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Abstract 
 
Major histocompatibility complex (MHC) peptide binding and presentation is the most           

selective event defining the landscape of T cell epitopes. Consequently,          

understanding the diversity of MHC alleles in a given population and the parameters             
that define the set of ligands that can be bound and presented by each of these                

alleles (the immunopeptidome) has an enormous impact on our capacity to predict            
and manipulate the potential of protein antigens to elicit functional T cell responses.             

Liquid chromatography-mass spectrometry (LC-MS) analysis of ​MHC eluted ligands         

(EL data) has proven to be a powerful technique for identifying such peptidomes,             
and ​methods integrating such data for prediction of antigen presentation have           

reached a high level of accuracy for both MHC class I and class II. Here, we                
demonstrate how these techniques and prediction methods can be readily extended           

to the bovine leukocyte antigen class II DR locus (BoLA-DR). BoLA-DR binding            

motifs were characterized by EL data derived from cell lines expressing a range of              
DRB3 alleles prevalent in Holstein-Friesian populations. The model generated         

(NetBoLAIIpan - available as a web-server at       
www.cbs.dtu.dk/services/NetBoLAIIpan​) was shown to have unprecedented      

predictive power to identify known BoLA-DR restricted CD4 epitopes. In summary,           

the results demonstrate the power of an integrated approach combining advanced           
MS peptidomics with immunoinformatics for characterization of the BoLA-DR antigen          

presentation system and provide a novel tool that can be utilised to assist in rational               
evaluation and selection of bovine CD4 T cell epitopes.   
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Introduction 
Major histocompatibility complex (MHC) genes play a vital role in the regulation of             
adaptive immunity. Whilst classical MHC class I genes are expressed on most            

nucleated cells, MHC class II (MHCII) molecules show a more restricted expression            

and are predominantly expressed on professional antigen-presenting cells such as          
dendritic cells, B-cells, and macrophages. The MHCII system enables peptides          

derived from both extracellular and intracellular proteins that have been delivered in            
the endocytic pathway to be loaded into the peptide-binding groove of MHCII            

molecules and be displayed as stable peptide-MHCII complexes (pMHCII) on the cell            

surface(1). CD4 T cells bearing cognate TCRs capable of binding specific pMHCII            
complexes can become activated and perform a range of functions, including           

supporting other immune effector cells such as macrophages, B cells and CD8 T             
cells(2). Thus, pMHCII molecules play a critical role in initiating and developing both             

humoral and cell-mediated adaptive immune responses.  

 
MHCII molecules are heterodimers composed of an α and β chain, each consisting             

of an extracellular domain, a transmembrane region, and an intracytoplasmic tail.           
The distal membrane domains (α1 and β1, respectively) form an open           

peptide-binding groove that binds peptides of variable length, mainly of 13–25 amino            

acid residues(3). The peptide-binding groove most often contains four major pockets           
that interact with the side-chains of anchoring residues located at positions 1, 4, 6,              

and 9 of the 9-mer binding-core of the bound ligand. These pockets thus determine              
the binding motif of the peptides that can be presented by an MHCII molecule(4,5). A               

key feature of the MHC genes is the high level of polymorphism. For example in               

humans, three conventional MHCII heterodimers are expressed – DR, DQ and DP –             
and a total of ~2, ~2,500, ~100, ~1,200, ~80 and ~1,000 protein-coding variants of              

the α (A) and β (B) chain genes, DRA, DRB, DQA, DQB, DPA, and DPB               
respectively, have been identified. Except for DRA, the polymorphism of MHCII           

genes is focused predominantly within the α1 and β1 domains(6), resulting in            

variations in the residues of the binding groove, and consequently determining the            
variable binding motifs and so the capacity of different MHCII molecules to bind             

different peptide sets.  
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In cattle, there are only two categories of conventional MHCII molecules, BoLA-DR            

and BoLA-DQ(7). The DRB, DQA, and DQB genes are highly polymorphic, whilst, as             
in other species, the DRA gene is essentially monomorphic(8). Although there are            

three DRB loci, only DRB3 is considered to be functionally expressed since DRB1 is              
a pseudogene and DRB2 is expressed at very low levels if at all(9). Consequently,              

the variability of expressed BoLA-DR molecules can be characterized by sequencing           

of the DRB3 gene(10). The ability to perform rapid sequence-based typing of DRB3             
using Sanger technology has resulted in DRB3 being the most intensely studied            

bovine MHC gene(11–19), with 357 alleles registered in the IPD-MHC database           
(November 2020: ​https://www.ebi.ac.uk/ipd/mhc/group/BoLA/​). 

 

Characterisation of the peptide repertoires presented by different MHCII molecules          
can enable the development of algorithms that predict potential MHC binding           

peptides within proteins rapidly. Integration of large data sets of peptides directly            
eluted off MHC molecules and sequenced by mass-spectrometry (MS), so-called          

eluted ligand (EL) data, have facilitated the generation of accurate MHC-binding           

prediction algorithms(20–27). Such ​in silico tools can accelerate antigen selection for           
vaccine development and are of particular relevance to vaccines against pathogens           

with large proteomes (e.g. eukaryotic parasites), where screening and selection of           
candidate antigens from a large number of expressed proteins would be a major             

obstacle.  

