

1 **Effects of Ca^{2+} on encystment and growth in *Scrippsiella trochoidea***

2 Zhifu Wang^{1*}, Weihua Feng¹, Jing Cao¹, Haifeng Zhang¹, Dongrong Zhang¹, Jian
3 Qian¹, Heng Tao Xu¹, Zhe Hao¹

4 ¹Key Laboratory of Engineering Oceanography, Second Institute of Oceanography,
5 Ministry of Natural Resources, Hangzhou 310012, China

6 *Zhifu Wang, wzf@sio.org.cn

7 **Abstract:** Cysts serve as a seed source for the initiation and recurrence of a harmful
8 algal bloom (HAB) caused by dinoflagellates. And the influence of calcium on cyst
9 formation has been relatively understudied. In the present study, we investigated the
10 effects of calcium (Ca^{2+}) on the growth and encystment of *Scrippsiella trochoidea*.
11 We incubated *S. trochoidea* in modified f/2 media in flasks which were divided into
12 five groups and treated with different Ca^{2+} concentrations (0, 0.2, 0.4, 0.6, and 0.8
13 $\text{g}\cdot\text{L}^{-1}$). We revealed that cell density increased with increasing Ca^{2+} concentrations;
14 however, cell density was reduced when Ca^{2+} concentrations exceeded 0.2 $\text{g}\cdot\text{mL}^{-1}$.
15 Additionally, the number of cysts and the cyst formation rate similarly increased as
16 Ca^{2+} concentrations increased, but these were reduced when Ca^{2+} concentrations
17 exceeded 0.4 $\text{g}\cdot\text{mL}^{-1}$. Lastly, *S. trochoidea* absorbed Ca^{2+} from the water when cysts
18 were formed and under high Ca^{2+} concentrations, more calcareous thorn cysts formed.

19 **Keywords:** Ca^{2+} , encystment, HAB, *Scrippsiella trochoidea*

20 **Introduction**

21 During recent decades, the coastal waters of China seas have experienced many

22 harmful algal blooms (HABs) caused by dinoflagellates(Tang et al. 2016). Many
23 dinoflagellates generate cysts during their life cycle(Blackburn S. I et al. 2005), which
24 play an important role in promoting HABs (Figueroa R. I et al. 2010). These cysts are
25 usually associated with genetic recombination, maintenance, termination, and
26 recurrence of blooms. Further, they facilitate dinoflagellate survival under
27 unfavorable environmental conditions by protecting against viruses, grazers, and
28 parasites, as well as by promoting population expansion (Tang et al. 2012).

29 *Scrippsiella trochoidea* is a cosmopolitan bloom-forming dinoflagellate species that
30 can grow well in a narrow range of temperatures, with a notable tolerance of
31 temperatures as low as 10°C (Wang et al. 2007). *S. trochoidea* easily forms cysts
32 when surrounding environmental conditions become unsuitable for its survival; thus,
33 *S. trochoidea* serves as a model organism for examining dinoflagellate cysts and their
34 role in promoting HABs. *S. trochoidea* has been reported in the USA and Japan
35 (Ishikawa A et al. 1996) and its resting cysts represent the dominant species in
36 Chinese coastal sediments, especially in Daya and Shenzhen Bays in the South China
37 Sea (Wang et al. 2004).

38 Encystment is related to factors such as aging of cultures, nutrient stress,
39 unfavorable light intensity, temperature changes, and bacterial attacks(Tang et al.
40 2012). Most research on dinoflagellate encystment has aimed at describing their life
41 history. Despite many studies which have focused on factors influencing
42 dinoflagellate encystment, little is known about the possible effects of metal ions on *S.*
43 *trochoidea* encystment and growth. *S. trochoidea* cysts are egg or oval shaped, and

44 often covered with calcareous thorns; further, they typically contain one or two red
45 bodies (Cho et al. 2001). In our previous study, we identified two main cyst shapes,
46 calcareous thorn cysts and smooth surface cysts, and we further revealed that these
47 two cyst shapes occur in different ratios under different conditions(Wang et al. 2014).

48 Previous studies have indicated that the most common culture manipulation
49 which induces sexuality in autotrophic species is nutrient starvation(István Grigorszky
50 et al.2006). However, despite being a necessary trace element of dinoflagellates, the
51 influences of calcium (Ca^{2+}) on *S. trochoidea* growth and encystment remain
52 understudied. Thus, will further understanding the role of calcium in cyst formation in
53 this species be important to further understanding and mitigating HABs. Therefore, in
54 the current study, we explored the effects of Ca^{2+} on *S. trochoidea* growth to
55 determine its role in cyst formation; we further attempted to analyze the relationship
56 between Ca^{2+} concentration and the proportion of different *S. trochoidea* cysts.

57 Materials and Methods

58 The clonal and axenic strains of *S. trochoidea* used in this experiment were
59 cultured at the Second Institute of Oceanography, Ministry of Natural Resources in
60 China. Aged seawater was filtered through a 0.45 μm pore size cellulose nitrate
61 membrane filter and autoclaved at 125°C for 30 min. Cultures were grown at
62 temperatures of $25 \pm 1^\circ\text{C}$, similar to sea surface temperatures in the East China Sea.
63 The cultures were grown under 300-500 lx of cool white fluorescent illumination on a
64 12 h light/12 h dark cycle with a salinity of 30%. To prepare bulk cultures, these

65 growth procedures were scaled up in 3 L flasks. To prevent clumping, the cultures
66 were gently agitated twice daily.

67 *S. trochoidea* was cultured until a density of 3,120 cells mL⁻¹ was achieved on a
68 modified f/2 medium without silicon. To avoid variable concentrations of Ca²⁺ from
69 the initial seeding liquid, the cells were concentrated on a sterile Nitex screen, washed
70 with sterile filtered (0.22μm pore size; Nucleopore filter) seawater, and resuspended
71 in the modified experimental medium (Subba Rao 2011). A 50 mL sample of the
72 culture was washed and inoculated into 500 mL of the f/2 culture medium in a 1,000
73 mL flask.

