction scores corresponded to task performance of individuals, on the 100-subject test set we calculate the correlation of
individual subject Fischer-Z transformed Pearson r correlation prediction scores to subject task accuracy. This marks whether
individual differences in prediction scores correspond to individual differences in behavioral task accuracy. 20 random train/test
permutations of 100 train, 100 test subject sizes on the original 200 subject dataset were fit across the models investigated in the
subject-wise investigation. Additionally, similar to figure 7, we also fit the model MMP-RR-PCR from these results for the
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Figure 6. Flatmap cortical surface projections of MMP-RR-PCR model fits. (A) Root Mean Square Error (RMSE), (B)
Degree of regularization λ in model fit, (C) R2 – 100 train subjects (D) R2 – 100 test subjects. RMSE, λ , and R2 are averaged
across all 47 model fit results. Train and test R2 show consistent patterns between each other. λ shows how regularization is
inversely related to the method’s ability to predict (R2). Both vertex-wise R2 and regularization parameter λ offer the ability to
resolve spatially where rsfMRI data is capable of any prediction.
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Figure 7. Subject-wise Pearson r score benchmark results for 3 selected (poor, mediocre, good), 4 high performing models
(MMP-RR-PCR, Rest-Task GICA-RR, MMP-RR-DR, AF-Mod) and two baseline models (Mean (Baseline), Group
Z-stat). Poor (left): Motor-Right Hand; Mediocre (middle): Emotion: Faces; Good (right): Language: Math-Story. Experiment
included 3-100 subjects for training. The group z-statistic baseline results are considerably worse than the group mean baseline.
The 4 models largely resemble each other’s performance when sample sizes increase past 40 subjects.
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Figure 8. Top row: Subject-wise Pearson r score benchmark results for 3 selected (poor, mediocre, good), 4 high performing
models (MMP-RR-PCR, Rest-Task GICA-RR, MMP-RR-DR, AF-Mod) and two baseline models (Mean (Baseline),
Group Z-stat). Poor (left): Motor-Right Hand; Mediocre (middle): Emotion: Faces; Good (right): Language: Math-Story.
Experiment included 3-100 subjects for training. The group z-statistic baseline results are considerably worse than the group
mean baseline. The 4 models largely resemble each other’s performance when sample sizes increase past 40 subjects.
Bottom row: The weighted mean cortical surface R2 for four top performing models as a function of number of samples (3-100)
used for training. As training samples approach over 80 samples, R2 largely becomes indiscernible between the 4 models in
these contrasts.
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Figure 9. Correlation of Cortex-wise Score and Behavioral Task Accuracy. (A) Comparison of different models investigated
in detail shown in figure 8. Only Math-Story and 2BK-0BK showed significant correlations using a one-sided corrected
resampled t-test compared to Group Mean (significance marked in by *). (B) Subject-wise comparison of correlation between
model MMP-RR-PCR prediction score and behavioral task performance for 20 permutation depending on the training set size
(3-100). (C) For comparison, same as B, but for the Group Mean baseline model.

three selected contrasts under 20 permutations train/test splits with increasing sample sizes (3-100 subjects) and expected that
these averaged performance evaluation curves would follow typical generalization curves. To accommodate that the 20 training
and testing permutations were not independent from each other, statistical comparisons between models were made using a
corrected resampled t-test49.

Our results demonstrate that Pearson r correlation prediction scores provide an indicative relative measure of rest-task
correspondence to the behavioral task accuracies measured during the performance of these tasks, figure 9). All predictive
models provide statistically significant results over the baseline for contrast Math-Story (one-sided corrected resampled t-test,
Fisher-z transformed r, dof=19, p < 0.01). Mean correlations over 20 train/test permutations for model MMP-RR-PCR
compared to Group Mean was r = 0.26± 0.05 versus r = 0.20± 0.05, respectively. Models MMP-RR-PCR, Rest-Task
GICA-RR, MMP-RR provided statistically significant results over baseline for contrast 2BK-0BK (one-sided corrected
resampled t-test, Fisher-z tranformed r, dof=19, p < 0.05). The mean correlation for contrast 2BK-0BK over 20 train/test
permutations for model MMP-RR-PCR was r = 0.67±0.07 versus Group Mean at r = 0.66±0.07. However, importantly,
in one out of the three contrasts (Match-Relation), no predictive model provides any added benefit over a simple correlation to
mean activation (Group Mean). That is, despite having strong correlations of r = 0.40±0.1. A plot of individual scores for
one permutation (original subject test set) is shown in supplementary figure S11 as an illustration of these strong, statistically
significant correlations.

