

1 **Novel virus-like particle vaccine encoding the circumsporozoite
2 protein of *Plasmodium falciparum* is immunogenic and induces
3 functional antibody responses**

4 **AUTHORS AND AFFILIATIONS**

5 Liriye Kurtovic^{1,2#}, David Wetzel^{3#}, Linda Reiling¹, Damien R. Drew¹, Catherine Palmer¹,
6 Betty Kouskousis¹, Eric Hanssen⁴, Bruce D. Wines^{1,2,5}, P. Mark Hogarth^{1,2,5}, Manfred
7 Suckow³, Volker Jenzelewski³, Michael Piontek³, Jo-Anne Chan^{1,2,6##*}, James G. Beeson^{1,2,6,7#*}

8 ¹Burnet Institute, Melbourne, Australia.

9 ²Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School,
10 Monash University, Melbourne, Australia.

11 ³ARTES Biotechnology GmbH, Langenfeld, Germany.

12 ⁴The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne,
13 Parkville, Australia.

14 ⁵Clinical Pathology, The University of Melbourne, Parkville, Australia

15 ⁶Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville,
16 Australia

17 ⁷Department of Microbiology, Monash University, Clayton, Australia.

18 [#]Authors contributed equally (co-first and co-senior authors)

19 *Corresponding authors: James Beeson & Jo-Anne Chan; 85 Commercial Road, Melbourne,
20 Australia; +61 3 9282 2111; beeson@burnet.edu.au & jo-anne.chan@burnet.edu.au

21

22

23

24

25

26

27 **ABSTRACT**

28 RTS,S is the leading malaria vaccine in development, but has demonstrated only moderate
29 protective efficacy in clinical trials. RTS,S is a virus-like particle (VLP) that uses the human
30 hepatitis B virus as scaffold to display the malaria sporozoite antigen, circumsporozoite protein
31 (CSP). Particle formation requires fourfold excess scaffold antigen, and as a result, CSP
32 represents only a small portion of the final vaccine construct. Alternative VLP or nanoparticle
33 platforms that reduce the amount of scaffold antigen and increase the amount of the target CSP
34 antigen present in particles may enhance vaccine immunogenicity and efficacy. Here, we
35 describe the production and characterization of a novel VLP that uses the small surface antigen
36 (dS) of duck hepatitis B virus to display CSP. The CSP-dS fusion protein successfully formed
37 VLPs without the need for excess scaffold antigen, and thus CSP represented a larger portion
38 of the vaccine construct. Importantly, this is the first report of a dS-based vaccine that formed
39 particles without excess scaffold protein. CSP-dS formed large particles approximately 31-74
40 nm in size and were confirmed to display CSP on the surface. The CSP-dS VLP was highly
41 immunogenic in mice and induced antibodies to multiple regions of CSP, even when
42 administered at a lower vaccine dosage. Vaccine-induced antibodies demonstrated functional
43 activity, including the ability to interact with complement and Fc γ -receptors, both previously
44 identified as important in malaria immunity. Our novel platform to produce VLPs without
45 excess scaffold protein has wide implications for the future development of innovative vaccines
46 for malaria and other infectious diseases.

47 **Key words**

48 Circumsporozoite protein; Duck hepatitis B surface antigen; Malaria; *Plasmodium falciparum*;
49 RTS,S; Vaccines; Virus-like particles

50

51

52

53

54

55 INTRODUCTION

56 There were an estimated 228 million cases of malaria and 405,000 deaths in 2018, largely
57 attributed to infection with *Plasmodium falciparum* (1). Various antimalarial interventions are
58 currently available, including vector control measures to prevent transmission of the malaria-
59 causing parasite from mosquitoes to humans, and drugs to clear infection and treat clinical
60 illness. However, the effectiveness of these tools are threatened by the emergence and spread
61 of drug and insecticide resistance (2), and disruptions to and gaps in public health interventions
62 (3). A critical step towards reducing malaria burden and achieving global malaria elimination
63 will require innovative research to develop new interventions, including efficacious malaria
64 vaccines (4).

65 The most advanced malaria vaccine in development is RTS,S, which is based on the major
66 surface antigen expressed by *P. falciparum* sporozoites, the circumsporozoite protein (CSP).
67 This vaccine approach targets the initial asymptomatic stage of infection in the liver and
68 therefore aims to prevent parasite replication in the blood and subsequent onset of clinical
69 disease (5). The RTS,S vaccine construct is a fusion protein of a domain derived from the CSP
70 (including the central-repeat and C-terminal regions of the protein) and the human hepatitis B
71 surface antigen (HBsAg), which is co-expressed with excess HBsAg to self-assemble into
72 virus-like particles (VLPs) (6). These particles are ~20 nm in size and co-administered with the
73 potent AS01 adjuvant to enhance vaccine immunogenicity (7). RTS,S/AS01 is the only malaria
74 vaccine to complete phase III clinical trials, which were conducted at 11 study sites in sub-
75 Saharan Africa. RTS,S vaccination conferred ~30-50% protective efficacy against clinical
76 malaria in young children and infants depending on the age group and duration of follow-up
77 (8). However, vaccine efficacy waned substantially in the 12 months after completion of
78 primary vaccination of three doses (9). To further evaluate vaccine safety and efficacy, pilot
79 implementation of RTS,S recently commenced in Ghana, Kenya and Malawi as recommended
80 by the World Health Organization (WHO) (10).

81 While RTS,S is the leading malaria vaccine candidate, it is an imperfect vaccine that is unlikely
82 to drive malaria elimination as a stand-alone tool. Strategies to modify RTS,S could lead to the
83 development of RTS,S-like or next-generation vaccines with improved immunogenicity,
84 efficacy and longevity in target populations. An important limitation of the RTS,S vaccine
85 construct is the need for excess HBsAg for particle formation to occur and thus, the resulting
86 VLP is comprised of only ~20% CSP-HBsAg fusion protein and ~80% unfused HBsAg

87 scaffold protein (11). A novel CSP-based particle vaccine was recently described known as
88 R21, which did not require excess unfused HBsAg for particle formation, and therefore had an
89 increased proportion of CSP compared to RTS,S. R21 was immunogenic and efficacious in a
90 pre-clinical murine vaccine study, and may improve upon current vaccine approaches (12).
91 Another consideration is the VLP scaffold protein used to display the CSP antigen, which can
92 influence particle size and structure, and therefore influence the induction of protective immune
93 responses (13).

94 Here we describe the production and characterization of a novel VLP-based vaccine candidate
95 that displays CSP on the surface (**Figure 1**). We used the membrane integral small surface
96 protein (dS) of the duck hepatitis B virus (DHBV) as a VLP scaffold protein (14-16). As a
97 proof-of-concept for this vaccine platform, the same portion of CSP that is included in RTS,S
98 (central-repeat and C-terminal regions of the protein) was selected as the malaria vaccine
99 antigen and was genetically fused to the dS. The resulting CSP-dS fusion protein was
100 overexpressed in recombinant yeast *Hansenula polymorpha*, which is a cell line suitable for
101 large-scale vaccine manufacturing. This approach resulted in the formation of VLPs with the
102 CSP-dS fusion protein alone, without the need for excess dS as a scaffold protein, thereby
103 achieving a higher ratio of the CSP vaccine antigen compared to the approach used for RTS,S
104 and other VLP-based vaccines. The biophysical properties of these VLPs were characterized
105 and the expression of CSP confirmed through Western blotting, transmission electron
106 microscopy and super resolution microscopy. We performed an immunogenicity study of the
107 CSP-dS VLPs in mice and measured the ability of vaccine-induced antibodies to mediate
108 effector functions that have been associated with RTS,S vaccine efficacy (17), such as
109 interacting with complement and Fc γ -receptors (Fc γ Rs) that are expressed on immune cells.

110

111

112

113

114

115 MATERIALS AND METHODS

116 Generation and purification of the CSP-dS VLP

117 The CSP-dS fusion protein was composed of amino acids 199-387 of *P. falciparum* CSP
118 (XP_001351122.1) (18) N-terminally fused to the scaffold protein dS (Genbank accession
119 number: MF510122). The resulting CSP-dS encoding gene (Genbank accession number:
120 MH142263) was synthesized by GeneArt/Life Technologies (Regensburg, Germany) and
121 codon-optimized for heterologous expression in *H. polymorpha*. The sequence was subcloned
122 into a derivative of the *H. polymorpha* expression plasmid pFPMT121 (19) which carried the
123 *LEU2* instead *URA3* gene for selection in yeast. The auxotrophic *H. polymorpha* strain ALU3
124 (relevant genotype: *ade1, leu2, ura3*) (20) derived from wild type strain ATCC® 34438™ (CBS
125 4732, IFO 1476, JCM 3621, NBRC 1476, NCYC 1457, NRRL Y-5445) was used as an
126 expression host. Recombinant yeast cell lines were generated by electroporation (21) and a
127 subsequent strain generation and isolation protocol (22). Thereby, the expression plasmid
128 stably integrated into the yeast genome. Heterologous yeast strains were stored as glycerol
129 stocks at – 80 °C.

130 The production cell line was cultured in 2 L baffled shake flasks filled with 200 mL animal
131 component-free YPG medium containing 20 g L⁻¹ glycerol (AppliChem, Germany) as a carbon
132 source and 0.1 g L⁻¹ adenine (AppliChem). Pre-cultures grown in YPD medium to stationary
133 phase were used as inoculum. Cultures were incubated at 37 °C and 130 rpm with 5 cm throw.
134 After 56 h of batch growth and derepression of the promoter system by consumption of
135 glycerol, 1% (v/v) methanol was added to the cultures for induction of target gene expression.
136 After 72 h total cultivation time, cells were harvested by centrifugation (6,000g, 15 min, 4 °C),
137 washed once with wash buffer (50 mM Na-phosphate buffer, 2 mM EDTA, pH 8.0) and stored
138 at -20 °C.