74 The cyst formation ratio (*S*) was calculated using the number of vegetative cells
75 and cysts as follows:

$$76 \quad S(\%) = \frac{2C}{M} \times 100\%$$

77 Where *M* is the maximum number of vegetative cells and *C* is the maximum number
78 of cysts (Tomoyuki Shikata et al. 2008).

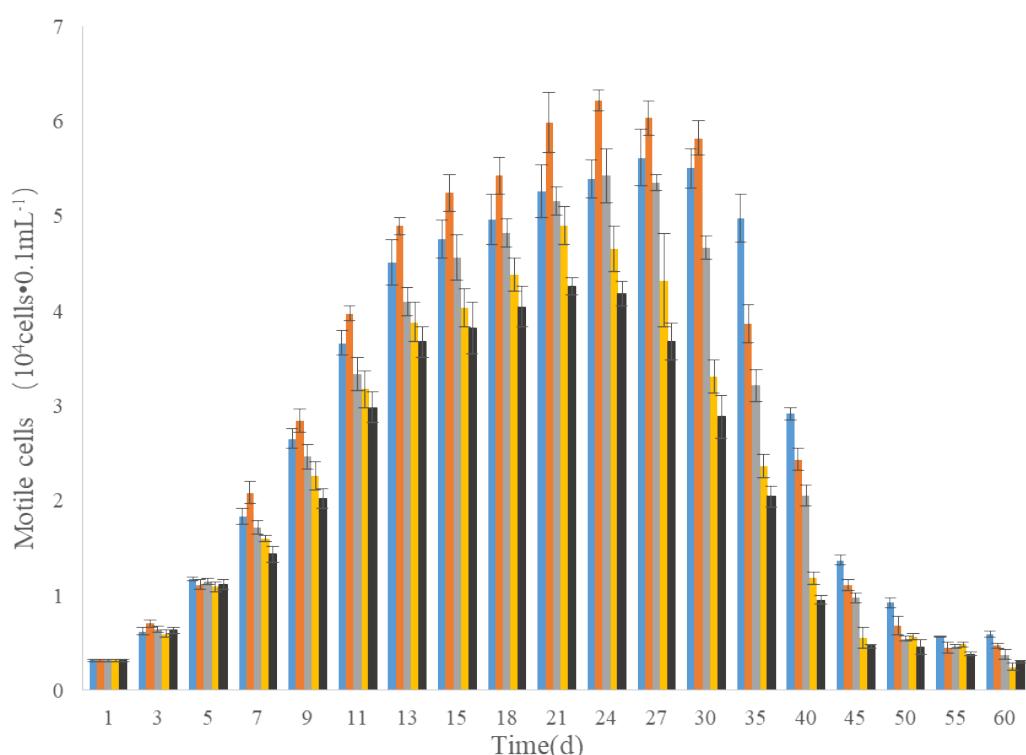
79 In this study, we examined the effects of Ca²⁺ on *S. trochoidea* growth by
80 conducting five experiments in triplicate (Table 1). Of these five experiments, one
81 group served as the control with no addition of CaCl₂. In experimental groups two,
82 three, four, and five, Ca²⁺ was added as CaCl₂ at concentrations of 0.2, 0.4, 0.6, and
83 0.8 g·L⁻¹, respectively. Given that there is often 0.4 g·L⁻¹ of Ca²⁺ in seawater naturally,
84 final Ca²⁺ concentrations in our experiments were 0.4, 0.6, 0.8, 1.0, and 1.2 g·L⁻¹,
85 respectively. Other required nutrients, trace metals, and vitamins were added to the f/2
86 medium and the cultures were homogenized by shaking before sampling. The duration

87 of the experiment was 60 d. Samples were collected for cell counts daily at the start of
88 the light cycle. Sample volumes of 3 mL were fixed with a drop of formalin, and
89 resting cysts and motile cells were counted and photographed using an inverted
90 microscope (Nikon, Ni-U, Tokyo, Japan).

91 Tab.1 The different concentrations of Ca^{2+} in used in *S. trochoidea* culture

92 experiments

Group	1	2	3	4	5
Add concentration of Ca^{2+}					
($\text{g} \cdot \text{L}^{-1}$)	0	0.2	0.4	0.6	0.8
Actual concentration of Ca^{2+}					
($\text{g} \cdot \text{L}^{-1}$)	0.4	0.6	0.8	1.0	1.2

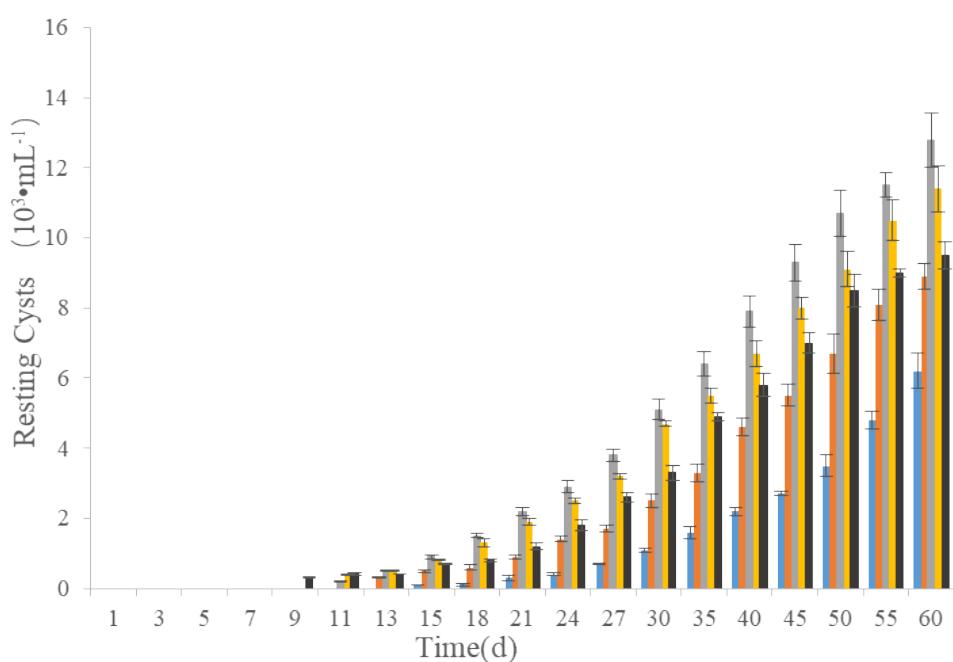

93 **Results and Discussion**

94 Resting cysts and motile cells were easily distinguishable in the present study.
95 Motile cells were tapered and swam quickly, whereas resting cysts were egg or oval
96 shaped, did not move, and two cyst shapes were predominantly observed: calcareous
97 thorn cyst and smooth surface cysts.

