

Multiple Temporal and Semantic Processes During Verbal Fluency Tasks in English-Russian Bilinguals

Alan J. Lerner MD^{1,2,*}, Michelle Crough³, Steven Lenio MD⁴, Wojbor Woyczyński⁵, and Frances M. Lissemore PhD^{1,2}

¹Neurology Department, Case Western Reserve University School of Medicine, Cleveland, OH, USA

² Neurology Department, University Hospitals Cleveland Medical Center, Cleveland, OH, USA

³Case Western Reserve University School of Medicine, Cleveland, OH, USA

⁴ Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA

⁵Department of Mathematics, Applied Mathematics and Statistics, and Center for Stochastic and Chaotic Processes in Science and Technology, Case Western Reserve University, Cleveland, OH, USA

*Corresponding author

Alan J. Lerner, MD
3619 Park east Drive
Beachwood, OH 44122

Alan.lerner@case.edu

Fax 1 216 201 6424
Office 1 216 464 644

Short Title: Temporal and semantic process in Bilinguals

Keywords: semantic fluency, bilingualism, clustering, cognition, stochastic modeling

45

46 **Abstract**

47

48 Category fluency test (CFT) performance is sensitive to cognitive processes of executive control
49 and memory storage and access, and widely used to measure cognitive performance especially
50 in early Alzheimer's Disease. Analytical variables have included the number of items named,
51 and various methods to identify and quantify clusters of semantically related words and cluster
52 switches. Also encoded in the response sequence are temporal patterns as shown by "bursts"
53 of responses and pauses between items, that have not been received attention in determining
54 cluster characteristics.

55 We studied a group of 51 adult Russian-English bilinguals and compared CFT responses
56 based on two clustering methodologies: the semantic-based method (SEM) and a novel method
57 based on the time interval between words (TEMP) with 8 different intercall time thresholds from
58 0.25 sec-15 sec. Each participant performed the task in both languages. Total number of words
59 and cluster count was greater in Russian than English for both scoring methods, but cluster size
60 did not differ between languages. We also studied stochastic modeling characteristics based on
61 detrending of the "exponential exhaustion" effect seen with CFT, with most notable that total
62 recall capacity (N_{∞}) was greater in Russian than English ($P < .05$). Multiple demographic
63 variables, and recent and lifetime usage of each language, affected both cognitive performance
64 as measured by the Montreal Cognitive Assessment (MOCA; given in English only). Differential
65 performance is driven by differences in demographics, more words stored in memory, and
66 semantic and timing recall strategies.

67

68

69 **Introduction**

70 Category fluency testing (CFT) is a measure of verbal fluency often employed in clinical
71 and neuro-linguistic assessments. A subject is asked to name as many members of a category
72 as possible, e.g. “animals”, in a given time, generally 60 seconds. The number of responses
73 produced on the animal naming test of category fluency is widely thought to reflect an individual’s
74 ability to produce clusters of semantically related animal names and to rapidly switch between
75 clusters of names [1]. This ability depends on a wide range of cognitive processes including
76 lexical access speed, executive function, education, and the size of an individual’s vocabulary
77 [2-5]. It is also well known that verbal fluency responses per unit time are subject to “exponential
78 exhaustion” when response numbers per unit time are binned [3]; our previous work has
79 extended these findings by use of statistical methods to detrend the data as shown by using
80 stochastic modeling of response times between young and old subjects, and between older
81 adults with normal cognition and those with varying degrees of cognitive impairment [6,7]. Thus,
82 it appears that multiple cognitive processes are working simultaneously and contribute to the
83 simplest output measure, the total number of words recalled in 60 seconds (N_{60}).

85 To assess clustering ability and to better understand these cognitive processes and how
86 they contribute to semantic fluency, multiple methodologies and subject populations have been
87 employed using semantic fluency testing [1, 8-11]. Previous studies in bilingual populations
88 have shown small differences between languages, but have often included individuals with
89 bilingualism of varying languages and different methods ascertaining usage between languages.

90 Troyer et al. [1] established a method of analyzing cluster-switch data that has been
91 widely used in studies of semantic fluency. Published studies have often relied on two raters
92 independently assessing a sequence of responses and determining whether consecutive
93 responses are part of the same cluster.

94 Historically, cluster-switch analyses have been based on the supposition that responses

95 are generated in “bursts” with a pause before the respondent continues with another burst of

96 responses, and that these bursts contain semantically related words. Combining “burstiness”

97 and semantic relatedness led to the prevailing notion that related items are stored in semantic

98 memory such that they are accessed in rapid succession. A number of studies examining the

99 sequence and patterns of category fluency responses have shed light on how semantic memory

100 is organized and accessed, but significant debate still exists over the utility of category fluency

101 to study semantic structure [6] [12] [13] [14].

102 Here we report both semantic (SEM) and temporal clustering (TEMP) the response

103 sequences in an animal naming task in bilingual Russian-English cognitively normal adults.

104 Combined with the MOCA and demographics and response-related temporal variables gives a

105 multi-dimensional view of understanding verbal fluency output as a composite measure of

106 multiple factors.

107 **Methods**

108

109 **Recruitment**

110

111 The Institutional Review Board of University Hospitals Cleveland Medical Center

112 approved this study; IRB ID #05-13-13, and written informed consent was obtained for all

113 participants prior to start of study procedures.