139 CSP-dS VLPs were isolated by ultracentrifugation as described previously (15). Briefly, cells
140 were disrupted by high-pressure homogenization. The soluble material was then layered on top
141 of sucrose cushions (2 mL 70% (w/v); 3 mL 20% (w/v)) and the boundary layers between the
142 two sucrose layers were harvested after ultracentrifugation (90 min, 51,000 rpm, 18 °C,
143 Optima™ L90K centrifuge, rotor type: 70.1 Ti, tubes: 16 * 76 mm, Beckman Coulter, USA).
144 These fractions were subsequently mixed with 6 M CsCl (AppliChem) stock solution to 1.5 M
145 final CsCl concentration. Mixtures were subjected to density gradient separation (65 h at
146 48,400 rpm, 4 °C). Product containing fractions were pooled and desalting by dialysis (Slide-

147 A-Lyzer™ dialysis cassettes, MWCO 20 kDa, Thermo Fisher Scientific, USA) against
148 desalting buffer (8 mM Na-phosphate buffer pH 7, 154 mM NaCl, AppliChem) and sterile
149 filtered (Filtropur S 0.2 filters, Sarstedt, Germany).

150 **Visualization of CSP-dS VLPs**

151 CSP-dS VLPs were visualized by negative staining transmission electron microscopy (TEM)
152 and super-resolution microscopy (Structured-Illumination Microscopy; SIM) as previously
153 described (14, 15). N-SIM was used to evaluate the co-localization of CSP and the scaffold
154 protein dS in nano-scaled structures, as previously described (15). Samples were dual labelled
155 with 4 µg/mL of primary antibodies (rabbit anti-CSP and mouse anti-dS, 7C12), followed by
156 secondary antibodies (1/1000, anti-rabbit AlexaFluor 594 and anti-mouse AlexaFluor 488;
157 Thermo Fisher Scientific). The super-resolution images were collected using a Nikon N-SIM
158 microscope equipped with 488, 561 and 640 nm lasers, an Andor iXON DU897 EM-CCD
159 camera and a 100x oil immersion lens having a numerical aperture of 1.49. The z-series was
160 acquired using NIS-Elements and analyzed both using NIS-Elements and the open java source,
161 ImageJ/FIJI.

162 **Western blots**

163 CSP-dS VLPs and monomeric recombinant CSP (rCSP) were prepared under reducing
164 conditions, separated by SDS-PAGE using 4-12% Bis-Tris gels (NuPAGE, Thermo Fisher
165 Scientific) and transferred onto nitrocellulose membranes using the iBlot system (Thermo
166 Fisher Scientific) according to the manufacturer instructions. Membranes were blocked with
167 10% (w/v) skim milk in phosphate buffered saline (PBS) and probed with polyclonal rabbit
168 anti-CSP IgG (1 µg/mL) and a dS-specific mouse monoclonal antibody (7C12; 1/1000). This
169 was followed by species-specific detection HRP-conjugated antibodies (1/5000; Millipore,
170 USA). Protein bands were detected using SuperSignal Chemiluminescent HRP substrate
171 (Thermo Fisher Scientific) and imaged using the ChemiDoc System (Bio-Rad, USA).

172 **Evaluation of particle size**

173 Particle size distribution of the CSP-dS VLP preparation was analyzed by dynamic light
174 scattering (DLS) as previously described (15). This analysis was performed before and after
175 analytical high-performance size exclusion chromatography (HP-SEC) using Shimadzu CBM-
176 20A system (Canby, OR, USA) equipped with communication bus modelus (CBM-20A),
177 UV/VIS detector (SPD20-A), degasser (DGU-20A5), liquid chromatograph (LC-20AT), auto
178 sampler (SIL-20AHT) and column oven (CTO-20AC). A volume of 50 µL of the CSP-dS VLP

179 preparation was applied to TSKgel® G6000PW_{XL} 7.8*300 mm column (Tosoh Bioscience
180 GmbH, Griesheim, Germany) in loading buffer (1.7 mM KH₂PO₄, 7.9 mM Na₂HPO₄, 2.7 mM
181 KCl; 144 mM NaCl, pH 7.3) at 0.5 ml/min flow. Absorption of the eluate was tracked with the
182 detector SPD20-A at 214 nm and 280 nm wavelength.

183 **Animal immunizations**

184 Mice were immunized with the CSP-dS VLP or monomeric full-length CSP as a non-VLP
185 control (monomer vaccine) (23). For the first study, Swiss mice received three 10 µg doses of
186 CSP-dS (n=5) or CSP monomer (n=5) vaccines with each dose administered 2 weeks apart (via
187 intraperitoneal injection). The terminal bleed was performed 2 weeks after the final dose and
188 the serum was used for immunogenicity studies. The second study was similar except that
189 C57/BL6 mice were used (due to availability) and instead received three 2 µg doses of CSP-
190 dS (n=5). For all immunizations, the CSP-dS and monomer vaccines were formulated with
191 equal volumes of sterile aluminum hydroxide (Alhydrogel adjuvant; Brenntag, Denmark) and
192 incubated on the shaker for 5 min prior to immunizations. Animal immunizations were
193 conducted at the Animal Facility at the Walter and Eliza Hall Institute (Melbourne, Australia)
194 and ethics approval was obtained by the Animal Ethics Committee of the Walter and Eliza Hall
195 Institute.

196 **Antigens**

197 The following antigens used in this study were all based on the *P. falciparum* 3D7 sequence:
198 recombinant full-length CSP (excluding the signal peptide and glycosylphosphatidylinositol
199 sequences) expressed in *Escherichia coli* (Gennova, India) (23), synthetic peptide
200 representative of the central-repeat region of CSP (NANP, Life Tein, USA) (24), and
201 recombinant C-terminal region of CSP expressed in HEK293 cells (CT) (24).

202 **Immunogenicity assays**

203 Antibody responses were measured by standard enzyme-linked immunosorbent assay (ELISA)
204 as follows (24). Ninety-six well flat bottom MaxiSorp Nunc plates (Thermo Fisher Scientific)
205 were coated with 0.5 µg/mL antigen (full-length CSP, NANP and CT) in PBS overnight at 4
206 °C. Plates were blocked with 1% (w/v) casein in PBS for 2 h at 37 °C and then incubated with
207 test mouse serum diluted in buffer (0.1% casein in PBS) for 2 h at room temperature (RT). To
208 measure total IgG, plates were incubated with goat anti-mouse IgG HRP (Millipore) at 1/2000
209 in buffer for 1 h at room temperature (RT). Finally, plates were incubated with 2,2'-azino-bis(3-
210 ethylbenzothiazoline-6-sulphonic acid) substrate (ABTS, Thermo Fisher Scientific) for 15 min

211 at RT shielded from light and absorbance was measured at optical density (OD) 405 nm using
212 the Multiskan Go plate reader (Thermo Fisher Scientific). To measure murine IgG subclasses,
213 plates were incubated with goat anti-mouse IgG1, IgG2a, IgG2b or IgG3 detection antibodies
214 (SouthernBiotech, USA) at 1/1000 in buffer, followed by rabbit anti-goat IgG HRP (Sigma-
215 Aldrich, USA) at 1/1000 in buffer, each incubated for 1 h at RT. Finally, plates were incubated
216 with 3,3',5,5'-Tetramethylbenzidine substrate (TMB, Thermo Fisher Scientific) for 5 min at RT
217 shielded from light; reactivity was stopped using 1 M sulfuric acid and absorbance was
218 measured at OD 450 nm. In all plate-based immunoassays between each incubation step, plates
219 were washed thrice in PBS-Tween20 0.05% (v/v) using the ELx405 automated plate washer
220 (BioTek, USA).

221 The ability of vaccine-induced antibodies to fix human complement protein, C1q, was
222 performed as previously described (25, 26). Briefly, ninety-six well plates were coated,
223 blocked, and incubated with test serum (at 1/100 dilution) as described for standard ELISA.
224 Following on from this, plates were incubated with 10 µg/mL human C1q (Millipore) in buffer
225 for 30 min at RT. To measure C1q-fixation, plates were then incubated with rabbit anti-C1q
226 IgG (in-house) (24), followed by goat anti-rabbit IgG HRP (Millipore), each at 1/2000 in buffer
227 and incubated for 1 h at RT. Finally, plates were incubated with TMB substrate for 1 h at RT
228 shielded from light; reactivity was stopped using 1 M sulfuric acid and absorbance was
229 measured at OD 450 nm.

230 Vaccine-induced antibodies were also tested for the ability to interact with human Fc γ Rs, as
231 previously described (17). Briefly, ninety-six well plates were coated, blocked, and incubated
232 with test serum (at 1/100 dilution) as described for standard ELISA. Plates were incubated with
233 0.2 µg/mL biotin-labelled dimeric recombinant soluble Fc γ RIIa (H131 allele) (27), and Fc γ R-
234 binding was detected using streptavidin conjugated HRP (Thermo Fisher Scientific) at 1/10000
235 dilution for 1 h. Note that for Fc γ R-biding assays, blocking and dilutions were performed using
236 1% (w/v) bovine serum albumin in PBS, and all incubations were conducted at 37 °C. Finally,
237 plates were incubated with TMB substrate for 1 h at RT shielded from light; reactivity was
238 stopped using 1 M sulfuric acid, and absorbance was measured at OD 450 nm.

239 **Statistical analysis**

240 Mouse serum samples were tested in duplicate, and raw data were corrected for background
241 reactivity using no-serum wells that were included as a negative control. Results were shown
242 from two independent experiments, unless specified otherwise. Data were analyzed using

243 GraphPad Prism 8 and antibody responses between mouse vaccine groups were compared
244 using the unpaired t-test where appropriate.

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264 **RESULTS**

265 **Production of the CSP-dS VLP**

266 The recombinant yeast strain, Der#949 (relevant genotype: *ade1*, *LEU2*, *ura3*) was isolated
267 from transformation of host strain ALU3 with the CSP-dS encoding plasmid. This strain was
268 used to produce the CSP-dS VLPs. The CSP-dS construct contained amino acids 199-387 of
269 *P. falciparum* CSP (including the central-repeat and C-terminal regions; **Figure 1**) with the N-
270 terminal MMAP motif and a GPVTN linker between the CSP fragment and the C-terminal dS.
271 Approximately 6 g dry cell weight (DCW) of yeast strain Der#949 were used to isolate
272 1.2 ± 0.1 mg product VLP containing the CSP-dS fusion protein ($Y_{P/X} = \sim 0.2$ mg g⁻¹) applying
273 an analytical methodology based on two consecutive steps of ultracentrifugation. The
274 preparation resulted in a clean protein band of approximately 50 kDa in size by SDS-PAGE,
275 indicating there was minimal incorporation of yeast proteins in the VLP preparation as
276 previously shown (15) (**Figure 2A**). Additionally, the CSP-dS fusion protein was specifically
277 recognized by anti-dS and anti-CSP antibodies by Western blot (**Figure 2B**).

