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Abstract

Major histocompatibility complex (MHC) peptide binding and presentation is the most
selective event defining the landscape of T cell epitopes. Consequently,
understanding the diversity of MHC alleles in a given population and the parameters
that define the set of ligands that can be bound and presented by each of these
alleles (the immunopeptidome) has an enormous impact on our capacity to predict
and manipulate the potential of protein antigens to elicit functional T cell responses.
Liquid chromatography-mass spectrometry (LC-MS) analysis of MHC eluted ligands
(EL data) has proven to be a powerful technique for identifying such peptidomes,
and methods integrating such data for prediction of antigen presentation have
reached a high level of accuracy for both MHC class | and class Il. Here, we
demonstrate how these techniques and prediction methods can be readily extended
to the bovine leukocyte antigen class Il DR locus (BoLA-DR). BoLA-DR binding
motifs were characterized by EL data derived from cell lines expressing a range of
DRB3 alleles prevalent in Holstein-Friesian populations. The model generated
(NetBoLAllpan - available as a web-server at

www.cbs.dtu.dk/services/NetBoLAllpan) was shown to have unprecedented

predictive power to identify known BoLA-DR restricted CD4 epitopes. In summary,
the results demonstrate the power of an integrated approach combining advanced
MS peptidomics with immunoinformatics for characterization of the BoLA-DR antigen
presentation system and provide a novel tool that can be utilised to assist in rational

evaluation and selection of bovine CD4 T cell epitopes.
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Introduction

Major histocompatibility complex (MHC) genes play a vital role in the regulation of
adaptive immunity. Whilst classical MHC class | genes are expressed on most
nucleated cells, MHC class Il (MHCII) molecules show a more restricted expression
and are predominantly expressed on professional antigen-presenting cells such as
dendritic cells, B-cells, and macrophages. The MHCII system enables peptides
derived from both extracellular and intracellular proteins that have been delivered in
the endocytic pathway to be loaded into the peptide-binding groove of MHCII
molecules and be displayed as stable peptide-MHCII complexes (pMHCII) on the cell
surface(1). CD4 T cells bearing cognate TCRs capable of binding specific pMHCII
complexes can become activated and perform a range of functions, including
supporting other immune effector cells such as macrophages, B cells and CD8 T
cells(2). Thus, pMHCII molecules play a critical role in initiating and developing both

humoral and cell-mediated adaptive immune responses.

MHCII molecules are heterodimers composed of an a and B chain, each consisting
of an extracellular domain, a transmembrane region, and an intracytoplasmic tail.
The distal membrane domains (a1 and 1, respectively) form an open
peptide-binding groove that binds peptides of variable length, mainly of 13—-25 amino
acid residues(3). The peptide-binding groove most often contains four major pockets
that interact with the side-chains of anchoring residues located at positions 1, 4, 6,
and 9 of the 9-mer binding-core of the bound ligand. These pockets thus determine
the binding motif of the peptides that can be presented by an MHCII molecule(4,5). A
key feature of the MHC genes is the high level of polymorphism. For example in
humans, three conventional MHCII heterodimers are expressed — DR, DQ and DP —
and a total of ~2, ~2,500, ~100, ~1,200, ~80 and ~1,000 protein-coding variants of
the a (A) and B (B) chain genes, DRA, DRB, DQA, DQB, DPA, and DPB
respectively, have been identified. Except for DRA, the polymorphism of MHCII
genes is focused predominantly within the a1 and B1 domains(6), resulting in
variations in the residues of the binding groove, and consequently determining the
variable binding motifs and so the capacity of different MHCII molecules to bind

different peptide sets.
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In cattle, there are only two categories of conventional MHCII molecules, BoLA-DR
and BoLA-DQ(7). The DRB, DQA, and DQB genes are highly polymorphic, whilst, as
in other species, the DRA gene is essentially monomorphic(8). Although there are
three DRB loci, only DRB3 is considered to be functionally expressed since DRB1 is
a pseudogene and DRB2 is expressed at very low levels if at all(9). Consequently,
the variability of expressed BoLA-DR molecules can be characterized by sequencing
of the DRB3 gene(10). The ability to perform rapid sequence-based typing of DRB3
using Sanger technology has resulted in DRB3 being the most intensely studied
bovine MHC gene(11-19), with 357 alleles registered in the IPD-MHC database
(November 2020: https://www.ebi.ac.uk/ipd/mhc/group/BolLA/).

Characterisation of the peptide repertoires presented by different MHCIlI molecules
can enable the development of algorithms that predict potential MHC binding
peptides within proteins rapidly. Integration of large data sets of peptides directly
eluted off MHC molecules and sequenced by mass-spectrometry (MS), so-called
eluted ligand (EL) data, have facilitated the generation of accurate MHC-binding
prediction algorithms(20—27). Such in silico tools can accelerate antigen selection for
vaccine development and are of particular relevance to vaccines against pathogens
with large proteomes (e.g. eukaryotic parasites), where screening and selection of
candidate antigens from a large number of expressed proteins would be a major

obstacle.