114 Participants were recruited from community recreation centers and residential retirement

115 facilities known to serve populations of foreign-born citizens in suburban Cleveland, OH. All

116 procedures were approved by the University Hospitals Institutional Review Board prior to

117 recruitment. Participants were interviewed individually out of hearing range from other persons

118 in the interview area, and were compensated with a \$25 gift card. Each person informed about

119 the study was asked whether they spoke any language in addition to English. From this

120 exchange the interviewer was able to determine whether the speaker's English was adequate
121 to participate, and if so then the person was consented out of hearing range of other persons.
122 Consent process includes questioning the potential participant to assess their understanding of
123 the study. Demographic information collected included age, place of birth, age at the time
124 participant moved to the United States, and age when participant began learning English.
125 Language dominance was self-reported by the participant.

126
127 **Russian and English Usage Index and Education**
128

129 We attempted to model bilingualism as a continuous variable rather than a dichotomous
130 variable, since there is no standard quantitative threshold of "bilingualism". Participants were
131 asked to estimate the relative use of each language by decade over their lifespan and over the
132 past year ("recent" (English or Russian) usage). This gives a rough approximation of bilingualism
133 as a continuous rather than a discrete variable which varies with age and life experience. We
134 also obtained a self-report of age participant began speaking English.

135 Education completed was divided into five categories as follows: Less than High school
136 graduate (1), High school graduate (2), some college (3), college graduate (4), post-graduate
137 education (5).

138
139 **Testing Procedures**
140

141 The animal naming task was administered twice to each participant, once with responses
142 in English and once with responses in Russian. Between the two trials, participants completed
143 the Montreal Cognitive Assessment (MOCA) in English [15], and the order of languages for the
144 CFT (English first or Russian first) was randomized to control for priming effects by the first trial
145 of the second.

146 The Montreal Cognitive Assessment (MOCA) and animal naming tests were recorded

147 using a handheld digital device. The recordings were transcribed and the time from the start of

148 the trial to the start of each word (elapsed time) was calculated using WavePad Sound Editor

149 (NCH Software Inc., Greenwood, CO).

150 Responses from the Russian trials were translated into English by a native Russian

151 speaker, and we recorded the total number of non-repeated responses not including errors in

152 60 seconds. Two raters scored each trial for semantic clustering (“SEM” method), following the

153 Troyer et al. [1997] method with the following exceptions: we did not assign any response to

154 more than one cluster, we counted cluster size as the number of words in a cluster, and we

155 counted single words (i.e. those not semantically associated with a response preceding or

156 following) as a cluster size of one. Pearson correlation coefficient (r) between raters for semantic

157 cluster scoring was 0.9 for the English CFT, and 0.84 for the Russian CFT.

158

159 **Clustering procedures: Semantic (SEM) and Time (TEMP)**

160 For the both scoring methods, the intercall times (time between the start of consecutive

161 responses) was recorded. Clusters based on time (temporal clusters or “TEMP”) were analyzed

162 without regard to the semantic relationship among responses. In developing this new approach

163 to clustering, it is recognized that there is no standardized intercall duration threshold known to

164 be optimal. If a duration shorter than the minimum was chosen, then each item would be its own

165 cluster of a single word. At the far end, thresholds greater than the maximum intercall time up to

166 60 seconds would perform result in a single cluster. Therefore, we analyzed the data using

167 thresholds of 0.25, 0.5, 0.75, 1, 1.5, 2, 5 and 15 seconds.

169 Mean and median cluster size (number of words in a cluster) across time duration

170 thresholds, the average cluster size ($N_{60} / \# \text{ clusters}$) were calculated for SEM scoring method,

171 and Median TEMP cluster size in both languages.

172 Additionally, we determined two additional temporal variables. The initial latency is the

173 duration from 0 seconds to first item named. We also calculated the duration from time at last

174 item named to 60 seconds. In previous work [7] this time correlated well with total items named.

175 Fig 1 illustrates the complex relationship of semantic versus temporal clustering for a single

176 subject.

177

178 **Fig 1. Composition of time-based cluster and semantic-based clusters in an animal**
179 **naming task.** The first nine responses (dog through camel) constitute the only time-based
180 cluster in this example; those same nine responses make up three semantic-based clusters
181 (green and yellow markers). The remaining nine responses make up two additional semantic-
182 based clusters and five un-clustered words (gray markers).

183

184 **Temporal Detrending Variables and Statistical Analysis**

185

186 Participant responses were analyzed using detrending procedures as described by Meyer et

187 al, 2012. This creates derived variables N_{60} (the number of words recalled), N^∞ representing

188 individual's "total recall capacity" allowing infinite time for recall, or the rate at which the

189 subjects responses approach an asymptote; We must emphasize that the parameter N^∞ is

190 called here the "total recall capacity" only figuratively, with quotation marks applied advisedly.

191 The actual recall process cannot possibly extend its exponential behavior to infinite time as a

192 matter of both mathematics and common sense. Accepting the unlimited exponential behavior

193 would practically mean that after, say, one hour the individual's recall ability would be

194 essentially zero, an obvious nonsense. So N^∞ is just a useful parameter in the exponential

195 exhaustion model. Tau (τ), which is the exponential time "latency" constant. The latter can be

196 conveniently thought of as the time by which the individual reaches $e^{-1} = 36.8\%$ of their "total

197 recall capacity".

198

199 Additionally, the distribution of the detrended intercall times approximates the Weibull stretched

200 exponential distribution and the three parameters of the distribution were calculated for each

201 participant with sufficient responses [6]. The three components of the Weibull distribution:
202 gamma, which is related to speed of response; beta which relates to the shape of the response
203 distribution and eta, a scaling factor. Statistical analysis utilizing summary statistics, one-way
204 ANOVA, univariate Spearman correlations and non-parametric statistics were done using JMP
205 14.0.