4 Discussion
Motivated by recent progress in establishing a stronger link between spontaneous and task-evoked activity, we examine the
problem of mapping rsfMRI measurements to patterns of activity elicited during tfMRI-based experimental paradigms in
individual subjects. We show additional evidence that it is indeed possible to predict task activity maps from patterns of rsfMRI
FC, as previously reported11–18, 23. However, we emphasized early on that observing higher intra-subject prediction scores
compared to inter-subject scores was not a useful observation we believed provided informative predictions–they needed
perform better than what any naive group averaging could predict on the cortical surface. Our investigation showed that group
averaging provided a surprisingly strong baseline for whole-cortex predictions. Results justify selecting group averaging offered
by Group Mean as a suitable baseline model. This was because it provides substantially higher scores than its alternative
Group Z-Stat; group Z-statistics were shown to consistently, regardless of sample size, perform below Group Mean under
nearly all contrast targets. We therefore evaluated all results against the highest performing baseline–Group Mean.

Given this appropriate group-averaged baseline model, an examination of previous methods in our benchmark show they did
not demonstrate satisfactory whole-cortex prediction scores with a considerable number of contrast targets being outperformed
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by the baseline. To remedy this problem, i.e. to jump over the baseline, we introduced a simple modification to the fitting
procedure: a vertex-wise selection of hyper-parameters. According to our benchmarks, models fit in this manner provide the
most powerful means to tackle the problem of predicting tfMRI GLM maps from rsfMRI data we are aware of. Nevertheless,
they also still highlight that in many cases, given the diversity of contrast targets examined, the best performing model we
introduced are still modest in their prediction ability with even 100 training samples (subjects).

The considerable variability in prediction scores visible across the 47 contrast maps for all models motivated us to give a
better empirical characterization of how this is reflected in model performance. An inspection of the cortical surface areas that
have an explainable variance on a vertex-wise level reveals a consistent pattern: primary-sensory regions show little explainable
inter-subject variance (R2) whereas association cortical regions show considerably better predictability. So far, no method
appears to be able to explain inter-subject variance within primary sensory regions, as evidenced by strong negative predictive
R2 scores in those locations, figures 5, 6. Additionally, we also observe these patterns by investigating how the strength of
regularization was inversely related to how well the model performs. Both measures, λ and R2 shown in figure 6, reveal where
information about rsfMRI is actually predictive for task activity maps. Together, these observations reinforce earlier work
noting association cortex areas hold distributed networks while primary-sensorimotor areas are much more stereotypical across
subjects resulting in worse predictions. Simply put, the closer elicited activity are to these regions–the most salient example
being the MATH-STORY contrast–the better these predictions are. Although, many predictions may be better by a statistically
significant margin above a baseline model like figure 9 highlight, their utility may still be limited.

Ultimately, our work aims to find which predictions are informative so we could use it to formulate hypotheses asking what
behavior or cognitive factors may influence it. That is, the correspondence between rest and task states and how that might
reveal information about individual subjects. Seeking to ground this work into a behaviorally relevant context, we considered the
question of whether prediction scores of individual subjects provided a means of summarizing rest-task dependence that could
inform behaviorally relevant neuroscientific questions given our best performing models. Indeed, the strength of correlation
between prediction scores of a given contrast and its corresponding behavioral task accuracy suggests that this prediction score
may be taken as a relative measure of dependence between rest and task activity. However, this is not without caveat that places
us back to comparing against Group averaged models from the beginning; it is only the case when predictions are considerably
above baseline performance we see the utility of performing these model fits. Considerable correlation between the naive
model’s prediction of Group Mean and individual behavioral performance was present for 2 of the 3 contrasts we examined in
this way. This fact reinforces our motivation from the outset of this problem: to create and utilize a method to perform above
naive, baseline models. Results shown in our behavior evaluations reiterate this importance. Ultimately, the MATH-STORY fit
provided the only meaningful difference compared to the other contrasts examined.

Our vertex-wise evaluation based on predictive R2 reveals that considerable performance improvement is still needed to
explain variance within primary sensorimotor regions. On speculating how to further improve the methods, we suspect that
further significant gains in performance may be obtained from projecting individual FC data into common/shared response
spaces via shared response modeling or hyperalignment11, 50–53. This could provide a means for capturing a substantial amount
inter-subject variance. Additionally, separate evaluations reveal that the closer the extracted features are to task-related activity,
the better cortex-wise prediction scores are, figure S10. We would therefore expect that the use of naturalistic stimuli over
rsfMRI could substantially aid over the use of rsfMRI data and would additionally provide the means for additional shared
response modeling approach assumptions54.

