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Summary 
The ever-increasing number of analyzed cells in Single-cell RNA sequencing (scRNA-seq) experi-
ments imposes several challenges on the data analysis. Current analysis methods lack scalability to 
large datasets hampering interactive visual exploration of the data. We present Cytosplore-
Transcriptomics, a framework to analyze scRNA-seq data, including data preprocessing, visualization 
and downstream analysis. At its core, it uses a hierarchical, manifold preserving representation of the 
data that allows the inspection and annotation of scRNA-seq data at different levels of detail. Conse-
quently, Cytosplore-Transcriptomics provides interactive analysis of the data using low-dimensional 
visualizations that scales to millions of cells. 
Availability: Cytosplore-Transcriptomics can be freely downloaded from transcriptomics.cytosplore.org  
Contact: b.p.f.lelieveldt@lumc.nl  
 
 

 
 

1 Introduction  
Single-cell RNA sequencing (scRNA-seq) is a valuable technology to 
identify the cellular composition of complex tissues (Cao et al., 2019). 
Technological advances over the last decade resulted in a large increase 
in the acquired data size, scaling to millions of cells, raising major 
challenges for data analysis (Angerer et al., 2017; Svensson et al., 2018; 
Lähnemann et al., 2020). Current available tools, such as Seurat (Stuart 
et al., 2019) and Scanpy (Wolf et al., 2018), provide automated pipelines 
to analyze scRNA-seq datasets. Although these automated pipelines 
increase the reproducibility of analyses, they lack the possibility to 

interactively probe the data and intermediate results, which is essential 
since often the data analysis is largely exploratory. 

Other tools offer interactive visualization and analysis for scRNA-seq 
data, including ASAP (Gardeux et al., 2017), cellxgene 
(https://github.com/chanzuckerberg/cellxgene), Granatum (Zhu et al., 
2017), Single Cell Explorer (Feng et al., 2019) and UCSC Cell Browser 
(Speir et al., 2020). However, these tools do not scale to large datasets 
consisting of millions of cells. In addition, some tools are limited to a list 
of pre-loaded datasets, and do not allow users to explore, analyze and 
manually adjust annotations of their own data. 

We present Cytosplore-Transcriptomics, a framework for interactive 
visual analysis and exploration of large scRNA-seq datasets consisting of 
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millions of cells. Building on the principles of Cytosplore (Höllt et al., 
2016), we produce a hierarchical representation of the data using HSNE 
(Pezzotti et al., 2016; Van Unen et al., 2017), which preserves the high-
dimensional data manifold. We provide an interactive multiscale explo-
ration of this hierarchy, starting from an abstract embedding containing 
fewer but representative cells for the global cellular composition, moving 
to more detailed embeddings of selections of cells on demand. The two-
dimensional embeddings of the HSNE hierarchy can be used to cluster 
and define cell populations at different levels of the hierarchy, or to 
visualize the expression of selected genes and metadata across cells. 
Moreover, Cytosplore-Transcriptomics allows an interactive differential 
gene expression test between selected cell clusters. 

2 Methods 
Cytosplore-Transcriptomics is able to perform data preprocessing, 
interactive data visualization, as well as downstream analysis such as 
clustering, cell type annotation and detecting differentially expressed 
genes across cell groups.  

2.1   Data input and feature selection 

The user can provide data in various formats: (i) csv file containing 
genes as rows and cells as columns, (ii) hdf5 file including or excluding 
meta data, (iii) 10X sparse matrix format, or (iv) H5AD file containing a 
preprocessed Scanpy object. Additionally, meta-data can be uploaded 
separately in csv format. While uploading the data, CPM (count per 
million) normalization can be applied, as well as a log(x+1) or square 
root (sqrt) transformation.   

Informative features/genes can be interactively selected to be used for 
the low-dimensional embedding (Fig. 1A). First, the user may upload a 
list of genes to exclude from the analysis, such as mitochondrial genes. 
Next, highly variable genes can be selected by changing the selection 
threshold applied to the variance. In case of visualizing a previous analy-
sis, it is also possible to upload a list of selected genes to be directly used 
for the embedding. 

2.2   Hierarchical visualization 

 Once feature selection is performed, a hierarchical low-dimensional 
embedding of the data can be produced using HSNE. HSNE builds a 
hierarchy representing the dataset neighborhood in the high-dimensional 
feature space that preserves the manifold structure of the data, starting 
from the raw data points moving to multiple abstraction scales in a 
hierarchical way. The visualization of this hierarchy works in reverse 
order, by first showing a two-dimensional embedding of the highest 
scale in the hierarchy (overview scale) containing fewer, but representa-
tive, cells. Next, a more detailed embedding can be explored for a select-
ed set of cells, by moving down through the hierarchy. In such a way, 
HSNE is scalable to millions of cells, without the need of downsampling, 
with the continuous possibility to explore the data hierarchy at more 
detailed scales. The number of scales is defined by the user and it is 
relative to the dataset size, it is recommended to set the number of scales 
to log10(N/100) where N is the total number of cells in the dataset. At 
any scale, gene expression and metadata can be overlaid on the low-
dimensional embedding.  