Analysis and interpretation of EL data are made challenging by ambiguous ligand
MHC assignment resulting from the multiple MHC molecules expressed on the
surface of most cells. Several approaches have been proposed to address this,
spanning from the engineering of cell lines and/or expressed MHC molecules to
allow for analysis of ligands of single MHC specificities (single allele (SA)
ligands)(28-30) to computational motif deconvolution techniques(21,31,32) handling
more complex multi-allele (MA) datasets. Within the latter category, the machine
learning framework NNAlign_MA(33) has been demonstrated to efficiently
deconvolute MA ligand data obtained from samples expressing multiple MHC alleles,
enabling the construction of improved pan-specific predictors for antigen
presentation for both the MHC class | and class Il systems(33-35). NNAlign_MA

achieves this by annotating the MA data during training in a semi-supervised manner
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based on MHC co-occurrence, MHC exclusion, and pan-specific binding
prediction(33). This deconvolution expands the potential training data beyond
binding affinity (BA) peptides and SA ligands to include the more complex and

numerous MA ligands.

EL data differs from BA data in the sense that it not only captures peptide-MHC
binding but also signals related to antigen processing. Recent MHCII prediction
models(20,21,35) have leveraged these kinds of data and improved the prediction of

MHCII antigen presentation.

Although most peptidome studies have focused on human and murine models, the
technique can be equally applied to other species. In the context of livestock, we
have earlier published studies demonstrating the ability to use mass spectrometry
data to generate highly accurate prediction algorithms for BoLA-I molecules(36)
which have been integrated into the NetMHCpan-4.1 server(34) . Currently, there is
no equivalent algorithm that can be used to predict peptide binding to BoLA-II

molecules.

In this study, we have used mass-spectrometry to generate peptide elution data for
BoLA-DR molecules and use the derived data to provide the first characterization of
binding motifs of bovine MHCII and to demonstrate the development of the first
available in silico method for accurate analysis of BoLA-DR ligands for rational CD4

T cell epitope prediction.
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Materials and Methods

Animal and cell samples.

Brazilian Holstein-Friesian PBMC samples were obtained from frozen archived
materials from animals within the herd at the University of Sao Paulo that had been
included in previous experiments completed under approval from the Committee on
the Ethics of Animals Research at the Nowavet Veterinary Clinical Studies CRO,
Vigosa/MG, certificate numbers 56/2016 (approved on 03 August 2016) and 36/2017
(approved on 09 June 2017). PBMC used for the characterization of BoLA-DR
presented peptides from ovalbumin were isolated from a Holstein-Friesian animal
from the University of Edinburgh herd with sampling conducted under a license
granted under the UK Animal (Scientific Procedures) Act 1986. The Theileria
annulata- and Theileria parva-infected cell lines used in this study had been
established and characterised as part of previous studies and were maintained using
routine and well-established protocols(37). The optimisation and final protocol used
to assess the capacity of PBMC and Theileria annulata-infected cell lines to take up
ovalbumin and present peptides on BolLA-DR molecules are described in

Supplementary Figure 1.

PBMC isolation, RNA extraction and cDNA synthesis.

Bovine PBMC were isolated by density gradient centrifugation using Ficoll Paque
Plus (GE Healthcare Bio-Sciences, Amersham. UK) according to manufacturers’
instructions. RNA was extracted from PBMC using TRIzol (Thermo Scientific,
Renfrew, UK) and cDNA synthesised using the GOscript Kit (Promega,

Southampton, UK), both according to the manufacturers’ instructions.

BoLA-DRB3 sequencing.

For BoLA-DRB3 amplification, primers (For - CCAGGGAGATCCAACCACATTTCGC,;
Rev - TCGCCGCTGCACAGTGAAACTCTC) incorporating lllumina adaptors and
multiplex identifier tags were obtained from IDT (Leuven, Belgium). PCR was
performed using Phusion High Fidelity PCR kit (New England Biolabs), and the
reaction was carried out in a final volume of 40 pyL containing 2 pL of cDNA, 5X
Phusion HF Buffer, 0.8 U uL of Phusion DNA Polymerase, 3% DMSO, 0.4 mM of
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dNTP and 0.5 yM of each primer. The reaction was performed in a G-Storm Thermal
Cycle System (G-Storm) programmed for one cycle at 98 °C for 30 s, followed by 30
cycles at 98 °C for 10 s, 61 °C for 30 s, and 72 °C for 45 s, with a final extension
period at 72 °C for 10 min. 5 pl of PCR product from each sample were pooled
together, run on a 1.5% agarose gel, and the band of the appropriate size was
extracted and purified using the QIAquick PCR Purification Kit (Qiagen). A final
purification using Agencourt AMPure XP Beads (Beckman Coulter) at a ratio of 1:1
beads to PCR product was conducted prior to quantification of the sample and
submission to Edinburgh Genomics for sequencing on the lllumina MiSeq V.3
platform. Analysis of the data was conducted using a bespoke bioinformatics pipeline

(Vasoya et al. in preparation).

pBoLA-DR complexes purification.

Cultured cells (1x10°) were washed twice with ice-cold PBS and then lysed in buffer
(1% IGEPAL, 15mM TRIS pH 8.0, 300 mM NaCl and cOmplete protease inhibitor
(Roche)) at a density of 2x10® cells/mL for 1 min, diluted with PBS 1:1 and
solubilized for 45 min at 4 °C. Lysates were cleared by two-step centrifugation at
500g for 15 min at 4 °C and then at 15,000g for 45 min at 4 °C. For initial samples
pBoLA-DR complexes were directly captured from the cleared lysates using 5 mg
anti-BoLA-DR antibody (ILA21), immobilized in 1 mL of protein A resin (Amintra,
Expedeon, Cambridge, UK). For later samples, pBoLA-DR complexes were captured
from cleared lysates that had been depleted of peptide-BoLA-I (pBoLA-I) complexes
by prior immunoprecipitation with 5 mg anti-BoLA-I antibody (ILA88), immobilized in
1 mL protein A resin. Captured pBoLA-DR complexes were washed, and peptides
eluted from BoLA-DR molecules using 10% acetic acid and the resulting proteins
dried as described in(38).

