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ABSTRACT

Information encoding has received a wide neuroscientific attention, but the underlying rapid
spatiotemporal brain dynamics remain largely unknown. Here, we investigated the rapid brain
mechanisms for encoding and prediction of sounds forming a complex temporal sequence.
Specifically, we used magnetoencephalography (MEG) to record the brain activity of 68
participants while they listened to a highly structured musical prelude. Advanced analysis of
the phase synchronisation and graph theoretical measures showed the rapid transition of brain
activity from primary auditory cortex to higher order association areas including insula and
superior temporal pole within a whole-brain network, occurring during the first 220 ms of the
encoding process. We discovered individual differences, revealing the rapid unfolding of brain
network dynamics responsible for the processing of the current sounds and the prediction of
the forthcoming events of the sequence. This provides a first glimpse of the general

mechanisms underlying pattern encoding in the human brain.


https://doi.org/10.1101/2020.12.11.421669
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.421669; this version posted December 11, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Introduction

Memory is doubtless one of the most crucial cognitive abilities of humans and animals,
necessary to allow species to survive and act !. Among its building elements, information
encoding plays a fundamental role, allowing individuals to accomplish the crucial goal of
learning from experience. In the last decades of neuroscience, much has been done on
information encoding, working both with humans and animal models 2. A large part of this
research focused on encoding of visual and spatial stimuli >, whereas a conspicuous amount
of studies explored auditory processes related to early and even pre-attentive elaboration of
standard and deviant sounds inserted in elementary sequences "~°.

The former approach led to several examples of visual encoding and recognition studies
which employed faces as main stimuli. Along this line of research, neuroscientists have
revealed the primary role of fusiform gyrus in face encoding and recognition and shown the
progressive dynamics of different face features elaboration 912,

Conversely, regarding auditory research a large number of studies deeply explored the
early and pre-attentive processing of sounds and simple temporal sequences. For instance, this
research highlighted several automatic event related potentials/fields (ERP/F) to standard and
deviant sounds such as the well-known N100 and mismatch negativity (MMN). Indeed, it has
also shown that N100 and MMN were modulated by the stimuli characteristics, suggesting a
primitive intelligence and memory of the primary auditory cortex '~°. However, this research
mainly involved passive listening paradigms and studied the automatic brain responses to
sound stimulations, while it did not directly explain how the sounds were actually encoded. A
more general approach on sound processing investigation reported the activation of auditory
cortex brain regions such as Heschl’s and superior temporal gyri in response to acoustic stimuli

13,14

varying in temporal and spectral features as well as a contribution coming from inferior

frontal gyrus, cingulo-insular cortex, mediotemporal limbic lobe, basal ganglia, supplementary
motor area and posterior orbitofrontal cortex '>:1°,

The encoding of temporal sequences has also been investigated by applying more
complex paradigms, especially within the domains of language and algebraic representation.
For instance, the analysis of the brain activity underlying the attentive processing of sound
sequences comprising regular subgroups of items returned not only the well-known automatic
mismatch response (MMN) to deviant sounds, but also a late surprising-elicited P3b

17,18

component when the coherence of the sequence was broken '/-'°. These studies have suggested

that the brain actively chunked the different pieces of information that were presented. Others
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studies demonstrated that the ordinal arrangement of a series of items is encoded by the brain
and represents a very important feature of the learning process of the presented stimuli. Such
brain mechanisms have been detected both in humans and monkeys showing a neural code for
ordinal numbers and items ordinal representation within the intraparietal and dorsolateral
prefrontal cortices '°2°. Further research employing animal models and temporal sequences
characterized by constant algebraic patterns suggested that naive non-human primates were
able to represent the abstract numerical and algebraic patterns of sequences, understanding a
higher level of abstract regularities than elementary sequences with sensorial deviations 2!-22,

To review the decades of sequence encoding findings within cognitive sciences and
neuroscience, a recent key paper by Dehaene, Meyniel, Wacongne, Wang and Pallier 23
proposed a taxonomy of the encoding mechanisms for temporal sequences, elaborating five
distinct categories. They refer to transition and timing knowledge between subsequent items
(i), chunking of contiguous items of the sequence (i), ordinal knowledge of which item comes
first (iii), algebraic patterns capturing complex regularities within a sequence (iv), nested tree
structures based on abstract symbolic rules (v). However, even though Dehaene et al. 2
provided a detailed description of the brain responses to sequences evolving over time, they
did not reveal the temporal dynamics of the subsequent brain processes required for the
encoding and prediction of sounds forming a complex temporal sequence. Moreover, as
explicitly stated in their work, Dehaene et al. 2> highlighted the urgency to unravel which is the
specific contribution of cortical and subcortical brain networks to the extraction of the sequence
structure and the prediction of its forthcoming elements.