206 **Results**

207

208 **Demographics**

209

210 Table 1 shows the demographic characteristics of the subject cohort. More than 70% of
211 participants were female, ranged in age from 19 to 75 years, were well educated (86%
212 graduated college or had a post-graduate education), and all but two were born outside the
213 United States, primarily in Russia or Ukraine. All participants spoke Russian before they spoke
214 English, and began English language instruction between the ages of 3 and 59 years. Table 1
215 shows subject demographics, MOCA scores, MOCA letter fluency word count and N_{60} in each
216 language. Table 1 also shows the life time and previous year index of usage of each language.
217 Table 2 shows the univariate correlation analysis showed that both Russian and English word
218 counts (N_{60}) correlated significantly between themselves, and were highly correlated with
219 MOCA score and MOCA letter fluency, education, lifetime Russian shown).

220

221 **Table 1: Subject Demographics.**

Total N =51	Mean (SD)
Age	49.37 (17.8)
Level of education*	4.10 (.83)
Gender %Female	73%
Age moved to US	32.0 (16.0)
Age started second language***	20.5 (17.0)

222	MOCA (30 points maximum)	21.4 (4.8)
	MOCA Letter Fluency N words	11.1 (4.4)
223	N Responses in English(N ₆₀)	16.18 (6.9)
	N of Responses in Russian (N ₆₀)	18.35 (6.2)
224	Lifetime English Index (0-1)	0.21 (0.16)
225	Lifetime Russian Index (0-1)	0.76 (0.19)
226	Previous Year Russian Index (0-1)	0.49 (0.22)
227	Previous Year English Index (0-1)	0.50 (0.27)

Table 2: Univariate correlations (Spearman's rho) of word production in each language and demographic variables and the Montreal Cognitive Assessment

229 **scores.**

230

	N60 English	Age	MOCA Score	MOCA Letter Fluency	Lifetime Russian Index	Most Recent Russian Index
N ₆₀ Russian	0.43**	-0.14	0.37**	0.41**	-0.24	0.08
N ₆₀ English		-0.61***	0.73***	0.53***	-0.54**	-0.26
Age			-0.62***	-0.17	0.50**	0.44*
MOCA Total Score				0.59***	-0.48**	-0.24
MOCA Letter Fluency Count					-0.28	0.68*
Lifetime Russian Index						0.81***

NS=Not significant; * <0.05 , ** <0.01 , *** <0.001

231

232 Comparing methods visually

233

234

235

236

237

238

239

240

Fig 1 displays the outcomes of the two clustering methods for one participant's Russian responses in the CFT. The difference in the pattern of clusters between the two methods is striking, especially in the first 9 responses, which are grouped as one TEMP cluster and three SEM clusters. The remaining graphs for all participants' Russian responses and English responses are shown in S1 Fig and S2 Fig.

239 Response characteristics

240

241 There was no difference in the number of words produced in English or Russian tested

242 first versus English or Russian tested second in the CFT trials, indicating there was no priming

243 effect of repeating the test within a short time. Likewise, the order of languages in the two trials

244 (Russian first or English first) did not make a difference in the number of words produced in that

245 language.

246 **Table 3. N_{60} characteristics and the lack of priming effects based on first language tested**
247 **for verbal fluency output.**

		N	N_{60} mean(sd)	
Language	Russian	51	18.4(6.2)	t=16.75, p<.0001
	English	51	16.1 (6.9)	
Language x Trial				F,p
Russian Responses	First Trial Russian	24	17.8 (6.1)	0.31, NS
	First Trial English	27	18.8 (6.4)	
English Responses	First Trial Russian	27	16.5(7.7)	0.12, NS
	First Trial English	24	15.9 (6.2)	

249

250 Table 4 shows the comparison between languages of the detrended response variables. N_{∞}

251 was significantly larger in Russian, suggesting that the pool of available responses was larger,

252 and thus one factor for greater number of word responses in Russian (see table 1)

253 **Table 4. Temporal Recall Indices in Russian and English (N=48).**

	N_{∞}	Tau	Gamma	Beta	Eta
Russian	27.6(14.2)	44.0(28.4)	0.22(0.10)	1.25(0.27)	0.84(0.17)
English	22.6(10.5)	43.2(46.3)	0.26(0.14)	1.15(0.40)	0.74(0.17)
p	<.05	NS	NS	NS	<.01

255 ** Values are mean(SD) English versus Russian means Compared by two tailed Wilcoxon
256 signed rank test
257
258 Table 5 shows the univariate correlations (Spearman's rho) between word count, N ∞ , tau,
259 average number of clusters for each clustering method, average cluster size (SEM) and median
260 cluster size (TEMP). N ∞ correlated best with word count and clustering variables and Tau, but
261 the correlation with temporal cluster number was not significant in Russian, while it was in
262 English testing. Interestingly, most other variables except word count in Russian median N
263 TEMP clusters were not significant.