  
Analysis and interpretation of EL data are made challenging by ambiguous ligand            

MHC assignment resulting from the multiple MHC molecules expressed on the           
surface of most cells. Several approaches have been proposed to address this,            

spanning from the engineering of cell lines and/or expressed MHC molecules to            

allow for analysis of ligands of single MHC specificities (single allele (SA)            
ligands)(28–30) to computational motif deconvolution techniques(21,31,32) handling       

more complex multi-allele (MA) datasets. Within the latter category, the machine           
learning framework NNAlign_MA(33) has been demonstrated to efficiently        

deconvolute MA ligand data obtained from samples expressing multiple MHC alleles,           

enabling the construction of improved pan-specific predictors for antigen         
presentation for both the MHC class I and class II systems(33–35). NNAlign_MA            

achieves this by annotating the MA data during training in a semi-supervised manner             
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based on MHC co-occurrence, MHC exclusion, and pan-specific binding         

prediction(33). This deconvolution expands the potential training data beyond         
binding affinity (BA) peptides and SA ligands to include the more complex and             

numerous MA ligands.  
 

EL data differs from BA data in the sense that it not only captures peptide-MHC               

binding but also signals related to antigen processing. Recent MHCII prediction           
models(20,21,35) have leveraged these kinds of data and improved the prediction of            

MHCII antigen presentation. 
 

Although most peptidome studies have focused on human and murine models, the            

technique can be equally applied to other species. In the context of livestock, we              
have earlier published studies demonstrating the ability to use mass spectrometry           

data to generate highly accurate prediction algorithms for BoLA-I molecules(36)          
which have been integrated into the NetMHCpan-4.1 server(34) . Currently, there is            

no equivalent algorithm that can be used to predict peptide binding to BoLA-II             

molecules.  
 

In this study, we have used mass-spectrometry to generate peptide elution data for             
BoLA-DR molecules and use the derived data to provide the first characterization of             

binding motifs of bovine MHCII and to demonstrate the development of the first             

available ​in silico method for accurate analysis of BoLA-DR ligands for rational CD4             
T cell epitope prediction.  
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Materials and Methods 
 
Animal and cell samples. 
Brazilian Holstein-Friesian PBMC samples were obtained from frozen archived         

materials from animals within the herd at the University of Sao Paulo that had been               
included in previous experiments completed under approval from the Committee on           

the Ethics of Animals Research at the Nowavet Veterinary Clinical Studies CRO,            
Viçosa/MG, certificate numbers 56/2016 (approved on 03 August 2016) and 36/2017           

(approved on 09 June 2017). PBMC used for the characterization of BoLA-DR            

presented peptides from ovalbumin were isolated from a Holstein-Friesian animal          
from the University of Edinburgh herd with sampling conducted under a license            

granted under the UK Animal (Scientific Procedures) Act 1986. The ​Theileria           

annulata​- and ​Theileria parva​-infected cell lines used in this study had been            

established and characterised as part of previous studies and were maintained using            

routine and well-established protocols(37). The optimisation and final protocol used          
to assess the capacity of PBMC and ​Theileria annulata​-infected cell lines to take up              

ovalbumin and present peptides on BoLA-DR molecules are described in          
Supplementary Figure 1.  

 

PBMC isolation, RNA extraction and cDNA synthesis. 
Bovine PBMC were isolated by density gradient centrifugation using Ficoll Paque           

Plus (GE Healthcare Bio-Sciences, Amersham. UK) according to manufacturers’         
instructions. RNA was extracted from PBMC using TRIzol (Thermo Scientific,          

Renfrew, UK) and cDNA synthesised using the GOscript Kit (Promega,          

Southampton, UK), both according to the manufacturers’ instructions. 
 

BoLA-DRB3 sequencing. 
For BoLA-DRB3 amplification, primers (For - CCAGGGAGATCCAACCACATTTCC;       

Rev - TCGCCGCTGCACAGTGAAACTCTC) incorporating Illumina adaptors and       

multiplex identifier tags were obtained from IDT (Leuven, Belgium). PCR was           
performed using Phusion High Fidelity PCR kit (New England Biolabs), and the            

reaction was carried out in a final volume of 40 μL containing 2 μL of cDNA, 5X                 
Phusion HF Buffer, 0.8 U μL of Phusion DNA Polymerase, 3% DMSO, 0.4 mM of               
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dNTP and 0.5 μM of each primer. The reaction was performed in a G-Storm Thermal               

Cycle System (G-Storm) programmed for one cycle at 98 °C for 30 s, followed by 30                
cycles at 98 °C for 10 s, 61 °C for 30 s, and 72 °C for 45 s, with a final extension                      

period at 72 °C for 10 min. 5 μl of PCR product from each sample were pooled                 
together, run on a 1.5% agarose gel, and the band of the appropriate size was               

extracted and purified using the QIAquick PCR Purification Kit (Qiagen). A final            

purification using Agencourt AMPure XP Beads (Beckman Coulter) at a ratio of 1:1             
beads to PCR product was conducted prior to quantification of the sample and             

submission to Edinburgh Genomics for sequencing on the Illumina MiSeq V.3           
platform. Analysis of the data was conducted using a bespoke bioinformatics pipeline            

(Vasoya ​et al.​ in preparation). 

 
pBoLA-DR complexes purification. 
Cultured cells (1x10 ​9​) were washed twice with ice-cold PBS and then lysed in buffer              
(1% IGEPAL, 15mM TRIS pH 8.0, 300 mM NaCl and cOmplete protease inhibitor             

(Roche)) at a density of 2x10 ​8 cells/mL for 1 min, diluted with PBS 1:1 and               

solubilized for 45 min at 4 °C. Lysates were cleared by two-step centrifugation at              
500g for 15 min at 4 °C and then at 15,000g for 45 min at 4 °C. For initial samples                    

pBoLA-DR complexes were directly captured from the cleared lysates using 5 mg            
anti-BoLA-DR antibody (ILA21), immobilized in 1 mL of protein A resin (Amintra,            

Expedeon, Cambridge, UK). For later samples, pBoLA-DR complexes were captured          

from cleared lysates that had been depleted of peptide-BoLA-I (pBoLA-I) complexes           
by prior immunoprecipitation with 5 mg anti-BoLA-I antibody (ILA88), immobilized in           

1 mL protein A resin. Captured pBoLA-DR complexes were washed, and peptides            
eluted from BoLA-DR molecules using 10% acetic acid and the resulting proteins            

dried as described in(38). 