98 *S. trochoidea* motile cell growth under different Ca^{2+} treatments

99 We designed the laboratory experiments to study the response of *S. trochoidea* to
100 different concentrations of Ca^{2+} . Figure 1 shows changes in motile cell densities over
101 time under different experimental conditions. Under different Ca^{2+} concentrations, the
102 cell cultures did not enter a lag phase and cell numbers increased exponentially

103 following starvation. *S. trochoidea* motile cell density increased as Ca^{2+}
104 concentrations increased when the Ca^{2+} concentration was less than $0.2 \text{ g}\cdot\text{mL}^{-1}$. Cell
105 density was then reduced as Ca^{2+} concentration exceeded $0.2 \text{ g}\cdot\text{mL}^{-1}$. As Ca^{2+}
106 concentration increased, the stable and death phases were induced earlier in motile
107 cells. The control group entered the stable phase on day 21 and death phase on day 35.
108 Experimental groups exposed to Ca^{2+} concentrations of 0.2 , 0.4 , 0.6 , and $0.8 \text{ g}\cdot\text{L}^{-1}$
109 entered stable phases on day 21, 18, 13, and 13, respectively, and entered death phases
110 on day 35, 30, 30, and 27, respectively.


111
112 **Fig.1 Changes in *S. trochoidea* motile cell densities over time under different Ca^{2+}**
113 **treatment conditions**
114 (■ 0 ■ 0.2 $\text{g}\cdot\text{L}^{-1}$ ■ 0.4 $\text{g}\cdot\text{L}^{-1}$ ■ 0.6 $\text{g}\cdot\text{L}^{-1}$ ■ 0.8 $\text{g}\cdot\text{L}^{-1}$)

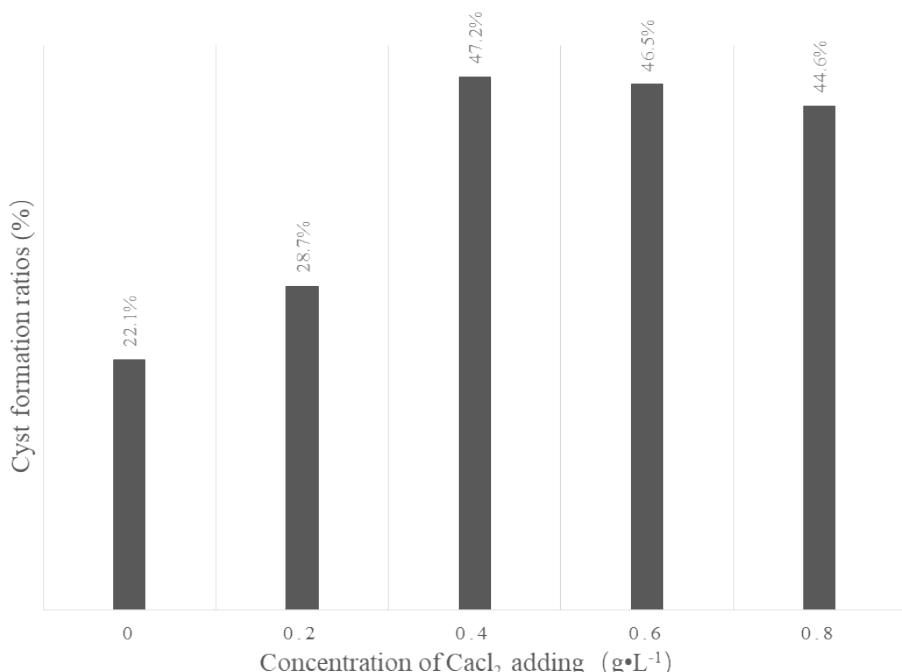
115 Some researchers studied the effects of Ca^{2+} on *Microcystis aeruginosa* growth

116 and revealed that its growth was not influenced by increasing Ca^{2+} concentrations,
117 although calcium was an important element for the growth of this species (Ding,
118 2017). However, there exist few studies which examined the effects of Ca^{2+} on the
119 growth of different algal species and the results of these studies were variable. For
120 example, Shi found that high concentrations of Ca^{2+} significantly inhibited the growth
121 of *M. aeruginosa*(Shi et al. 2013). Alternatively, Li et al(2003) found that increased
122 concentrations of Ca^{2+} in the culture medium stabilized the structure and function of
123 *Anabaena* sp. PCC7120 cell membranes. Further, researchers revealed that *M.*
124 *aeruginosa* growth was strongly inhibited by Ca^{2+} in that its growth decreased as the
125 concentration of Ca^{2+} increased, but the effects of Ca^{2+} on *Scenedesmus obliquus*
126 growth was less obvious(Zhao et al. 2014). Li et al(2017) further noted that increased
127 Ca^{2+} concentrations promoted growth and improved biological calcification in
128 *Microcystis flos-aquae*. Moreover, Huang (2012) found that both calcium and
129 irradiance significantly influenced growth, colony formation, and colonial cell
130 distribution in *Phaeocystis globosa* in that growth and colony formation in this species
131 were completely inhibited on calcium-free medium. Additionally, colony enlargement
132 and abundance were hampered by low calcium concentrations. Lastly, compared with
133 non-colony-forming cells, colony-forming cells favored high calcium conditions.
134 Overall, these previous studies clearly reveal the variable influences of Ca^{2+} on
135 different algal species.

