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Abstract

Acquiring accurate single-cell multiomics profiles often requires performing unbiased in silico
integration of data matrices generated by different single-cell technologies from the same
biological sample. However, both the rows and the columns can represent different entities in
different data matrices, making such integration a computational challenge that has only been
solved approximately by existing approaches. Here, we present bindSC, a single-cell data
integration tool that realizes simultaneous alignment of the rows and the columns between data
matrices without making approximations. Using datasets produced by multiomics technologies as
gold standard, we show that bindSC generates accurate multimodal co-embeddings that are
substantially more accurate than those generated by existing approaches. Particularly, bindSC
effectively integrated single cell RNA sequencing (scRNA-seq) and single cell chromatin
accessibility sequencing (scATAC-seq) data towards discovering key regulatory elements in
cancer cell-lines and mouse cells. It achieved accurate integration of both common and rare cell
types (<0.25% abundance) in a novel mouse retina cell atlas generated using the 10x Genomics
Multiome ATAC+RNA kit. Further, it achieves unbiased integration of scRNA-seq and 10x
Visium spatial transcriptomics data derived from mouse brain cortex samples. Lastly, it
demonstrated efficacy in delineating immune cell types via integrating single-cell RNA and

protein data. Thus, bindSC, available at https://github.com/KChen-lab/bindSC, can be applied in

a broad variety of context to accelerate discovery of complex cellular and biological identities and

associated molecular underpinnings in diseases and developing organisms.
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Introductions

Advances in high-throughput single-cell technology such as single-cell RNA-sequencing (SCRNA-
seq) ! and mass cytometry 2 have enabled systematic delineation of cell types based on thousands
to millions of cells sampled from developing organisms or patient biopsies. For example, recent
application of combinatorial indexing based technology has generated the transcriptomic and
chromatin accessibility profiles of millions of cells in developing human fetus samples . Rare cell
types and complex cellular states, however, remain challenging to discover, which necessitates the
development of multiomics technologies to simultaneously measure other cellular features,
including DNA methylation *°, chromatin accessibility ®* and spatial positions *!* in the same

cells. Although available single-cell multiomics technologies 3!!-14

can profile thousands to
millions of cells per experiment, the cost of the experiments is still quite high !°; and the data
generated are often of lower throughput than those generated by unimodal technologies. These
restrictions necessitate the development of computational approaches that can accurately integrate

multiple data matrices generated by different technologies from the same biological samples to

acquire an accurate characterization of cellular identity and function.

However, different technologies create data matrices of different rows and columns, which
correspond to different sets of cells and different types of features. How to align cells and features
simultaneously across matrices is a core computational challenge. When the two sets of cells are
sampled uniformly from the same biological sample, it is safe to assume that there exists an optimal
way to align together cells of similar identities and features associated with these identities. This
is mathematically challenging, however, as there are many possible ways to simultaneously align

a large number of cells and features. To address this challenge, existing computational approaches
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followed two directions: 1) aligning features empirically before aligning cells '%!%; 2) obtaining
separate embeddings for each modality, followed by performing unsupervised manifold alignment
20-22 Taking integration of scRNA-seq and singe cell assay for transposase accessible chromatin
sequencing (scATAC-seq) as an example, the first category of methods require constructing a
“gene activity matrix” from scATAC-seq data by counting DNA reads aligned near and within
each gene 2. This strategy considers only the basic cis-regulatory relations and ignores long-range,
trans-regulatory relationship established via other regulatory elements such as enhancers °, which
are often critical to decipher cell identities. It also substantially simplifies (or loses) multifactorial
relations between transcription factors (TF) and target genes 2*. Based on pre-aligned features
generated by such empirical rules, Seurat applies canonical correlation analysis (CCA) and mutual
nearest neighbors (MNNSs) to identify cells anchoring the two data matrices !7; LIGER uses an
integrative non-negative matrix factorization (iNMF) to delineate shared and dataset-specific
features !%; Harmony projects cells onto a shared embedding using principle components analysis
(PCA) and removes batch effects iteratively 3. All these programs suffer from the aforementioned
limitations and thereby cannot yield a comprehensive, unbiased gene regulatory network,
particularly when chromatin changes are asynchronous from RNA transcriptions in cells
undergoing state transitions 2°. The second category of methods 2%?2 do not require prior feature
alignment and are fully unsupervised. However, they depend heavily on the assumption that
feature variation across cells is driven by a few latent variables in both modalities 2. This
assumption can get violated easily in datasets of complex biology involving dynamic processes

such as differentiation, reprogramming and transdifferentiation 22,
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In this study, we develop a novel computational tool called bindSC (bi-order integration of single-
cell data). The key algorithm implemented in bindSC is called bi-CCA (bi-order canonical
correlation analysis). Bi-CCA learns the optimal alignment among rows and columns from two
data matrices generated by two different experiments. The alignment matrix derived from bi-CCA

can thereby be utilized to derive in silico multiomics profiles from aligned cells.

We assess our method on several challenging multimodality integration tasks between 1)
transcriptomic and chromatin accessibility data, 2) transcriptomic and spatial transcriptomic data,
and 3) transcriptomic and proteomic data. We validate scRNA-seq and scATAC-seq integration
accuracy using datasets obtained directly from multiomics technologies, including a novel mouse
retina cell atlas created by the 10x Genomics Multiome ATAC+RNA kit. We show that bindSC
enables comprehensive characterization of epigenetic regulatory states in a lung adenocarcinoma
cell-line A549 in response to dexamethasone treatment. And bindSC can align mouse retina cell
types accurately, for multi-subtype bipolar cells and rare horizontal cells. Moreover, bindSC
enables unbiased integration of spatial transcriptomics data with scRNA-seq data on mouse brain
cortex samples, as well as single-cell RNA data with protein data from peripheral blood
mononuclear cells. BindSC is implemented as an open-source R package available at

https://github.com/KChen-lab/bindSC.

Results

Bi-order integration of multi-omics data
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88  BindSC takes as input two single-cell data matrices (X and Y) generated uniformly from the same
89  cell population by two different technologies (Fig. 1a). In most single-cell multi-omics integration
90 tasks, neither the alignment between the cells in X and those in Y, nor the alignment between the
91  features in X and those in Y is known. BindSC employs a bi-CCA algorithm developed in this
92  study to address this challenge (Fig. 1b). Briefly, bi-CCA introduces a gene score matrix Z to link
93  Xand Y. The gene score matrix has the same rows as does X and the same columns as does Y. To
94  reduce computational cost, Z can be initialized based on prior knowledge. Taking integration of
95  scRNA-seq and scATAC-seq as an example, the gene score matrix can be initialized using the
96  “gene activity matrix” estimated by other programs such as Seurat. Bi-CCA then iteratively
97  updates Z to find an optimal solution which maximizes the correlation between X and Z and
98  between Y and Z in the latent space simultaneously. Details about this iterative procedure can be
99  found in Methods and Supplementary Fig. 1a.

100

101  Bi-CCA outputs canonical correlation vectors (CCVs), which project cells from two datasets onto
102  ashared latent space (referring below as “co-embedding”). A K-nearest neighbor (KNN) graph is
103 constructed based on Euclidean distances observed in the latent space, followed by modularity
104  optimization techniques to partition the KNN into highly interconnected subgraphs, each of which
105  corresponds to a putative cell type or state (Fig. 1¢). Within each cluster, sub-clustering using
106  similar strategies is further performed to derive what we call pseudo-cells (Methods). Each
107  pseudo-cell encloses tens of cells from both datasets and thus has a consensus multiomic profile
108  summarized from constituting cells (Fig. le-d). The joint multiomic profiles thus enable 1)
109  characterizing gene and chromatin-accessibility relations from aligned scRNA-seq and scATAC-

110 seqdata; 2) associating transcriptomic profiles with spatial locations from aligned scRNA-seq and


https://doi.org/10.1101/2020.12.11.422014
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.422014; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

111  spatial transcriptomic data; 3) associating transcriptomic profiles with proteomic profiles from
112 aligned scRNA-seq and CyTOF data, and so on (Fig. 1e).

113

114  Benchmarking bindSC performance on simulation datasets

115  Existing integration methods such as Seurat, LIGER, and Harmony require pre-aligning features
116  across modalities, i.e., compressing cell-peak matrices obtained from scATAC-seq onto cell-gene-
117  activity matrices based on reference genome annotations. BindSC overcomes that restriction: its
118  generic mathematical formulations allow free alignment amongst features to be established from
119  data.

120

121  Under our formulation (Methods), Z has features (rows) aligned with X and cells (columns)
122 aligned with Y. The introduction of Z enables bi-order alignment of the cells and the features,
123 respectively.