278 **CSP-dS formed particulate nanostructures recognized by CSP-specific antibodies**

279 The size distribution analyzed by dynamic light scattering (DLS) revealed a monomodal but
280 polydisperse population of particles (**Figure 3A**; polydispersity index (PDI): 0.59). The VLP
281 preparation was subsequently analyzed by HP-SEC (**Figure S1**) and the product-containing
282 fraction was again analyzed by DLS. The analysis indicated a homogeneous particle population
283 characterized by 73 nm hydrodynamic diameter (PDI: 0.04). Transmission electron
284 microscopy (TEM) was used to characterize the VLPs formed by the CSP-dS fusion protein
285 (**Figure 3B**). The TEM image showed the formation of homogeneous particles of 31-74 nm in
286 diameter based on manual evaluation (**Figure 3B**). The hydrodynamic diameters determined
287 by DLS were slightly larger than the respective diameters specified by manual evaluation of
288 the TEM images, which has been observed previously with other VLP preparations (14).
289 Nevertheless, all data collected were within the dimensions that could be expected for this type
290 of VLP (15, 28). The determined buoyant density (1.14 - 1.15 g cm⁻³) was also plausible for
291 lipoproteins or VLPs (29). Summary of the production process for CSP-dS can be found in
292 **Table 1**.

293 The structure of the CSP-dS VLPs were further visualized using super-resolution microscopy
294 (N-SIM; **Figure 3C**). Polyclonal anti-CSP antibodies were used to detect CSP expression and
295 monoclonal anti-dS antibodies were used to detect dS expression in the fusion protein. Co-

296 localization of CSP and dS signals was observed in nano-scaled particles, further supporting
297 the formation of VLP structures. We also used polyclonal anti-CSP antibodies to confirm the
298 expression of CSP on the surface of CSP-dS VLPs by standard ELISA (**Figure 3D**).

299 **CSP-dS VLP was immunogenic and induced antibodies to multiple regions of CSP**

300 Mice were initially immunized with three 10 μ g doses of CSP-dS VLP (n=5) or monomeric
301 recombinant CSP (n=5) as a non-VLP comparison control, each formulated with Alhydrogel
302 adjuvant. Sera were collected after the final dose and evaluated for antibodies by standard
303 ELISA. Serum samples were tested between 1/100 and 1/64000 dilution for total IgG to full-
304 length CSP (**Figure 4A**). There was a strong induction of anti-CSP IgG in all mice, apart from
305 mouse #51 of the monomer vaccine group (**Figure S2A**). We next measured the IgG response
306 to antigens representing the central-repeat (NANP) and C-terminal (CT) regions of CSP
307 (**Figure 4B-C**). All mice demonstrated high levels of IgG to the NANP and CT antigens, apart
308 from mouse #51, and mouse #48 of the monomer vaccine group also had low reactivity to the
309 CT (**Figure S2B-C**). Total IgG responses to full-length CSP and NANP were comparable
310 between groups ($p=0.671$ and $p=0.459$, respectively), but anti-CT IgG was significantly higher
311 for the CSP-dS vaccine group compared to the monomer vaccine group ($p=0.034$). We also
312 observed these trends when testing sera collected after only two vaccine doses (**Figure S3**).
313 Antibodies to full-length CSP were further characterized for IgG subclasses (**Figure 5A**).
314 Immunization with the CSP-dS VLP or monomer predominantly induced anti-CSP IgG1,
315 whereas IgG2a, IgG2b and IgG3 responses were variable, which is typical for vaccinations
316 using Alhydrogel as the adjuvant. Overall, there were no significant differences in IgG subclass
317 response between the vaccine groups ($p>0.05$ for all tests).

318 **Vaccine-induced antibodies had Fc-dependent effector functions**

319 We next examined whether vaccine-induced antibodies could mediate Fc-dependent effector
320 functions, which have been correlated with RTS,S vaccine efficacy (17), using established
321 plate-based detection assays (**Figure 5B**). Firstly, we measured the ability of anti-CSP
322 antibodies to fix human complement protein, C1q. C1q-fixation is essential to activate the
323 classical complement pathway, and has been previously identified as a mechanism of naturally-
324 acquired and vaccine-induced immunity to *P. falciparum* sporozoites (25, 30). The ability of
325 vaccine-induced antibodies to fix C1q was moderate and did not significantly differ between
326 vaccine groups ($p=0.530$, **Figure 5B**). We then measured whether the antibodies could
327 effectively form immune complexes to CSP that interact with dimeric recombinant human
328 Fc γ RIIa, as a functional surrogate for antibody cross-linking of Fc γ R expressed on immune

329 cells. Fc γ RIIa is widely expressed on different immune cells, such as monocytes and
330 neutrophils, and can interact with antibodies to promote opsonic phagocytosis. Importantly,
331 Fc γ R-binding and opsonic phagocytosis are known functional mechanisms of antibodies to the
332 CSP antigen (17). There was a moderate level of Fc γ RIIa-binding that was comparable between
333 vaccine groups ($p=0.926$, **Figure 5B**). However, it should be noted that mouse IgG subclasses
334 do not have same potential to fix human complement and bind human Fc γ Rs as seen with
335 human IgG subclasses induced by malaria vaccines, which are typically predominantly IgG1
336 and IgG3 (31).

337 **Fractional dosing of CSP-dS was immunogenic in mice**

338 To determine whether the CSP-dS VLP was immunogenic at a lower dose, we performed a
339 second immunization study. Mice were immunized with three 2 μ g doses of CSP-dS, which
340 was a fraction (1/5th) of the original dosage administered in the first vaccine study. Serum
341 samples collected after the final immunization were evaluated by standard ELISA, and all mice
342 demonstrated strong IgG responses to full-length CSP, NANP and CT antigens (**Figure 6A-**
343 **C**). Therefore, CSP-dS was highly immunogenic, even when administered at a lower dose.

344

345

346

347

348

349

350

351

352

353

354

355

356

357 **DISCUSSION**

358 New vaccine platforms could facilitate the development and licensure of highly efficacious
359 malaria vaccines. Here, we describe a novel technique to produce VLPs using the small surface
360 antigen (dS) of duck hepatitis B virus as a scaffold to express malaria antigens for vaccine
361 development. As a proof-of-concept, we used CSP as the model antigen since CSP-based
362 vaccines have shown reproducible protective efficacy in animal models, and CSP forms the
363 basis of leading RTS,S malaria vaccine, which has completed phase III clinical trials. Our CSP-
364 dS fusion protein resulted in particle formation without the need for excess unfused dS, and
365 thus a higher density of CSP was displayed on the VLP surface compared to conventional VLP-
366 based vaccine approaches. The CSP-dS VLP was immunogenic in mice and induced antibody
367 responses to multiple regions of the CSP, even when administered at lower doses. Furthermore,
368 vaccine-induced antibodies demonstrated substantial Fc-dependent functional activities.

369 We report for the first time, the production of a dS-based VLP that formed particles in the
370 absence of excess unfused scaffold protein (32, 33). Previously, we reported the expression of
371 malaria transmission-blocking vaccine antigens Pfs230 and Pfs25 as VLPs using the duck HBV
372 platform (14, 16). However, in those cases, the VLPs were formed with excess dS protein and,
373 as a result, only a minority of the total protein content was formed by the vaccine antigen. The
374 CSP-dS fusion protein successfully formed particulate structures ranging from 31-74 nm as
375 visualized by TEM. We also confirmed the display of CSP on the CSP-dS VLP, and
376 importantly did not detect any unfused dS or degradation products by Western blot. While
377 the absence of unfused dS made preparation of the CSP-dS VLP a special case, the resulting
378 dimensions and buoyant density were similar to previous dS-based VLP developments (14,
379 15). Transfer of the analytical purification process to a scalable downstream process for vaccine
380 production represents an important task for the future and may improve the VLP product yield
381 per biomass ($Y_{P/X}$). Nevertheless, considering the CSP-dS VLP was exclusively formed by the
382 fusion protein, the yield per biomass of $\sim 0.2 \text{ mg g}^{-1}$ was remarkable. We additionally generated
383 a prototrophic RB11-based strain, which performed like the Der#949 strain regarding CSP-dS
384 production (data not shown) but would be more suited for future scale-up due to simpler
385 nutrient requirements. The CSP-dS VLP vaccine is likely to be suited to formulation with a
386 range of different adjuvants, or to be co-formulated with other vaccine components, such as
387 other malaria antigens, in multivalent vaccines. However, further studies will be needed to
388 assess specific antigen combinations and formulations.

389 The CSP-dS VLP was immunogenic in mice and induced antibody responses to full-length
390 CSP and antigens representing the central-repeat and C-terminal regions of the protein.
391 Notably, the CSP-dS construct was based on a truncated form of CSP including the central-
392 repeat and C-terminal regions, similar to the RTS,S vaccine construct. However, antibodies to
393 the N-terminal region of CSP can inhibit sporozoite function *in vitro*, and the passive transfer
394 of N-terminal antibodies can confer protection against malaria in murine model (34-37).
395 Therefore, inclusion of the N-terminal region may be favorable for future CSP-based vaccines,
396 or selected epitopes such as the junctional epitope located between the N-terminal and central-
397 repeat regions (37, 38). Additional modifications could also be made in the central-repeat
398 region, which is comprised of ~37 NANP tandem repeats. Indeed, vaccine constructs with
399 fewer repeats can modulate the immune response to other regions of CSP when given to mice
400 (39). Furthermore, it was recently shown that mice vaccinated with a VLP encoding only 9
401 NANP repeats could induce potent anti-CSP antibodies that fixed complement (40).