4.1 Limitation
First and foremost, should rsfMRI fluctuation amplitudes depend on other factors completely unrelated to cortical computations
that generate the spatial dependencies we observe with connectome fingerprinting, this would show up in these prediction result.
It would additionally confuse interpretation of behavior factors55. Even after application of spatial normalization transformations,
considerable anatomical inter-subject variability is preserved despite liberal smoothing application. Additionally, echoplanar
imaging (EPI) distortions due to B0 inhomogeneities and other individual specific factors, e.g., coil loading or other RF
scaling issues, physiological, motion contaminants, and dependence of individual vascular factors to cortical orientation to B0
would reveal intra-subject dependencies between a rsfMRI and tfMRI acquisition. Regarding the dependence of individual
vasculature, large signal biases on BOLD amplitude due to cortical orientations was shown to exist for 3T HCP data56.
This observation would undoubtedly create additional intra-subject dependencies between measurements that remain after
normalization irrespective of any functional organization structure due to underlying neurophysiology or patterns of cortical
computations. Therefore, a large degree of dependence will remain after applying normalization transformations and will not
necessarily imply that intra-subject prediction scores are necessarily meaningful alone. Disentangling those factors remains to
be explored in detail for future work.

Second, the overall test-retest reliability of tfMRI is poor making individual difference research for fMRI difficult with
most common task paradigms, especially considering the limited number of task trials GLMs were computed over for HCP
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data57. We would therefore like to emphasize that considerable noise is present in estimates of first-level task effects we sought
to predict. In this examination, no model considerations of it was incorporated into any design or analysis decisions.

Last, activity summarized by a task GLM model is a useful measure only insofar as our a priori beliefs about how the task
should be parameterized. Encoding models of the task that do not rely on strong assumptions of BOLD response may provide
more powerful ways to summarize the kind of dependence we wished to characterize and remains an exciting avenue to explore
beyond GLM maps58.

5 Summary
Our closer examination using Human Connectome Project (HCP) data reveals that a majority of published models evaluated
within our benchmark under current methods with many contrast targets examined did not perform better than naive, baseline
models when only rsfMRI features and whole-cortex prediction were considered. This paper aims to remedy this issue and
make a convincing case for utilizing methods to describe individual factors beyond merely remarking on individual differences.
We propose single-vertex fitted methods that achieve a significant performance boost above baseline performance on the
majority of contrast targets. Additionally, we provide benchmarks of comparable methods in published literature and include a
variety of models with feature properties worth investigating, table 1. We provide further empirical characterization of top
performing methods by an examination of showing where predictions performed well spatially. This explains why predictions
of only a modest number of contrasts is possible above a naive baseline. Ultimately, we show that a model’s prediction score
can be taken as a relative measure of dependency between rest and task. These predictions results show a compelling behavioral
correspondence to a subject’s task performance committed during a tfMRI acquisition albeit with notable caveats. We hope that
further improvements to this methodology will enable better understanding of rest-task correspondence informing individual
behavioral measures.
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27. Miletić, S. et al. fmri protocol optimization for simultaneously studying small subcortical and cortical areas at 7 t.
NeuroImage 116992 (2020).

28. Sochat, V. V., Gorgolewski, K. J., Koyejo, O., Durnez, J. & Poldrack, R. A. Effects of thresholding on correlation-based
image similarity metrics. Front. neuroscience 9, 418 (2015).

29. Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of best practices for evidence for prediction: a review. JAMA
psychiatry 77, 534–540 (2020).

30. Byrge, L. & Kennedy, D. P. High-accuracy individual identification using a “thin slice” of the functional connectome.
Netw. Neurosci. 3, 363–383 (2019).

31. Golub, G. H., Heath, M. & Wahba, G. Generalized cross-validation as a method for choosing a good ridge parameter.
Technometrics 21, 215–223 (1979).

32. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171 (2016).

33. Nickerson, L. D., Smith, S. M., Öngür, D. & Beckmann, C. F. Using dual regression to investigate network shape and
amplitude in functional connectivity analyses. Front. Neurosci. 11, 115, DOI: 10.3389/fnins.2017.00115 (2017).

34. Varoquaux, G. et al. A group model for stable multi-subject ica on fmri datasets. Neuroimage 51, 288–299 (2010).

35. Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on Neural
Networks 10, 626–634 (1999).