124

125  To quantify how much this step matters to overall integration accuracy, we performed a set of
126  simulation experiments. We started by creating a dataset X consisting of 3 cell clusters (types),
127  each having 333 cells and 1,000 genes using Splatter 2 (Supplementary Fig. 2a). We created a
128  second dataset Y and made it identical to X: X =Y. We then constructed a gene score matrix Z
129  from Y by permuting a fraction of features (rows), termed misalignment rate (MR), into different
130  orders. The features between Z and Y are perfectly aligned if MR equals 1 and are independent if
131 MR equals 0. We further added white noise on all the entries of Z at a given signal-noise-ratio
132 (SNR) level.

133
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134 We then provide (X, Z) as input to the other methods (Supplementary Fig. 2b), mimicking how
135  they perform integration, while provide both (X, Z) and (Y, Z) to bindSC (Supplementary Fig.
136 2¢). As described, rather than taking Z as it is from the input, bindSC will iteratively update Z
137  until reaching convergence.

138

139  Since we know the true cell type and dataset origin of the cells in these experiments, we can assess
140  the integration performance in terms of cell type classification accuracy and dataset alignment
141  accuracy in the co-embeddings. It is necessary to measure both types of accuracy, as a high cell
142 type classification accuracy can be achieved by simply projecting cells onto local clusters without
143 achieving uniform mixing of the two datasets. Similarly, a high dataset alignment accuracy can be
144 achieved by uniformly mixing cells from the datasets, regardless of their cellular identity. We used
145  Silhouette score for measure cell type classification accuracy and alignment mixing score to
146  measure the dataset alignment accuracy (Methods). We compared bindSC, CCA, Seurat, LIGER
147  and Harmony under default settings (Supplementary Note 1).

148

149  We obtained results from a range of MRs under SNR = 0.25 (Fig. 2). When there was no feature
150  misalignment (MR = 0), all methods achieved good performance. Even under this ideal scenario,
151  bindSC achieved the highest Silhouette score (> 0.75) (Fig. 2a). The worse performance of other
152 methods can be explained by the noise introduced to distort the manifold structures between X and
153  Z. CCA showed better performance than Seurat, which may be due partly to label transferring
154  errors introduced by Seurat’s empirical anchor-based alignment approach. As MR increased from
155 0 to 0.9, the Silhouette score for bindSC remained stable (> 0.7), while all the other methods

156  showed a decreasing trend, especially for LIGER and Harmony. Harmony worked well when MR
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157 < 0.15 (Fig. 2a-b) but had a substantial drop on Silhouette score (< 0.1) when MR > 0.15. In
158  addition, its alignment mixing score dropped to 0 when MR > 0.2, with no mixing of cells from X
159 and Z in the co-embedding UMAP (Fig. 2b; MR = 0.5). Harmony takes cell coordinates from a
160  reduced dimensional PCA space and runs an iterative algorithm to adjust for dataset-specific
161  effects. When MR > 0.15, cells from X and Z already formed two dis-joint groups, which made
162  the downstream integration impossible for Harmony. The Silhouette score of LIGER showed
163  fluctuations but was always lower than 0.4. LIGER utilizes an integrated nonnegative matrix
164  factorization (iNMF) method to identify shared and dataset-specific metagenes across two datasets.
165 If it worked as designed, the errors caused by feature misalignment should be contained within
166  dataset-specific modules. However, variance explained by the data-specific modules appeared to
167  be small (< 1%). When MR > 0.95, all methods including bindSC failed to achieve reasonable
168  integration. That was expected as X and Z (as well as Y and Z) became nearly independent.

169

170  As expected, increasing SNR level worsened the integration performance for most of the methods
171  except bindSC. For example, both CCA and Seurat had acceptable performance under MR = 0.5
172 and SNR = 0 (Supplementary Fig. 3a), but Seurat failed to separate cell type 2 and 3 accurately
173 when SNR = 0.25 or 0.5 (Supplemental Fig. 4a; Fig. 2). For SNR = 0.5, Harmony failed in both
174  alignment mixing (< 0.2) and classification (= 0) accuracy, even when MR was as low as 0.1
175  (Supplementary Fig. 4).

176

177  We repeated the above experiments by increasing the number of cells to 5,000 and 10,000,
178  respectively. Similarly, bindSC showed robust performance regardless of MR and SNR levels,

179  which was not achieved by other methods (Supplementary Tables S2-3). Overall, the simulation
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180  results demonstrated that bindSC is robust to bias introduced by noise in the data and via pre-
181  aligning features, thanks to its ability to align both cells and features simultaneously.

182

183  Integrating single cell epigenomic data with single cell transcriptomic data

184  Integrating single cell epigenomic data with single cell transcriptomic data obtained from
185 unimodal technologies provides an opportunity to decipher epigenetic regulatory mechanisms
186  underpinning cell transcriptomic identity. We examined the performance of bindSC in integrating
187  the scRNA-seq and scATAC-seq data derived from lung adenocarcinoma (A549) cells after 0, 1,
188 and 3 hours of dexamethasone (DEX) treatment . This dataset was generated using a
189  combinatorial indexing-based coassay (sci-CAR), which enabled jointly measurement of
190  chromatin accessibility and transcriptome in the same cells. In this dataset, 6,005 cells have sci-
191  RNA-seq profiles and 3,628 cells have sci-ATAC-seq profiles. Among them, 1,429 cells have both
192 RNA-seq and ATAC-seq profiles, which can be used as a gold standard for evaluating integration
193  accuracy of various methods (Methods).

194

195  For comparison, we ran the 4 methods on the same data and derived in silico co-embeddings. There
196  was relatively clear separation between cells acquired at 0 hour and those at 1 or 3 hours in the co-
197  embeddings (Fig. 3a). In terms of classifying cells by time, bindSC achieved the highest Silhouette
198  score and Harmony the second, whereas Seurat had the lowest score with many sub-clusters in its
199  co-embedding (Fig. 3a-b). As to alignment accuracy, bindSC and Harmony had similar scores,
200  whereas Seurat received a relatively low score (Fig. 3b). Similar trends were observed in a
201  previous study analyzing the same dataset 2. As suggested by simulation, the low alignment

202  mixing score of Seurat was likely attributable to bias introduced in its anchor-based integration.

10
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203

204 A perfect integration method would place the two instances of the 1,429 co-assayed cells onto
205  identical locations in the co-embeddings. We leveraged this expectation to compare the accuracy
206  of various methods. We defined a metric, called anchoring distance that measures the normalized
207  Euclidean distance between the two instances of a co-assayed cell in the co-embeddings
208  (Methods). BindSC achieved substantially shorter anchoring distances than the other methods (p
209 < 2.2e-16; Student t-test; Fig. 3b).

210

211  We further compared how accurately TF (or peak) -gene correlations can be inferred from the co-
212 embeddings produced by each method. For a fair comparison, we applied the same bindSC
213 workflow to derive pseudo-cells for the 4 methods (Methods; Supplementary Note 2).

214

215  For each TF-gene (and peak-gene) pair, we calculated a Spearman rank correlation coefficient
216  (SRCC) between the TF activity (and normalized peak) level and the gene expression level in the
217  pseudo-cells (Methods). We repeated the same calculation in the co-assayed cells to create a gold
218  standard. For each of the 4 methods in 3 types of relations: TF-gene, cis- peak-gene and trans-
219  peak-gene, we calculated a summary SRCC between the SRCCs obtained from the pseudo-cells
220  and the SRCCs obtained from the co-assayed cells. The summary SRCCs resulting from bindSC
221  were consistently higher than those obtained from Seurat, LIGER and Harmony in all the
222 categories of comparison, indicating that the bindSC multiomic profile had the highest accuracy.
223

224  We further examined the peak-gene association identified from the co-assayed cell profiles and

225 found 585 trans- peak-gene pairs being supported by isogenic Hi-C data generated in an

11
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226  independent study 2%. Compared with other approaches, bindSC derived peak-gene SRCCs of the
227  highest level of agreement with those observed in the co-assayed cells (Supplementary Fig. 5).
228  Among the 585 trans- peaks, 470 appeared more strongly correlated with the corresponding gene
229  expression levels than did the corresponding cis- peaks. One example was the gene CFLAR and a
230  trans- peak at chr2:201,770,437-201,770,992, which is 200-kb upstream of CFLAR transcription
231  start site, spanning over three genes (Fig. 3e). The SRCC of this pair was 0.32 in the co-assayed
232 cells. It was lower but comparable (0.23) in the bindSC pseudo-cells, however, became
233 substantially lower (< 0.11) in the pseudo-cells generated by the other methods (Supplementary
234 Fig.5).

235

236  The DEX treatment specifically targets the glucocorticoid receptor encoded by NR3CI, a TF that
237  activates the mRNA transcription of a handful of downstream genes. BindSC accurately
238  reconstructed the gene expression and TF activity kinetics of NR3C! (Fig. 3d), consistent with
239  what was depicted in the original study ¢ using the co-assayed cells: the NR3C1 expression level
240  decreased over time while its activity level increased; Even the slowing down trend of NR3C1
241  activity was captured.