Thus, here we used music, which is the human art that mainly acquires meaning through
the logical combination of sounds extended over time 24, to investigate the rapid whole-brain
networks underlying the encoding and prediction of items forming a complex temporal
sequence. Understanding such topic is a key step to discover the general neural mechanisms

underlying pattern encoding and thus unveil how the information becomes meaningful for the

human brain.
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Results

Experimental design and data analysis overview

In our study, we aimed to investigate the fine-grained spatiotemporal dynamics of the brain
during the encoding and prediction of sounds forming a complex temporal sequence. To this
aim, we used MEG to record the brain functioning of 68 participants while listening to a
musical instrumental digital interface (MIDI) version of the full prelude in C minor BWV 847
composed by Johann Sebastian Bach.

As described in the Methods and depicted in Figure 1A, participants were requested to
attentively listen to the music, trying to memorize its structure and sounds as much as they
could. The analysis pipeline employed in our study is depicted in Figure 1 (and described in
details in the Methods). Our results on brain functioning underlying sound encoding have been
then organised as follows: 1) sensor space and beamformed source localised activity, 2) static
source localised connectivity, 3) dynamic source localised connectivity and 4) dynamic source
localised connectivity in subsamples characterized by different levels of general (GWM) and
auditory working memory (AWM) and musical expertise.

First, we detected the brain activity in MEG sensor space using univariate tests and Monte
Carlo simulations (MCS). Then, we reconstructed the sources of the brain signal using a
beamforming algorithm (Figure 1B). Second, we computed the static functional connectivity
(SFC) by calculating Pearson’s correlations between the envelope of each couple of brain areas.
Third, we computed dynamic functional connectivity (DFC) using the instantaneous phase
obtained from Hilbert transform for each time-point of the brain areas timeseries (Figure 1C).
After contrasting the brain connectivity patterns for sound encoding vs resting state (Figure
1D), we computed the DFC for two short time-windows (1 — 110 ms, 111 —220 ms), as depicted
in Figure 1E1. Fourth, we analysed the DFC in subsamples of individuals characterized by
different levels of GWM, AWM and musical expertise (Figure 1E2). DFC analysis consisted
of detecting the whole-brain connectivity patterns and then the significant centrality of specific

brain areas within the whole-brain network.

INSERT FIGURE 1 HERE
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Event related fields and power spectra analysis

At first, as depicted in Figure 2A and 2C to assess the quality of the data, we analysed the ERF
associated to the processing of the tones. To this aim, after carrying on standard pre-processing
steps (see Methods for details), we epoched the data in correspondence to each musical tone
(trials), we averaged the trials and combined planar gradiometers by mean root square. Then,
we calculated a t-test for each time-point in the time-range 0.050 — 0.200 seconds and for each
gradiometer channel contrasting the task vs its own baseline. Finally, we performed cluster-
based MCS to detect significant clusters (t-test threshold = 1.0e-16, MCS threshold = .001).
Results showed two significant clusters in the time-range 0.053 — 0.160 seconds. Specifically,
we observed a larger cluster in the right hemisphere (cluster size: 81, p <.001) and a smaller
one in the left (cluster size: 40, p <.001). These results are reported in details in Table ST1.
Then, we reconstructed the neural sources of the signal by applying a beamforming approach
and calculating a general linear model (GLM) for each source voxel and each time-point within
the significant time-range emerged by MCS on sensor data (0.053 —0.160 seconds). Significant
clusters were assessed by a cluster-based permutation test. Figure 2D shows that the activity
was mainly localized within primary auditory cortex and insula. Complete results are reported
in Table ST2. Finally, to convey our subsequent functional connectivity analysis to a specific
frequency band, we calculated the power spectra associated to the task by complex Morlet
wavelet transform (from 1 to 60 Hz with 1-Hz intervals) to define which frequencies were
involved in the sound processing. We then calculated t-tests for each frequency and time-point
within the range 0.050 — 0.200 seconds and the averaged power spectra of the baseline.
Binarized values (threshold = 1.0e-18) were submitted to a two-dimensional (two-D) MCS
(threshold = .001). As reported in Figure 2B, the analysis returned a significant cluster (size:
69, p <.001) for frequency range: 3 — 5 Hz within the time-range: 0.053 — 0.200 seconds.