136 *S. trochoidea* cyst formation under different Ca^{2+} treatments

137 Figure 2 shows changes in *S. trochoidea* resting cyst densities over time under
138 different experimental conditions. In the control group, cysts accumulated in large
139 numbers after 15 d. In contrast with the experimental cultures, the control group
140 formed cysts earlier and had a higher cyst density during early growth stages. The
141 maximum cyst density(12.8×10^3 cysts·mL $^{-1}$) occurred in group three (0.4 g · L $^{-1}$), and
142 the minimum cyst density (6.2×10^3 cysts·mL $^{-1}$)occurred in the control group; this
143 maximum cyst density was twice the minimum density. Cyst densities increased as
144 Ca $^{2+}$ concentrations increased until these concentrations reached 0.4 g·mL $^{-1}$. Above
145 this concentration, cyst densities began to decline with increasing Ca $^{2+}$ concentrations.

146


147 **Fig.2 Changes in *S. trochoidea* cyst densities over time under different Ca $^{2+}$
148 treatment conditions**

149 (■ 0 ■ 0.2g·L $^{-1}$ ■ 0.4 g·L $^{-1}$ ■ 0.6g·L $^{-1}$ ■0.8g·L $^{-1}$)

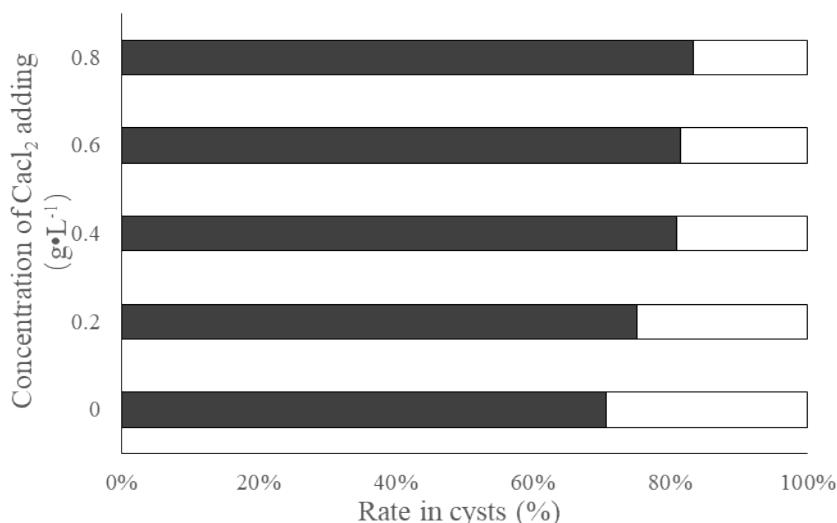
150 We further calculated the cyst formation ratio to examine the relationship

151 between *S. trochoidea* cyst formation and varying Ca^{2+} concentrations (Figure 3). In
152 this study, cyst formation ratios were 22.1%, 28.7%, 47.2%, 46.5 %, and 44.6% in *S.*
153 *trochoidea* cultures exposed to Ca^{2+} concentrations of 0, 0.2, 0.4, 0.6, and 0.8 $\text{g}\cdot\text{L}^{-1}$,
154 respectively. The highest cyst formation ratio was recorded in group three (0.4 $\text{g}\cdot\text{L}^{-1}$),
155 and the lowest cyst formation ratio was recorded in the control group. These results
156 indicate that cyst formation increased as Ca^{2+} concentration increased until these
157 concentrations reached 0.4 $\text{g}\cdot\text{L}^{-1}$. Above this concentration, cyst formation was
158 reduced as Ca^{2+} concentrations increased, but this reduction was not obvious.

159 To statistically analyze the effects of Ca^{2+} on encystment, we conducted a
160 one-sample *T*-test ($P < 0.01$; SPSS 16.0) which revealed that Ca^{2+} addition
161 significantly promoted cyst formation in *S. trochoidea* cell cultures ($P = 0.004$).

162

163 **Fig.3 Cyst formation ratios in *S. trochoidea* cultures under different
164 concentrations of CaCl_2**


165 In the current study, high Ca^{2+} concentrations generally induced the formation of
166 cysts in *S. trochoidea*. Moreover, these cysts appeared earlier at higher concentrations
167 of Ca^{2+} . For example, cysts were observed as soon as the ninth day in group 5 (treated
168 with $0.8 \text{ g}\cdot\text{L}^{-1}$ of Ca^{2+}). However, as Ca^{2+} concentrations increased, cyst formation
169 rates initially increased and then decreased. This eventual decline in the rate of cyst
170 formation may have occurred given that high concentrations of Ca^{2+} inhibited *S.*
171 *trochoidea* growth in the current experiment. Lastly, it is important to note that on the
172 last day of experimentation (60 days), the number and formation rate of cysts were
173 less than the initial values.

174 Rate of different cyst shapes in different concentrations of Ca^{2+}

175 In our previous study, we identified two main *S. trochoidea* cyst shapes:
176 calcareous thorn cysts and smooth surface cysts. In this study, we analyzed the
177 formation rates of these two cysts under different Ca^{2+} concentrations. Figure 4 shows
178 that the rate of calcareous thorn cyst formation increased as the concentration of Ca^{2+}
179 increased, whereas the rate of smooth surface cyst formation showed an opposite
180 trend. In the control group, calcareous thorn cysts reached high proportions (70.6%).
181 However, in *S. trochoidea* cultures treated with Ca^{2+} concentrations of 0.2, 0.4, 0.6,
182 and $0.8 \text{ g}\cdot\text{L}^{-1}$, the rates of calcareous thorn cyst formation were higher (75.0%, 80.8%,
183 81.5%, and 83.3%, respectively). Overall, our results indicated that under higher
184 concentrations of Ca^{2+} , more calcareous thorn cysts formed in *S. trochoidea* cultures.