 
HPLC. 
The dried pBoLA-DRB3 complexes were resuspended in 150 μL of loading buffer            
(0.1% formic acid, 1% acetonitrile) and loaded onto a 4.6 × 50 mm ProSwiftTM              

RP-1S column (Thermo Scientific) for reverse-phase chromatography on an Ultimate          

3000 HPLC system (Thermo Scientific). Elution was performed using a 0.5 mL/min            
flow rate over 5 min on a gradient of 2 to 35% buffer B (0.1% formic acid in                  

acetonitrile) in buffer A (0.1% formic acid). Eluted fractions were collected from 1 to              
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8.5 min, for 30 s each. Protein detection was performed at 280 nm. Even and odd                

eluted fractions were pooled together, vacuum dried and stored at -80 °C until use. 
 

LC-MS/MS. 
Dried samples were resuspended in 20 μL of loading buffer and analyzed in an              

Ultimate 3000 nano UPLC system online coupled to an Orbitrap Fusion™ Lumos™            

Tribrid™ Mass Spectrometer (Lumos) (Thermo Scientific) or Q Exactive™ HF Hybrid           
Quadrupole-Orbitrap™ Mass Spectrometer (HFX). Peptides were separated in a 75          

μm × 50 cm PepMap C18 column using a 1 h linear gradient from 2 to 30% buffer B                   
in buffer A at a flow rate of 250 nL/min (∼600 bar). Peptides were introduced into the                 

mass spectrometer using a nano Easy Spray source (Thermo Scientific) at 2000 V.             

Subsequent isolation and higher energy C-trap dissociation (HCD) was induced in           
the 20 most abundant ions per full MS scan with an accumulation time of 120 ms                

and an isolation width of 1.2 Da (Lumos), or 1.6 Da (HFX). All fragmented precursor               
ions were actively excluded from repeated selection for 30 s. The mass spectrometry             

proteomics data have been deposited to the ProteomeXchange Consortium via the           

PRIDE(39) partner repository with the data set identifier PXDXXX (this ID will be             
made available upon manuscript acceptance). 

 
Mass spectrometry data analysis. 
The sequence interpretations of mass spectrometry spectra were performed using a           

database containing all bovine UniProt entries combined with entry P01012 for           
chicken ovalbumin (total of 41610 entries) and 4084 entries for ​Theileria parva            

Muguga proteome (40). The spectral interpretation was performed using ​de          

novo​-assisted database search with PEAKS 10 (Bioinformatics Solutions), in 'no          

enzyme' mode, with mass tolerances of 5 ppm for precursor ions and 0.03 Da for               

fragment ions. The data was further searched against 313 inbuild peptide           
modifications. 

 
Filtering of MS-identified peptides. 
Previous to all analyses, the lists of peptides identified were filtered to remove: 1)              

peptides presenting post-translational modifications; 2) peptides with a        
peptide-spectrum matching score -Log10(P) < 15; 3) any peptides derived from ​T.            

parva Muguga, including the ones identified in both bovine and ​T. parva Muguga             
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entries; and 4) peptides that shared a 9-mer overlap with the CD4 T-cell epitope              

benchmark. 
 

Model Training. 
All ligand data were filtered to include only peptides containing 13-21 residues, to             

exclude any residual potentially co-eluted MHCI peptides. Negative peptides were          

added as described earlier(35) by sampling random natural peptides from the bovine            
proteome (described below). Models were trained in a 5-fold cross-validation manner           

with partitions constructed from 9-mer common-motif clustering, ensuring no overlap          
between test- and training-data. Three model architectures were used (20, 40, and            

60 hidden neurons), each trained with ten random weight initialization, resulting in an             

ensemble of 150 networks. Models were evaluated in a percentile rank fashion,            
meaning that prediction scores are normalized against a distribution of prediction           

scores from random natural peptides. Rank scores are more interpretable than raw            
prediction scores and allow for fairer comparison across alleles. 
 

Two models were trained in this project, both using the NNAlign_MA machine            

learning framework(33). The first model (BoLA) was trained on the novel BoLA SA             

and MA EL data combined with the BA data from NetMHCIIpan-4.0 with an added              
set of BoLA BA data (roughly 250 measurements for each BoLA-DR molecules            

incorporating the three different BoLA-DRB3 alleles - generated ​in house​). For the            
second model (All Data), the BoLA EL data were combined with all the EL data from                

the NetMHCIIpan-4.0 data set (human and murine EL data) and the same BA data              

as the BoLA model. The BoLA and All Data models share partitions. 
 

Explicit encoding of ligand context was leveraged to capture antigen processing           
signatures, as previously described (20). Briefly, in context encoding 12 residues of            

the ligand and antigen are fed as input to the model, 6 are from the N-terminal region                 

of the ligand (3 residues upstream of the ligand in the antigen and 3 N-terminal               
Peptide Flanking Regions (PFRs)), and 6 are from the C-terminal region (3            

C-terminal PFRs and 3 downstream of the ligand). 
 