HPLC.

The dried pBoLA-DRB3 complexes were resuspended in 150 pL of loading buffer
(0.1% formic acid, 1% acetonitrile) and loaded onto a 4.6 x 50 mm ProSwiftTM
RP-1S column (Thermo Scientific) for reverse-phase chromatography on an Ultimate
3000 HPLC system (Thermo Scientific). Elution was performed using a 0.5 mL/min
flow rate over 5 min on a gradient of 2 to 35% buffer B (0.1% formic acid in

acetonitrile) in buffer A (0.1% formic acid). Eluted fractions were collected from 1 to
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8.5 min, for 30 s each. Protein detection was performed at 280 nm. Even and odd

eluted fractions were pooled together, vacuum dried and stored at -80 °C until use.

LC-MS/MS.

Dried samples were resuspended in 20 uL of loading buffer and analyzed in an
Ultimate 3000 nano UPLC system online coupled to an Orbitrap Fusion™ Lumos™
Tribrid™ Mass Spectrometer (Lumos) (Thermo Scientific) or Q Exactive™ HF Hybrid
Quadrupole-Orbitrap™ Mass Spectrometer (HFX). Peptides were separated in a 75
pm x 50 cm PepMap C18 column using a 1 h linear gradient from 2 to 30% buffer B
in buffer A at a flow rate of 250 nL/min (~600 bar). Peptides were introduced into the
mass spectrometer using a nano Easy Spray source (Thermo Scientific) at 2000 V.
Subsequent isolation and higher energy C-trap dissociation (HCD) was induced in
the 20 most abundant ions per full MS scan with an accumulation time of 120 ms
and an isolation width of 1.2 Da (Lumos), or 1.6 Da (HFX). All fragmented precursor
ions were actively excluded from repeated selection for 30 s. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium via the
PRIDE(39) partner repository with the data set identifier PXDXXX (this ID will be

made available upon manuscript acceptance).

Mass spectrometry data analysis.

The sequence interpretations of mass spectrometry spectra were performed using a
database containing all bovine UniProt entries combined with entry P01012 for
chicken ovalbumin (total of 41610 entries) and 4084 entries for Theileria parva
Muguga proteome (40). The spectral interpretation was performed using de
novo-assisted database search with PEAKS 10 (Bioinformatics Solutions), in 'no
enzyme' mode, with mass tolerances of 5 ppm for precursor ions and 0.03 Da for
fragment ions. The data was further searched against 313 inbuild peptide

modifications.

Filtering of MS-identified peptides.

Previous to all analyses, the lists of peptides identified were filtered to remove: 1)
peptides presenting post-translational modifications; 2) peptides with a
peptide-spectrum matching score -Log10(P) < 15; 3) any peptides derived from T.

parva Muguga, including the ones identified in both bovine and T. parva Muguga
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entries; and 4) peptides that shared a 9-mer overlap with the CD4 T-cell epitope

benchmark.

Model Training.

All ligand data were filtered to include only peptides containing 13-21 residues, to
exclude any residual potentially co-eluted MHCI peptides. Negative peptides were
added as described earlier(35) by sampling random natural peptides from the bovine
proteome (described below). Models were trained in a 5-fold cross-validation manner
with partitions constructed from 9-mer common-motif clustering, ensuring no overlap
between test- and training-data. Three model architectures were used (20, 40, and
60 hidden neurons), each trained with ten random weight initialization, resulting in an
ensemble of 150 networks. Models were evaluated in a percentile rank fashion,
meaning that prediction scores are normalized against a distribution of prediction
scores from random natural peptides. Rank scores are more interpretable than raw

prediction scores and allow for fairer comparison across alleles.

Two models were trained in this project, both using the NNAlign_MA machine
learning framework(33). The first model (BoLA) was trained on the novel BoLA SA
and MA EL data combined with the BA data from NetMHClIpan-4.0 with an added
set of BoLA BA data (roughly 250 measurements for each BoLA-DR molecules
incorporating the three different BoLA-DRB3 alleles - generated in house). For the
second model (All Data), the BoLA EL data were combined with all the EL data from
the NetMHClIpan-4.0 data set (human and murine EL data) and the same BA data
as the BoLA model. The BoLA and All Data models share partitions.

Explicit encoding of ligand context was leveraged to capture antigen processing
signatures, as previously described (20). Briefly, in context encoding 12 residues of
the ligand and antigen are fed as input to the model, 6 are from the N-terminal region
of the ligand (3 residues upstream of the ligand in the antigen and 3 N-terminal
Peptide Flanking Regions (PFRs)), and 6 are from the C-terminal region (3

C-terminal PFRs and 3 downstream of the ligand).