2.3   Clustering and annotation 

To define different cell populations in the data, Cytosplore-
Transcriptomics provides two different clustering methods, density-
based and graph-based clustering. The density-based clustering relies on 
the low-dimensional embedding, where the layout of the cells indicates 
the similarity in the high-dimensional feature space. Based on the density 
representation of the embedding, unsupervised Gaussian Mean Shift 
(GMS) clustering can be applied to define different cell clusters. On the 
other hand, graph-based SCHNEL clustering (Abdelaal et al., 2020) can 
be applied independently from the low-dimensional embedding, as the 
SCHNEL clustering applies the (Louvain or Leiden) community detec-
tion algorithm (Blondel et al., 2008; Traag et al., 2019) on the neighbor-
hood graph of each scale in the hierarchy. Moreover, Cytosplore-
Transcriptomics allows the user to manually select and annotate (or 
correct annotations of) a set of cells of interest. 

Fig. 1 Cytosplore-Transcriptomics software. (A) HSNE analysis settings panel, where feature selection can be performed, and HSNE parameters can be selected. (B) Exploration of the 
data hierarchy by first showing the HSNE embedding of the overview scale with only 1,970 cells  (0.18% of the total number of cells). (C) Zooming one scale deeper into the hierarchy to 
scale 2 having  11,417 cells (1.04% of the total number of cells). (D) HSNE embedding zooming into a specific group of hippocampus cells, highlighted in red in (B), further revealing the 
cellular diversity within this group. (E) HSNE embedding zooming on the Vip and Sncg neurons, used for differential expression analysis, highlighted in blue and green, respectively, in 
(C). All plots are colored according to the labels from the metadata. (F) Differential expression panel showing all genes with their corresponding statistics. 
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2.4   Differential gene expression 

Cytosplore-Transcriptomics provides an interactive differential ex-
pression test between different groups of cells (Wilcoxon rank-sum test 
with Bonferroni multiple testing correction). These groups can be cell 
clusters or a set of manually selected cells. The set of differentially 
expressed genes (DEgenes) can be provided either between two groups 
of cells, or one group versus the remaining cells. Next, the user may pick 
any of the DEgenes to visualize its expression level on the current em-
bedding. 

3 Case study 
To illustrate the features of Cytosplore-Transcriptomics, we chose the 
mouse whole cortex and hippocampus dataset from the Allen Institute 
(https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-
cortex-and-hippocampus-10x), representing a relatively large scRNA-seq 
dataset with over a million cells having diverse cellular populations. We 
downloaded the original data files, and converted it to one hdf5 file 
including the metadata (https://doi.org/10.5281/zenodo.4317397). We 
used Cytosplore-Transcriptomics for visual exploration of this data. 
First, the data with corresponding metadata is loaded, and we applied 
CPM normalization and a log(x+1) transformation to the data. Next, we 
excluded mitochondrial and sex related genes, and selected the top 3,078 
highly variable genes for further analysis. An HSNE hierarchy with four 
scales (data scale + 3 higher scales) was computed and an overview 
embedding (scale 3) showing only 1,970 cells (0.18% of the full dataset) 
was visualized (Fig. 1B). This scale shows the overall structure of the 
dataset with a clear separation between 34 cell populations identified in 
the metadata. To reveal more detailed structures (Fig. 1C), we zoomed 
one scale deeper into the hierarchy, examining the embedding of scale 2 
comprising 11,417 cells (1.04% of the full dataset). An interesting 
feature of the hierarchical exploration is the ability to zoom into a specif-
ic set of cells. For instance, in Fig. 1D, we focused on a small group of 
cells from the hippocampus (highlighted in red in Fig. 1B) and generated 
a separate, more detailed embedding of these cells. This new embedding 
clearly reveals the heterogeneity in the cellular composition of this 
specific group of cells, as several smaller subpopulations can be identi-
fied from different hippocampal regions, including CA1, retrohippocam-
pal and prosubiculum. Next, we applied the SCHNEL clustering to the 
1,970 cells at scale 3, producing 20 cell clusters (Supplementary Fig. 
S1A). We quantified the agreement of this clustering result with the 34 
labels from the metadata using the adjusted Rand index (ARI), measur-
ing the similarity between two different groupings of cells, and obtained 
an ARI of 0.75 (1 being perfectly similar). We found 10 more clusters 
when applying SCHNEL to the more detailed scale 2 (Supplementary 
Fig. S1A), with a total of 30 cell clusters that collectively have an ARI of 
0.72 compared to the metadata labels. Finally, we calculated the DE-
genes between two adjacent cell populations, Vip and Sncg neurons 
(highlighted in blue and green, respectively, in Fig. 1C), to reveal the 
driving genes for these cellular populations. We zoomed into these two 
populations  generating a separate embedding (Fig. 1E), and overlaid the 
expression of the top DEgenes for each population, showing that Caln1 
is differentially expressed in the Vip neurons, while Cck is differentially 
expressed in the Sncg neurons (Supplementary Fig. S1B). In total, 2,845 
DEgenes are obtained (corrected p-value < 0.05, absolute average log2 
fold-change > 1), each with their relevant statistics, including mean 
expression in each population, mean difference between populations, 
original and corrected p-values (Fig. 1F).   

4 Conclusions 
We developed Cytosplore-Transcriptomics, a standalone tool that facili-
tates interactive visual exploration and analysis of large scRNA-seq 
datasets consisting of millions of cells, while preserving the manifold 
structure of the full data. In addition, it offers many interactive features 
including, feature selection, clustering and differential gene expression. 
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