Peptide lists resulting from BoLA-DR eluted ligand data are by nature only positive             

examples of ligands that interact with MHCII (excepting co-eluting peptide noise from            
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assay). To train a peptide-MHCII interaction model, the training data must include            

examples of non-interacting peptides sampled from the same background as positive           
data. To achieve this, peptides (and their context, see above) were randomly            

sampled from the bovine proteome. Random negative peptides were made to follow            
a uniform length distribution of 13-21 residues, sampling for each length five times             

the number of peptides in the most commonly observed ligand length for a dataset.              

Negatives were sampled independently for each bovine dataset with a uniform           
length distribution so the model can learn the length distribution of ligands(27,41). 
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Results 
 
Analysis of the BoLA-DRB3 repertoire in an experimental cohort of Brazilian           
Holstein-Friesians. 
The IPD-MHC database includes over 300 BoLA-DRB3 alleles, of which only a small             
subset could be included in this study. To identify the alleles that would be most               

relevant to ongoing experiments, a novel high-throughput MiSeq BoLA-DRB3         
sequencing approach (Vasoya ​et al.​, in preparation) was used to examine the            

frequency of DRB3 alleles in a representative cohort of 30 Holstein-Friesian animals            

from the experimental herd at the University of São Paulo, Brazil. A total of 22 DRB3                
alleles were identified, including a novel allele that had not been previously            

described (nDRB3.1). Typical of MHC allele distribution in most cattle populations,           
there was a small number of dominant alleles, DRB3*15:01, DRB3*01:01,          

DRB3*11:01, DRB3*14:01:01, and DRB3*12:01, which were present at a frequency          

of ≥5%, whilst the remaining 17 alleles were present at lower frequencies (Figure 1). 
 

Figure 1 - Frequencies of BoLA-DRB3 alleles detected by a MiSeq genotyping approach in a               
subset of the experimental Holstein-Friesian cattle herd at the University of Sao Paulo (n=30).              
The frequency data is shown as a Pareto plot with the frequency of individual alleles displayed on the                  
left vertical axis and the cumulative frequencies of the DRB3 alleles shown on the right vertical axis.                 
Allele nDRB3.1 was a novel sequence. 
 
Generation and analysis of MS data for BoLA-DR eluted peptides. 
Initial experiments to establish a BoLA-DR elution technique used O11 and 2229            

Theileria annulata (TA) cell lines which had previously been confirmed to be            
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homozygous for DRB3*10:01 and DRB3*11:01, respectively (Table 1). The length          

distribution of the peptides obtained from the ​2229TA and both replicates (n1 and             
n2) of O11TA ​cell lines was bi-modal. One peak, centred around 14-15mers was the              

size anticipated for MHCII ligands; the second peak, centred around 8-10mer           
peptides, was more consistent with the length distribution of MHCI ligands (Figure            

2A), and it was speculated that this represented a substantial level of co-purification             

of BoLA-I molecules during BoLA-DR immunoprecipitation. To investigate this,         
NetMHCpan-4.1(34) was used to predict the binding potential of all 8-13-mer           

peptides in each of the MS data sets for each of the BoLA-I molecules expressed in                
the given cell line (Table 1). The sequence logos of these peptide sets             

(Supplementary Figure 2) showed remarkable similarity to the motifs previously          

described for the BoLA-I alleles in these haplotypes(34) and between 56.8-70.9% of            
the 8-13-mer peptides in each sample were predicted to be BoLA-I binders (defined             

using a binding threshold of 5% rank). This corroborated the hypothesis that the             
majority of these peptides originated from co-precipitated BoLA-I ligands and their           

removal resulted in a substantial diminution of the 8-10mer peak (Figure 2B).  

 
Table 1 - Overview of MS BoLA-DRB3 ligand elution datasets. For each sample, information              
regarding BoLA-DRB3 alleles, BoLA-I haplotypes, infecting pathogen, the number of ligands identified            
in each sample, use of prior pBoLA-I immunoprecipitation (IP) and number and percentage of              
predicted BoLA-I binders are shown. The 2229TA and O11TA samples were generated without prior              
pBoLA-I immunoprecipitation (see text). Samples PBMC_OVA and O11TA_n2 were OVA-loaded.          
*Preliminary pBoLA-I IP depletion failed on this sample. §: from          
https://www.ebi.ac.uk/ipd/mhc/group/BoLA/haplotype/ 

12 

Sample 

BoLA-DRB3 
alleles 

BoLA-I 
haplotypes 

§ 

Pathogen  # peptides 
Prior 

pBoLA-I 
IP 

# 
predicted 

BoLA-I 
binders 

Percentage 
BoLA-I 
binders 

2229TA 11:01 A14/A14 T. annulata 1417 No IP 454 32 

O11TA_n1 10:01 A10/A10 T. annulata 5213 No IP 2627 50.4 

O11TA_n2 10:01 A10/A10 T. annulata 4960 No IP 2666 53.8 

PBMC_OVA 01:01,10:01 A10/A11 - 3433 No IP 389 11.3 

2229TP 11:01 A14/A14 T. parva 1280 No IP* 417 32.6 

 2824TP 16:01  A19/A19 T. parva 4379 IP 38 0.9 

5350TP 12:01  A20/A20 T. parva 5422 IP 160 3 

495TP 10:01,11:01 A10/A14  T. parva 6050 IP 488 8.1 
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Figure 2 - Length distribution of BoLA-DR eluted peptides. ​Kernel density estimates comparing             
length distributions of BoLA-DR eluted peptides using different strategies for removal of BoLA-I eluted              
contaminants: (A) Direct pBoLA-DR elution; (B) Direct pBoLA-DR elution with subsequent removal of             
BoLA-I binders as predicted by NetMHCpan-4.1; (C) Initial immunoprecipitation to deplete pBoLA-I            
complexes. (D) Same as for panel (C) but with subsequent removal of BoLA-I binders as predicted by                 
NetMHCpan-4.1. Due to failed pBoLA-I depletion sample 2229TP is not represented in this figure. 
 