185 To statistically analyze the effects of Ca^{2+} on the formation rate of these two

186 cysts, we conducted a one-sample *T*-test ($P < 0.05$; SPSS 16.0) which revealed that
187 Ca^{2+} addition significantly increased the rate of calcareous thorn cyst formation ($P =$
188 0.003).

189

190 **Fig.4 Rate of cyst formation in *S. trochoidea* cultures under different**
191 **concentrations of Ca^{2+} on day 60 of experimentation**
192 **(■ Calcareous thorn cyst □ Smooth surface cyst)**

193 Generally, calcareous thorn cysts were most abundant; however, the ratio of
194 smooth surface cysts increased under some experimental conditions(Wang, 2014). In
195 this study, the concentration of Ca^{2+} indeed influenced the ratio of these cysts in *S.*
196 *trochoidea*. The ratio of calcareous thorn cysts increased with increasing
197 concentrations of Ca^{2+} , indicating that *S. trochoidea* absorbed Ca^{2+} from the water
198 when cysts were formed, in accordance with previous research. For example, Wang
199 Yan et al(2009) found that cyst formation was closely associated with Ca^{2+} in the
200 water in that *S. trochoidea* absorbed Ca^{2+} to form the calcareous thorn following cyst
201 formation. However, the increase in calcareous thorn cyst ratio gradually stabilized as

202 Ca^{2+} concentrations increased. This result indicated that the shapes of cysts were
203 controlled by the internal rhythms of *S. trochoidea*. In accordance with our previous
204 studies, *S. trochoidea* indeed also formed smooth surface cysts although calcareous
205 thorn cysts occurred at much higher ratios. This phenomenon requires further
206 investigation, possibly at the genetic level.

207 **Conclusion**

208 This study suggests that different concentrations of Ca^{2+} have different effects on
209 growth and cyst formation in *S. trochoidea*. As Ca^{2+} concentrations increased, cell
210 density initially increased and then decreased, and cell stable and death phases were
211 induced earlier. The number of cysts and the cyst formation rate showed similar
212 trends as vegetative cell density in response to increased Ca^{2+} concentrations in that
213 they increased as Ca^{2+} concentration increased. After Ca^{2+} concentrations exceed 0.4
214 $\text{g}\cdot\text{mL}^{-1}$, the number of cysts and the cyst formation rate were reduced. We further
215 revealed that *S. trochoidea* absorbed Ca^{2+} from the water when cysts were formed and
216 higher Ca^{2+} concentrations promoted the formation of calcareous thorn cysts.

217

218 **Acknowledgments**

219 This work was supported by Zhejiang Provincial Natural Science Foundation of China
220 (Grant numbers LY15D060004) and the National Natural Science Foundation of
221 China (Grant number 41776119).

222 **References**

223 Tang YZ, Hu ZX, Deng YY. Characteristical life history (resting cyst) provides a
224 mechanism for recurrence and geographic expansion of Harmful Algal Blooms
225 of Dinoflagellates: a review. *Studia marina sinica*. 2016; 51:132-154.

226 Blackburn S. I, Parker N. Microalgal life cycles: encystment and excystment. In:
227 Andersen RA (ed) *Algal culturing techniques*. Elsevier Academic Press,
228 Amsterdam. 2005; 399–417.

229 Rosa Isabel Figueroa , Karin Rengefors , Isabel Bravo , Staffan Bensch. From
230 homothally to heterothally: mating preferences and genetic variation within
231 clones of the dinoflagellate *Gymnodinium catenatum*. *Deep Sea Res Part II*.
232 2010; 57:190–198.

233 Tang YZ, Gobler CJ. The toxic dinoflagellate *Cochlodinium Polykrikoides*
234 (Dinophyceae) produces resting cysts. *Harm Algae*. 2012; 20:71–80.

235 Wang ZH, Qi YZ, Yang YF. Cyst formation: an important mechanism for the
236 termination of *Scrippsiella trochoidea* (Dinophyceae) bloom. *J Plankton Res.*
237 2007; 29:209–218.

238 Ishikawa A, Taniguchi A. Contribution of benthic cysts to the population dynamics of
239 *Scrippsiella* spp. (Dinophyceae) in Onagawa Bay, northeast Japan. *Mar Ecol
240 Prog Ser*. 1996; 140:169–178.

241 Zhaohui Wang , Kazumi Matsuoka , Yuzao Qi , Jufang Chen , Songhui Lu.
242 Dinoflagellate cyst records in recent sediments from Daya Bay, South China Sea.
243 *Phycol Res*. 2004; 52:396–407.

244 Cho H J, Matsuoka K. Distribution of dinoflagellate cysts in surface sediments from

245 the Yellow Sea and East China Sea. *Mar Micropaleontol.* 2001; 42:103–123.

246 Wang Zhifu, Yu Zhiming, Song Xiuxian, Cao Xihua, Han Xiaotian. Effects of modifi

247 ed clay on cysts of *Scrippsiella trochoidea*, *Chinese Journal of Oceanology and*

248 *Limnology.* 2014; 32(6):1373-1382.

249 István Grigorszky, Kevi T. Kiss, Viktória Béres, István Bácsi, Márta M-Hamvas,

250 Csaba Máthé, Gábor Vasas et al. The effect of temperature, nitrogen, and

251 phosphorus on the encystment of *Peridinium cinctum*, Stein (Dinophyta).

252 *Hydrobiologia.* 2006; 563: 527-535.

253 Subba Rao DV, Stewart JE. A preliminary study of the formation of a third category

254 of cysts dinoflagellate, *Alexandrium fundyense* in response to elevated

255 concentrations of ammonium chloride. *Harmful Algae.* 2011; 10: 512–52.

256 Tomoyuki Shikata, Sou Nagasoe, Tadashi Matsubara, Yasuhiro Yamasaki, Yohei

257 Shimasaki. Encystment and Excystment of *Gyrodinium instriatum* Fredudenthal

258 et Lee. *Journal of Oceanography.* 2008; 64:355-365.