INSERT FIGURE 2 HERE

Static functional connectivity

We constrained the reconstructed sources of the MEG signal from the 3559 voxels outputted
by the beamforming algorithm to the 90 non-cerebellar parcels of automated anatomical
labelling (AAL) parcellation and corrected for source leakage. Then, we calculated the SFC by
computing Pearson’s correlations between the envelope of the timeseries of each couple of

brain areas. This procedure was carried out for both task and resting state. Then, we contrasted
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the SFC patterns of the sound encoding vs resting state to identify the brain connectivity
properly associated to the experimental task. Finally, we used a degree MCS (MCS threshold
= .001) for assessing which brain areas were significantly central within the whole brain
network during the sound encoding process (see Methods for details).

As depicted in Figure 2E and Figure SF2, the analysis returned a significant centrality of the
following brain regions: left precentral (p = 3.5e-05), Rolandic operculum (p < 1.0e-07),
caudate (p < 1.0e-07), putamen (p = 4.4e-06), thalamus (p < 1.0e-07), Heschl’s gyrus (p = 3.0e-
05), temporal superior (p < 1.0e-07), right temporal pole middle (p = 6.6e-06), temporal pole
superior (p < 1.0e-07), temporal superior (p = 1.8e-05), Heschl’s gyurs (p < 1.0e-07), thalamus
(p < 1.0e-07), pallidum (p < 1.0e-07), putamen (p < 1.0e-07), amygdala (p < 1.0e-07),
hippocampus (p < 1.0e-07), insula (p < 1.0e-07), frontal medial orbital cortex (p = 6.5-e-04),
subgenual (p < 1.0e-07), Rolandic operculum (p < 1.0e-07), frontal inferior operculum (p =
8.2e-05).

Dynamic functional connectivity

To unravel the dynamics of the functional connectivity during sound encoding, we calculated
the instantaneous phase of the signal envelope of matrix by applying Hilbert transform and we
estimated the phase synchronisation between each couple of brain areas by computing the
cosine of the difference of those instantaneous phases (Figure 1C). As done for SFC analysis,
to estimate the instantaneous connectivity associated to the task, we contrasted the sound
encoding vs rest DFC matrices using Wilcoxon sing-rank test. Then, as described above, a
degree MCS assessed the significantly central brain regions within the brain network.
Additionally, in this case we were able to describe and contrast using MCS the functional
connectivity for two subsequent time-windows (1 — 110 ms and 111 — 220 ms). As illustrated
in Figure 3 and Figure SF3, the results highlighted that right Rolandic operculum (p < 1.0e-
07) and Heschl’s gyrus (p = 2.2e-06) were more central within the first 110ms, while right

insula (p = 2.2e-06) and superior temporal pole (p = 2.2e-06) in the second time-window.

INSERT FIGURE 3 HERE

Dynamic functional connectivity and individual differences
In conclusion, we aimed to assess whether the neural networks activated during sound encoding
differed across participants grouped according to WM abilities (general, assessed by Wechsler

Adult Intelligence Scale-IV (WAIS-1V), and auditory, assessed by Musical Earing Test
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(MET)) and musical expertise. To highlight the differences, we selected for each WM test two
groups formed by participants that were at least one standard deviation (SD) apart from each
other (see Methods for details). With regards to musicianship, we selected only non-musicians
and musicians who had a formal training for at least 10 years. Then, for each of the three
variables, we calculated independent contrasts between the two groups using MCS.

Figure 4 shows that higher GWM was associated to higher centrality of right Rolandic
operculum (p = 1.2e-05) and lower GWM to left (p = 8.4e-05) and right putamen (p = 8.4e-
05). With regards to AWM skills, the best participants reported higher centrality of right (p <
1.0e-07) and left insula (p = 6.6e-06), left frontal middle orbital cortex (p = 1.1e-06), right
temporal middle gyrus (p = 6.6e-06) while worst ones had a higher centrality of right occipital
inferior (p < 1.0e-07), occipital superior (p = 6.4e-05) and frontal medial orbital cortex (p =
6.4e-05). Finally, musicians exhibited higher centrality of right insula (p < 1.0e-07), subgenual
cortex (p =5.7e-05), left supplementary motor area (p = 1.1e-06), while non-musicians of right
caudate (p < 1.0e-07) and occipital inferior (p < 1.0e-07), as illustrated in Figure 4. Additional
information about WM, analysis methods and sound encoding brain networks related to all

participants are provided in the Methods section and in Supplementary Materials (Figure SF1).