Peptide lists resulting from BoLA-DR eluted ligand data are by nature only positive

examples of ligands that interact with MHCII (excepting co-eluting peptide noise from
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assay). To train a peptide-MHCII interaction model, the training data must include
examples of non-interacting peptides sampled from the same background as positive
data. To achieve this, peptides (and their context, see above) were randomly
sampled from the bovine proteome. Random negative peptides were made to follow
a uniform length distribution of 13-21 residues, sampling for each length five times
the number of peptides in the most commonly observed ligand length for a dataset.
Negatives were sampled independently for each bovine dataset with a uniform

length distribution so the model can learn the length distribution of ligands(27,41).
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Results

Analysis of the BoLA-DRB3 repertoire in an experimental cohort of Brazilian
Holstein-Friesians.

The IPD-MHC database includes over 300 BoLA-DRB3 alleles, of which only a small
subset could be included in this study. To identify the alleles that would be most
relevant to ongoing experiments, a novel high-throughput MiSeq BolLA-DRB3
sequencing approach (Vasoya et al., in preparation) was used to examine the
frequency of DRB3 alleles in a representative cohort of 30 Holstein-Friesian animals
from the experimental herd at the University of Sdo Paulo, Brazil. A total of 22 DRB3
alleles were identified, including a novel allele that had not been previously
described (nDRB3.1). Typical of MHC allele distribution in most cattle populations,
there was a small number of dominant alleles, DRB3*15:01, DRB3*01:01,
DRB3*11:01, DRB3*14:01:01, and DRB3*12:01, which were present at a frequency

of 25%, whilst the remaining 17 alleles were present at lower frequencies (Figure 1).
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Figure 1 - Frequencies of BoLA-DRB3 alleles detected by a MiSeq genotyping approach in a
subset of the experimental Holstein-Friesian cattle herd at the University of Sao Paulo (n=30).
The frequency data is shown as a Pareto plot with the frequency of individual alleles displayed on the
left vertical axis and the cumulative frequencies of the DRB3 alleles shown on the right vertical axis.
Allele nDRB3.1 was a novel sequence.

Generation and analysis of MS data for BoLA-DR eluted peptides.
Initial experiments to establish a BoLA-DR elution technique used O11 and 2229

Theileria annulata (TA) cell lines which had previously been confirmed to be
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homozygous for DRB3*10:01 and DRB3*11:01, respectively (Table 1). The length
distribution of the peptides obtained from the 2229TA and both replicates (n1 and
n2) of O11TA cell lines was bi-modal. One peak, centred around 14-15mers was the
size anticipated for MHCII ligands; the second peak, centred around 8-10mer
peptides, was more consistent with the length distribution of MHCI ligands (Figure
2A), and it was speculated that this represented a substantial level of co-purification
of BoLA-I molecules during BoLA-DR immunoprecipitation. To investigate this,
NetMHCpan-4.1(34) was used to predict the binding potential of all 8-13-mer
peptides in each of the MS data sets for each of the BoLA-I molecules expressed in
the given cell line (Table 1). The sequence logos of these peptide sets
(Supplementary Figure 2) showed remarkable similarity to the motifs previously
described for the BoLA-I alleles in these haplotypes(34) and between 56.8-70.9% of
the 8-13-mer peptides in each sample were predicted to be BoLA-I binders (defined
using a binding threshold of 5% rank). This corroborated the hypothesis that the
majority of these peptides originated from co-precipitated BoLA-I ligands and their

removal resulted in a substantial diminution of the 8-10mer peak (Figure 2B).

Table 1 - Overview of MS BoLA-DRB3 ligand elution datasets. For each sample, information
regarding BoLA-DRB3 alleles, BoLA-I haplotypes, infecting pathogen, the number of ligands identified
in each sample, use of prior pBoLA-I immunoprecipitation (IP) and number and percentage of
predicted BoLA-I binders are shown. The 2229TA and O11TA samples were generated without prior
pBoLA-I immunoprecipitation (see text). Samples PBMC_OVA and O11TA_n2 were OVA-loaded.

*Preliminary pBoLA-| IP depletion failed on this sample. §: from
https://www.ebi.ac.uk/ipd/mhc/group/BoLA/haplotype/
#
BoLA-I Prior Percentage
BoLA-DRB3 predicted
haplotypes | Pathogen |# peptides | pBoLA-I BoLA-I
alleles BoLA-I
§ IP binders
Sample binders
2229TA 11:01 A14/A14 | T. annulata 1417 No IP 454 32
O11TA_n1 10:01 A10/A10 | T. annulata 5213 No IP 2627 50.4
O11TA_n2 10:01 A10/A10 | T. annulata 4960 No IP 2666 53.8
PBMC_OVA| 01:01,10:01 | A10/A11 - 3433 No IP 389 11.3
2229TP 11:01 A14/A14 T. parva 1280 No IP* 417 32.6
2824TP 16:01 A19/A19 T. parva 4379 IP 38 0.9
5350TP 12:01 A20/A20 T. parva 5422 IP 160 3
495TP 10:01,11:01 | A10/A14 T. parva 6050 IP 488 8.1
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5072TP 10:01 A11/A11 T. parva 6341 P 270 4.3
2123TP 15:01,11:01 | A12/A15 T. parva 6862 P 612 8.9
641TP 20:02 A18/A18 T. parva 8335 IP 122 1.5
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Figure 2 - Length distribution of BoLA-DR eluted peptides. Kernel density estimates comparing
length distributions of BoLA-DR eluted peptides using different strategies for removal of BoLA-I eluted
contaminants: (A) Direct pBoLA-DR elution; (B) Direct pBoLA-DR elution with subsequent removal of
BoLA-I binders as predicted by NetMHCpan-4.1; (C) Initial immunoprecipitation to deplete pBoLA-I
complexes. (D) Same as for panel (C) but with subsequent removal of BoLA-| binders as predicted by
NetMHCpan-4.1. Due to failed pBoLA-I depletion sample 2229TP is not represented in this figure.