To address the observed co-enrichment of pBoLA-I in pBoLA-DR         
immunoprecipitations, it was decided to apply a sequential immunoprecipitation         

protocol, starting with pBoLA-I complex depletion using an anti-BoLA-I monoclonal          

antibody (IL-A88), followed by pBoLA-DR precipitation. This two-step protocol was          
applied to samples from a series of seven ​T. parva​-infected cell lines (Table 1) which               

expressed a range of DRB3 alleles present in our experimental cohort (*11:01,            
*10:01, *1501, *1201) or which were of interest because of ongoing ​T. parva CD4 T               

cell epitope identification studies that included these alleles (*16:01 and *20:01). The            
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total numbers of peptides identified in these samples ranged between 1280 and            

8335 (Table 1), and the distribution of the peptide lengths is shown in Figure 2C. The                
results in this figure show a substantially lower representation of 8-10mer peptides,            

indicating successful reduction but not complete depletion of BoLA-I eluted peptides           
(Figure 2C). Analysis of the binding potential of the peptides in the 8-10mer peak              

confirmed that the majority were, in fact, still BoLA-I binders (Table 1 and Figure 2D);               

indicating that although the preliminary BoLA-I depletion had a profound effect on            
reducing peptides from co-eluted pBoLA-I, it did not eliminate them completely.           

Removal of predicted MHCI binders from the datasets (ranging in frequency from            
0.9-8.9%, Table 1) effectively abolished the 8-10mer peak (Figure 2D), establishing           

that i) combined BoLA-I depletion by prior immunoprecipitation and bioinformatic          

removal of predicted MHCI-binders provided the optimal results and ii) consistent           
with other MHCII molecules, BoLA-DRB3 molecules have a preference for binding           

peptides of length 13-21 amino acids (after the combined filtering, 80.7% of the             
peptides fall in this length range). 

 

Motif deconvolution and prediction model generation from MS data sets of           
BoLA-DR eluted ligands. 
Using the MS BoLA-DR EL data sets, alternative models for BoLA-DRB3 motif            
deconvolution were assessed and a prediction model for BoLA-DRB3 ligands was           

developed. Details for the model training and model parameters are described in the             

materials and methods. In short, bovine ligand data was filtered only to include             
peptides of 13-21 residues and were used as positive data points, with negative data              

points added as previously described(35). Two models were trained: a ‘BoLA’ model            
using the novel BoLA-DR elution data combined with the BA (binding affinity) data             

from NetMHCIIpan-4.0 and a set of BA data covering three different BoLA-DRB3            

alleles; and an ‘All Data’ model, which includes the BA and EL data of the BoLA                
model with added murine and human EL data from the NetMHCIIpan-4.0 data set.             

Both models were trained with and without assessing the ‘context’ of the peptide             
within the parent protein (MAC- and MA-models, respectively). Here, ligand context           

refers to including residues near the ligand termini, inside and outside the ligand, to              

capture signals of antigen processing. Further details on data partitioning, model           
training and context definition are provided in materials and methods. 
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The results of the cross-validation evaluation measured in terms of the AUC are             

shown in Figure 3 and show clear differences in the performance of the models              
used. Firstly, for both the ‘BoLA’ and the ‘All Data’ models, every cell line data set                

displayed a higher AUC for the MAC-model than the MA-Model (p-value: 0.00097 in             
a binomial test counting number of cell lines with higher AUC for MAC-models             

versus MA-models). This agrees with earlier studies for the human and mouse            

MHCII system(20,35,42), showing the value of incorporating encoding context into          
the prediction models. Secondly, the ‘BoLA’ MAC-model has significantly higher          

median AUC compared to the ‘All Data’ MAC-Model (p-value: 0.00195 in a binomial             
test counting cell lines where ‘BoLA’ MAC-model has higher AUC compared to ‘All             

Data’ MAC-model, excluding ties), indicating that inclusion of the human and murine            

training data had no benefit in the generation of a model for BoLA-DR binding              
prediction. This comparative evaluation clearly demonstrated the ‘BoLA-MAC’ model         

exhibited the best performance and so was selected for subsequent use.  
 

 
Figure 3 - Cross-Validation evaluation of bovine EL data. Models were evaluated on the BoLA-DR               
ligand data in a cross-validation manner. The boxplot shows the AUC per cell line sample for the                 
BoLA and All Data models with and without context encoding (MAC-Model and MA-Model,             
respectively). Each point in the figure represents data from a single sample. Of note, the outlier                
sample with a cross-validated AUC performance below 0.90 for the BoLA-MAC model was 2229TA;              
this sample had 27% ligands assigned as contaminants causing the decrease in the observed AUC               
(Supplementary Figure 3). 
 