259 Guillard R.R., Kilham, P., Jackson, T.A. Kinetics of Silicon-Limited Growth in

260 Marine Diatom *Thalassiosira-Pseudonana* Hasle and *Heimdal*

261 *Cyclotella-Nana* Hustedt. *Journal of Phycology.* 1973; 9(3), 233-237.

262 Shi J Q, Wu Z X, Song L R. Physiological and molecular responses to calcium

263 supplementation in *Microcystis aeruginosa* (Cyanobacteria). New Zealand

264 *Journal of Marine and Freshwater Research.* 2013; 47(1):1-11.

265 Ding Jiabo. Study on the impact of main nutrients as Ca 、 Mg on growth of

266 *Microcystis aeruginosa*. Nanchang University, Marster, 2017.

267 Hao Li, Jinlai Miao, Fengxia Cui, Xiaoguang Liu, Guangyou Li. Effects of exogenous
268 Ca^{2+} on the membrane permeability and photosynthetic characteristics of
269 *Anabaena* sp. PCC7120 cells under simulated microgravity. *Acta
270 Hydrobiologica Sinica*. 2003; 27(2): 136-139.

271 Zhao Lianfang, Ding Xiaoyan, Lu Lin, Li Ming. Effect of nutrient conditions an Ca^{2+}
272 on the growth and competition of *Microcystis aeruginosa* and *Scenedesmus
273 obliquus*. *Environmental Science and Technology*. 2014, 37(1): 13-17.

274 Li Xiaomin, Luo Kemeng, He Feng, Yang Zhenni, Fan Wenhong. Influence of
275 calcium concentration on CO_2 fixation with bio-calcification of *Microcystis
276 flos-aquae*. *Chinese Journal of Environmental Engineering*. 2017; 11(12),
277 6327-6331.

278 Huang Tianwu. Morphological characteristics of colony for *Phaeocystis globosa* and
279 the influences of light and Calcium Ion on formation and cell distribution of
280 colony. Jinan University, Master, 2012.

281 Wang Yan, Xiong Defu, Gu Haifeng, Li Shaoshan. Morphological characters of
282 *Scrippsiella trochoidea* cysts. *Chinese Bulletin of Botany*. 2009; 44 (6):
283 701–709.