To address the observed co-enrichment of pBoLA-I in pBolLA-DR
immunoprecipitations, it was decided to apply a sequential immunoprecipitation
protocol, starting with pBoLA-lI complex depletion using an anti-BoLA-I monoclonal
antibody (IL-A88), followed by pBoLA-DR precipitation. This two-step protocol was
applied to samples from a series of seven T. parva-infected cell lines (Table 1) which
expressed a range of DRB3 alleles present in our experimental cohort (*11:01,
*10:01, *1501, *1201) or which were of interest because of ongoing T. parva CD4 T

cell epitope identification studies that included these alleles (*16:01 and *20:01). The

13


https://doi.org/10.1101/2020.12.14.422738
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.422738; this version posted December 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

total numbers of peptides identified in these samples ranged between 1280 and
8335 (Table 1), and the distribution of the peptide lengths is shown in Figure 2C. The
results in this figure show a substantially lower representation of 8-10mer peptides,
indicating successful reduction but not complete depletion of BoLA-I eluted peptides
(Figure 2C). Analysis of the binding potential of the peptides in the 8-10mer peak
confirmed that the majority were, in fact, still BoLA-I binders (Table 1 and Figure 2D);
indicating that although the preliminary BoLA-I depletion had a profound effect on
reducing peptides from co-eluted pBoLA-l, it did not eliminate them completely.
Removal of predicted MHCI binders from the datasets (ranging in frequency from
0.9-8.9%, Table 1) effectively abolished the 8-10mer peak (Figure 2D), establishing
that i) combined BoLA-lI depletion by prior immunoprecipitation and bioinformatic
removal of predicted MHCI-binders provided the optimal results and ii) consistent
with other MHCII molecules, BoLA-DRB3 molecules have a preference for binding
peptides of length 13-21 amino acids (after the combined filtering, 80.7% of the
peptides fall in this length range).

Motif deconvolution and prediction model generation from MS data sets of
BoLA-DR eluted ligands.

Using the MS BoLA-DR EL data sets, alternative models for BoLA-DRB3 motif
deconvolution were assessed and a prediction model for BoLA-DRB3 ligands was
developed. Details for the model training and model parameters are described in the
materials and methods. In short, bovine ligand data was filtered only to include
peptides of 13-21 residues and were used as positive data points, with negative data
points added as previously described(35). Two models were trained: a ‘BoLA’ model
using the novel BoLA-DR elution data combined with the BA (binding affinity) data
from NetMHClIpan-4.0 and a set of BA data covering three different BoLA-DRB3
alleles; and an ‘All Data’ model, which includes the BA and EL data of the BoLA
model with added murine and human EL data from the NetMHClIpan-4.0 data set.
Both models were trained with and without assessing the ‘context’ of the peptide
within the parent protein (MAC- and MA-models, respectively). Here, ligand context
refers to including residues near the ligand termini, inside and outside the ligand, to
capture signals of antigen processing. Further details on data partitioning, model

training and context definition are provided in materials and methods.
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The results of the cross-validation evaluation measured in terms of the AUC are
shown in Figure 3 and show clear differences in the performance of the models
used. Firstly, for both the ‘BoLA’ and the ‘All Data’ models, every cell line data set
displayed a higher AUC for the MAC-model than the MA-Model (p-value: 0.00097 in
a binomial test counting number of cell lines with higher AUC for MAC-models
versus MA-models). This agrees with earlier studies for the human and mouse
MHCII system(20,35,42), showing the value of incorporating encoding context into
the prediction models. Secondly, the ‘BoLA’ MAC-model has significantly higher
median AUC compared to the ‘All Data’” MAC-Model (p-value: 0.00195 in a binomial
test counting cell lines where ‘BoLA’ MAC-model has higher AUC compared to ‘All
Data’ MAC-model, excluding ties), indicating that inclusion of the human and murine
training data had no benefit in the generation of a model for BoLA-DR binding
prediction. This comparative evaluation clearly demonstrated the ‘BoLA-MAC’ model

exhibited the best performance and so was selected for subsequent use.

e MA-Model ® MAC-Model
—_ L -
0951 4 = S R
— =
O = J
20901 -~ .
< "
0.85 - |
BoLA All Data