INSERT FIGURE 4 HERE
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Discussion

In this study, we investigated the rapid spatiotemporal brain mechanisms for encoding and
prediction of sounds forming a complex temporal sequence. Indeed, we highlighted the specific
contribution of cortical and subcortical areas to the brain networks implicated in processing the
current item of the sequence and predicting the forthcoming ones. Notably, investigating the
brain functioning within the first 220 ms after sounds onset, we detected the brain mechanisms
that are presumably responsible to make temporal information available to human awareness
25

We detected significant activation and centrality, primarily in the right hemisphere, of
several brain regions linked to memory, attentional and auditory processes such as primary
auditory cortex, frontal operculum, basal ganglia, insula and hippocampus. Additional analysis
employing phase synchronization and therefore dynamical changes over time of the
connectivity patterns highlighted stronger centrality of auditory cortex regions such as right
Heschl’s and superior temporal gyri as well as frontal operculum within the first 110 ms of the
processing of each sound. Conversely, the second time-window that we defined (110 — 220
ms) showed a higher centrality of right insula and superior temporal pole, suggesting the
potential role of such structures within the whole-brain network to predict the forthcoming
elements of our complex temporal sequence. In conclusion, we presented results connecting
individual differences among WM skills and the brain network underlying sound encoding.
Specifically, stronger auditory WM skills and musical expertise were linked to higher centrality
of subgenual cortex, insula and supplementary motor area, while higher general WM abilities

were connected to stronger centrality of right frontal operculum.

Brain activity and static functional connectivity
Coherently with our results, primary auditory cortex has been widely shown responsible for

processing of sound stimulations by a number of well-known studies 262’

. Additionally, we
detected the strongest activity within the right hemisphere, another result largely described and
replicated by previous literature 2. Interestingly, the study of connectivity allowed us to detect
several significantly central brain regions that are not directly implicated in auditory
processing. Notably, this result suggested the relevance to conduct both activity and
connectivity analyses to obtain a complete picture of the sound encoding processes. Studying
connectivity, the significant centrality was observed for a number of brain regions such as

29-31

hippocampus, an area repeatedly connected to memory encoding and frontal operculum,


https://doi.org/10.1101/2020.12.11.421669
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.421669; this version posted December 11, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

a brain region that has been linked to linguistic production and processing 3%3. Another key
central area that we detected was insula, whose involvement could be related to the salience of
the stimuli to be encoded, coherently with studies that showed the role of insula in processing
stimulation salience 3*%. Basal ganglia also played a role in the sound encoding brain network.
These subcortical regions have been shown important for several different tasks and are likely
most known for their involvement in motor activities and associative learning %37, Since in
this study participants were actively attempting to memorize the musical piece, basal ganglia
centrality within the brain may be interpreted as a sign of the learning process occurring while

listening to the piece.

Dynamic functional connectivity of sound encoding

A further relevant result that we achieved comes from the study of functional connectivity rapid
dynamics that allowed us to identify two main time-windows of sound encoding brain
processes. This procedure returned two similar networks of brain regions that were however
differentiated by a diverse centrality of few areas. Primary auditory cortex was central mainly
in the early time window whereas its connectivity was less marked in the later time interval
which was more distant from the sound onset. This result relates to previous literature
highlighting its role for the first sensorial processing of upcoming auditory stimuli **. More
surprisingly, the same result regarded frontal operculum which could be as well important for
the brain network associated to the first processes of sound encoding. On the contrary, right
insula was predominantly central within the second time-window. In accordance to what we
described above, insula may relate to salience of the stimuli and in this case could have played
an important role for achieving a more fine-grained categorization of the upcoming sounds.
Once again, this interpretation would be coherent with previous studies highlighting insula’s
role in salience appraisal of stimuli 3**°. Moreover, we argue that, while the primary auditory
cortex may play a crucial role for the first sensorial processing of the present sound, the
centrality of insula and superior temporal pole within the whole-brain network may be essential
to predict the forthcoming sounds building the temporal sequence. In conclusion, by
investigating the brain connectivity dynamics within the first 220ms after sounds onset, we
described the neural mechanisms that are presumably responsible to make temporal
information available to human awareness, as suggested by previous investigations that

explored the dynamics of human conscious processing?.