264 **Table 5: Univariate correlations of word count, clustering variables and detrended time
265 variables**

266

		N SEM clusters	N Median TEMP clusters	Mean SEM Cluster size	Median TEMP cluster size	N ∞	Tau
Russian	Word count (N ₆₀)	0.78***	0.75***	0.26	0.56***	0.74***	0.36*
	N Semantic Clusters		0.53**	-0.32*	0.44**	0.52**	0.20
	Median N TEMP clusters			0.14	-0.02	0.67***	0.51**
	Mean SEM Cluster size				0.13	0.38**	0.27
	Median TEMP Cluster size					0.26	-0.07
	N ∞						0.81***
English	Word count	0.72***	0.83***	0.44***	0.64***	0.81***	0.04
	N Semantic Clusters		0.68***	-0.24	0.31	0.55***	0.12
	Median N TEMP clusters			0.22	0.16	0.63***	0.14
	Mean SEM Cluster size				0.44**	0.43**	-0.01
	Median TEMP Cluster size					0.47**	-0.15
	N ∞						0.45**

p<.05; *p<.01; ***p<.001

267

268

269 Comparing Cluster Characteristics

270

271

272

When comparing cluster characteristics between languages, semantic cluster count was

273

significantly higher in Russian than in English (Table 5). This is likely an effect of the greater

274 N₆₀ in Russian than English; more words generally result in more clusters. Cluster sizes,
275 however, did not differ significantly between Russian and English (Table 5). There were
276 significantly more temporal clusters in Russian than English for all durations 1 second or less.
277 However, the curves were of similar shape, and 0.25 sec threshold duration had cluster counts
278 that approximated N₆₀, and threshold duration of 15 seconds almost always yielded a single
279 cluster of all words (Fig 2).

280 **Table 6. Clustering Characteristics by Language and Methodology of Clustering**
281 **(Semantic versus Temporal).**

282

	N Semantic Clusters	Semantic Mean Cluster size (N words)	Temporal Clusters (Mean (SD))			
			N Mean	Mean Cluster size	N Median	Median Cluster size
Russian	9.63 (3.4)	2.09 (0.6)	11.5 (2.8)	1.62 (0.18)	12.6 (3.0)	1.49 (0.30)
English	8.1(3.3)	2.04 (0.7)	10.125 (3.3)	1.53 (0.20)	11.2 (3.6)	1.39 (0.29)
p-value	<.0001	NS	<.01	<.02	<.02	NS

283

284 **Fig 2: Average Number of Clusters based on Temporal Duration Thresholds by**
285 **Language.**

286

287

288

289

290

291 **Initial latency and terminal duration**

292

293 The initial latency was significantly faster in Russian than English (1.14 ± 0.58 vs. 1.94 ± 1.70
294 seconds; $p < 0.003$). Time from last word to 60 seconds was significantly less in Russian than
295 English (6.85 ± 6.1 sec vs. 9.62 ± 8.6 sec; $p < .05$). Both of these differences probably contribute
296 to the greater number of words and ultimately clusters in Russian than English. Several
297 participants had terminal durations of more than 15 seconds, and two participants had terminal
298 durations in English of more than 30 seconds. They are also consistent with the smaller gamma
299 response variable in Russian than English, although that difference was not statistically
300 significant.

301

302

303 **Discussion**

304 Given the many analytical methods applied to CFT in the literature, it is clear that an
305 enormous amount of information is encoded in the item content, as well as timing intervals
306 between words. The major focus and results of this study involve comparison of the CFT in a
307 cohort of Russian-English Bilinguals tested in both languages, and comparison of temporal and
308 semantic cluster scoring methods using different threshold durations for defining temporal
309 clustering. Since both semantic and temporal information are simultaneously encoded in the
310 response sequence, it is important to determine their relationships on a quantitative level. Our
311 study's major findings relate to the two main aims of the study: comparison of semantic and
312 temporal processing between languages, and the feasibility of measuring temporal clustering.
313 For the former aim, participants produced more responses in Russian than English, and this
314 appears multiply determined, including demographics and differential language use, but also
315 differences in response timing, total time spent engaged in task, and size of lexicon in each

317 language as measured by total recall capacity. For the latter aim, measuring temporal clustering
318 is quite feasible and allows comparison to the established semantic clustering method.

319

320 Temporal clustering can only be done and measured when the CFT is recorded
321 continuously, rather than the binning method used in many previous studies [3] , [16] . Use of
322 different duration thresholds to define temporal clusters showed a similar pattern of temporal
323 clusters in both languages, and a maximum number of temporal clusters occur using a 1.5-2 sec
324 cutoff of the intercall duration to separate clusters.

325

326

327 Previous literature has expressed concern about the subjective aspects of determining
328 semantic clustering, although the many studies using variants of Troyer's methodology have
329 shown differences consistent with the known neurobiology of neurodegenerative disorders such
330 as AD [9] [17] . These concerns arise from the ambiguity involved in determining semantic
331 relatedness. Thus, a sequence of *dog-cat-parrot-fish-whale* could be interpreted as two clusters
332 (dog-cat-parrot (Pets); fish-whale (Marine animals), or perhaps dog-cat-parrot-fish (Pets) and
333 whale (marine mammal), or as three clusters of dog-cat (pets), parrot (bird) and fish-whale
334 (marine animals).

335 Long duration pauses in the response sequence are common, and there is often a
336 "second wind" phenomenon, with a second acceleration of responses after a long pause - in
337 effect, restarting the task. These longer duration pauses are problematic since they suggest
338 alterations in brain processing whose meaning is ambiguous. In the SEM method but not in the
339 TEMP method, a long pause is incorporated into the sequence of a cluster raising the question
340 of whether the respondent "intended" the responses to be semantically related. That is, long
341 durations finally producing a semantically related word, may indicate the end of one cluster, and

342 then essentially restarting the semantic association process anew. The TEMP method more
343 accurately reflects how respondents verbalized their responses and allows the pauses
344 themselves to be utilized in analyses of the retrieval process instead of “concealing” pauses
345 within clusters as in SEM. Another point related to this is that long duration pauses or stopping
346 the response sequence early effectively turn the 60 second test into a much shorter test and
347 heavily affect the number of items produced, which is the simplest analytical method for
348 evaluating semantic processing. Also to be considered in language function is the initial latency
349 of the first word and the duration from last word to 60 second end of test. Particularly the latter
350 contributes a constraint to increasing the number of words produced, effectively shortening the
351 60 second test, occasionally by as much as 30 seconds. Whether this is a motivational or
352 attentional or linguistic issue cannot be determined from the available data. The lower initial
353 latency in Russian probably was one factor contributing to increased word production in that
354 language.