402 CSP-dS vaccine-induced antibodies demonstrated moderate Fc-dependent functional activity,
403 which was somewhat expected given that antibodies were predominately murine IgG1. While
404 human IgG1 is cytophilic and potently activates complement and promotes opsonic
405 phagocytosis (and other Fc-dependent effector functions), murine IgG1 is strikingly different
406 and has little functional activity (31). The complement fixing and Fc γ -receptor binding activity
407 in this study was likely due to IgG2b and IgG3, which are induced at lower levels. In this
408 study, we used Alhydrogel as an adjuvant, but alternative adjuvants should be further
409 investigated that may alter the IgG subclass response and possibly enhance antibody functional
410 activity. Studies on the recently described R21 vaccine have compared the use of different
411 adjuvants in mouse immunization studies (12). R21 is another VLP-based vaccine similar to
412 RTS,S, but is generated using a different expression system and does not require excess
413 unfused HBsAg scaffold protein to form particles. R21 administered with Alhydrogel induced
414 the lowest antibody titers in BALB/c mice, while oil-in-water emulsion and saponin-based
415 adjuvants induced higher antibody titers that were comparable (12). Interestingly, only the
416 latter formulation conferred protection against sporozoite challenge. This suggested that
417 differences in protective efficacy were not explained by differences in IgG titer but may have
418 been due to differences in IgG subclass or antibody function, which were not explored.

419 Mice immunized with CSP-dS VLP or monomer CSP as a non-VLP control had comparable
420 antibody responses to full-length CSP and the central-repeat region. However, antibodies to
421 the C-terminal region were significantly higher in the CSP-dS group, in which 5/5 mice had

422 high levels of anti-CT IgG, while for the monomer group only 3/5 mice had strong reactivity.
423 We anticipated to see higher antibody responses in the CSP-dS group because VLPs are
424 generally considered more immunogenic than monomeric protein as they are larger in size, and
425 therefore optimal for uptake by antigen presenting cells and inducing adaptive immune
426 responses (41). Indeed, the CSP-dS VLP was large in size and formed particles ~3 times greater
427 than related CSP-based vaccines, RTS,S and R21. Although, we must take caution when
428 directly comparing the CSP-dS VLP and monomer vaccines because even though both were
429 administered at 10 µg doses, the amount of CSP present in the CSP-dS VLP would have only
430 been ~5.2 µg (as the fusion protein was comprised of ~52% CSP). Therefore, the CSP-dS VLP
431 may have been superior to the monomer vaccine, given that the amount of CSP administered
432 was lower overall. We performed a second immunization study and found that even at a lower
433 concentration of 2 µg per dose, the CSP-dS VLP strongly induced antibodies to full-length CSP
434 and the central-repeat and C-terminal regions in 5/5 mice. We did not undertake a formal
435 comparison of the immunogenicity of CSP-dS VLPs versus monomeric protein since studies
436 in humans have already reported superior immunogenicity of VLPs and other nanoparticle
437 vaccines. Formal assessment of immunogenicity would be a part of any potential future
438 development work.

439 The selected adjuvant may have also influenced vaccine-induced responses. Early studies
440 found that RTS,S administered with alum was poorly efficacious against controlled human
441 malaria infection in healthy volunteers (11). However, vaccine efficacy was enhanced when
442 RTS,S was administered with an oil-in-water emulsion of MPL and QS-21, which has since
443 been modified to a liposome-based adjuvant known as AS01 and is the current RTS,S vaccine
444 adjuvant (8). This raises an important question of what the true advantages are of using a VLP-
445 based vaccine instead of recombinant protein, and whether enhanced immunogenicity and
446 efficacy are largely due to the adjuvant itself (5). It is difficult to draw a clear conclusion, as
447 many studies do not include a non-VLP vaccine as a negative control.

448 There are interesting similarities and differences between our CSP-dS VLP and the related R21
449 and RTS,S vaccines. Notably, CSP-dS and R21 are both comprised of a fusion protein between
450 CSP and scaffold protein that can form particles without the need for excess unfused scaffold
451 protein (12). This may be advantageous as CSP represents a larger portion of the final vaccine
452 construct in comparison to the RTS,S vaccine that is largely comprised of scaffold protein (11).
453 Another possible advantage of our CSP-dS VLP is that the dS scaffold protein is derived from
454 duck hepatitis B virus rather than human hepatitis B virus (HBV), which is used for R21 and

455 RTS,S. The dS scaffold protein forms larger particles that may be more effective at inducing
456 immune responses (41), and the CSP-dS VLPs were ~3 times larger than the R21 and RTS,S
457 VLPs (12). Furthermore, the dS scaffold may also be favorable as vaccine recipients should
458 not have pre-existing antibodies to the duck HBsAg. In some settings, it may not be desirable
459 to use a malaria vaccine that includes HBsAg in populations who have already received HBV
460 vaccines. HBV vaccines are recommended at birth in many regions, whereas malaria vaccines
461 would be given later in infancy. It is unclear whether pre-existing serum antibodies to the
462 human HBsAg would interfere with vaccine-induced responses, but this has been reported for
463 serum antibodies to CSP (42, 43).

464 In summary, we have demonstrated a novel approach to develop VLP structures without the
465 co-expression of unfused dS scaffold protein. We produced a CSP-dS fusion protein that
466 successfully formed homogenous particles and correctly displayed CSP on the VLP surface.
467 Furthermore, the CSP-dS VLP was immunogenic in mice and induced potent IgG responses to
468 multiple regions of the CSP antigen, which demonstrated functional antibody responses. Our
469 platform to produce VLPs formed with the fusion protein only, without the need for excess
470 scaffolding protein, is highly novel and warrants further evaluation in pre-clinical efficacy
471 studies for CSP and other candidate malaria vaccine antigens.

472

473

474

475

476

477

478

479

480

481 **Acknowledgements**

482 The authors gratefully acknowledge Brigitte Derksen for technical assistance and Jack
483 Richards for providing mouse IgG subclass reagents. Recombinant full length CSP was kindly
484 provided by PATH Malaria Vaccine Initiative (USA) and Gennova Biopharmaceuticals
485 (India).

486 **Funding**

487 This work was funded by the National Health and Medical Research Council (NHMRC) of
488 Australia (Senior Research Fellowship, Program Grant, and Investigator Grant to JGB), the
489 Australian Government Research Training Program Scholarship to LK, the Jim and Margaret
490 Beever Fellowship (Burnet Institute) to JAC and project grant (GNT1145303) to PMH and
491 BDW. Burnet Institute is supported by funding from the NHMRC Independent Research
492 Institutes Infrastructure Support Scheme and a Victorian State Government Operational
493 Infrastructure grant. LK, LR, MJB, JAC, and JGB are supported by the NHMRC-funded
494 Australian Centre for Research Excellence on Malaria Elimination.

495 **Competing interests**

496 The authors DW, MS, VJ and MP are associated with ARTES Biotechnology GmbH which
497 owns the license for the VLP technology (32, 33).

498 **Author contributions**

499 LK performed immunoassays for both mouse immunization studies and data analysis. DW
500 generated, purified, and characterized the CSP-dS VLP. LR performed immunoassays for the
501 first mouse immunization study. DRD generated recombinant proteins used in immunoassays.
502 CP, BK, EH and JAC visualized the VLPs using N-SIM and TEM. BDW and PMH generated
503 reagents for immunoassays. JAC and DRD performed SDS-PAGE and Western blotting
504 analyses. DW, MS, VJ, MP, JAC and JGB were involved in the study design. LK, DW, JAC
505 and JGB wrote the manuscript, which was reviewed and approved by all authors.

506

507

508

509

510

511 **REFERENCES**

512 1. World Health Organization. World malaria report 2019. 2019.

513 2. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of
514 artemisinin resistance in *Plasmodium falciparum* malaria. *N Engl J Med.*
515 2014;371(5):411-23.

516 3. Rogerson SJ, Beeson JG, Laman M, Poespoprodjo JR, William T, Simpson JA, et al.
517 Identifying and combating the impacts of COVID-19 on malaria. *BMC Med.*
518 2020;18(1):1-7.

519 4. World health Organization. Global technical strategy for malaria 2016-2030. 2015.

520 5. Beeson JG, Kurtovic L, Dobaño C, Opi DH, Chan J-A, Feng G, et al. Challenges and
521 strategies for developing efficacious and long-lasting malaria vaccines. *Sci Transl Med.*
522 2019;11(474):eaau1458.

523 6. Casares S, Brumeau T-D, Richie TL. The RTS, S malaria vaccine. *Vaccine.*
524 2010;28(31):4880-94.

525 7. Kester KE, Cummings JF, Ofori-Anyinam O, Ockenhouse CF, Krzych U, Moris P, et
526 al. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,
527 S/AS01B and RTS, S/AS02A in malaria-naive adults: safety, efficacy, and
528 immunologic associates of protection. *J Infect Dis.* 2009;200(3):337-46.

529 8. RTSS Clinical Trial Partnerships. Efficacy and safety of RTS,S/AS01 malaria vaccine
530 with or without a booster dose in infants and children in Africa: final results of a phase
531 3, individually randomised, controlled trial. *Lancet.* 2015;386(9988):31-45.

532 9. RTSS Clinical trials Partnership. Efficacy and safety of the RTS, S/AS01 malaria
533 vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in
534 children and young infants at 11 African sites. *PLoS Med.* 2014;11.

535 10. Adepoju P. RTS, S malaria vaccine pilots in three African countries. *The Lancet.*
536 2019;393(10182):1685.

537 11. Gordon D, McGovern T, Krzych U, Cohen J, Schneider I, LaChance R, et al. Safety,
538 immunogenicity, and efficacy of a recombinantly produced *Plasmodium falciparum*
539 circumsporozoite protein-hepatitis B surface antigen subunit vaccine. *J Infect Dis.*
540 1995;171(6):1576-85.

541 12. Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AV. Enhancing protective
542 immunity to malaria with a highly immunogenic virus-like particle vaccine. *Sci Rep.*
543 2017;7:46621.

544 13. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and
545 molecular patterns. *Nature Reviews Immunology*. 2010;10(11):787.

546 14. Wetzel D, Chan J, Suckow M, Barbian A, Weniger M, Jenzelewski V. Display of
547 malaria transmission-blocking antigens on chimeric duck hepatitis B virus-derived
548 virus-like particles produced in *Hansenula polymorpha*. *PLoS ONE*.
549 2019;14(9):e0221394.