10
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Sound encoding, working memory abilities and musical expertise
A further achievement of this study is represented by the modulation of sound encoding brain
networks on the basis of participants’ WM skills and musical expertise. First, general WM was
associated to centrality of frontal operculum. This result can be seen in light of the several
studies that highlighted the fundamental role of frontal and prefrontal cortices for WM tasks
3941 Indeed, in our study higher vs lower WM skills participants had a stronger centrality of
the most frontal brain region that formed the significant sound encoding brain network.
Remarkably, when considering auditory WM, we did not observe any difference related
to frontal operculum. However, we detected a significant centrality of bilateral insula and right
temporal middle cortex. Considering that these regions have been shown important for

complex processing of auditory stimuli 4243

, we may speculate that their involvement in an
auditory memory task may offer an additional help to encode sounds. While this may happen
for best auditory WM scorers, worst participants may rely only on more primitive auditory
cortices.

Finally, the higher centrality of left supplementary motor area and right insula for
musicians compared to non-musicians is worthy to be mentioned. Since motor learning is a
key feature of musical practice, we claim that musicians may recruit also motor areas when
encoding sounds. This result could be seen in light of several studies that showed the role of
motor brain areas in musicians during music listening ¢, Similarly, also insula has been

shown more active when musicians compared to non-musicians listened to an early rehearsed

and familiar musical piece #’.

Conclusions
In conclusion, this study revealed the rapid spatiotemporal dynamics of brain activity and
connectivity underlying encoding and prediction of sounds forming a complex temporal
sequence. Remarkably, the integration between activity and connectivity provided us with a
complete picture of the brain networks involved in this complex cognitive process, networks
that the sole brain activity missed to reveal. Notably, our investigation within the first 220 ms
after sounds onset allowed us to detect the brain mechanisms that are presumably responsible
to make temporal information available to human awareness 2°.

Furthermore, our study highlighted the potential of DFC and phase synchronization
analyses to unravel the rapid transition of the brain connectivity patterns from primary auditory
cortex to higher order association areas. Indeed, our results suggested that primary auditory

cortex centrality would be implicated in the first elaboration of the present sound, while the

11
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integration between insula and superior temporal pole with the rest of the brain may play a
crucial tole to predict the forthcoming events of the temporal sequence.
Finally, the DFC approach allowed us to detect also the subtle differences among brain
regions centrality of participants divided according to their WM abilities and musical expertise.
Taken together, these results remarkably advanced our knowledge of how the brain
rapidly encodes and predicts temporal sequence information and provided a first glimpse of

the general mechanisms underlying pattern encoding in the human brain.
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Methods

Participants

Seventy volunteers participated in the study. However, the analyses were carried out on 68 of
them since two have been excluded because of technical problems during part of the data
acquisition. Thus, the final sample was composed by 68 participants (35 males and 33 females,
age range: 18 — 42 years old, mean age: 24.88 + 4.17 years). Since our experiment involved a
well-known piano musical piece, we recruited 23 classical pianists (13 males and 10 females,
age range: 18 — 34 years old, mean age: 24.83 + 4.10 years), 21 non-pianist musicians (10
males and 11 females, age range: 42 — 19 years old, mean age: 24.29 + 5.02 years) and 24 non-
musicians (12 males and 12 females, age range: 21 — 35 years old; mean age: 25.46 + 3.48
years).

All experimental procedures complied with the Declaration of Helsinki — Ethical Principles for
Medical Research and were approved by the Ethics Committee of the Central Denmark Region

(De Videnskabsetiske Komitéer for Region Midtjylland) (Ref 1-10-72-411-17).