36. Dadi, K. et al. Benchmarking functional connectome-based predictive models for resting-state fmri. NeuroImage 192,
115–134 (2019).

37. Johnson, W. B., Lindenstrauss, J. & Schechtman, G. Extensions of lipschitz maps into banach spaces. Isr. J. Math. 54,
129–138 (1986).

38. Jolliffe, I. T. A note on the use of principal components in regression. J. Royal Stat. Soc. Ser. C (Applied Stat. 31, 300–303
(1982).

39. Halko, N., Martinsson, P.-G. & Tropp, J. A. Finding structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions. SIAM review 53, 217–288 (2011).

16/17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.417675doi: bioRxiv preprint 

10.3389/fnins.2017.00115
https://doi.org/10.1101/2020.12.15.417675
http://creativecommons.org/licenses/by-nc-nd/4.0/


40. Smith, S. M. et al. Resting-state fmri in the human connectome project. Neuroimage 80, 144–168 (2013).

41. Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124
(2013).

42. HCP. Hcp pipelines. https://github.com/Washington-University/HCPpipelines/tree/master/ (2019).

43. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

44. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. neuroinformatics 8, 14 (2014).

45. Gao, J. S., Huth, A. G., Lescroart, M. D. & Gallant, J. L. Pycortex: an interactive surface visualizer for fmri. Front.
neuroinformatics 9, 23 (2015).

46. Marcus, D. et al. Informatics and data mining tools and strategies for the human connectome project. Front. neuroinfor-
matics 5, 4 (2011).

47. Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595
(2013).

48. Cortes, C., Jackel, L. D., Solla, S. A., Vapnik, V. & Denker, J. S. Learning curves: Asymptotic values and rate of
convergence. In Advances in Neural Information Processing Systems, 327–334 (1994).

49. Nadeau, C. & Bengio, Y. Inference for the generalization error. In Advances in neural information processing systems,
307–313 (2000).

50. Conroy, B., Singer, B., Haxby, J. & Ramadge, P. J. fmri-based inter-subject cortical alignment using functional connectivity.
In Advances in neural information processing systems, 378–386 (2009).

51. Conroy, B. R., Singer, B. D., Guntupalli, J. S., Ramadge, P. J. & Haxby, J. V. Inter-subject alignment of human cortical
anatomy using functional connectivity. NeuroImage 81, 400–411 (2013).

52. Guntupalli, J. S., Feilong, M. & Haxby, J. V. A computational model of shared fine-scale structure in the human connectome.
PLOS Comput. Biol. 14, e1006120, DOI: 10.1371/journal.pcbi.1006120 (2018).

53. Richard, H. et al. Modeling shared responses in neuroimaging studies through multiview ica. arXiv preprint
arXiv:2006.06635 (2020).

54. Finn, E. S. et al. Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging.
NeuroImage 116828 (2020).

55. Bijsterbosch, J. D. et al. The relationship between spatial configuration and functional connectivity of brain regions. eLife
7, e32992, DOI: 10.7554/elife.32992 (2018).

56. Viessmann, O., Scheffler, K., Bianciardi, M., Wald, L. L. & Polimeni, J. R. Dependence of resting-state fmri fluctuation
amplitudes on cerebral cortical orientation relative to the direction of b0 and anatomical axes. NeuroImage 196, 337–350
(2019).

57. Elliott, M. L. et al. Poor test-retest reliability of task-fmri: New empirical evidence and a meta-analysis. BioRxiv 681700
(2019).

58. Lohmann, G. et al. Task-related edge density (ted)—a new method for revealing dynamic network formation in fmri data
of the human brain. PloS one 11 (2016).

6 Acknowledgements
Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and
Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

17/17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.417675doi: bioRxiv preprint 

https://github.com/Washington-University/HCPpipelines/tree/master/
10.1371/journal.pcbi.1006120
10.7554/elife.32992
https://doi.org/10.1101/2020.12.15.417675
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and methods
	Evaluation
	Modeling
	Baseline Models
	Resting-state Feature Extraction
	Modified Activity Flow Model
	Remarks on Method Choices

	fMRI Data and Processing
	Behavioral Data

	Results
	Benchmarking: Which Methods Jump over the Baseline?
	Improved predictions by vertex-wise models
	Effects of Feature Extraction and Parcellation

	Predictive R2 Evaluation
	Spatially resolved predictability

	How many subjects are needed?
	Behavioral Results

	Discussion
	Limitation

	Summary
	References
	Acknowledgements