355 Hills, et al. 2015 [18] proposed two alternative but not mutually exclusive models for
356 semantic memory search. Their associative model is based on “a connected sequence of related
357 items”, presumably connected by frequency of usage even if the items are not closely related
358 semantically. Second, their categorical model relies on recalling “entire predefined categories”
359 and choosing responses from within that group. Our data may support their associative model.
360 Sequential responses often show little semantic relatedness, for example in Fig 1 where “pig” is
361 followed by “lion” (same TEMP cluster, different SEM cluster). Hills et al. [18] refer to “low-
362 similarity transitions”; our data show transitions between responses that are short in time but do
363 not necessarily have “short” semantic connections. That observation supports the idea that
364 TEMP clusters correspond to the associative model because high-usage responses are likely to
365 show up in the same cluster even if they are not closely related semantically. Hills et al. conclude
366 that retrieval from semantic memory is a process both of frequency of usage and of categorical

367 similarity, and long pauses between semantically related responses (as seen in our data)
368 support that idea. Other forms of semantic clustering using different word retrieval constructs
369 have been compared by Abenwender, Swan, Bowerman and Connolly [19] but further
370 discussion is beyond the scope of this study.

371

372 Another methodological concern of both methods involves the treatment of single word
373 “clusters”. By definition, the first word produced is part of a cluster, and if the subsequent
374 response exceeded the temporal threshold, a cluster of a single word is generated. Thus, even
375 the definition of “temporal cluster” contains some ambiguity. Whereas semantic clusters are
376 derived from two independent raters, definition of temporal clustering is done automatically, but
377 cluster numbers vary depending on the threshold duration chosen.

378 Troyer et al 1997 [1] used number of switches between clusters as a proxy for direct
379 cluster count, stating “(s)witches were calculated as the number of transitions between clusters,
380 including single words....”; i.e. single word clusters. Dramatic differences in count caused by
381 cluster definition has consequences in neuro-linguistic assessments insofar as cluster count is
382 considered a reflection of cognitive function. Haugrud et al. [9] note “small changes in scoring...
383 can change... measures of clustering, (hence) average cluster size might not be the most
384 effective method for differentiating AD from healthy aging” [20]. A one-word cluster has no
385 semantic association with a word preceding or following it, and it often exceeds in time an
386 association with adjacent responses. Therefore, it is also possible that single word clusters do
387 not totally fit SEM or TEMP criteria, and that analyses of clusters>1 word alone may point
388 towards more meaningful conclusions regarding semantic memory structure and access.

389 The cultural, educational and life experiences of the respondent may influence how
390 frequently words are used and how readily they are retrieved from memory, and similarly, those
391 of the rater may influence cluster composition. Interestingly, we found a lower correlation

392 between our raters (U.S.-born native English speakers) in semantic category scoring in Russian
393 (after translation) (Pearson $r=.84$) than in English (Pearson $r=.90$). This suggests it was more
394 difficult for raters to consistently infer the response relationships intended by respondents in the
395 language not spoken by our raters.

396 Temporal clustering methods may have a theoretical advantage over semantic methods
397 in terms of understanding neural function as reflected by advanced statistical methods. The
398 process of semantic recall for related terms is similar to how animals search for food in resource
399 patches (for example bees in a flower patch), which is the focus of optimal foraging theory (OFT)
400 [21]. Optimal foraging models posit that animals search patches such that foraging efficiency is
401 maximized. Likewise, “patches” of semantic memory are searched for unique animal names in
402 the CFT. OFT has recently been applied to analyses of response sequences in CFTs [18] ,
403 divergent thinking processes [22], and to predict intercall times [23]. In addition to optimal
404 foraging, other kinds of models have been utilized to further understand memory association
405 and retrieval, including mathematical, physical, and computer-based analyses [24] [25] [26] [27]
406 .

407 Limitations of the present study include the absence of monolingual control groups in
408 each language, and of a general vocabulary assessment in either language before testing. Our
409 study population, however, was highly educated (Table1) which likely indicates strong
410 vocabulary ability. The sample of participants is a convenience sample, and may not reflect the
411 wide population of Russian-English or other bilingual combinations. Application to aging and
412 disease models also awaits further study.

413 Our prior work examined CFT in groups with varying levels of cognitive impairment [7]
414 focused on intracluster and intercluster timings but did not include analysis of temporal
415 clustering. In that study, cluster size did not vary significantly across groups, but cluster counts
416 did, a pattern similar to what we found in the current analysis. Clusters with more words means

417 fewer clusters (i.e. fewer cluster switches), and cluster switching has been used as a proxy for
418 executive function [8] [28] [29] [5] . We could likely expect that other types of category fluency,
419 e.g. vegetables, four legged animals, food or clothing, could be analyzed by the TEMP method
420 as well.