242

243 We further evaluated the performance of bindSC in integrating scRNA-seq and scATAC-seq on
244 another available multi-omics dataset generated recently by SHARE-seq technology'4. There were
245  atotal of 37,774 cells from mouse skin tissues that had paired RNA and ATAC profiles. Compared
246  with other methods, bindSC again achieved significantly shorter anchoring distances
247  (Supplementary Fig. 7; Supplementary Note 4).

248

12
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249  Comprehensive evaluation using a novel mouse retinal cell atlas

250  For comprehensive evaluation and comparison, we generated a novel multi-omics dataset from
251  single nuclei of wild type mouse retina. Mouse retina is heterogeneous, composed of multiple
252  neuronal and non-neuronal cell types, including five major neuron classes: photoreceptors (rods
253  and cones), retinal ganglion cells (RGC), horizontal cells (HC), bipolar cells (BC), amacrine cells
254  (AC), and a non-neuronal Miiller glial cell (MG) #2°3°. While we *° and others 3!-3* have provided
255  high-resolution single cell transcriptomic profiles of whole retina or specially sorted cell types on
256  mouse and human retina tissue, little is known on the single-cell chromatin landscape of mouse
257  retina tissue. Numerous studies **3¢ demonstrate the importance of transcription factors (TFs) on
258  establishing or maintaining the chromatin landscapes that define retina cell identity. Therefore,
259  integration of ATAC and RNA profiles at single cell resolution provides an exciting opportunity
260  to comprehensively characterize cell types and rare cell subtypes in mouse retina.

261

262  We applied the newly released 10x Genomics Multiome ATAC+RNA kit on nuclei suspension
263  acquired from adult mice retina samples. After performing standard quality control, we obtained
264 an atlas of 9,383 nuclei of high-quality ATAC+RNA profiles. To define cell types, we first
265  clustered the RNA and the ATAC data individually. Nineteen (19) clusters were identified from
266  the RNA data alone, which included all the known major cell types with some subtypes identified:
267 rod, BC (BC1~BC10), AC, RGC, cone, HC, MG and retina progenitor cells (RPC) (Fig 4a and
268  Supplementary Fig. 8). Nineteen (19) clusters were also identified from the peak files of the
269  ATAC data alone (Fig. 4b). Although known cell types appeared to be well separated in both

270  modalities, there were some noticeable differences. For example, RGC cells and rod cells were

271  separated clearly in the RNA data but partly blended together in the ATAC data, whereas ACs and

13
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272 RGC cells were blended in the RNA data but well separated in the ATAC data. Interestingly, all
273  the 10 BC cell subtypes, defined based on RNA expression levels, were well separated in the
274  ATAC data except for BC1 and BC6. However, after reducing ATAC data to gene level in a gene
275  activity matrix, the cell types became considerably harder to delineate (Fig. 4¢).

276

277  To obtain in silico multiomics profiles, we ran bindSC together with three other methods on the
278  data without using the known cell correspondence. As shown in the co-embedding UMAP

279  (Fig. 4d-e), bindSC successfully aligned cell types across modalities, with most cell types well

280  separated out (Fig. 4d-f). Interestingly, bindSC successfully aligned the HCs, which is quite rare
281  in the dataset (23 cells, <0.25% abundance). None of the other methods aligned the HCs correctly
282  as it was already difficult to separate the HCs from the ACs in the gene-level chromatin profiles
283  (Fig. 4c and Supplementary Fig. 9), the input to the other methods. Overall, the anchoring
284  distances in the co-embeddings generated by bindSC were considerably smaller than those
285  generated by the other methods in all the cell types assessed (Fig. 4f).

286

287  Note that bindSC aligned the 10 BC subtypes reasonably well (Fig. 4g), although separations in
288  the ATAC modality were not as clean as they were in the RNA modality. In comparison, Seurat
289  and LIGER failed to generate meaningful alignments among the BC subtypes (Fig. 4h-j and
290  Supplementary Fig. 9) while Harmony aligned a few subtypes successfully. These were due
291  partly to the fact that these methods used the low precision gene-level chromatin accessibility
292  profiles as the input (Fig. 4c¢).

293
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294  Overall, our study demonstrated the power of multiomics in delineating rare cell types and proves
295  that bindSC can generate in silico multiomics profiles that are considerably more accurate than do
296  existing tools.

297

298  Integrating scRNA-seq data with spatial transcriptomics (ST) data

299  BindSC can integrate scRNA-seq data with spatial transcriptomics data to 1) assign spatial
300 locations to cells in the scRNA-seq data and 2) associate additional RNA features to the spatial
301  data for higher resolution delineation. For demonstration, we applied bindSC to integrate the
302  SMART-Seq2 data with the in situ spatial transcriptomics data generated by 10x Visium from the
303  same mouse frontal cortex tissue. These two datasets differ widely in number of cells: 1,072 spots
304  in the ST data versus 14,249 cells in the scRNA-seq data (Supplementary Fig. 10a). The spots
305  on the Visium assay are at ~50 um resolution and each spot can contain tens of cells. There were
306 6 clusters identified from the ST data alone, which linked to distinct layers in the corresponding
307  histology images (Supplementary Fig. 10b-c¢) and 23 cell types from the scRNA-seq data alone
308  (Supplementary Fig. 10d).

309

310 We used bindSC and other programs to derive co-embeddings containing datapoints from both
311  datasets (Fig. S5a). BindSC achieved evidently higher alignment mixing scores than the other
312  programs (Supplementary Fig. 11¢) while the Silhouette scores were similar (Supplementary
313  Fig. 11b). For each pseudo-cell in the scRNA-seq data, we calculated its probability to map to a
314  spatial location in the histology image. We then overlaid these cells on the histology image
315  coloring by their probability scores (Methods). Noticeably, several cell types in the scRNA-seq

316  data mapped to distinct spatial layers in the histology image, which is consistent with the known
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317  cellular anatomy of mouse cortex, particularly for the laminar excitatory neuron cell types such as
318 L2.3 IT, L4, L5.IT, L5.PT, L6.IT, L6.CT, L6B and NP (Fig. Sb). Consistent with previous
319  observations, the oligodendrocyte-rich white matter (oligo cells) was mapped below the cortex.
320  BindSC and Seurat were also able to map inhibitory clear cell types such as Lamp5, Vip, Pvalb
321  and Sst in the scRNA-seq data to the histology image, but these cell types did not form distinct
322  spatial patterns. LIGER and Harmony, which had worse alignment mixing scores (Supplementary
323  Fig. 11c¢), failed to map these cells (Supplementary Figs. 13-14), especially the Vip cells. The
324 poor mapping of the inhibitory cells may also be attributable to the limited resolution of the Visium
325  technology.

326

327  Given that each spot in the ST data may encompass multiple cells from multiple cell types, we
328  hypothesized that the probability scores calculated from the co-embeddings can reveal the
329  composition of the cell types at each spot. Fig. S¢ showed the relationship between cell type
330  abundance in the scRNA-seq data and abundance estimated based on probability scores in the ST
331  data. Results from bindSC achieved the best correlation (Pearson’s R = 0.9). L6.IT, Sst and Vip
332 cell types were the top 3 most abundant cell types in both the scRNA-seq data and the ST data.
333 Seurat also performed reasonably well (Pearson’s R = 0.83) while LIGER and Harmony performed
334  worse. Note that Lamp5 was the cell type that showed the largest discordance in the bindSC result.
335 In examining the spatial distributions of Lamp5 specific gene expressions such as Lspl, Npy2r,
336  and DockS5, we could not find any spatial patterns (Supplementary Fig. 11 d-e). This finding may
337 indicate that Lamp5 does not have a characteristic spatial distribution.

338

339  Integrating single-cell RNA with protein data
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340  Complex interplay exists between mRNAs and proteins 7. Single-cell proteomic methods such as
341  mass cytometry (CyTOF) 238 measure abundance of a small set of (often 10-50) surface proteins
342  (epitopes) and provide functional quantification of various cell populations. Integrating single-cell
343 RNA and protein data from the same sample can potentially achieve higher resolution
344  characterization and enable discovery of novel cellular states and associated features. BindSC can
345  be applied for such a task. Notice that this task cannot be achieved by any of the existing tools
346  because the mRNA and protein expression levels derived from the same genes are not well
347  correlated, due to complex post-transcriptional modifications and technological limitations *°.
348  CITE-seq * performs jointly profiling of epitope and mRNA levels in the same cells and can be
349  used to evaluate the results of in silico integration.