550 15. Wetzel D, Rolf T, Suckow M, Kranz A, Barbian A, Chan J-A, et al. Establishment of a
551 yeast-based VLP platform for antigen presentation. *Microbial cell factories*.
552 2018;17(1):17.

553 16. Chan J-A, Wetzel D, Reiling L, Miura K, Drew DR, Gilson PR, et al. Malaria vaccine
554 candidates displayed on novel virus-like particles are immunogenic and induce
555 transmission-blocking activity. *PloS one*. 2019;14(9):e0221733.

556 17. Kurtovic L, Atre T, Feng G, Wines BD, Chan J-A, Boyle MJ, et al. Multi-functional
557 antibodies are induced by the RTS, S malaria vaccine and associated with protection in
558 a phase I/IIa trial. *J Infect Dis*. 2020.

559 18. De Wilde M, Cohen J. Hybrid protein between CS from plasmodium and HBsAg.
560 Google Patents; 1999.

561 19. Degelmann A, Müller F, Sieber H, Jenzelewski V, Suckow M, Strasser AW, et al. Strain
562 and process development for the production of human cytokines in *Hansenula*
563 *polymorpha*. *FEMS yeast research*. 2002;2(3):349-61.

564 20. Lahtchev KL, Semenova VD, Tolstorukov II, van der Klei I, Veenhuis M. Isolation and
565 properties of genetically defined strains of the methylotrophic yeast *Hansenula*
566 *polymorpha* CBS4732. *Archives of microbiology*. 2002;177(2):150-8.

567 21. Faber KN, Haima P, Harder W, Veenhuis M, Geert A. Highly-efficient
568 electrotransformation of the yeast *Hansenula polymorpha*. *Current genetics*.
569 1994;25(4):305-10.

570 22. Guengerich L, Kang H, Behle B, Gellissen G, Suckow M. A platform for heterologous
571 gene expression based on the methylotrophic yeast *Hansenula polymorpha*. *Genetics*
572 and *Biotechnology*: Springer; 2004. p. 273-87.

573 23. Kastenmüller K, Espinosa DA, Trager L, Stoyanov C, Salazar AM, Pokalwar S, et al.
574 Full-length *Plasmodium falciparum* circumsporozoite protein administered with long-
575 chain poly (I-C) or the Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable
576 emulsion elicits potent antibody and CD4+ T cell immunity and protection in mice.
577 *Infect Immun*. 2013;81(3):789-800.

578 24. Kurtovic L, Agius PA, Feng G, Drew DR, Ubillos I, Sacarlal J, et al. Induction and
579 decay of functional complement-fixing antibodies by the RTS, S malaria vaccine in
580 children, and a negative impact of malaria exposure. *BMC Med.* 2019;17(1):45.

581 25. Kurtovic L, Behet MC, Feng G, Reiling L, Chelimo K, Dent AE, et al. Human
582 antibodies activate complement against *Plasmodium falciparum* sporozoites, and are
583 associated with protection against malaria in children. *BMC Med.* 2018;16(1):61.

584 26. Reiling L, Boyle MJ, White MT, Wilson DW, Feng G, Weaver R, et al. Targets of
585 complement-fixing antibodies in protective immunity against malaria in children. *Nat
586 Commun.* 2019;10(1):610.

587 27. Wines BD, Vanderven HA, Esparon SE, Kristensen AB, Kent SJ, Hogarth PM. Dimeric
588 Fc γ R ectodomains as probes of the Fc receptor function of anti-influenza virus IgG. *J
589 Immunol.* 2016;197(4):1507-16.

590 28. Cova L, Abdul F, Buronfosse T. Avihepatnavirus. *The Springer index of viruses:*
591 Springer; 2011. p. 615-24.

592 29. Mason W, Gerlich W, Taylor J, Kann M, Mizokami T, Loeb D, et al. Hepadnaviridae.
593 Virus taxonomy: Elsevier; 2013. p. 445-55.

594 30. Behet M, Kurtovic L, Gemert G-Jv, Haukes C, Siebelink-Stoter R, Graumans W, et al.
595 The complement system contributes to functional antibody-mediated responses induced
596 by immunization with *Plasmodium falciparum* malaria sporozoites. *Infect Immun.*
597 2018;00920-17

598 31. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human
599 immunology. *J Immunol.* 2004;172(5):2731-8.

600 32. Anderson DA, Grgacic EVL. Viral vectors expressing fusion of viral large envelope
601 protein and protein of interest. Google Patents; 2004.

602 33. Grgacic EVL, Anderson DA, Loke P, Anders RF. Recombinant proteins and virus like
603 particles comprising 1 and s polypeptides of avian hepadnaviridae and methods, nucleic
604 acid constructs, vectors and host cells for producing same. Google Patents; 2006.

605 34. Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, et al. The
606 malaria circumsporozoite protein has two functional domains, each with distinct roles
607 as sporozoites journey from mosquito to mammalian host. *J Exp Med.*
608 2011;208(2):341-56.

609 35. Rathore D, Nagarkatti R, Jani D, Chattopadhyay R, de la Vega P, Kumar S, et al. An
610 immunologically cryptic epitope of *Plasmodium falciparum* circumsporozoite protein

611 facilitates liver cell recognition and induces protective antibodies that block liver cell
612 invasion. *J Biol Chem.* 2005;280(21):20524-9.

613 36. Espinosa DA, Gutierrez GM, Rojas-López M, Noe AR, Shi L, Tse S-W, et al.
614 Proteolytic cleavage of the *Plasmodium falciparum* Circumsporozoite protein is a target
615 of protective antibodies. *J Infect Dis.* 2015;212(7):1111-9.

616 37. Kisalu NK, Idris AH, Weidle C, Flores-Garcia Y, Flynn BJ, Sack BK, et al. A human
617 monoclonal antibody prevents malaria infection by targeting a new site of vulnerability
618 on the parasite. *Nat Med.* 2018;24(4):408.

619 38. Tan J, Sack BK, Oyen D, Zenklusen I, Piccoli L, Barbieri S, et al. A public antibody
620 lineage that potently inhibits malaria infection through dual binding to the
621 circumsporozoite protein. *Nat Med.* 2018;24(4):401.

622 39. Lewis FJ, Chatterjee D, Kaczmarski J, Gao X, Cai Y, McNamara HA, et al. Avid
623 binding by B cells to the *Plasmodium* circumsporozoite protein repeat suppresses
624 responses to protective subdominant epitopes. *bioRxiv.* 2020.

625 40. Kingston NJ, Kurtovic L, Walsh R, Joe C, Lovrecz G, Locarnini S, et al. Hepatitis B
626 virus-like particles expressing *Plasmodium falciparum* epitopes induce complement-
627 fixing antibodies against the circumsporozoite protein. *Vaccine.* 2019;37(12):1674-84.

628 41. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF, editors. Major findings and
629 recent advances in virus–like particle (VLP)-based vaccines. *Seminars in immunology;*
630 2017: Elsevier.

631 42. McNamara HA, Idris AH, Sutton HJ, Vistein R, Flynn BJ, Cai Y, et al. Antibody
632 Feedback Limits the Expansion of B Cell Responses to Malaria Vaccination but Drives
633 Diversification of the Humoral Response. *Cell Host Microbe.* 2020.

634 43. Kurtovic L, Boyle M, Beeson J. Epitope masking may limit antibody boosting to
635 malaria vaccines. *Immunol Cell Biol.* 2020.

636

637

638

639

640

641

642 **Table 1. Summary of production process leading CSP-dS VLP preparation.**

Designation of VLP	CSP-dS VLP
<i>H. polymorpha</i> strain	Der#949
Cell mass generation	Shake flask
DCW used for VLP purification [g]	~6 ^(a)
Isolated VLP [mg]	1.2±0.1
VLP yield per biomass (DCW), Y _{P/X} [mg g ⁻¹]	~0.2 ^(a)
Product yield per culture volume [mg L ⁻¹]	~2 ^(a)
VLP diameter by EM [nm]	31 - 74
Hydrodynamic VLP diameter by DLS [nm]	73 (PDI: 0.04) ^(b)
Buoyant density [g cm ⁻³]	1.14 – 1.15

643 ^(a) Estimated based on determination of OD₆₀₀.