421 Category fluency testing is a clinically useful measure because of the enormous amount
422 of encoded information utilizing multiple brain processes contributing to its outcome. Integrative
423 tests, such as gait timing, clock drawing or CFT are useful screening tools precisely because
424 performance integrity implies intact brain processing, and conversely, it is sensitive to many
425 types of baseline neurological ability, brain injury and cognitive decline beyond Alzheimer's
426 disease and related disorders [30] [31]. As reviewed here, clustering reflects multiple brain
427 processes, and both semantic and temporal clustering provide insights into these very brain
428 processes. Temporally-based cluster scoring method for the animal naming task is equally
429 feasible and possibly less ambiguous than the semantic-based method although the optimal
430 threshold duration between items, used to define "clusters" is varies between respondents.
431 Additionally, temporal clustering may reduce basic inter-rater reliability because the start of a
432 cluster and its end are quantitatively determined, obviating semantic relatedness judgements.
433 This method also allows for a faster scoring process which can be easily adapted to automated
434 programming. Future studies in different populations are needed to define the relative
435 contributions of the two methods in determining the clinical and research significance of each.
436

437 **References**

438

439 1. Troyer AK, Moscovitch M, Winocur G. Clustering and switching as two components of
440 verbal fluency: evidence from younger and older healthy adults. *Neuropsychology*.
441 1997;11(1):138-46.

442 2. Luo L, Luk G, Bialystok E. Effect of language proficiency and executive control on
443 verbal fluency performance in bilinguals. *Cognition*. 2010;114(1):29-41.

444 3. Rohrer D, Wixted JT, Salmon DP, Butters N. Retrieval from semantic memory and its
445 implications for Alzheimer's disease. *J Exp Psychol Learn Mem Cogn*. 1995;21(5):1127-39.

446 4. Shao Z, Janse E, Visser K, Meyer AS. What do verbal fluency tasks measure?
447 Predictors of verbal fluency performance in older adults. *Front Psychol*. 2014;5:772.

448 5. Whiteside DM, Kealey T, Semla M, Luu H, Rice L, Basso MR, et al. Verbal Fluency:
449 Language or Executive Function Measure? *Appl Neuropsychol Adult*. 2016;23(1):29-34.

450 6. Meyer DJ, Messer J, Singh T, Thomas PJ, Woyczynski WA, Kaye J, et al. Random local
451 temporal structure of category fluency responses. *J Comput Neurosci*. 2012;32(2):213-31.

452 7. Lenio S, Lissemore FM, Sajatovic M, Smyth KA, Tatsuoka C, Woyczynski WA, et al.
453 Detrending Changes the Temporal Dynamics of a Semantic Fluency Task. *Front Aging*
454 *Neurosci*. 2016;8:252.

455 8. Bertola L, Cunha Lima ML, Romano-Silva MA, de Moraes EN, Diniz BS, Malloy-Diniz
456 LF. Impaired generation of new subcategories and switching in a semantic verbal fluency test
457 in older adults with mild cognitive impairment. *Front Aging Neurosci*. 2014;6:141.

458 9. Haugrud N, Crossley M, Vrbancic M. Clustering and switching strategies during verbal
459 fluency performance differentiate Alzheimer's disease and healthy aging. *J Int Neuropsychol
460 Soc*. 2011;17(6):1153-7.

461 10. Gold CA, Marchant NL, Koutstaal W, Schacter DL, Budson AE. Conceptual fluency at
462 test shifts recognition response bias in Alzheimer's disease: implications for increased false
463 recognition. *Neuropsychologia*. 2007;45(12):2791-801.

464 11. Weakley A, Schmitter-Edgecombe M. Analysis of verbal fluency ability in Alzheimer's
465 disease: the role of clustering, switching and semantic proximities. *Arch Clin Neuropsychol*.
466 2014;29(3):256-68.

467 12. Sung K, Gordon B, Yang S, Schretlen DJ. Evidence of semantic clustering in letter-cued
468 word retrieval. *J Clin Exp Neuropsychol.* 2013;35(10):1015-23.

469 13. Verheyen S, Voorspoels W, Longenecker J, Weinberger DR, Elvevåg B, Storms G.
470 Invalid assumptions in clustering analyses of category fluency data: Reply to Sung, Gordon
471 and Schretlen (2015). *Cortex.* 2016;75:255-9.

472 14. Voorspoels W, Storms G, Longenecker J, Verheyen S, Weinberger DR, Elvevåg B.
473 Deriving semantic structure from category fluency: clustering techniques and their pitfalls.
474 *Cortex.* 2014;55:130-47.

475 15. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al.
476 The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive
477 impairment. *J Am Geriatr Soc.* 2005;53(4):695-9.

478 16. Friesen DC, Luo L, Luk G, Bialystok E. Proficiency and Control in Verbal Fluency
479 Performance across the Lifespan for Monolinguals and Bilinguals. *Lang Cogn Neurosci.*
480 2015;30(3):238-50.

481 17. Raoux N, Amieva H, Le Goff M, Auriacombe S, Carcaillon L, Letenneur L, et al.
482 Clustering and switching processes in semantic verbal fluency in the course of Alzheimer's
483 disease subjects: results from the PAQUID longitudinal study. *Cortex.* 2008;44(9):1188-96.

484 18. Hills TT, Todd PM, Jones MN. Foraging in Semantic Fields: How We Search Through
485 Memory. *Top Cogn Sci.* 2015;7(3):513-34.

486 19. Abwender DA, Swan JG, Bowerman JT, Connolly SW. Qualitative Analysis of Verbal
487 Fluency Output: Review and Comparison of Several Scoring Methods. *Assessment.*
488 2001;8(3):323-38.

489 20. Lanting S, Haugrud N, Crossley M. The effect of age and sex on clustering and
490 switching during speeded verbal fluency tasks. *J Int Neuropsychol Soc.* 2009;15(2):196-204.