350

351 We used a CITE-seq dataset consisting of 30,672 human bone marrow cells with a panel of 25
352  antibodies !”. We split the data into an RNA matrix and a protein matrix. Unsupervised clustering
353  of the RNA matrix revealed cell types largely consistent with those in the protein matrix, except
354  for some noticeable differences (Fig. 6a-b). CD8+ and CD4+ T cells were partly blended together
355  inthe RNA data but separated clearly in the protein data. On the other hand, conventional dendritic
356  cells (¢cDC2) were separated from other clusters in the RNA data but were intermixed with other
357  cell types in the protein data. In contrast, unsupervised clustering of the gene expression levels of
358 the 25 protein-homologous RNAs could not yield meaningful classification (Fig. 6c).
359  Consequently, Seurat, LIGER and Harmony, which work with only data matrix of 25 homologous
360 features, failed to produce meaningful co-embeddings (Supplementary Fig. 15): the cells from
361  the protein data were well clustered, but those from the RNA data were not meaningfully

362  distributed in the co-embeddings.
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363

364  We then tested bindSC on this task. The matrix X was set as the protein matrix, Y the RNA matrix
365  of 3,000 highly variable genes, and Z the RNA matrix containing only the 25 protein-homologous
366  genes. Remarkably, the majority of the cells from the two modalities became well aligned in the
367 co-embedding (Fig. 6d-e), as they are expected to be. Similar to our previous experiments, we
368 calculated the anchoring distance between the protein and the RNA cells deriving from the same
369  original cells in the co-embeddings. The overall anchoring distance for bindSC was significantly
370  lower than those obtained by Seurat, LIGER, Harmony, or random guesses (p-value < 2.2e-16;
371  Student t-test; Fig. 6f). Notably, the bulk of CD4+ and CD8+ T cells in the RNA data became well
372  separated in the co-embedding (Fig. 6d-e), thanks to the power of integration. Moreover, the
373  anchoring distances revealed the extent of differences between the levels of the RNAs and those
374  of the homologous proteins in individual cell types (Fig. 6g). Interestingly, relatively rare cell
375  types such as HSC, Prog/NK, LMPP, and CD16+ Mono appeared relatively well anchored,
376  whereas relatively common cell types such as CD8 naive, CD8 memory, B progenitor, Treg, etc.
377  appeared less well anchored. This indicates that there are higher degrees of post-transcriptional
378  heterogeneity in cell types conducting adaptive immune surveillance *!.

379

380 Discussion

381 Despite the ground-breaking advances in single-cell technologies, including multiomics
382  technologies, there always exists a need to computationally integrate multiple data matrices of
383  different modalities from the same biological samples to derive a more comprehensive
384  characterization of cellular identities and functions.

385
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386  Our method bi-CCA and tool bindSC appeared to have addressed this important analytical
387  challenge without compromising biological complexity in the data. In our experiments, bindSC
388  successfully integrated data obtained from a wide variety of vastly different technologies covering
389 transcriptomes, epigenomes, spatial-transcriptomes and proteomes, and clearly outperformed
390  existing tools such as Seurat, LIGER and Harmony, when being evaluated objectively using true
391  single-cell multiomics data derived from the same cells. In particular, Seurat, LIGER, and
392  Harmony are essentially first-order solutions that can be applied to only rows or columns but not
393  both simultaneously. That approach introduced biases in the results and restricted the utility of
394  those tools in discovering complex cell-type relations and molecular interactions. For instance,
395 they consider only the basic cis-regulatory relations and ignores trans-regulatory relations ¢
396  established via distal enhancers, as exemplified in the interaction between CFLAR and a 200 kbps
397  upstream putative enhancer site discovered by bindSC and validated by Hi-C in the DEX-treated
398  A549 data. Other scATAC-seq analysis pipelines such as MAESTRO !¢ and ArchR #? have similar
399  restrictions.

400

401  Similarly, bindSC was able to meaningfully associate the expression levels of mRNAs with those
402  of the surface proteins, a very challenging task due to complexity in post-transcriptional
403  modification. The resulting co-embedding offered deeper biological insights than embeddings
404  derived from single modality or by using other existing approaches. For example, CD4+ T cells

405  became evidently separated from CD8+ T cells and so did pDC cells from other cell types.

406
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407  BindSC also achieved meaningful mapping of scRNA-seq data to spatial locations in the brain
408  cortex samples, after integrating with the ST data. Even though the two datasets were not both at
409  single-cell resolution, bindSC was still able to achieve a meaningful integration.

410

411  Bi-CCA made two assumptions: 1) the two sets of cells are sampled uniformly from the same
412  biological sample; 2) the features of the two datasets are linearly correlated. These two
413 assumptions are met under many scenarios of current investigations, however, could be violated
414  when there are insufficient number of cells obtained from a rapidly developing cell population.
415  Consequently, the accuracy of the co-embedding could vary, depending on the sampling density
416  and the complexity of the population. We measured accuracy with respect to data complexity in
417  the simulation experiments, however, accuracy on a real dataset could be complex to gauge a
418  priori and will require case by case investigation in the context of a specific study, followed by
419  necessary experimental validation. Nonetheless, in this study we clearly proved based on objective
420  ground truth data that bi-CCA substantially avoided bias introduced by existing methods and that
421  bindSC is a robust implementation that can be applied to derive meaningful results on most recent
422  datasets containing thousands to tens of thousands cells (Supplementary Table 1).

423

424  BindSC is efficiently implemented in R. The major computational cost for bindSC is from
425  calculating cell/feature co-embedding coordinates using singular value decomposition (SVD)
426  (Methods); It typically requires O(MNL) floating-point operations to construct MN cell-cell
427  distance matrix as input to SVD decomposition, where M and N are cell number of the two
428  modalities, respectively. To address this computational challenge, bindSC implements the “divide-

429  and-conquer eigenvalue algorithm”. The divide part first splits cells into different blocks specified
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by users, which can be solved in parallel with lower memory usage (Supplementary Fig. 1b). The
conquer part then merges results from each block recursively. Therefore, the maximal memory

usage of bindSC is independent of the total cell number.

Taken together, we believe that bindSC is likely the first tool that has achieved unbiased integration
of data matrices generated by different technologies and can be applied in broad settings. In the
single-cell domain, bindSC can clearly be applied to align cells and features simultaneously, which
are important for ongoing investigations in the Human Cell Atlas +*, the NIH HubMap #4, the
Human Tumor Cell Network *° and on remodeling of tumor microenvironment 6. Further, bindSC
can potentially be applied to other domains, such as integrating patient sample mRNA profiles

with cell-line drug-sensitivity data 7.
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441 Methods

442  BindSC workflow

443  BindSC workflow for creating in silico single cell multi-omics embeddings consists of five steps:

444 1. individual dataset preprocessing including variable feature selection and cell clustering,
445 2. initializing feature matching across modalities (i.e., constructing gene score matrix),
446 3. 1identifying cell correspondence using the bi-CCA algorithm,

447 4. jointly clustering cells between two modalities in the co-embedding latent space and
448 constructing pseudo-cell level multi-omics profiles, and

449 5. downstream analysis for various integration tasks.

450  We formulate our method for the case of two modalities. Let X € RM*K be a single-cell dataset of
451  features gq,9q,**,gu by cells ¢i,¢q,++,cx and ¥ € RN*L be a single-cell dataset of feature
452  pq,pa Py by cellsdy,dq, -+, d;. M and N are the numbers of features (e.g., gene expression,
453  chromatin accessibility, protein abundance level) in the two datasets. K and L are the number of
454  cells in the two datasets. Without loss of generality, we assume that features
455 g1, 91, ", gurepresent the gene expression levels and M < N. The important component of each
456  step is described as follows.

457

458 1. Individual modality preprocessing

459  For each modality, we follow standard processing pipeline, which includes variable feature
460  selection and unsupervised cell clustering. The cluster information derived from each modality is
461  used for downstream parameter optimization.

462

463 2. Initializing feature matching across modalities
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464  Because features in the two datasets are generally different, bindSC requires one additional
465  transition matrix Z € RM*L as input for bridging the integration of X and Y. The transition matrix
466  Z can be understood as the projection of ¥ to the feature space of the first dataset X. Taking the
467  integration of scRNA-seq and scATAC-seq as an example, the matrix Z can be derived from

17,19,23

468  scATAC-seq profiles by summing reads in gene bodies . This can also be input from the
469  regulatory potential (RP) model in MAESTRO ', In a simpler case where X and ¥ have matched
470  features, the integration tasks fall into two categories: 1) batch correction for scRNA-seq data
471 across individuals, species, or technologies; 2) integration of scRNA-seq with spatial
472  transcriptome data. In those cases, the transition matrix Z is initialized as Y. In bi-CCA, Z is
473 updated iteratively. In the following text, the initial value of Z is denoted by Z©).