15 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422738doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422738
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Examples of BoLA-DRB3 allele motif deconvolution from EL data-sets as performed           

by the BoLA-MAC model are shown in Figure 4. The motif deconvolution results for              
each sample included in this study are displayed in Supplementary Figure 3, and the              

motifs for each of the seven BoLA-DRB3 alleles covered by the EL data (combining              
the data from all samples) are shown in Supplementary Figure 4. As can be seen in                

Figure 4, the deconvolution results in well-defined motifs, with the anticipated           

preference for residues at positions 1, 4, 6 and 9 of the binding core and limited                
exclusion of non-conforming peptides (average of 8.6% of ligands assigned as           

contaminants in samples included in Figure 4). The data presented here also shows             
the ability of the deconvolution to discriminate the motifs of both BoLA-DRB3 alleles             

in heterozygous samples (495TP and 2123TP) as well as the consistency in the             

motifs for the same BoLA-DRB3 molecule obtained from different EL data-sets (e.g.            
BoLA-DRB3*10:01 in 495TP and 5072TP). These observations are consistent         

across all of the samples included in this study, with non-conforming (trash) peptides             
constituting only ~12.5%, a high average Pearson correlation between motifs for the            

same BoLA-DRB3 molecule (0.92 for BoLA-DRB3*10:01 and 0.908 for         

BoLA-DRB3*11:01, Supplementary Figure 5), and a very high specificity being          
demonstrated for individual motifs (PPV values in the range 0.751-0.868, across the            

different deconvolutions, Supplementary Table 1). As such, the data confirms that           
the BoLA-MAC model permitted the generation of high resolution and reproducible           

BoLA-DRB3 binding motifs from EL data. This model, renamed as NetBoLAIIpan,           

has been made publicly available at ​www.cbs.dtu.dk/services/NetBoLAIIpan​. 
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Figure 4 - Examples of deconvoluted motifs derived from EL BoLA-DR datasets. From each cell               
line defined as being heterozygous for DRB3, two peptide-binding motifs were derived. Where cell              
lines express the same DRB3 allele, consistent motifs were identified (e.g., both 2123TP and 495TP               
express DRB3*11:01 and show a similar peptide-binding motif). Motifs were generated from ligands             
with a rank score of <20 for the context-model. Ligands with a predicted rank >20 are assigned to the                   
Trash cluster. Logos show alignments of predicted peptide binding cores where numbers in             
parenthesis represent the number of binding cores. 
 

NetBoLAIIpan can be used to predict BoLA-DRB3 presented peptides derived          
from exogenous proteins.  
To extend our studies on the utility of the NetBoLAIIpan method developed above,             
the model’s ability to predict which peptides would be presented by BoLA-DR            

molecules from an exogenous protein was examined. Here, both PBMC          
(BoLA-DRB3*01:01 and *11:01) and the O11TA_n2 cell line (BoLA-DRB3*10:01)         

described above were pulsed with soluble ovalbumin (OVA, see materials and           

methods and Supplementary Figure 1 for details) before performing pBoLA-DR          
elution. Only one OVA-derived peptide (“SSANLSGISSAESLK”) was identified in the          

O11TA sample, which demonstrated very poor predicted binding to         
BoLA-DRB3*10:01 with a predicted percentile rank value of 29.2%, strongly          
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suggesting it was not a genuine BoLA-DR binding peptide. In contrast, seven            

OVA-derived peptides were identified in the PBMC sample. Mapping the seven           
peptides onto the OVA protein sequence (Figure 5 - Inserted panel) shows that all              

the peptides clustered around the 9-mer core “INKVVRFDK”, located at OVA​54-62​,           
with a common motif IxxVxRxxK – matching the motif described in Supplementary            

Figure 4 for BoLA-DRB3*01:01. Also of interest is that six out of the seven ligands               

observed had proline in the C-2 position, which is a common feature in context              
motifs(20). The NetBoLAIIpan model was applied to predict potential DRB3*01:01          

and DRB3*10:01 ligands in the OVA protein sequence. To achieve this, the OVA             
protein was ​in silico digested into overlapping 13-21-mer peptides, and binding to            

DRB3*01:01 and DRB3*10:01 was predicted for each peptide with predicted ligands           

identified using a 1% rank score threshold; this resulted in the identification of 48              
predicted ligands. The MS identified and ​in silico predicted ligands were then            

stacked onto the OVA protein sequence, and a profile was calculated showing the             
relative number of measured and predicted ligands mapped to each amino acid            

position within the protein. The MS identified and ​in silico predicted ligand profiles             

demonstrated a striking concordance, with the MS identified peptides overlapping          
with the dominant peak of ​in silico predicted peptides (38 overlapping peptides            

located at positions 45-71) (Figure 5) (similar data were obtained using rank            
threshold values in the range 0.5-2.0%, results not shown), indicating that           

NetBoLAIIpan can accurately predict ligands derived from defined proteins that are           

experimentally shown by MS to be presented by BoLA-DR.  
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Figure 5 - Profiles of predicted and measured OVA ligands in the PBMC cell line. (Main Figure)                 
The gray shaded area shows the relative number of measured EL ligands in the PBMC sample                
overlapping each position in the OVA sequence. The dotted line represents the mapping of              
13-21-mers from the OVA sequence predicted with a rank score < 1% for the BoLA-DRs expressed in                 
the PBMC sample; the peaks at positions 6-23, 45-71, 196-210 and 275-291 represent 5, 38, 1 and 4                  
predicted BoLA-DR binding peptides, each with median predicted rank scores of 0.64, 0.45, 0.82, and               
0.56, respectively. (​Inserted panel) Mapping of the seven OVA peptides measured in the PBMC cell               
line. All but one of the peptides shared a binding core “INKVVRFDK” in positions 54-62 of the OVA                  
sequence. 
 