Figure 3 - Cross-Validation evaluation of bovine EL data. Models were evaluated on the BoLA-DR
ligand data in a cross-validation manner. The boxplot shows the AUC per cell line sample for the
BoLA and All Data models with and without context encoding (MAC-Model and MA-Model,
respectively). Each point in the figure represents data from a single sample. Of note, the outlier
sample with a cross-validated AUC performance below 0.90 for the BoLA-MAC model was 2229TA,;
this sample had 27% ligands assigned as contaminants causing the decrease in the observed AUC
(Supplementary Figure 3).
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Examples of BoLA-DRB3 allele motif deconvolution from EL data-sets as performed
by the BoLA-MAC model are shown in Figure 4. The motif deconvolution results for
each sample included in this study are displayed in Supplementary Figure 3, and the
motifs for each of the seven BoLA-DRB3 alleles covered by the EL data (combining
the data from all samples) are shown in Supplementary Figure 4. As can be seen in
Figure 4, the deconvolution results in well-defined motifs, with the anticipated
preference for residues at positions 1, 4, 6 and 9 of the binding core and limited
exclusion of non-conforming peptides (average of 8.6% of ligands assigned as
contaminants in samples included in Figure 4). The data presented here also shows
the ability of the deconvolution to discriminate the motifs of both BoLA-DRB3 alleles
in heterozygous samples (495TP and 2123TP) as well as the consistency in the
motifs for the same BoLA-DRB3 molecule obtained from different EL data-sets (e.g.
BoLA-DRB3*10:01 in 495TP and 5072TP). These observations are consistent
across all of the samples included in this study, with non-conforming (trash) peptides
constituting only ~12.5%, a high average Pearson correlation between motifs for the
same BolLA-DRB3 molecule (0.92 for BoLA-DRB3*10:01 and 0.908 for
BoLA-DRB3*11:01, Supplementary Figure 5), and a very high specificity being
demonstrated for individual motifs (PPV values in the range 0.751-0.868, across the
different deconvolutions, Supplementary Table 1). As such, the data confirms that
the BoLA-MAC model permitted the generation of high resolution and reproducible
BoLA-DRB3 binding motifs from EL data. This model, renamed as NetBoLAllpan,

has been made publicly available at www.cbs.dtu.dk/services/NetBoLAllpan.
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BoLA-DRB3*15:01 (3586) BoLA-DRB3*11:01 (1403) Trash (468)

2123TP

Trash (405)

495TP

3 4 s 6 7 8 9 (g
Crealed by Seq2Logo

5072TP

Figure 4 - Examples of deconvoluted motifs derived from EL BoLA-DR datasets. From each cell
line defined as being heterozygous for DRB3, two peptide-binding motifs were derived. Where cell
lines express the same DRB3 allele, consistent motifs were identified (e.g., both 2123TP and 495TP
express DRB3*11:01 and show a similar peptide-binding motif). Motifs were generated from ligands
with a rank score of <20 for the context-model. Ligands with a predicted rank >20 are assigned to the
Trash cluster. Logos show alignments of predicted peptide binding cores where numbers in
parenthesis represent the number of binding cores.

NetBoLAllpan can be used to predict BoLA-DRB3 presented peptides derived
from exogenous proteins.

To extend our studies on the utility of the NetBoLAllpan method developed above,
the model's ability to predict which peptides would be presented by BoLA-DR
molecules from an exogenous protein was examined. Here, both PBMC
(BoLA-DRB3*01:01 and *11:01) and the O11TA_n2 cell line (BoLA-DRB3*10:01)
described above were pulsed with soluble ovalbumin (OVA, see materials and
methods and Supplementary Figure 1 for details) before performing pBoLA-DR
elution. Only one OVA-derived peptide (“SSANLSGISSAESLK”) was identified in the
O11TA sample, which demonstrated very poor predicted binding to
BoLA-DRB3*10:01 with a predicted percentile rank value of 29.2%, strongly
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suggesting it was not a genuine BoLA-DR binding peptide. In contrast, seven
OVA-derived peptides were identified in the PBMC sample. Mapping the seven
peptides onto the OVA protein sequence (Figure 5 - Inserted panel) shows that all
the peptides clustered around the 9-mer core “INKVVRFDK”, located at OVA,,,,,
with a common motif IXxxVXRxxK — matching the motif described in Supplementary
Figure 4 for BoLA-DRB3*01:01. Also of interest is that six out of the seven ligands
observed had proline in the C-2 position, which is a common feature in context
motifs(20). The NetBoLAllpan model was applied to predict potential DRB3*01:01
and DRB3*10:01 ligands in the OVA protein sequence. To achieve this, the OVA
protein was in silico digested into overlapping 13-21-mer peptides, and binding to
DRB3*01:01 and DRB3*10:01 was predicted for each peptide with predicted ligands
identified using a 1% rank score threshold; this resulted in the identification of 48
predicted ligands. The MS identified and in silico predicted ligands were then
stacked onto the OVA protein sequence, and a profile was calculated showing the
relative number of measured and predicted ligands mapped to each amino acid
position within the protein. The MS identified and in silico predicted ligand profiles
demonstrated a striking concordance, with the MS identified peptides overlapping
with the dominant peak of in silico predicted peptides (38 overlapping peptides
located at positions 45-71) (Figure 5) (similar data were obtained using rank
threshold values in the range 0.5-2.0%, results not shown), indicating that
NetBoLAllpan can accurately predict ligands derived from defined proteins that are

experimentally shown by MS to be presented by BoLA-DR.
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Figure 5 - Profiles of predicted and measured OVA ligands in the PBMC cell line. (Main Figure)
The gray shaded area shows the relative number of measured EL ligands in the PBMC sample
overlapping each position in the OVA sequence. The dotted line represents the mapping of
13-21-mers from the OVA sequence predicted with a rank score < 1% for the BoLA-DRs expressed in
the PBMC sample; the peaks at positions 6-23, 45-71, 196-210 and 275-291 represent 5, 38, 1 and 4
predicted BoLA-DR binding peptides, each with median predicted rank scores of 0.64, 0.45, 0.82, and
0.56, respectively. (Inserted panel) Mapping of the seven OVA peptides measured in the PBMC cell
line. All but one of the peptides shared a binding core “INKVVRFDK” in positions 54-62 of the OVA
sequence.