474

475 3. Bi-order canonical correlation analysis (Bi-CCA)

476  The key algorithm implemented in bindSC is Bi-CCA, the concept of which extends traditional
477  CCA!72%% to both rows and columns to enable capturing of correlated variables in cells and
478  features simultaneously. Bi-CCA introduces two cell-level projection matrices U € RK*E | § €
479  REXE such that the correlations between indices XU and ZS are maximized, and two feature-level

480  projection matrices T € RM*E ¥ € RN*E such that the correlations between indices Z'T and Y'V

481  are maximized. The optimization framework can be formulated as:

482 argmax tr{(XU)'ZS + (Z'T)' Y'V} (1)
USTV,Z

483 subjectto (XUYXU =1, (ZS)'ZS=1, (ZT)ZT=1, (Y'V) Y'V=1L

484

485  If the transition matrix Z is known, the objective (1) can be divided into two disjoint traditional

486  canonical correlation analysis (CCA) problems. The left term is performed to identify cells of
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487  similar (aligned) features, while the right term is performed to identify features shared by the
488  (aligned) cells, each of which can be solved in the CCA framework. However, it is difficult to
489  update transition matrix Z in equation (1) even when matrices U, S, T,V are available. This is
490  because: a) left optimization problem requires Z as input and the right optimization problem
491  requires Z' asinput, leading (1) to a non-linear optimization problem; b) transition matrix Z shows
492  up in constraints.

493

494  Therefore, we modify equation (1) in a much more practical way. First, we standardize X to let it
495  have X'X =1, and standardize Y so that YY' = I. The standardization process can be seen in

496  Algorithm 1. Thus, equation (1) could be simplified as

497 argmax tr{(XU)'ZS + (Z'T)'Y'V} ()
USTV.Z

498 subjectto U'U =1, (ZS)'ZS=1, (ZT) ZT=1,V'V=1.

499

500  To eliminate transition matrix Z from constraints, we introduce two transition matrices Z; € RM*L

501 and Z, € RM*L and optimize the following problem:

502 argmax tr{(XU)'Z,;S+ (Z,T)Y'V}+||Z, - Z,||, 3)
USTV,Z,Z,

503 subjectto U'U=1,8'S=1,T'T=1,V'v=I ZZ =1 2.Z,=1.

504

505  To solve equation (3), we also standardize Z® to let Z(®'Z(©® = I, and initialized with Z;: = Z(©.
506  The standard singular value decomposition (SVD) can be implemented to obtain the canonical
507  correlation vectors (CCVs) at cell levels. We used a user-defined number (E) of singular vectors

508 that approximate the CCVs (Algorithm 2). Here we term E to represent the cell-level
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509  “dimensionality” in the latent space, which is a parameter required to be optimized (Details seen
510  in Parameter optimization).

511 (U,S) := argmax tr(U' X'Z,S) subjectto U'U=1,S"S=1. 4)
us

512
513  Having CCV pair (U, §) obtained, we have cell correspondence in the latent space between two
514  datasets. The left transition matrix Z; can be updated by:

515 (Z,):= argmax tr(U' X' Z,S) subjectto Z,Z; = 1. (5)
Z

l

516

517  The details of solving optimization problem (5) is in Algorithm 2.

518

519  We then set

520 (Z,) =Z,. (6)
521  The similar SVD algorithm (Algorithm 2) is used to approximate CCVs:

522

523 (T,V): = argmax tr(T' Z,Y'V) subjectto T'T=1,V'V =1 (7)
TV

524

525  Once CCV pairs (T,V) are obtained, the features are matched in the latent space between two
526  datasets. The right transition matrix Z,. could be updated as:

527

528 (Z,): = argmax tr{(Z,T)'Y'V} subsetto Z,Z, =1I. (8)
z,

529  Next, we set

530 (Z) =Z,, )
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531  The update process (4) ~ (9) are repeated until convergence. Because each of the subproblems is
532 convex with respect to the block variables being optimized, the algorithm is guaranteed to
533  converge to a fixed point (local minimum).

534

535  In the above framework, the transition matrix Z (represented by Z; and Z,) is updated based on
536  original observed matrices X and Y. In practice, we introduce the couple coefficient o (0< o < 1)

537  to assign weights on initialized matrix Z(®) on transition process (6) and (9).

538 (Z,):=(1-a)ZO + oz, (10)
539 and
540 (Z):=(1—-)ZO + aZ, (11)

541  The couple coefficient « can reflect the contribution of initial Z(®) on linking two modalities.
542  Equations (10) and (11) will be reduced to Equations (6) and (9) if & = 1. The bi-CCA algorithm
543  will be reduced to traditional CCA if a = 0. Selection of coefficient & can be seen in Parameter
544  optimization. Notably, the final Z, and Z; will be converged to different matrices if & < 1. The
545  workflow of the iterative process is shown in Supplementary Fig. 1a.

546

547  Jointly clustering cells across datasets in shared latent space and constructing pseudo-cell
548  level multi-omics profiles

549  Equation (4) projects cells of two datasets into a correlated E-dimensional space with cell
550  coordinates U = (u;,U,,...,ux) and S = (s4,S,,...,8;), respectively. L2-normalization is
551  performed to remove global differences in scale, therefore

552 u, =u;/l|uwll,,i=12..,K, (12)

553 gi :Si/”Si”z:i =12, ..,L
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554

555  The shared nearest neighbor (SNN) graph is constructed by calculating the /-nearest neighbors (20
556 by default) based on the Euclidean distance of L2-normlized latent space. The fraction of shared
557  nearest neighbors between the cell and its neighbors is used as weights of the SNN graph. The
558  modularity optimization technique Leiden algorithm #° is used to group cells into interconnected
559  clusters (termed meta-cluster) based on constructed SNN graph with a resolution parameter setting
560 by users (default 0.5).

561

562  To understand the molecular-level interaction among modalities, we construct the pseudo-cell
563  level multi-omics profiles. Briefly, for cells in each meta-cluster identified, the Leiden algorithm
564  is further performed based on SNN graph with a higher resolution (default = 2). In this way, cells
565  in each meta-cluster are further grouped into highly interconnected sub-clusters. We term such
566  sub-clusters as pseudo-cells. Only pseudo-cells that consist of at least n cells (default = 10) are
567  kept for downstream analysis, while the others are considered data-specific and discarded. Profiles
568  of the pseudo-cells are constructed by aggregating the cells included. We denote by XPseudo g
569  RM*Pbe pseudo-cell profiles of feature g,, g1, *+, gy and YPs€#d° € RNXP be pseudo-cell profiles
570  of feature p;, p,, **+, py- P 1s the number of pseudo-cells.

571

572 Algorithm 1. Standardizing inputs

573  For input matrix X, we denote Z;}X as the generalized inverse of matrix X'X, and redefine X: =
574 Z;{,l ;2 X. For input matrix Y, we denote Z;;, as the generalized inverse of matrix YY’, and redefine

575 Y:= YZ;;/ ?. The standardization of Z, and Z, is the same as above.

576
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577  Algorithm 2. Calculating CCVs using SVD
578  Take subproblem from the Equation (4) as an example, the goal of this module is to find projection
579  matrix U € R¥*E and § € RE*E such that the correlations between two indices XU and Z,S are

580  maximized.

581 argmax tr(U’' X' Z,S) subjectto U'U=1,S"S = 1. (A1)
us

582  We define Zyr,:=X'Z,. Let U € R“*” and § € R**? be the matrices of the first E left- and
583 right singular vectors of Xy, . Then the optimum in Equation (A1) is solved.

584

585  Algorithm 3. Updating transition matrix with orthogonality constraints

586  Take subproblem from the Equation (5) as an example, the goal of this module is to optimize Z;.

587 (Z)):= argmax tr(U' X' Z,S), subjectto S'Z,'Z;S =1 (A2)
Z;

588  Equation (A2) is maximized when Z;§ = XU. Therefore, we can update Z; as

589 (Z):=XUS'3gg, (A3)
590  where 25_51, denotes the generalized inverse of matrix SS".

591

592  Parameter optimization

593  There are two key hyperparameters when running bindSC for integration. The first one is the
594  dimensionality £ in the latent space and the second one is the couple coefficient a. Similar with
595  previous integration methods, the number of dimension E is very important on cell type
596 classification. We provide heuristics to guide the selection of £ based on integration metrics
597  defined below, though sometimes helpful, are not substitute for biological insights. As a general

598  suggestion, we recommend starting with a value of £ the same with the minimal number of
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599  principle components (PCs) used on single modality clustering. The selection of couple coefficient
600  a depends on whether initialized Z(®) can represent the gene score of Y. We devise two metrics to
601  aid in selecting a, which measure integration performance on accuracy (no mixing of cell type)
602  and alignment (mixing of datasets) as defined below.
603
604 1) Silhouette score
605  To measure integration accuracy, we use the Silhouette score. Cluster for each cell is defined
606  using the cell type labels assigned from single dataset clustering. The Silhouette score assesses the
607  separation of cell types, where a high score suggests that cells of the same cell type are close
608  together and far from cells of a different type. The Silhouette score s(i) for each cell is calculated
609 as following. Let a(i) be the average distance of cell i to all other cells within i’s cluster and b (i)
610  the average distance of i to all cells in the nearest cluster, to which cell i does not belong. Cell-cell
611  distance is computed in the L2-normalized co-embeddings (Equation 12). s(i) can be computed
612  as:
a(i)
Y0) if a(i) < b(i)

613 s@ =10 if a(i) = b(i)

b(i) L .
@ 1 if a(i) > b(i)

614  Notably, given accurate correspondence between two modalities unknown, calculating s(i) for cell
615 iin above equation only includes cells from the same dataset. We average values across all cells
616  to obtain an overall silhouette score for integration task.