Validation of the BoLA model for BoLA-DRB3 presented CD4 T cell epitope            
prediction.  
Next, the performance of NetBoLAIIpan was validated using a set of 25            

experimentally validated BoLA-DR restricted ​T. parva ​CD4 T cell epitopes (Morrison           
et al., manuscript in preparation, refer to Supplementary Table 2). Here, the            

NetMHCIIpan-4.0 was included as a reference model to test the extent to which             
peptide presentation rules learned from human and murine data extrapolate to           

bovine epitopes. Each epitope source protein was ​in silico digested into peptide            

strings matching the length of the epitopes, and each peptide was then assigned the              
lowest predicted rank score from the set of 13-19-mers whose binding core            
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overlapped with the peptide string. Next, the epitope’s F-rank value was calculated            

as the percentage of peptides with a greater prediction score than the epitope.             
Hence, a perfect prediction has an F-rank value of 0, and a random prediction              

presents a value of 50. Comparison of F-rank values obtained by the different             
models for the set of ​T. parva epitopes (Figure 6), shows that the NetBoLAIIpan              

models with or without context achieved equivalent prediction performance both          

achieving a median F-rank value of 0.697% and median prediction percentile rank            
score for the epitopes of 0.2. In practical terms, these results translate into 12 out of                

25 epitopes being ranked as the top predicted peptide within the given source             
protein. Both NetBoLAIIpan models achieved significantly better F-ranks compared         

to NetMHCIIpan-4.0 (p-values: <0.001 comparing the two NetBoLAIIpan models to          

NetMHCIIpan-4.0). The large difference in the performance of the NetMHCIIpan-4.0          
and NetBoLAIIpan models clearly demonstrates the power of combining BoLA-DR          

EL data and advanced immunoinformatics to generate novel tools for characterizing           
antigen presentation epitope identification in the BoLA-DR system.  

 

Figure 6 - Comparison of different BoLA-DR prediction models using validated CD4 T cell              
epitopes. Distribution of percentage F-rank performance values for defined BoLA-DR presented ​T.             
parva epitopes using the NetBoLAIIpan and NetMHCIIpan-4.0 models with (Context) and without            
context (No Context). Prediction scores were assigned to each overlapping epitope length-matched            
peptide in the epitope source protein as described in the text. The y-axis is shown in log-scale and                  
F-rank values below 0.1 are presented as 0.1005 to avoid non-defined values. 
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Discussion 

A pre-requisite for the development of next-generation subunit vaccines is the           
identification of antigens containing epitopes that can be recognised by B cells, CD8             

T cells and CD4 T cells, as appropriate for the immune response required. Several              

bioinformatic tools that enable the prediction of CD4 T cell epitopes in humans have              
been developed and the recent integration of large-scale MHC-eluted peptide data           

have led to a dramatic improvement in their performance(21,30,35). In contrast,           
there is a lack of equivalent bioinformatics tools designed specifically for bovine            

MHCII molecules, and since the currently available tools have not incorporated           

bovine MHCII EL data during their development, they perform with limited accuracy            
when applied to bovine data (as demonstrated in this study - Figure 6). In previous               

studies, we have shown how the use of high-quality EL mass spectrometry data             
combined with advanced immunoinformatics and machine-learning techniques can        

further our understanding of the rules underlying MHC antigen processing and           

presentation, allowing the development of improved prediction methods for MHC          
ligands and T cell epitopes(33–35). Here, we have extended this work to cover, for              

the first time, BoLA-DR molecules.  

Results from our initial experiments indicated that the peptides isolated following           

pBoLA-DR immunoprecipitation were heavily contaminated with co-eluted       

pBoLA-I-presented peptides. This phenomenon has been reported previously in         
other studies using equivalent protocols for immunoprecipitation of MHCII molecules          

from human cell lines and has been hypothesised to reflect that the protocol for              
lysing the cells results in the immunoprecipitation of membrane fractions, which           

contain both MHCI and MHCII molecules(43,44). In this study neither prior depletion            

of pBoLA-I (by immunoprecipitation) nor bioinformatic prediction and removal of          
BoLA-I contaminant ligands were completely effective in eliminating the         

BoLA-I-binding contamination when applied alone - both left a remnant peak of            
8-10-mer peptides. However, the combined use of these two approaches was           

successful in removing the 8-10-mer peptide peak, resulting in 13-21-mer dominated           

profiles characteristic of MHCII presented peptides. On this basis we would propose            
that future studies for BoLA-II immuno-peptidomics should routinely make use of           

both preliminary depletion of pBoLA-I complexes by use of an initial pBoLA-I            
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immunoprecipitation step (consistent with recently developed approaches for human         

MHCII immuno-peptidomic studies(21,45)), and ​in silico immunoinformatic BoLA-I        
peptide-binding depletion using currently available prediction methods(34,36) (or if         

working with cell lines expressing alternative BoLA-I haplotypes by generating          
BoLA-I peptide-binding motifs by subjecting the product of the preliminary pBoLA-I           

immunoprecipitation to elution, mass-spectrometric analysis and subsequent motif        

deconvolution). 