Validation of the BoLA model for BoLA-DRB3 presented CD4 T cell epitope
prediction.

Next, the performance of NetBoLAllpan was validated using a set of 25
experimentally validated BoLA-DR restricted T. parva CD4 T cell epitopes (Morrison
et al.,, manuscript in preparation, refer to Supplementary Table 2). Here, the
NetMHClIpan-4.0 was included as a reference model to test the extent to which
peptide presentation rules learned from human and murine data extrapolate to
bovine epitopes. Each epitope source protein was in silico digested into peptide
strings matching the length of the epitopes, and each peptide was then assigned the

lowest predicted rank score from the set of 13-19-mers whose binding core
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overlapped with the peptide string. Next, the epitope’s F-rank value was calculated
as the percentage of peptides with a greater prediction score than the epitope.
Hence, a perfect prediction has an F-rank value of 0, and a random prediction
presents a value of 50. Comparison of F-rank values obtained by the different
models for the set of T. parva epitopes (Figure 6), shows that the NetBoLAllpan
models with or without context achieved equivalent prediction performance both
achieving a median F-rank value of 0.697% and median prediction percentile rank
score for the epitopes of 0.2. In practical terms, these results translate into 12 out of
25 epitopes being ranked as the top predicted peptide within the given source
protein. Both NetBoLAllpan models achieved significantly better F-ranks compared
to NetMHClIpan-4.0 (p-values: <0.001 comparing the two NetBoLAllpan models to
NetMHClIpan-4.0). The large difference in the performance of the NetMHClIpan-4.0
and NetBoLAllpan models clearly demonstrates the power of combining BoLA-DR
EL data and advanced immunoinformatics to generate novel tools for characterizing

antigen presentation epitope identification in the BoLA-DR system.
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Figure 6 - Comparison of different BoLA-DR prediction models using validated CD4 T cell
epitopes. Distribution of percentage F-rank performance values for defined BoLA-DR presented T.
parva epitopes using the NetBoLAllpan and NetMHCllpan-4.0 models with (Context) and without
context (No Context). Prediction scores were assigned to each overlapping epitope length-matched
peptide in the epitope source protein as described in the text. The y-axis is shown in log-scale and
F-rank values below 0.1 are presented as 0.1005 to avoid non-defined values.
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Discussion

A pre-requisite for the development of next-generation subunit vaccines is the
identification of antigens containing epitopes that can be recognised by B cells, CD8
T cells and CD4 T cells, as appropriate for the immune response required. Several
bioinformatic tools that enable the prediction of CD4 T cell epitopes in humans have
been developed and the recent integration of large-scale MHC-eluted peptide data
have led to a dramatic improvement in their performance(21,30,35). In contrast,
there is a lack of equivalent bioinformatics tools designed specifically for bovine
MHCII molecules, and since the currently available tools have not incorporated
bovine MHCII EL data during their development, they perform with limited accuracy
when applied to bovine data (as demonstrated in this study - Figure 6). In previous
studies, we have shown how the use of high-quality EL mass spectrometry data
combined with advanced immunoinformatics and machine-learning techniques can
further our understanding of the rules underlying MHC antigen processing and
presentation, allowing the development of improved prediction methods for MHC
ligands and T cell epitopes(33-35). Here, we have extended this work to cover, for

the first time, BoLA-DR molecules.

Results from our initial experiments indicated that the peptides isolated following
pBoLA-DR immunoprecipitation were heavily contaminated with co-eluted
pBoLA-I-presented peptides. This phenomenon has been reported previously in
other studies using equivalent protocols for immunoprecipitation of MHCII molecules
from human cell lines and has been hypothesised to reflect that the protocol for
lysing the cells results in the immunoprecipitation of membrane fractions, which
contain both MHCI and MHCII molecules(43,44). In this study neither prior depletion
of pBoLA-I (by immunoprecipitation) nor bioinformatic prediction and removal of
BoLA-I contaminant ligands were completely effective in eliminating the
BoLA-I-binding contamination when applied alone - both left a remnant peak of
8-10-mer peptides. However, the combined use of these two approaches was
successful in removing the 8-10-mer peptide peak, resulting in 13-21-mer dominated
profiles characteristic of MHCII presented peptides. On this basis we would propose
that future studies for BoLA-Il immuno-peptidomics should routinely make use of

both preliminary depletion of pBoLA-I complexes by use of an initial pBoLA-I|
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immunoprecipitation step (consistent with recently developed approaches for human
MHCII immuno-peptidomic studies(21,45)), and in silico immunoinformatic BoLA-I
peptide-binding depletion using currently available prediction methods(34,36) (or if
working with cell lines expressing alternative BoLA-I haplotypes by generating
BoLA-I peptide-binding motifs by subjecting the product of the preliminary pBoLA-I
immunoprecipitation to elution, mass-spectrometric analysis and subsequent motif

deconvolution).