491 21. Charnov EL. Optimal foraging, the marginal value theorem. *Theor Popul Biol.*
492 1976;9(2):129-36.

493 22. Hass RW. Semantic search during divergent thinking. *Cognition.* 2017;166:344-57.

494 23. Montez P, Thompson G, Kello CT. The Role of Semantic Clustering in Optimal Memory
495 Foraging. *Cogn Sci.* 2015;39(8):1925-39.

496 24. Queau P-Y, Woyczyński WA, Lerner AJ. Coalescing stochastic ' processes in retrieval
497 from semantic memory. *Mathematica Applicanda.* 2015;43:187-224.

498 25. Hopfield JJ, Brody CD. What is a moment? "Cortical" sensory integration over a brief
499 interval. *Proc Natl Acad Sci U S A.* 2000;97(25):13919-24.

500 26. Tapson JC, Cohen GK, Afshar S, Stiefel KM, Buskila Y, Wang RM, et al. Synthesis of
501 neural networks for spatio-temporal spike pattern recognition and processing. *Front Neurosci.*
502 2013;7:153.

503 27. Zak SH, Upatising V, Hui S. Solving linear programming problems with neural networks:
504 a comparative study. *IEEE Trans Neural Netw.* 1995;6(1):94-104.

505 28. Carter SF, Caine D, Burns A, Herholz K, Lambon Ralph MA. Staging of the cognitive
506 decline in Alzheimer's disease: insights from a detailed neuropsychological investigation of
507 mild cognitive impairment and mild Alzheimer's disease. *Int J Geriatr Psychiatry.*
508 2012;27(4):423-32.

509 29. Kirova AM, Bays RB, Lagalwar S. Working memory and executive function decline
510 across normal aging, mild cognitive impairment, and Alzheimer's disease. *Biomed Res Int.*
511 2015;2015:748212.

512 30. Pastor-Cerezuela G, Fernández-Andrés MI, Feo-Álvarez M, González-Sala F. Semantic
513 Verbal Fluency in Children with and without Autism Spectrum Disorder: Relationship with
514 Chronological Age and IQ. *Front Psychol.* 2016;7:921.

515 31. Schmidt CSM, Nitschke K, Bormann T, Römer P, Kümmerer D, Martin M, et al.
516 Dissociating frontal and temporal correlates of phonological and semantic fluency in a large
517 sample of left hemisphere stroke patients. *Neuroimage Clin.* 2019;23:101840.