617

618 2) Alignment mixing score
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619  Tomeasure integration mixing level, we use an alignment mixing score similar to those of previous
620  studies *°. We first build a 20-nearest neighbor graph for each cell from L2-normalized co-
621  embeddings (Equation 12). For cell i, assuming proportions of cells from two modalities are py;
622  and p,;, respectively, the alignment mixing score is calculated as

623 H() = —p1i1082 p1i — P2: 1082 D2

624  This corresponds to a mixing metric per cell, and we average values across all cells to obtain an
625  overall mixing metric.

626

627  We run bindSC by ranging a from 0 to 1 (with step size 0.1). Silhouette score and alignment
628 mixing score is calculated for each scenario. We select appropriate a that generally has best
629  performance in Silhouette score and alignment mixing score. Parameter values used in this study
630  can be seen in Supplementary Table S1.

631

632  Performance and benchmarking

633  In our evaluation, in addition to Silhouette score and alignment mixing score, we also consider
634  anchoring distance for evaluation datasets from multi-omics technologies, in which each cell has
635  paired profiles. For cell i from the first data, we calculate its distance (Euclidean distance) with all
636  cells in the second data as D;, and its distance with cell i in the second data as d;. The anchoring
637  distance for cell i is calculated as 2d;/max(D;). We then average anchoring distance across all
638  cells to obtain an overall anchor distance metric. The anchoring distance of cell i is 0 when it is
639  anchored correctly. The overall anchoring distance is 1 if we randomly layout cells on co-
640  embeddings.

641
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642  Simulation dataset

643  We generated simulation dataset to evaluate method performance in integrating two modalities
644  assuming accurate feature matching unknown. We used Splatter tool 26 to simulate dataset X with
645 1,000 genes and cells with different sizes (from 1,000 to 10,000). The whole population is
646  consisted of three batches (cell types). To mimic the feature unmatching case, we first generated
647  dataset X; by randomly permutating genes of X under specified misalignment rates (MR). MR
648  ranges from 0 to 1 with step size being 0.05 in this study. X; 1is the same as X if MR = 0. Half of
649  genes are matched between X; and X if MR =0.5. No genes are matched between X; and X if MR
650  =1. Then we generated matrix Z by adding X; with white noise at certain level (i.e., Signal-Noise-
651  Ratio; SNR). SNR is set to be three levels (0, 0.25 and 0.5).

652

t 17 19

653  For method comparison, previous methods including traditional CCA, Seurat */, Liger ", and
654  Harmony tools '® take X and Z as input assuming that cell correspondence between them is
655  unknown. bindSC takes two parts as input: 1) X and Z with cell correspondence unknown; 2) X
656  and Z with feature-level matching unknown (Supplementary Fig. 2).

657

658  Preparation of dexamethasone (DEX) treated A549 cell dataset

659  To investigate the ability of bindSC in integrating scRNA-seq and scATAC-seq profiles, we
660  explored the DEX-treated A549 dataset generated from sci-CAR technology, which uses
661  combinatorial indexing-based assay to jointly profile chromatin accessibility and mRNA on same
662  cell 6. In the A549 dataset, DEX is a synthetic corticosteroid which activates glucocorticoid

663  receptor (GR), binds to thousands of locations, and alternates the expression of hundreds of genes

664  °!. The human lung adenocarcinoma derived A549 cells after 0, 1, or 3 hours of 100nM DEX

31


https://doi.org/10.1101/2020.12.11.422014
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.422014; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

665 treatment are assayed. @The sci-RNA-seq dataset was from  GSE117089

666  (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117089) and sci-ATAC-seq data was

667  from GSM3271041 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3271041 ). The

668  original A549 data includes sci-RNA-seq profiles for 6,150 cells and sci-ATAC-seq profiles for
669 6,260 cells. There are 1,429 cells co-assayed. Following Cao et al., pre-processing pipeline

670  (https://github.com/KChen-

671  lab/bindSC/blob/master/vignettes/A549/A549 preprocess. ATAC.Rmd), we binarized peak count

672  matrix for cells from both ATAC-seq only and co-assay. Loci present in less than 5 cells and cells
673  with less than 300 accessible loci were removed. Peaks within 1kb were merged and reads in
674  merged peaks were aggregated to generate a merged peak matrix, leading to 3,628 cells with
675 32,791 loci. Each locus’ accessibility in each cell was calculated by dividing the cell’s raw read
676  count by cell specific size factor using estimateSizeFactors function in Monocle 2 *2. For RNA-
677  seq data, cells with expression counts less than 500 and more than 9100 were removed. The gene
678  expression in each cell was also calculated by dividing the cell’s raw read count by cell specific
679  size factor, followed by /og2 normalization. Genes with no variation in expression across cells
680  were further removed. The gene activity matrix was collapsed from the peak matrix by summing
681  all counts with the gene body plus 2kb upstream using CreateGeneActivityMatrix function in
682  Seurat3 7. We then picked top 10,000 variable genes in both sci-RNA-seq data and gene activity
683  data and used the overlapped 4,759 genes between them for integration. Finally, the sci-RNA-seq
684  matrix was composed of 6,005 cells with 4,759 genes, the gene activity matrix was composed of
685 3,628 cells with 4,758 genes, and the sci-ATAC-seq matrix was composed of 3,628 cells with
686 24,953 loci. There were 1,429 cells co-assayed.

687
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688  Preparation of the mouse skin cell data

689  We examined the performance of bindSC in integrating the scRNA-seq and scATAC-seq data
690  derived from mouse skin tissue. This dataset was generated using SHARE-seq (3) which included
691 34,774 cells that have joint profiles of RNA and ATAC profiles. The RNA data was downloaded

692  from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4156608. The ATAC data was

693  downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4156597. The final

694  ATAC-seq matrix includes 25,594 cells on 74,161 peaks after quality control (including removing
695  cells with less than 350 genes expressed; peaks that exist in less than 500 cells). In addition, 4,894
696  genes were identified that were highly variable in both gene expression and gene activity profiles.
697  For this evaluation, we only focused on the third metric (e.g., anchoring distance) that represents
698  the chance for the two instances of a co-assayed cell to appear in the co-embeddings.

699

700  Preparation of the mouse retina 10x Genomics Multiome ATAC+RNA data

701  One mouse retina was dissociated by papain-based enzymatic digestion as described previously >3
702 with slight modifications. Briefly, 45 U of activated papain solution (with 1.2 mg L-cysteine
703 (Sigma) and 1200U of DNase I (Affymetrix) in Sml of HBSS buffer) was added to the tissue and
704  incubated at 37 °C for 20 minutes to release live cells. Post-incubation, papain solution was
705  replaced and deactivated with ovomucoid solution (15 mg ovomucoid (Worthington biochemical)
706  and 15 mg BSA (Thermo Fisher Scientific) in 10 ml of MEM (Thermo Fisher Scientific)). The
707  remaining tissue clumps were further triturated in the ovomucoid solution and filtered through a
708  20nm nylon mesh. After centrifugation at 300g 10min at 4C, the singe cells were resuspended PBS
709  with 0.04% BSA and checked for viability and cell count. About 1 million cells were pelleted and

710  resuspend in chilled lysis buffer (10x Genomics), incubate for 2 minutes on ice while monitored
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711  under microscope. 1ml of chilled wash buffer (10x Genomics) was added and sample was spun
712 down at 500g 5min at 4C and washed before resuspended in Diluted Nuclei Buffer (10x Genomics).
713 Nuclei concentration was determined using countess and proceed with transposition according to
714 manufacturer’s recommendation (10x Genomics). After incubation for one hour at 37C, the
715  transposed nuclei were combined with barcoded gel beads, RT mix and partition oil on Chromium
716  to generate gel beads in Emulsion (GEMs). Single cell ATACseq library and 3’RNAseq library
717  were subsequently generated following recommended protocol from 10x Genomics. Libraries
718  were quantified and loaded on Novaseq 6000 and run with the following parameter: 151, 8§, 8§,
719  151bp. Data was analyzed using bcl2fastq (to generate fastq files) and cellranger pipeline (10x
720  Genomics).