In this study, we compared two models for developing the BoLA-DR prediction
algorithm. The first of these was trained using EL data only from BoLA-DR, whilst the
second was trained on the same data augmented by an exhaustive human (HLA)
and murine (H-2) MHCIl-eluted peptide dataset (both models also incorporated
human, murine and a small amount of bovine BA data). A cross-validation evaluation
demonstrated that the former model had superior performance, suggesting that
integration of cross-species EL datasets was not beneficial to the accuracy of the
results generated by this model. However, this evaluation was restricted to the
limited set of BoLA-DRB3 alleles covered by the EL data generated in the current
study, and it remains to be seen whether a model integrating cross-species EL data
would allow improved prediction when extrapolated to data generated from samples
expressing other BoLA-DRB3 alleles. As over 300 BoLA-DRB3 alleles have been
described at present, further evaluation of how best to incorporate inter- and
intra-species data to improve the algorithm’s performance is warranted as it will not
be feasible for BoLA-DR EL data to be generated for more than a subset of these
alleles. The seven BoLA-DRB3 alleles included in this study were selected
predominantly based on their frequency in the experimental herd of Holstein-Friesian
cattle at the University of S&do Paulo (USP) (in combination with the availability of
DRB3-genotyped TA/TP cell lines and validated BoLA-DRB3 presented epitope
data). The cumulative total frequency of these seven alleles in the samples of
animals from the USP herd was ~48% and retrospective analysis of the University of
Edinburgh herd shows that these alleles have an even higher representation
(~67.9%). This is broadly in line with the frequencies observed in Holstein-Friesian
herds across South America and other parts of the world (51.2-73%)(18). Analysis of
the BoLA-DRB3 molecules in Holstein-Friesian animals is attractive for several

reasons: i) due to the high levels of inbreeding, characterisation of a small number of
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DRB3 alleles will allow comprehensive coverage of the breed (e.g. inclusion of
another five DRB3 alleles would give 77-98% coverage of Holstein-Friesian
populations(18) and ii) as high-value dairy animals there is great interest in
introducing Holstein-Friesians into low-income countries (frequently tropical) as part
of the process of increasing agricultural productivity and food security; a major
limitation to this process is the Holstein-Friesian susceptibility to many of the
pathogens prevalent in regions of the world. Consequently, there is a particular
interest in finding interventions, such as vaccination, that can be used to protect

Holstein-Friesian animals in tropical environments.

A critical and general issue for rational vaccine development is the identification of
relevant antigens. Approaches dependent on conventional antigen-screening
techniques have limitations, especially when applied to complex pathogens (e.g.
eukaryotic pathogens), where the size of the proteomes makes a comprehensive
analysis of the full potential antigen repertoire prohibitively expensive and laborious.
For such pathogens, bioinformatic tools that can help rationalise antigen screening
assays and/or selection are of particular value and have a significant potential for
accelerating vaccine development. A potential approach would be to use
bioinformatics tools to predict which peptides from a candidate antigen would be
present by BoLA molecules when delivered as a vaccine. To directly evaluate this,
we examined NetBoLAllpan’s ability to correctly identify the peptides from ovalbumin
that had been pre-loaded onto cell’'s then subjected to MHC-elution analysis. A
comparison of the set of eluted peptides from a PBMC sample and the in silico
predicted BoLA-DRB3 binding peptides demonstrated an exceptionally high level of
concordance. This suggests that the ability of NetBoLAllpan to accurately model the
peptides derived from an exogenously administered protein could be exploited to
provide an efficient and inexpensive in silico preliminary evaluation of the potential
immunogenicity of candidate antigens and so contribute to the rational selection of
antigens(46) prior to undertaking expensive and laborious in vivo/in vitro
experiments. In particular, such an analysis could be used to assess the MHC
coverage of individual antigens, and thus inform the construction of optimal vaccine
designs. An example of how such in silico analysis could be employed is given in

Supplementary File 6.

23


https://doi.org/10.1101/2020.12.14.422738
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.422738; this version posted December 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

During the development of the prediction model, it was clear that the integration of
signals relating to antigen-processing was beneficial. That is, the inclusion of
information regarding the ‘context’ of the peptides (i.e. both the amino acid residues
in the protein flanking the peptides and the amino acids at the termini of the peptide)
significantly improved the power of the models for predicting ligands. The
NetBoLAllpan model exhibited an unprecedented high performance when evaluated
using a set of validated BoLA-DRB3 presented epitopes from T. parva, achieving a
median F-rank score of 0.697% (corresponding to 12 out of 25 of the defined
epitopes being the highest predicted peptides within the source protein). This
performance was significantly higher than the 19.23% achieved by the previously
available NetMHClIpan model which had not been trained on the BoLA-DRB3 elution
peptide data, demonstrating the utility of generating and incorporating these data
sets. In line with earlier work, context did not impart the same benefit in the task of
ranking CD4 epitopes as was found for ligand data. Here, the context model was
found to perform equivalent to the non-context model. These results align with earlier
work using the mouse and human MHC class Il systems(20,35,42). Interestingly,
however further improvements in epitope prediction could be obtained by ranking
antigen peptides based on the number of binders within overlapping 13-19-mers.
This method of assigning epitope ranks is based on the intuitive assumption that
protein regions with multiple predicted binders have a greater chance of being
presented by BoLA-DRB3 molecules. Using this approach, the median F-rank score
was 0.362%, suggesting a non-trivial improvement in the prediction. However,
further benchmarking on larger epitope sets to systematically evaluate the
comparative performance of this methodology is needed before the recommendation

that it is routinely adopted can be made.

In conclusion, this study has proven the high value and important synergistic effect of
combining peptide-MHC elution MS data and advanced immunoinformatics to
characterize antigen presentation and perform ligand/epitope identification in the
BoLA-DR system.
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