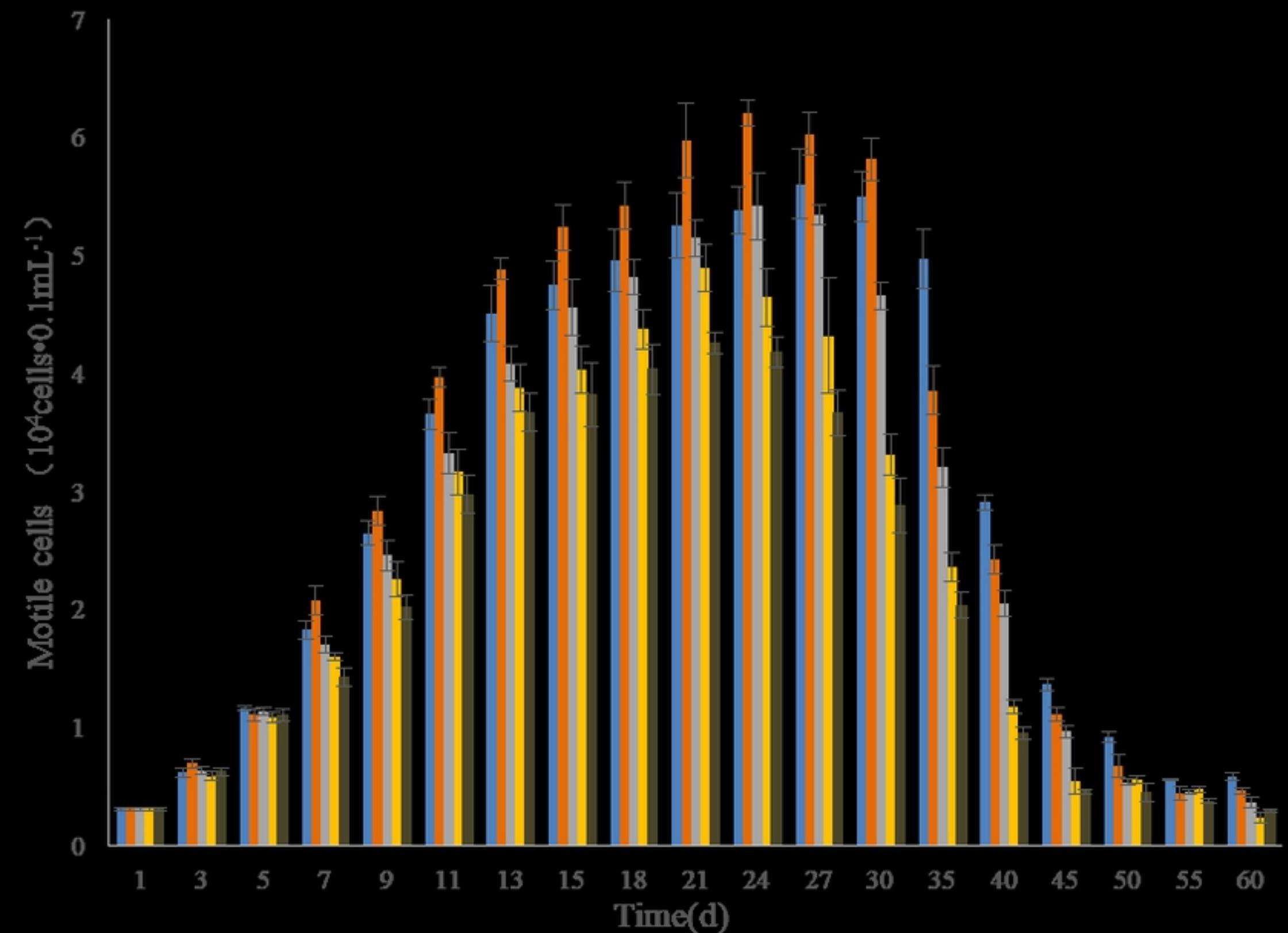


Figure 1

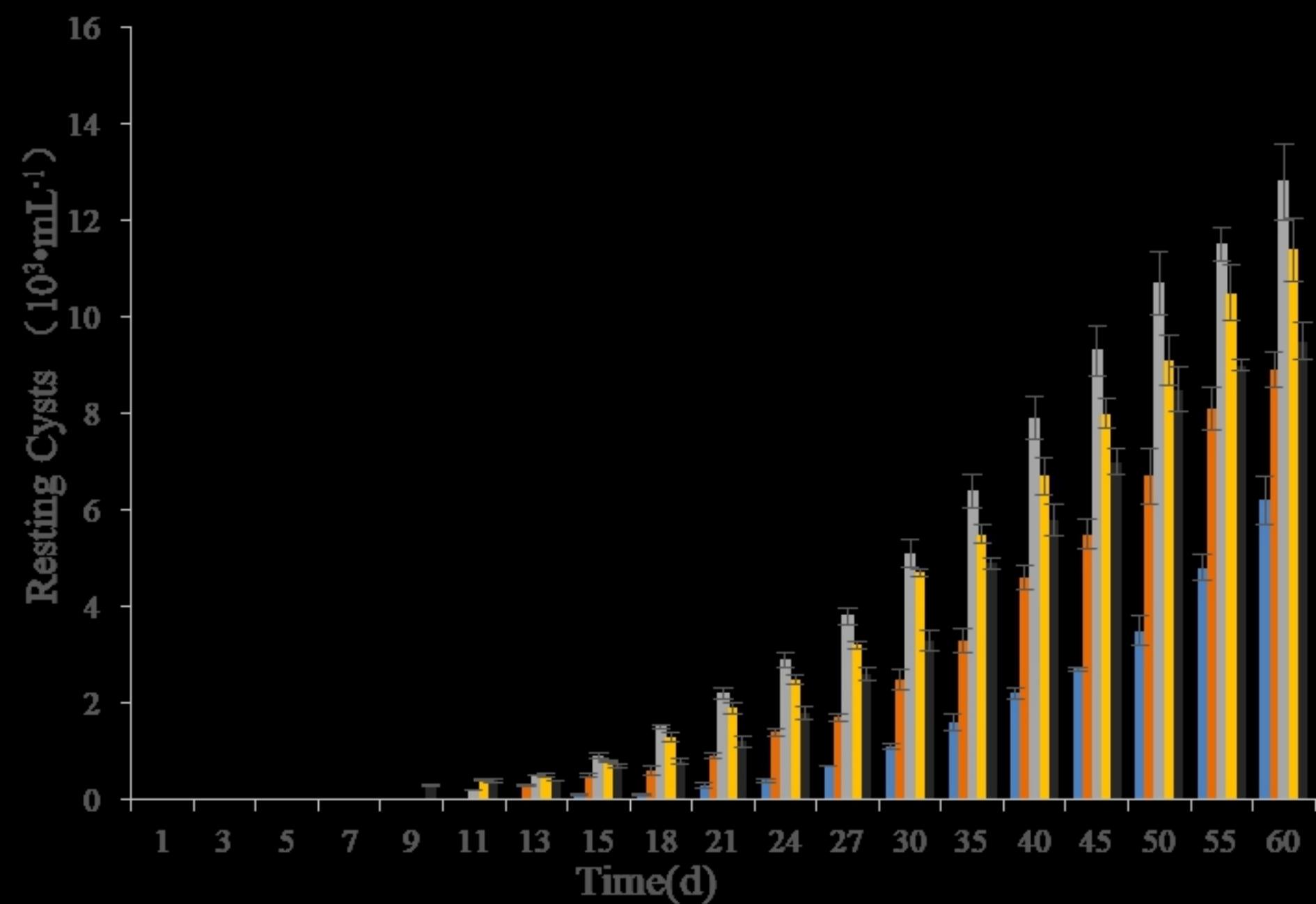


Figure 2