In this study, we compared two models for developing the BoLA-DR prediction            

algorithm. The first of these was trained using EL data only from BoLA-DR, whilst the               
second was trained on the same data augmented by an exhaustive human (HLA)             

and murine (H-2) MHCII-eluted peptide dataset (both models also incorporated          

human, murine and a small amount of bovine BA data). A cross-validation evaluation             
demonstrated that the former model had superior performance, suggesting that          

integration of cross-species EL datasets was not beneficial to the accuracy of the             
results generated by this model. However, this evaluation was restricted to the            

limited set of BoLA-DRB3 alleles covered by the EL data generated in the current              

study, and it remains to be seen whether a model integrating cross-species EL data              
would allow improved prediction when extrapolated to data generated from samples           

expressing other BoLA-DRB3 alleles. As over 300 BoLA-DRB3 alleles have been           
described at present, further evaluation of how best to incorporate inter- and            

intra-species data to improve the algorithm’s performance is warranted as it will not             

be feasible for BoLA-DR EL data to be generated for more than a subset of these                
alleles. The seven BoLA-DRB3 alleles included in this study were selected           

predominantly based on their frequency in the experimental herd of Holstein-Friesian           
cattle at the University of São Paulo (USP) (in combination with the availability of              

DRB3-genotyped TA/TP cell lines and validated BoLA-DRB3 presented epitope         

data). The cumulative total frequency of these seven alleles in the samples of             
animals from the USP herd was ~48% and retrospective analysis of the University of              

Edinburgh herd shows that these alleles have an even higher representation           
(~67.9%). This is broadly in line with the frequencies observed in Holstein-Friesian            

herds across South America and other parts of the world (51.2-73%)(18). Analysis of             

the BoLA-DRB3 molecules in Holstein-Friesian animals is attractive for several          
reasons: i) due to the high levels of inbreeding, characterisation of a small number of               
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DRB3 alleles will allow comprehensive coverage of the breed (e.g. inclusion of            

another five DRB3 alleles would give 77-98% coverage of Holstein-Friesian          
populations(18) and ii) as high-value dairy animals there is great interest in            

introducing Holstein-Friesians into low-income countries (frequently tropical) as part         
of the process of increasing agricultural productivity and food security; a major            

limitation to this process is the Holstein-Friesian susceptibility to many of the            

pathogens prevalent in regions of the world. Consequently, there is a particular            
interest in finding interventions, such as vaccination, that can be used to protect             

Holstein-Friesian animals in tropical environments.  

A critical and general issue for rational vaccine development is the identification of             

relevant antigens. Approaches dependent on conventional antigen-screening       

techniques have limitations, especially when applied to complex pathogens (e.g.          
eukaryotic pathogens), where the size of the proteomes makes a comprehensive           

analysis of the full potential antigen repertoire prohibitively expensive and laborious.           
For such pathogens, bioinformatic tools that can help rationalise antigen screening           

assays and/or selection are of particular value and have a significant potential for             

accelerating vaccine development. A potential approach would be to use          
bioinformatics tools to predict which peptides from a candidate antigen would be            

present by BoLA molecules when delivered as a vaccine. To directly evaluate this,             
we examined NetBoLAIIpan’s ability to correctly identify the peptides from ovalbumin           

that had been pre-loaded onto cell’s then subjected to MHC-elution analysis. A            

comparison of the set of eluted peptides from a PBMC sample and the ​in silico               
predicted BoLA-DRB3 binding peptides demonstrated an exceptionally high level of          

concordance. This suggests that the ability of NetBoLAIIpan to accurately model the            
peptides derived from an exogenously administered protein could be exploited to           

provide an efficient and inexpensive ​in silico preliminary evaluation of the potential            

immunogenicity of candidate antigens and so contribute to the rational selection of            
antigens(46) prior to undertaking expensive and laborious ​in vivo/in vitro          

experiments. In particular, such an analysis could be used to assess the MHC             
coverage of individual antigens, and thus inform the construction of optimal vaccine            

designs. An example of how such ​in silico analysis could be employed is given in               

Supplementary File 6. 
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During the development of the prediction model, it was clear that the integration of              

signals relating to antigen-processing was beneficial. That is, the inclusion of           
information regarding the ‘context’ of the peptides (i.e. both the amino acid residues             

in the protein flanking the peptides and the amino acids at the termini of the peptide)                
significantly improved the power of the models for predicting ligands. The           

NetBoLAIIpan model exhibited an unprecedented high performance when evaluated         

using a set of validated BoLA-DRB3 presented epitopes from ​T. parva​, achieving a             
median F-rank score of 0.697% (corresponding to 12 out of 25 of the defined              

epitopes being the highest predicted peptides within the source protein). This           
performance was significantly higher than the 19.23% achieved by the previously           

available NetMHCIIpan model which had not been trained on the BoLA-DRB3 elution            

peptide data, demonstrating the utility of generating and incorporating these data           
sets. In line with earlier work, context did not impart the same benefit in the task of                 

ranking CD4 epitopes as was found for ligand data. Here, the context model was              
found to perform equivalent to the non-context model. These results align with earlier             

work using the mouse and human MHC class II systems(20,35,42). Interestingly,           

however further improvements in epitope prediction could be obtained by ranking           
antigen peptides based on the number of binders within overlapping 13-19-mers.           

This method of assigning epitope ranks is based on the intuitive assumption that             
protein regions with multiple predicted binders have a greater chance of being            

presented by BoLA-DRB3 molecules. Using this approach, the median F-rank score           

was 0.362%, suggesting a non-trivial improvement in the prediction. However,          
further benchmarking on larger epitope sets to systematically evaluate the          

comparative performance of this methodology is needed before the recommendation          
that it is routinely adopted can be made. 

In conclusion, this study has proven the high value and important synergistic effect of              

combining peptide-MHC elution MS data and advanced immunoinformatics to         
characterize antigen presentation and perform ligand/epitope identification in the         

BoLA-DR system.  
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