518

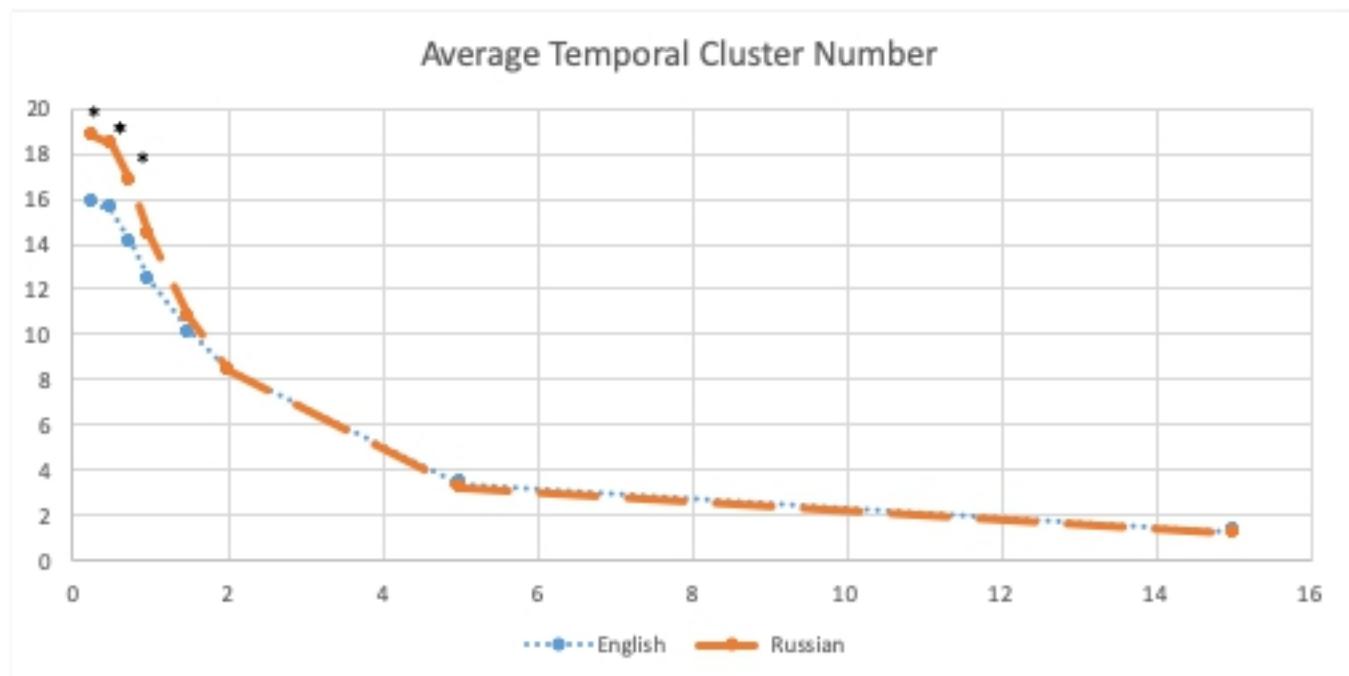
519 **Supporting Information**

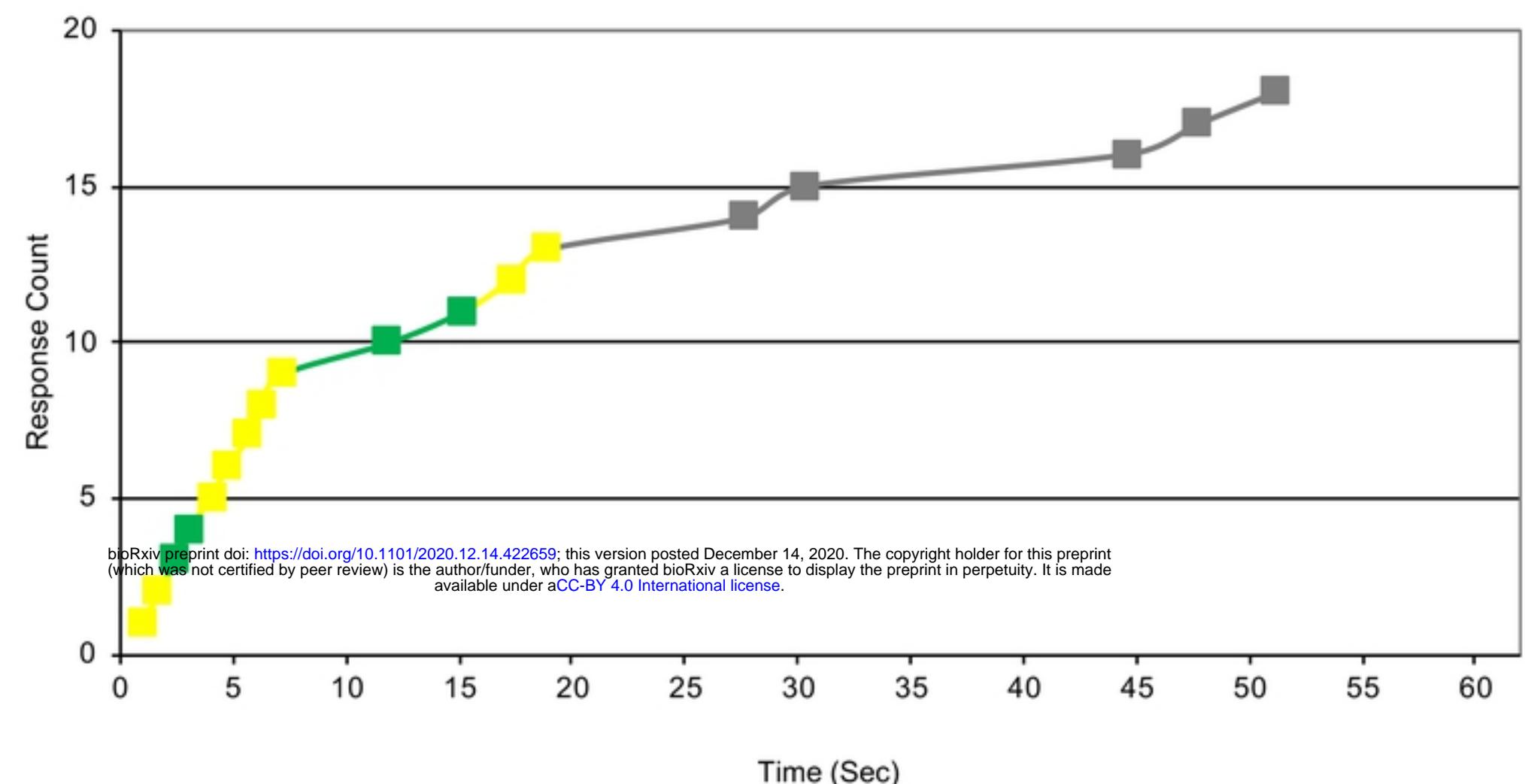
520 **S1 Fig. Semantic and temporal cluster compositions for responses in Russian in the**
521 **animal naming task.** Response count is graphed over time (60 seconds), and accompanying
522 chart shows assignment of semantic clusters and of temporal clusters. The top line of the chart
523 identifies participant ID number and response count, with sequence of animal names in the
524 second line. Cluster switches are indicated by alternate shading of boxes below the response
525 sequence (semantic clusters-- third line; temporal clusters-- fourth line); no shading under a word
526 indicates it was not part of a cluster.

527 **S2 Fig. Semantic and temporal cluster compositions for responses in English in the**
528 **animal naming task.** Response count is graphed over time (60 seconds), and accompanying
529 chart shows assignment of semantic clusters and of temporal clusters. The top line of the chart
530 identifies participant ID number and response count, with sequence of animal names in the
531 second line. Cluster switches are indicated by alternate shading of boxes below the response
532 sequence (semantic clusters-- third line; temporal clusters-- fourth line); no shading under a word
533 indicates it was not part of a cluster.

534 **Acknowledgements**

535 This study was funded by the Brain Health and Memory Center, Neurological Institute of
536 University Hospitals Cleveland Medical Center. The authors wish to thank S. Klayman for
537 translating responses from Russian.


538


539 **Funding**

540 This study was supported by the Brain Health and Memory Center at University Hospitals

541 Cleveland Medical Center and NIA P30 AG062428 (AJL,FML).

Response sequence	Dog-cat-cow-pig-lion-tiger-giraffe-elephant-camel-goat-antelope-lynx-panther-horse-monkey-fox-polar bear-jaguar
Five semantic-based clusters:	(dog cat),(cow pig),(lion-tiger-giraffe-elephant-camel),(goat-antelope),(lynx-panther)

Figure