721

722 Preparation of the mouse frontal cortex cell data

723  We investigate bindSC ability in integrating spatially resolved transcriptomic (ST) with
724  dissociated scRNA-seq. For the ST dataset, we used sagittal mouse brain slices generated from the

725  Visium vl chemistry. The dataset was downloaded from https://support.10xgenomics.com/spatial-

726  gene-expression/datasets. The pre-processing workflow was guided by the Seurat3

727  (https://satijalab.org/seurat/v3.2/spatial_vignette.html). Briefly, cells were subset from anterior

728  region, followed by sctransform >*. We then proceed to run dimensionality reduction and clustering
729  using standard workflow as did for scRNA-seq. Cluster ID 1,2,3,5,6,7 was extracted, followed by
730  segment based on exact position (Details in Subset out anatomical regions part in Seurat3
731  tutorial), leading to 1,072 cortical cells left for the ST data. One cortical sScRNA-seq data composed
732 of ~14,000 adult mouse cortical cell taxonomy from the Allen Institute was collected

733 (https://www.dropbox.com/s/cuowvm4vrf65pvg/allen_cortex.rds?dl=1).  This dataset was
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734 generated using the SMART-Seq2 protocol 3. The sctransform normalization was performed
735  based on 3,000 variable genes. We used the cell type annotation provided by published meta data
736  available. There was a total of 14,294 cortical cells with 34,617 genes for the scRNA-seq data.
737  Integration of scRNA-seq and ST is based on 2,316 variable genes overlapped between two
738  datasets.

739

740  To predict locations of each cell type from scRNA-seq in the histological images, we built a
741  support vector machine (SVM) that trained on cell profiles from scRNA-seq data. In the training
742  model, features were identified as cell coordinates in co-embeddings and labels were
743  corresponding cell types. The trained SVM was applied to ST data and output predicted probability
744 of each cell type at each spot. The SpatialFeaturePlot function in Seurat3 was used to overlay
745  predicted probabilities for each cell type on top of tissue histology.

746

747  Preparation of human bone marrow cell dataset

748  We examined the performance of bindSC in integrating the single-cell RNA and protein data
749  derived from human bone marrow tissue. This dataset was generated using the CITE-seq
750  technology #°, which included 30,672 cells that have joint profiles of RNA and a panel of 25
751  antibodies. The dataset was downloaded from

752 https://satijalab.org/seurat/v4.0/weighted nearest neighbor analysis.html. We extracted the 25

753  protein-homologous gene expression profile from the RNA data and kept cells that have total
754  expression count > 2. The final protein matrix includes 28,609 cells with 25 protein abundance
755  levels. The gene expression matrix includes 28,609 cells with 3,000 genes. The protein-

756  homologous RNA matrix includes 28,609 cells with the RNA levels of the 25 genes homologous
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757  to the 25 proteins. To measure anchoring accuracy for each cell type, we used the third metric,
758  anchoring distance, which measures the distance of protein and gene expression for each cell in
759  co-embeddings.

760

761  Motif-based Transcription Factors (TFs) activity estimation

762  To estimate transcription factor activity from scATAC-seq data, we used default settings in
763  chromVAR % package. This approach quantifies accessibility variation across single cells by
764  aggregating accessible regions containing a specific TF motif. It calculated motif-based TF activity
765 by comparing the observed accessibility of all the peaks containing a TF motif to a background set

766  of peaks normalizing against known technical confounders.
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908 Figure Legends

909  Fig. 1 Overview of bindSC. BindSC takes as input two data matrices produced by different modalities
910  from the same cell population (a). The modalities may include transcriptomes, epigenomes, spatial
911  transcriptomes and proteomes. Bi-order integration of two modalities (X and Y) with unpaired cells and
912  unmatched features using Bi-CCA algorithm (b). In the data matrices, each row represents one gene/locus,
913  and each column represents one cell. The gene score matrix Z that links the first modality with the second
914  one is initialized by prior gene activity modeling (see Methods). Bi-CCA algorithm aims to update gene
915  score matrix Z iteratively by maximizing the correlation of between X and Z and between Y and Z
916  simultancously. Based on canonical correlation vectors (CCVs) in the derived latent space, K-nearest
917  neighbor (KNNs) clustering is performed to define cell types in both modalities (¢). Within each cell-type
918  cluster, KNN clustering is further performed at a higher resolution to define pseudo-cells consisting of 10s
919  cells from both modalities. In silico multimodal profiles are constructed from cells assigned to the same
920  pseudo-cell (d). The color in each box indicates the relative level of each feature, with white corresponding
921  to missing values. The multiomics feature profiles enable us to 1) link genes to regulatory elements, 2) map

922 RNA expressions to spatial locations and 3) delineate cells by both RNA and protein signatures (e).
923

924  Fig. 2 Benchmarking bindSC performance on simulation datasets. Comparison of bindSC to CCA,
925  Seurat, LIGER, and Harmony based on Silhouette score and alignment mixing score (a). The dataset
926  contains 1,000 genes and 1,000 cells equally distributed in 3 cell types. Signal-to-noise ratio (SNR) was set
927  at 0.25. X-axes denote the misalignment rates (MR) between features in the two datasets, which ranges
928  from 0 to 1. The features between two datasets have perfect match if MR = 0 and are unrelated if MR = 1.
929  UMAP views of the co-embeddings generated by bindSC, CCA, Seurat, LIGER, and Harmony (b). From
930  top to bottom are results with MR = 0.1, 0.5, and 0.9, respectively. Each point denotes one cell that is

931  colored based on its true cell type label (red, green, or cyan).

932
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933  Fig.3 Benchmarking bindSC performance on the DEX-treated A549 cell-line data. UMAP of cells
934  from DEX-treated A549 cell-line data for bindSC, Seurat, LIGER and Harmony respectively, colored by
935  collection time (red: 0 hour, green: 1 hour and blue: 3 hour) on the top panel and by technologies (grey: sci-
936  RNA and brown: sci-ATAC) on the bottom panel (a). Comparison of the 4 methods based on Silhouette
937  score (top), alignment mixing score (middle) and anchoring distance (bottom) (b). Also included for
938  comparison are metrics from randomly selected cells. Accuracy of in silico multiomics profile in pseudo-
939  cells (¢). The TF-gene correlation is quantified in each pseudo-cell (top panel) by calculating for each TF-
940  gene pair (1.8 million pairs total) a Spearman's rank-order correlation coefficient (SRCC) between the TF
941  activity level, inferred based on motif enrichment in the ATAC data, and the gene expression level in the
942  RNA data. The peak-gene correlation is quantified by calculating for each peak-gene pair a Spearman's
943 rank-order correlation coefficients (SRCC) between a normalized ATAC peak level and a gene expression
944 levels for the cis-peaks (middle panel, 7,833 pairs) and the trans-peaks (bottom panel, 118.7 million pairs),
945  respectively. X-axes are the SRCCs estimated from the co-assayed cells, which serve as the gold standard,
946  while Y-axes are the SRCCs estimated from the pseudo-cells generated by each method. The overall
947  concordance between X and Y are further quantified using a single SRCC shown on the up-left corner of
948  each subfigure. Cis is defined as gene bodies plus 2,000 bps upstream. Reconstructing the gene expression
949  and the TF activity level (Y-axes) of NR3CI using bindSC pseudo-cells (d). X-axis is the averaged
950  treatment time of the cells in each pseudo-cell. A genome browser view showing putative regulatory
951  relations between an accessible distal site chr2:201770437-201770992 and the gene CFLAR (e). The 6
952 tracks at the top show ATAC peak levels and gene expression levels at six time points. The track in the
953  middle shows chromatin interactome from published Hi-C data. The bottom track shows the NR3C1 binding
954  targets (ChIP-Seq) peaks published in an independent study **.

955

956  Fig. 4 Integrating single-cell RNA-seq and ATAC-seq on a mouse retinal cell atlas. UMAP views of
957 9,383 mouse retina cells based on gene expression levels in the RNA-seq data (a), chromatin accessibility

958  peak profiles in the ATAC-seq data (b), gene-level collapsed chromatin accessibility profiles (c). The cells
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959  are colored by cell types annotated based on RNA expression levels (Supplementary Fig. 8). BindSC co-
960  embeddings for the cells in the RNA-seq data (d) and those in the ATAC-seq data (e). Anchoring distances
961  resulting from bindSC, Seurat, LIGER and Harmony (f). The median anchoring distance for each cell type
962  was highlighted as a bold horizonal bar in the middle of each box in each panel. The dotted line denotes the
963  anchoring distance based on random guesses. Zoomed out UMAP views for the BC cells in the co-
964  embeddings generated by bindSC (g), Seurat (h), LIGER (i), and Harmony (j). Integration results for all
965  the cell types can be seen in Supplementary Fig. 9. RGC: retinal ganglion cells; HC: horizontal cells; BC:
966  bipolar cells; AC: amacrine cells; MG: Miiller glial cell.

967

968  Fig. 5 Integrating spatially resolved transcriptomic (ST) data with scRNA-seq data from mouse
969 frontal cortex. UMAPs of the gene expression levels for the 14,249 cells profiled by SMART-Seq2 and
970  for the 1,072 spots profiled by the 10x Visium technology (a). Cell type labels are from the original
971  publication®’. Predicted locations of each cell type in the histological images (b). Color gradient
972 corresponds to the probability score of a cell being mapped to a particular spatial location. Comparison of
973  cell type frequencies estimated from the ST data (Y-axis) to those estimated from the scRNA-seq data (X-
974  axis) (c¢). Correlation coefficients (R) and P values are calculated based on Pearson’s correlation analysis.
975  Each dot corresponds to a cell-type (labeled in different colors). The blue line and the grey shade represent
976  regression lines and 95% confidence intervals from performing linear regressions.