644 ^(b) Product-containing fraction after analysis by HP-SEC

645

646

647

648

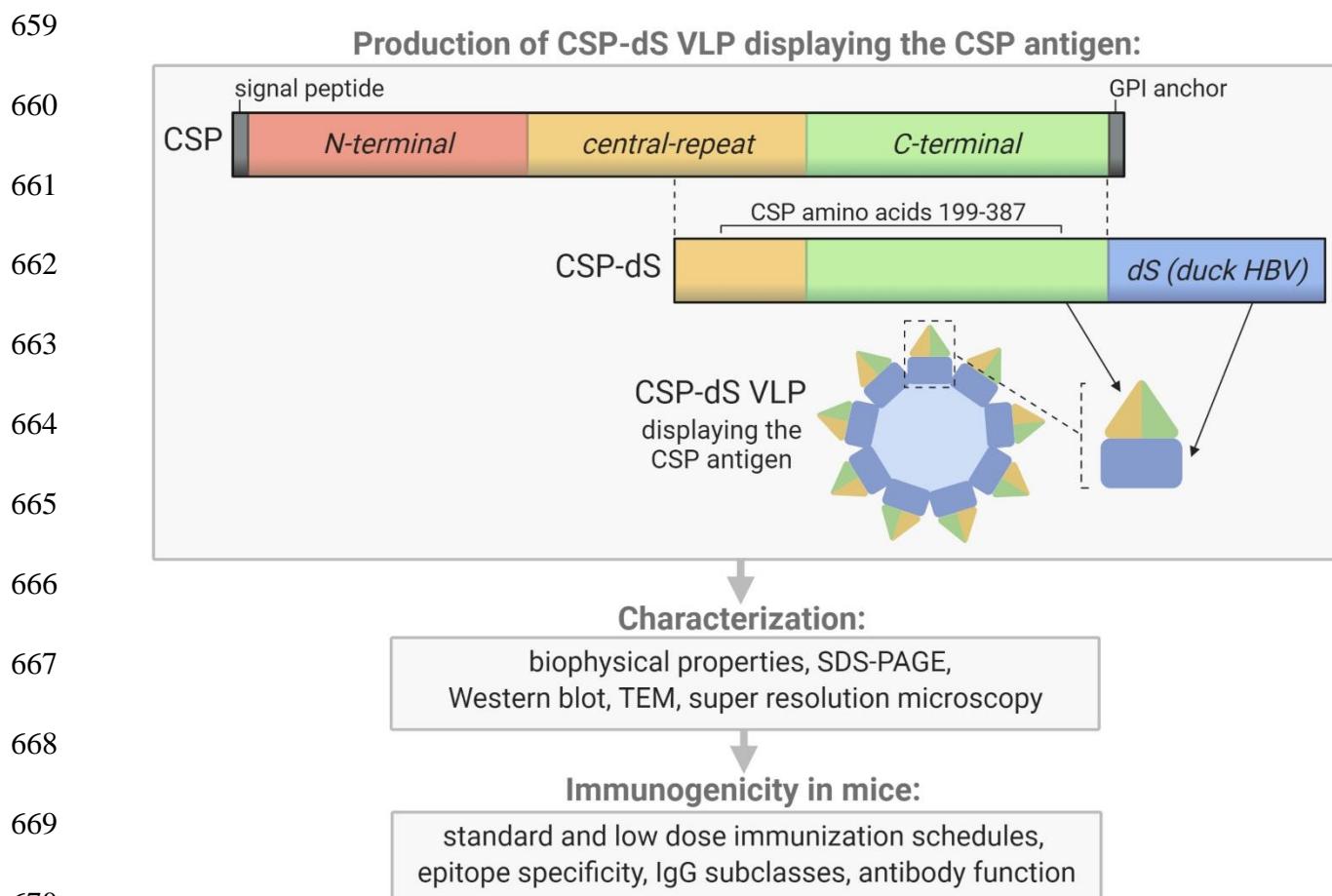
649

650

651

652

653


654

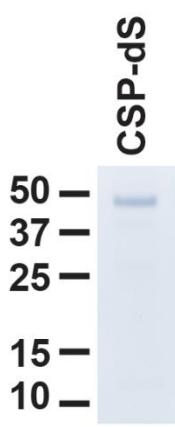
655

656

657

658

672 **Figure 1. Schematic of the CSP-dS VLP and summary of the study workflow.** CSP-dS VLPs were produced by genetically fusing the CSP (including the central-repeat and C-terminal regions, amino acids 199-387) to the small surface protein (dS) of the duck hepatitis B virus (HBV). The CSP-dS fusion protein formed virus-like particles, which were characterized and tested for immunogenicity in mice. Created with BioRender.com.


683

A

684

685

686

687

688

689

690

691

692

Figure 2. Analyses of purified CSP-dS VLP derived from strain Der#949. (A) Reducing SDS-PAGE of CSP-dS VLP purified from strain Der#949 stained with Colloidal blue. A band of expected molecular weight corresponding to CSP-dS was observed at approximately 50 kDa. (B) CSP-dS VLP and monomeric recombinant CSP (rCSP) as a control were prepared for Western blot under reducing conditions. Membranes were probed with a monoclonal anti-dS antibody (7C12) and polyclonal anti-CSP antibody.

693

694

695

696

697

698

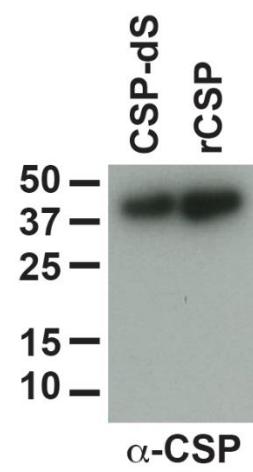
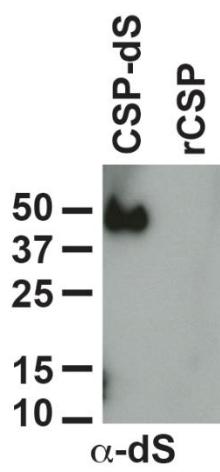
699