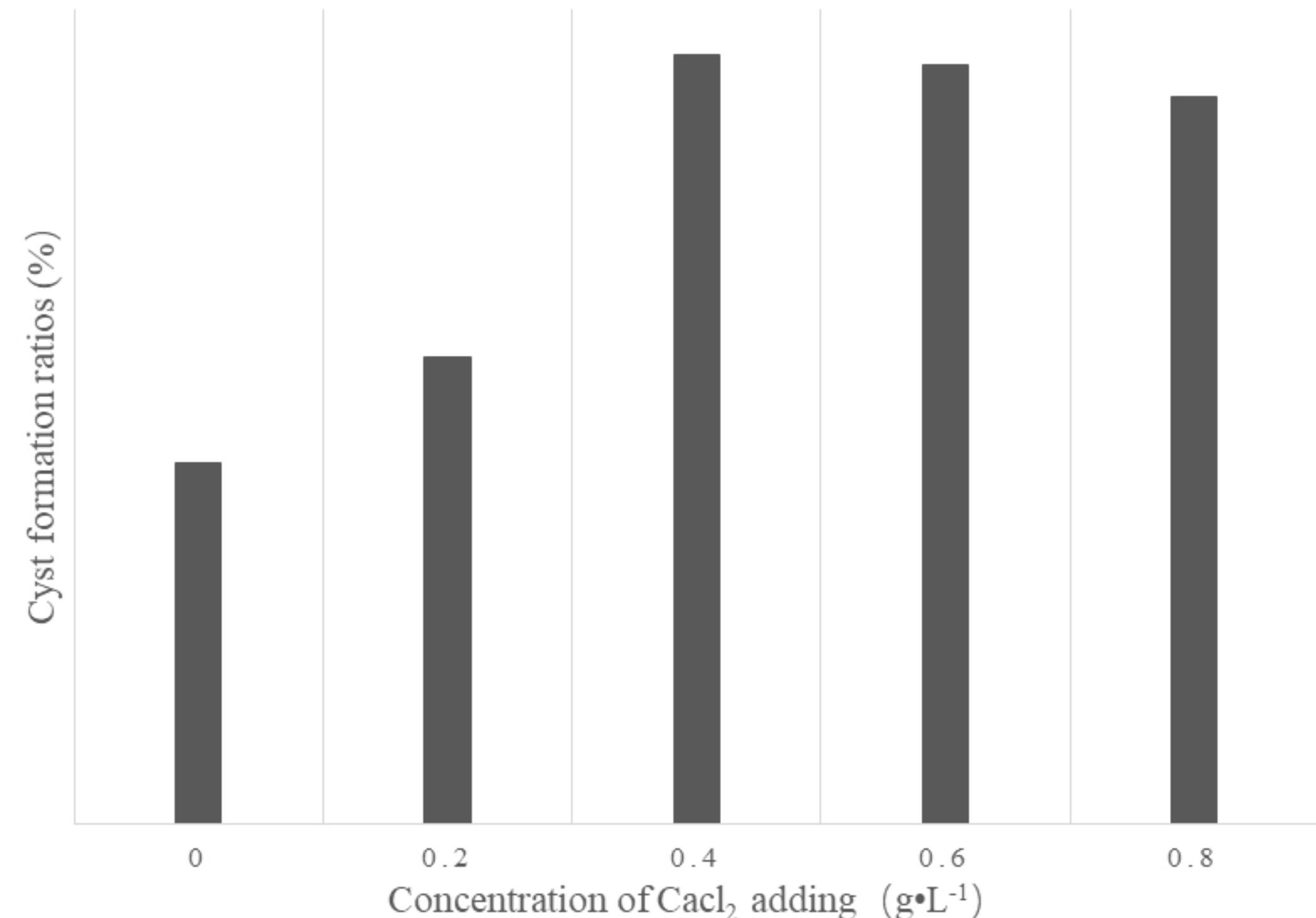


Figure 3

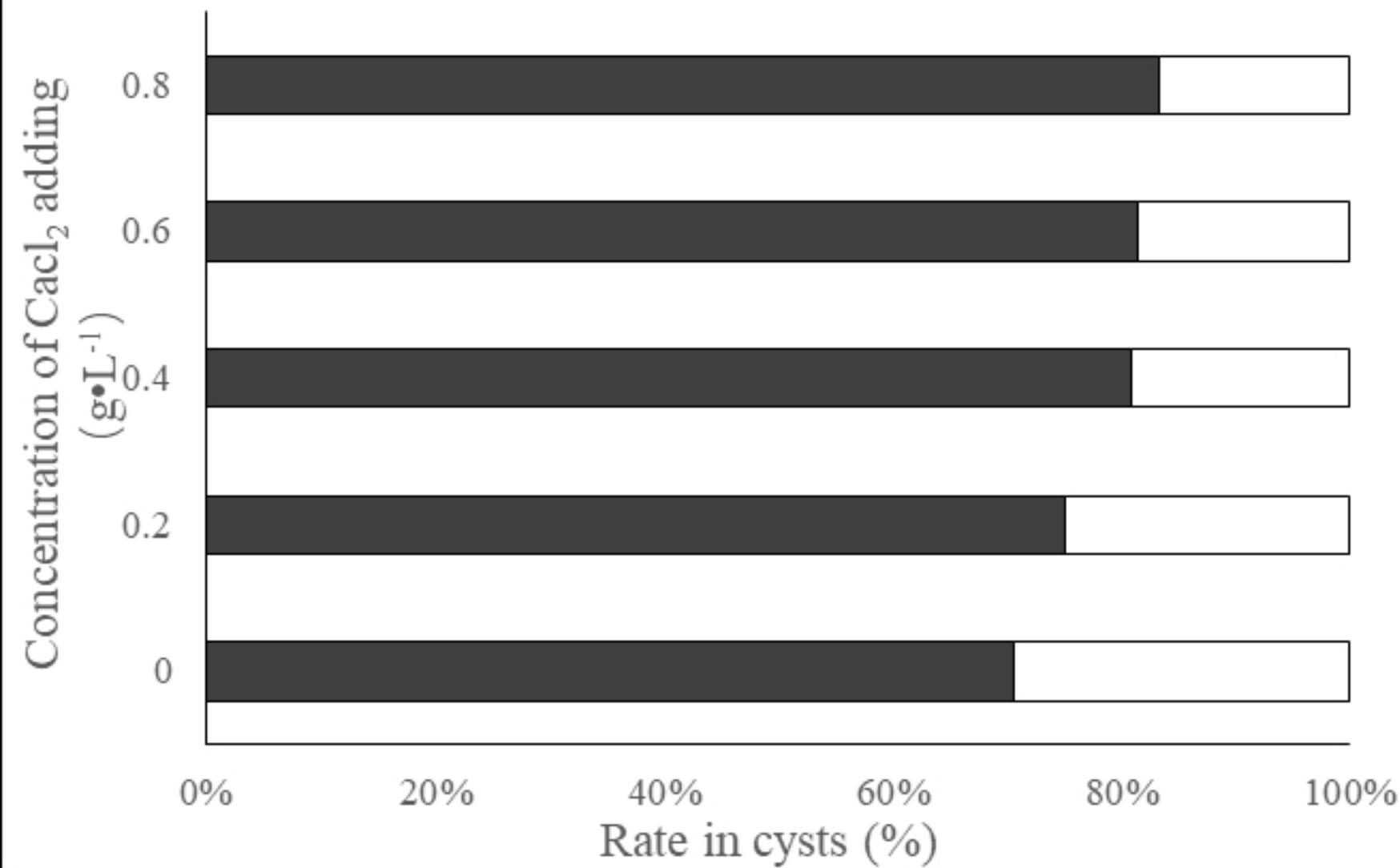


Figure 4