977

978  Fig. 6 Integrating single-cell RNA with protein data produced by a CITE-seq assay. The UMAP of
979 30,672 human bone marrow cells based on 25 surface protein levels (a), 3,000 highly variable gene
980  expression levels (b) and 25 protein-homologous gene expression levels (¢). The cell type labels are from
981  the original study . UMAP of the protein (d) and the RNA (e) expression data in the co-embedding
982  generated by bindSC. Comparison of anchoring distances generated by bindSC, Seurat, LIGER and
983  Harmony (f). The red dotted line denotes the anchoring distance from random guesses. Anchoring distances

984  for each cell type in the bindSC co-embedding (g).

43


https://doi.org/10.1101/2020.12.11.422014
http://creativecommons.org/licenses/by-nc-nd/4.0/

a b Bi-CCA
— Cell set 1 ) Cell set 2
o Initialize P
2 X : S Y
3 v 3
~ L _ Cellset2 L
\g gene score f
: 3 Y4
bindSC CCA 3 CCA
o Update
Y - " g
ﬁ & "j f ’
( y
Cell correspondence Feature matching
C  Joint clustering d  pseudo-cell profiles
Cluster | Pseudo-cells Feature1 Feature2
1 il f | f3 | g 92 | Qs
2 1 a1
a2
a3
o 4 3 2 a1
- a2
(-),(__:)"\ azs
e 4 PN 3 asi
o asz
. 4 aa1
o ,q,%" asi -
o/ AL/ 5 a52
as3

€  Multi-omics integration

/Gene expression &

Chromatin accessibility

Gene expression & \

ne expression .
Gene expression & Proteomics

Spatial transcriptomics

CTF RNA Pol I =
Yidimy b
— |Enhance Gene s 2 cDs
Promoter region - geed &
° ===l " Protein

CcD8

Gene regulation

multi-view

N /

Fig. 1 Overview of bindSC. BindSC takes as input two data matrices produced by different modalities from the
same cell population (a). The modalities may include transcriptomes, epigenomes, spatial transcriptomes and
proteomes. Bi-order integration of two modalities (X and Y) with unpaired cells and unmatched features using Bi-
CCA algorithm (b). In the data matrices, each row represents one gene/locus, and each column represents one
cell. The gene score matrix Z that links the first modality with the second is initialized by prior gene activity
modeling (see Methods). Bi-CCA algorithm aims to update gene score matrix Z iteratively by maximizing the
correlation of between X and Z and between Y and Z simultaneously. Based on canonical correlation vectors
(CCVs) in the derived latent space, K-nearest neighbor (KNNs) clustering is performed to define cell types in both
modalities (c). Within each cell-type cluster, KNN clustering is further performed at a higher resolution to define
pseudo-cells consisting of 10s cells from both modalities. In silico multimodal profiles are constructed from cells
assigned to the same pseudo-cell (d). The color in each box indicates the relative level of each feature, with
white corresponding to missing values. The multiomics feature profiles enable us to 1) link genes to regulatory
elements, 2) map RNA expressions to spatial locations and 3) delineate cells by both RNA and protein signatures
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Fig. 2 Benchmarking bindSC performance on simulation datasets. Comparison of bindSC to CCA, Seurat, LIGER, and
Harmony based on Silhouette score and alignment mixing score (a). The dataset contains 1,000 genes and 1,000 cells
equally distributed in 3 cell types. Signal-to-noise ratio (SNR) was set at 0.25. X-axes denote the misalighment rates
(MR) between features in the two datasets, which ranges from 0 to 1. The features between two datasets have
perfect match if MR = 0 and are unrelated if MR = 1. UMAP views of the co-embeddings generated by bindSC, CCA,
Seurat, LIGER, and Harmony (b). From top to bottom are results with MR = 0.1, 0.5, and 0.9, respectively. Each point
denotes one cell that is colored based on its true cell type label (red, green, or cyan).
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Fig.3 Benchmarking bindSC performance on the DEX-treated A549 cell-line data. UMAP of cells from DEX-
treated A549 cell-line data for bindSC, Seurat, LIGER and Harmony respectively, colored by collection time (red:
0 hour, green: 1 hour and blue: 3 hour) on the top panel and by technologies (grey: sci-RNA and brown: sci-
ATAC) on the bottom panel (a). Comparison of the 4 methods based on Silhouette score (top), alignment mixing
score (middle) and anchoring distance (bottom) (b). Also included for comparison are metrics from randomly
selected cells. Accuracy of in silico multiomics profile in pseudo-cells (c). The TF-gene correlation is quantified in
each pseudo-cell (top panel) by calculating for each TF-gene pair (1.8 million pairs total) a Spearman's rank-
order correlation coefficient (SRCC) between the TF activity level, inferred based on motif enrichment in the
ATAC data, and the gene expression level in the RNA data. The peak-gene correlation is quantified by calculating
for each peak-gene pair a Spearman's rank-order correlation coefficients (SRCC) between a normalized ATAC
peak level and a gene expression levels for the cis-peaks (middle panel, 7,833 pairs) and the trans-peaks
(bottom panel, 118.7 million pairs), respectively. X-axes are the SRCCs estimated from the co-assayed cells,
which serve as the gold standard, while Y-axes are the SRCCs estimated from the pseudo-cells generated by
each method. The overall concordance between X and Y are further quantified using a single SRCC shown on
the up-left corner of each subfigure. Cis is defined as gene bodies plus 2,000 bps upstream. Reconstructing the
gene expression and the TF activity level (Y-axes) of NR3C1 using bindSC pseudo-cells (d). X-axis is the averaged
treatment time of the cells in each pseudo-cell. A genome browser view showing putative regulatory relations
between an accessible distal site chr2:201770437-201770992 and the gene CFLAR (e). The 6 tracks at the top
show ATAC peak levels and gene expression levels at six time points. The track in the middle shows chromatin
interactome from published Hi-C data. The bottom track shows the NR3C1 binding targets (ChIP-Seq) peaks
published in an independent study 28.
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Fig. 4 Integrating single-cell RNA-seq and ATAC-seq on a mouse retinal cell atlas. UMAP views of 9,383 mouse retina cells
based on gene expression levels in the RNA-seq data (a), chromatin accessibility peak profiles in the ATAC-seq data (b),
gene-level collapsed chromatin accessibility profiles (c). The cells are colored by cell types annotated based on RNA
expression levels (Supplementary Fig. 8). BindSC co-embeddings for the cells in the RNA-seq data (d) and those in the ATAC-
seq data (e). Anchoring distances resulting from bindSC, Seurat, LIGER and Harmony (f). The median anchoring distance for
each cell type was highlighted as a bold horizonal bar in the middle of each box in each panel. The dotted line denotes the
anchoring distance based on random guesses. Zoomed out UMAP views for the BC cells in the co-embeddings generated by
bindSC (g), Seurat (h), LIGER (i), and Harmony (j). Integration results for all the cell types can be seen in Supplementary Fig.

9. RGC: retinal ganglion cells; HC: horizontal cells; BC: bipolar cells; AC: amacrine cells; MG: Miiller glial cell.
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Fig. 5 Integrating spatially resolved transcriptomic (ST) data with scRNA-seq data from mouse frontal cortex.
UMAPs of the gene expression levels for the 14,249 cells profiled by SMART-Seq2 and for the 1,072 spots profiled by
the 10x Visium technology (a). Cell type labels are from the original publication®’. Predicted locations of each cell
type in the histological images (b). Color gradient corresponds to the probability score of a cell being mapped to a
particular spatial location. Comparison of cell type frequencies estimated from the ST data (Y-axis) to those estimated
from the scRNA-seq data (X-axis) (c). Correlation coefficients (R) and P values are calculated based on Pearson’s
correlation analysis. Each dot corresponds to a cell-type (labeled in different colors). The blue line and the grey
shade represent regression lines and 95% confidence intervals from performing linear regressions.
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Fig. 6 Integrating single-cell RNA with protein data produced by a CITE-seq assay. The UMAP

of 30,672 human
bone marrow cells based on 25 surface protein levels (a), 3,000 highly variable gene expression

levels (b) and 25
protein-homologous gene expression levels (c). The cell type labels are from the original study 7. UMAP of the
protein (d) and the RNA (e) expression data in the co-embedding generated by bindSC. Comparison of anchoring

distances generated by bindSC, Seurat, LIGER and Harmony (f). The red dotted line denotes the anchoring distance
from random guesses. Anchoring distances for each cell type in the bindSC co-embedding (g).
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