700

701

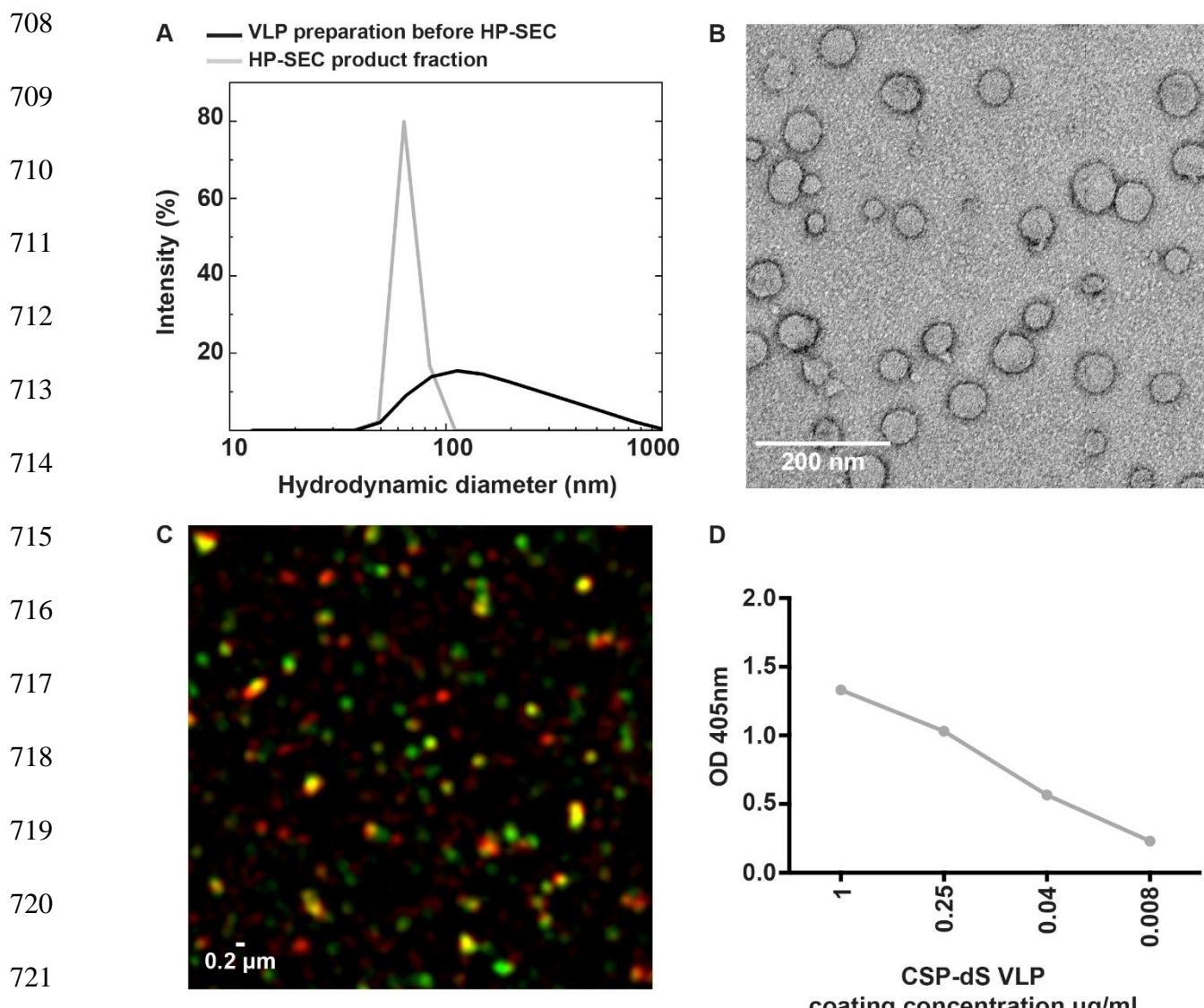
702

703

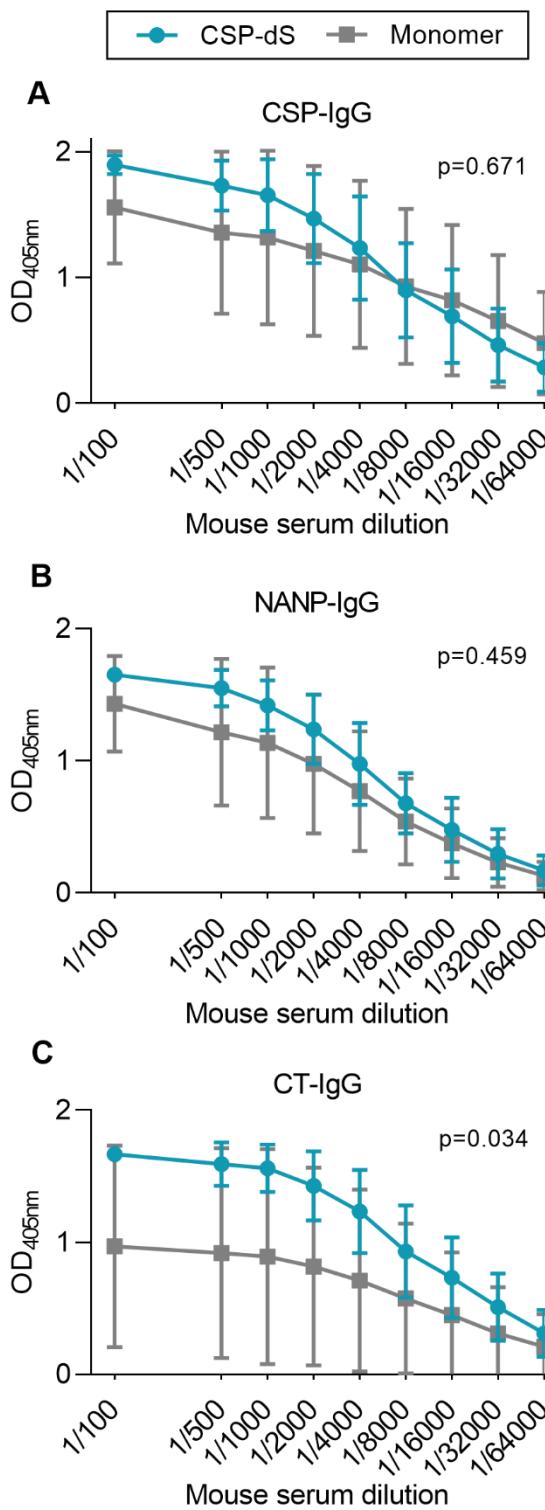


704

705

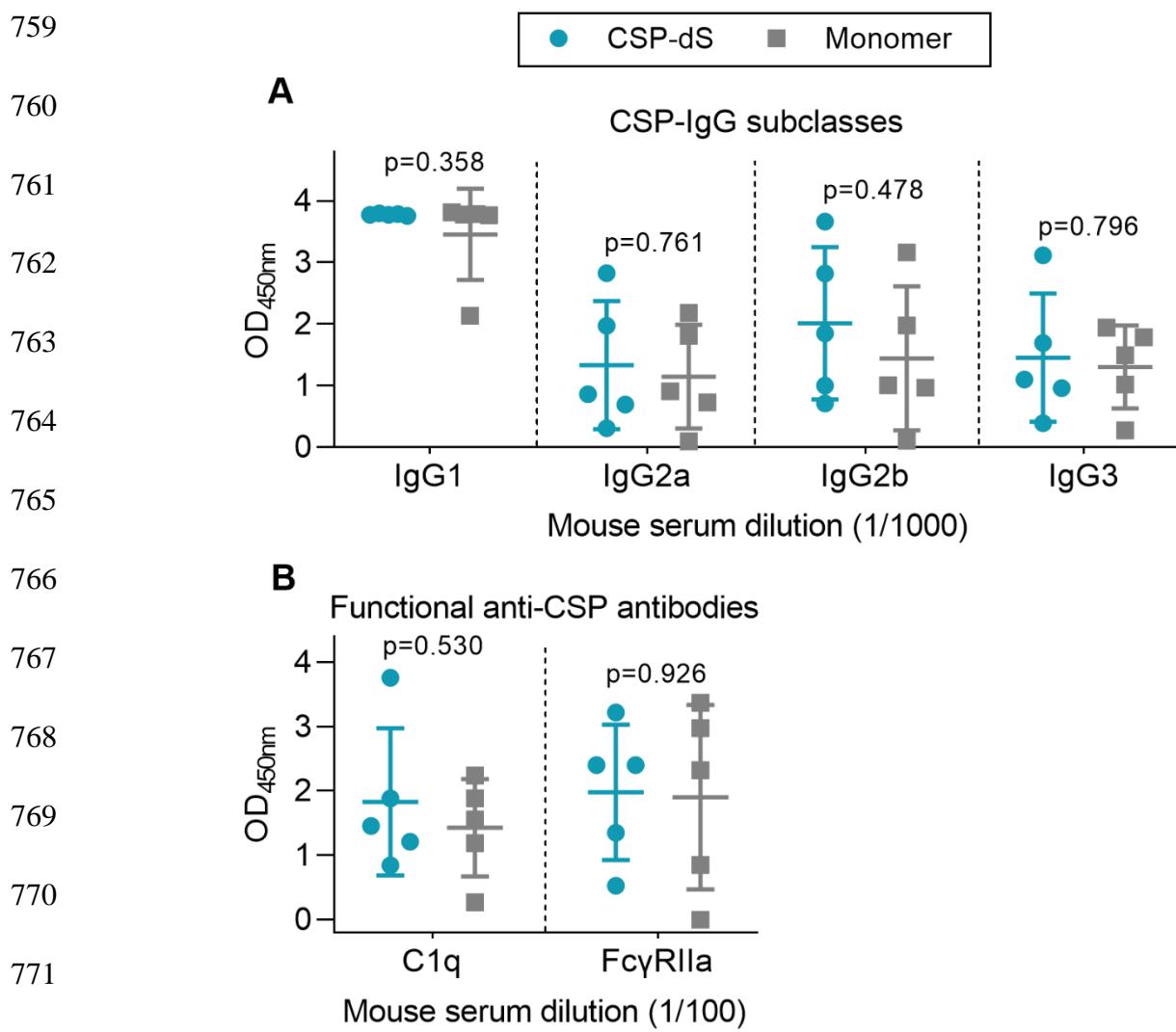
706


707

B



α -CSP


α -dS

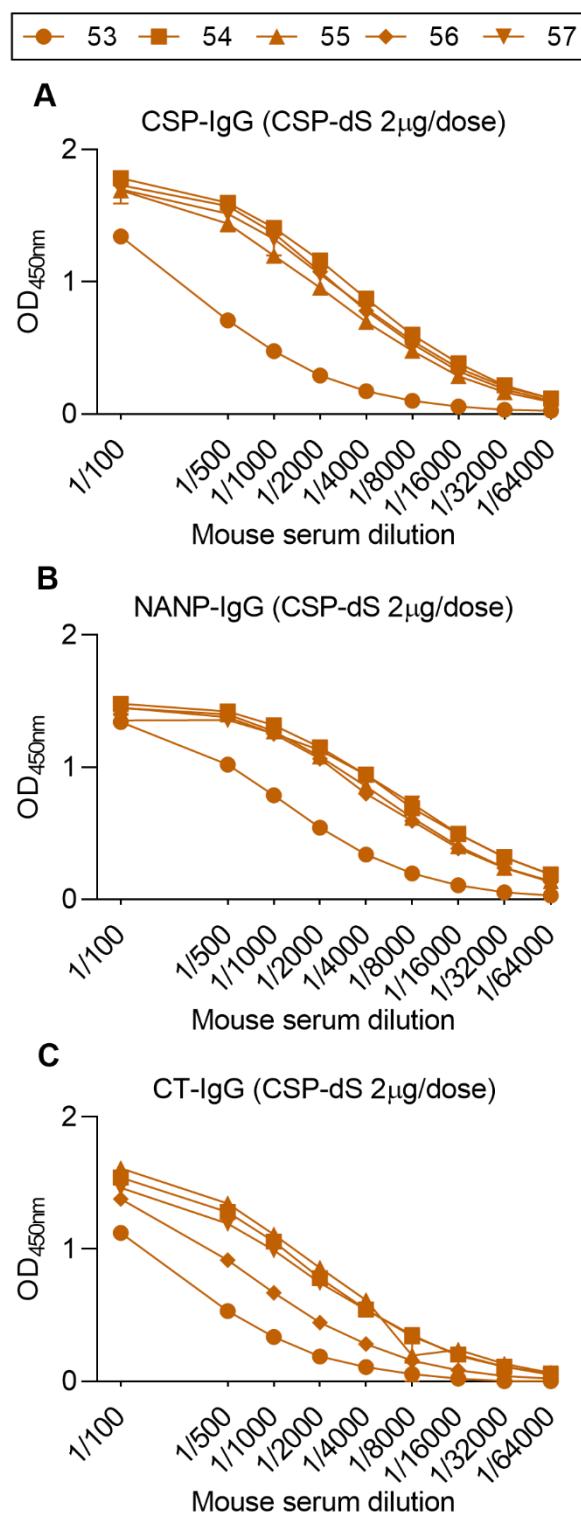

Figure 3. Characterizing the expression of CSP on the VLP surface. (A) Analysis of the particulate character of CSP-dS VLP purified from strain Der#949. Size distribution was determined by DLS before and after analysis by HP-SEC. **(B)** The structure of CSP-dS VLPs visualized by negative staining TEM. The VLP structures are consistent with the expected size of approximately 31-74 nm. **(C)** Super-resolution microscopy (N-SIM) was used to visualize CSP-dS VLPs probed with CSP-specific (red) and dS-specific (green) antibodies. Co-localization of CSP and dS are presented in yellow fluorescence. A representative image is shown, and scale bar represents 0.2 μ m. **(D)** Binding of polyclonal anti-CSP antibodies to CSP-dS VLP measured by standard ELISA; mean and range of duplicates are shown.

Figure 4. CSP-dS is immunogenic in mice. Swiss mice were immunized with three 10 µg doses of CSP-dS (n=5; circles) or monomeric CSP as a control (n=5; squares). Serum samples collected after the final immunization were tested for total IgG to (A) full-length CSP, and antigens representing the (B) central-repeat (NANP) and (C) C-terminal (CT) regions of CSP. The x-axis is presented on a log₂ scale and the mean and standard deviation of two independent experiments are shown. Reactivity between the CSP-dS and monomer vaccine groups were compared using the unpaired t-test (with Welch's correction).

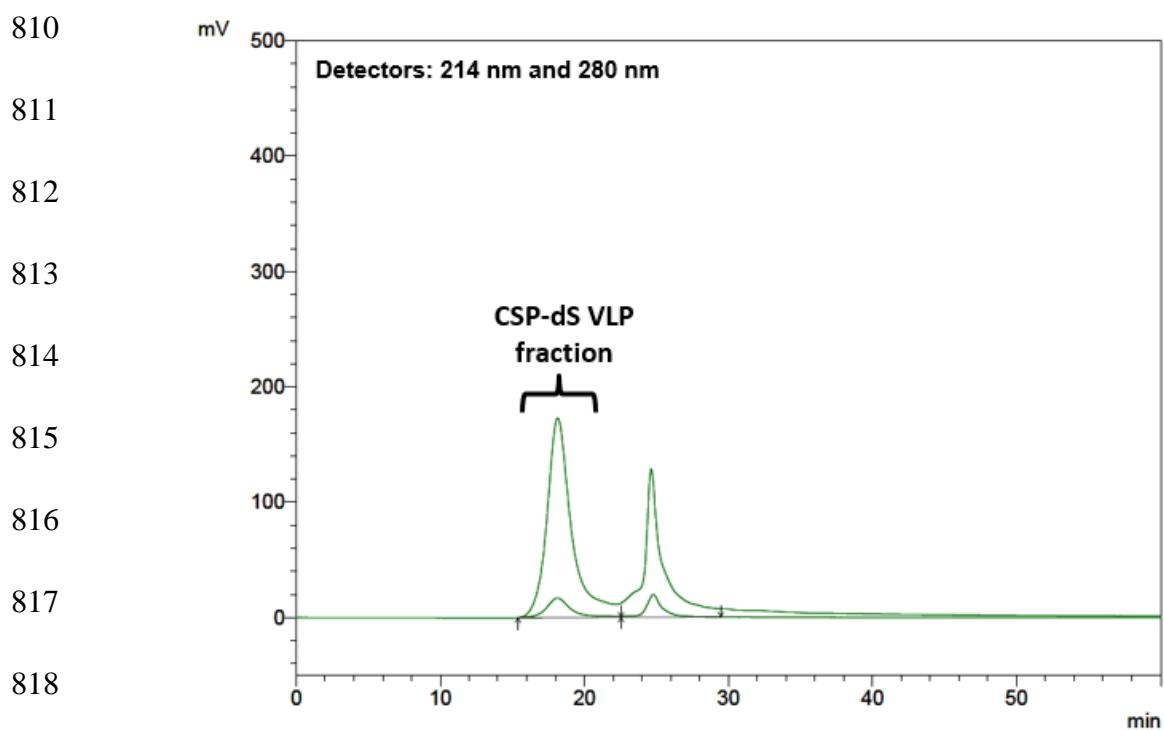
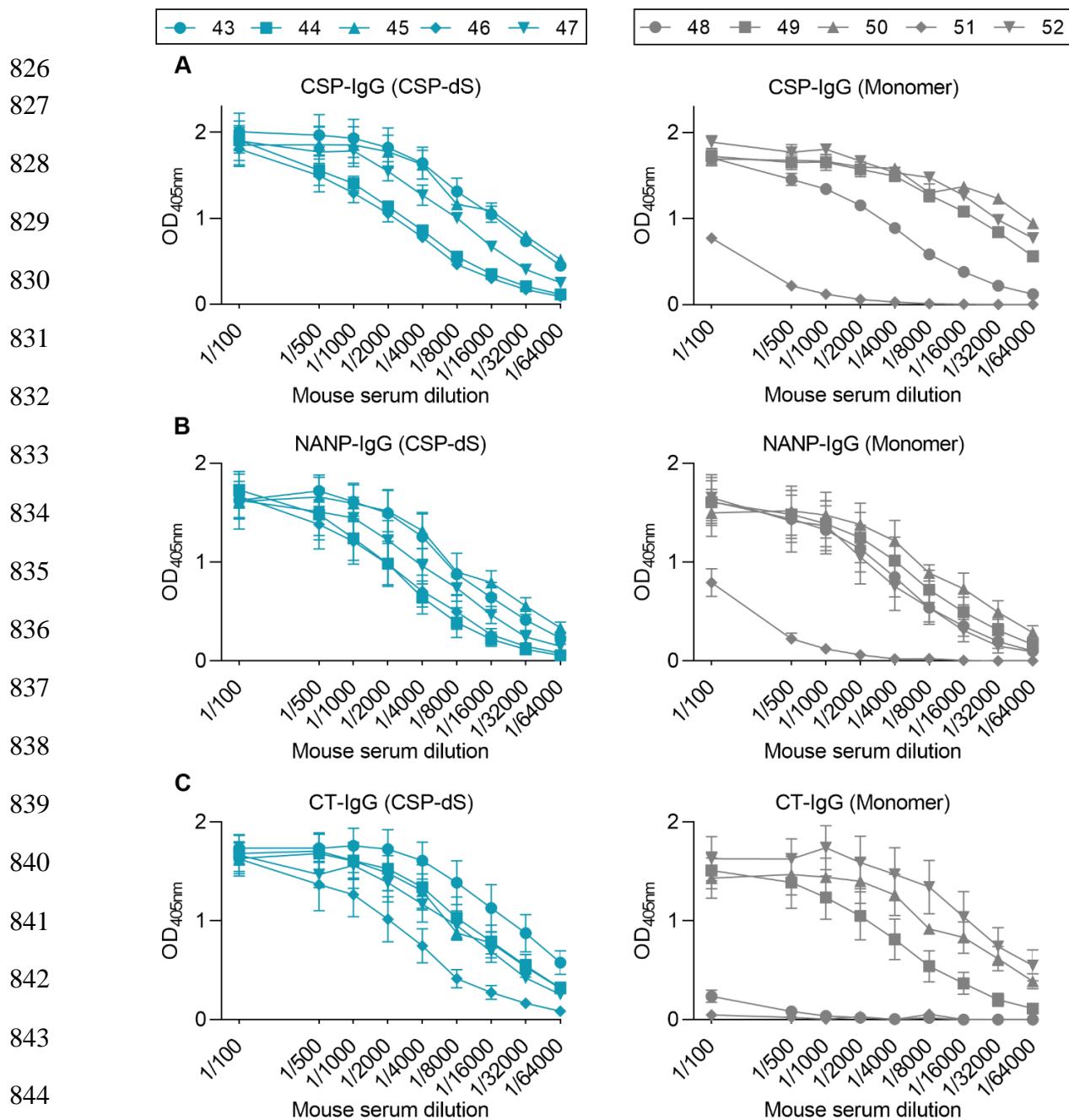


Figure 5. Immunization with CSP-dS induces different IgG subclasses and functional antibody responses. Swiss mice were immunized with three 10 μ g doses of CSP-dS (n=5; circles) or monomeric CSP as a control (n=5; squares). Serum samples collected after the final immunization were tested for (A) anti-CSP IgG subclass responses and (B) functional activity against full-length CSP, including C1q-fixation and binding to dimeric Fc γ RIIa (data from one experiment). Mean and standard deviation are shown and reactivity between the CSP-dS and monomer vaccine groups were compared using the unpaired t-test.


Figure 6. Fractional dosing of CSP-dS is immunogenic in mice. C57/BL6 mice were immunized with three 2 μ g doses of CSP-dS (mouse #53-57). Serum samples collected after the final immunization were tested for total IgG to (A) full-length CSP, and antigens representing the (B) central-repeat (NANP) and (C) C-terminal (CT) regions of CSP. The x-axis is presented on a log₂ scale and the mean and range of two independent experiments are shown.

809 **SUPPLEMENTARY FIGURES**

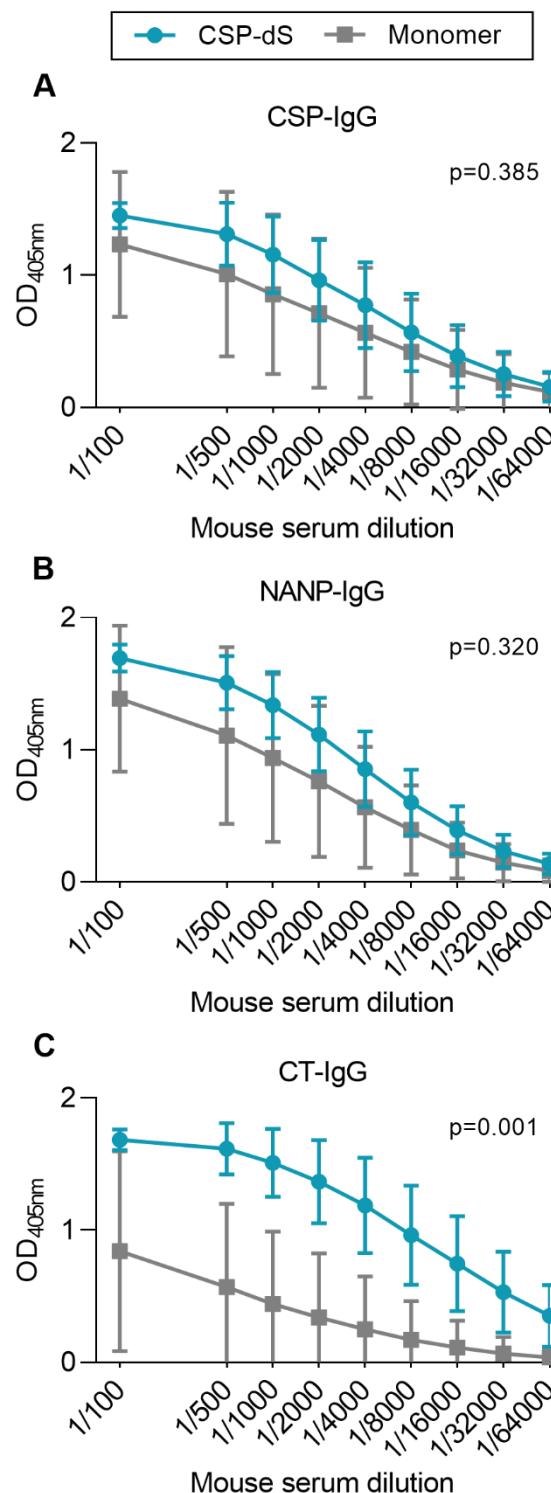


Figure S1. Chromatogram of the HP-SEC analysis of the CSP-dS VLP preparation.

Elution profiles were recorded at 214 nm (peptide bonds) and 280 nm (aromatic amino acids). Fractions were analyzed by SDS-PAGE (data not shown) and the marked peak was identified as product-containing fraction and analyzed by DLS.

Figure S2. Antibody data from individual mice immunized with CSP-dS and monomer vaccines. Swiss mice were immunized with three 10 μ g doses of CSP-dS (mouse #43-47) or monomeric CSP as a control (mouse #48-52). Serum samples collected after the final immunization were tested for total IgG to (A) full-length CSP, and antigens representing the (B) central-repeat (NANP) and (C) C-terminal (CT) regions of CSP. The x-axis is presented on a log2 scale and the mean and range of two independent experiments are shown.

Figure S3. Immunogenicity of CSP-dS after two doses. Swiss mice were immunized with three 10 µg doses of CSP-dS (n=5; circles) or monomeric CSP as a control (n=5; squares). Serum samples collected after the second immunization were tested for total IgG to (A) full-length CSP, and antigens representing the (B) central-repeat (NANP) and (C) C-terminal (CT) regions of CSP. The x-axis is presented on a log₂ scale and the mean and standard deviation of one experiment is shown. Reactivity between the CSP-dS and monomer vaccine groups were compared using the unpaired t-test (with Welch's correction).