Experimental design and stimuli

Participants’ brain activity was recorded by using MEG. At first, we had a resting state session
that has been used later as baseline for evaluating the brain functional connectivity during the
task. Participants were required to sit down in the scanner for 10 minutes trying to relax but
without closing their eyes. The room was dark and participants were asked to fixate a cross on
the screen and not to think about anything in particular. Then, to study the brain dynamics of
sound encoding, we asked participants to actively listen to a MIDI homo-rhythmic version of
the right-hand part of the entire prelude in C minor BWV 847 by Johann Sebastian Bach, as
depicted in Figure 1A. Participants were required to try to memorize the prelude as much as
possible. For this reason, as well as to collect more data, we played the musical piece four
times. The stimuli were designed by using Finale (MakeMusic, Boulder, CO) and then
presented through Presentation software (Neurobehavioural Systems, Berkeley, CA). After the
MEG recording, in the same or in another day, participants’ brain structural images were
collected by magnetic resonance imaging (MRI) exam. Furthermore, participants’ general and
auditory WM abilities and musical expertise were assessed. Specifically, their musical
expertise was collected using the Gold-MSI questionnaire 434°, With regards to general WM

we adopted one of the most used psychological tests for assessing cognitive abilities, namely

13
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WAIS-TV 3951 while for the auditory WM abilities we employed the MET °2, a newly
developed tool that presents couple of complex melodies requiring participants to state whether

they are the same or different.

Data acquisition

We acquired MEG and MRI data in two independent sessions. The MEG data was collected
using an Elekta Neuromag TRIUX system (Elekta Neuromag, Helsinki, Finland) equipped
with 306 channels. The scanner was located in a magnetically shielded room at the Aarhus
University Hospital, Denmark. The data was collected at a sampling rate of 1000 Hz with an
analogue filtering of 0.1-330 Hz. Before the exam, we adjusted the sound volume at 50 dB
above the participants’ minimum hearing threshold. Furthermore, by using a 3D digitizer
(Polhemus Fastrak, Colchester, VT, USA) we recorded the participant's head shape and the
continuous location of four headcoils, with respect to three anatomical landmarks (nasion, and
left and right preauricular points). This data was then utilized to ensure a high-quality co-
registration of the MEG data with the anatomical structure obtained during the MRI exam.
The location of the headcoils was registered during the whole recording session using a
continuous head position identification (cHPI) and therefore we tracked the exact head position
within the MEG scanner at each moment. This allowed us to perform an accurate movement
correction at a later stage of data analysis.

The MRI data consisted in structural T1. The acquisition parameters for the scan were: voxel
size = 1.0 x 1.0 x 1.0 mm (or 1.0 mm?); reconstructed matrix size 256x256; TE of 2.96 ms and
TR of 5000 ms and a bandwidth of 240 Hz/Px. Each individual T1-weighted MRI scan was
then co-registered to the standard Montreal Neurological Institute (MNI) template brain
through an affine transformation and referenced to MEG sensors space by employing the

Polhemus head shape data and the three fiducial points collected during MEG session.

Data pre-processing

We conducted Maxfilter 3 noise reduction on the raw MEG sensor data (204 planar
gradiometers and 102 magnetometers) for attenuating the interference that originated outside
the scalp by applying signal space separation. Moreover, Maxfilter allowed us to correct for
head movement and down-sample the data from 1000 Hz to 250 Hz.

The data was converted into Statistical Parametric Mapping (SPM) format and further
processed in Matlab (MathWorks, Natick, Massachusetts, United States of America) by
utilizing Oxford Centre for Human Brain Activity Software Library (OSL), a freely available
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toolbox that relies on a combination of Oxford Centre for fMRI of the Brain Software Library
(FSL) **, SPM >3 and Fieldtrip °, and in-house-built functions.

The data was high-pass filtered (0.1 Hz threshold) to remove too low frequencies for being
originated by the brain. We also used a notch filter (48 - 52 Hz) to control for interference of
the electric current. The data was then down-sampled again to 150 Hz and few segments of the
data, altered by large artifacts, were discarded after visual inspection. Then, to correct for
eyeblinks and heart-beat artifacts, we calculated independent component analysis (ICA) to
decompose the original signal in independent components. Then, we individuated and
discarded the components that picked up the heart-beat and eyeblink activities and we
reconstructed the signal by using only the remaining components . Finally, data was epoched
according to the beginning of each of the 605 musical tones of the prelude (pre-stimulus time
of 100 ms) and baseline corrected by removing the mean value of the pre-stimulus baseline
from the entire trial. Therefore, our trials were represented by the segment of the signal starting
with the presentation of each musical tone. The same procedure was carried out also for the
resting state. As conceivable, the resting state did not have any external stimulation, therefore

we created trials in equal length and number at pseudorandom time-points of the recorded data.

Event related fields and power spectra analysis

Prior to performing connectivity analysis, as illustrated in Figure 1B, we tested the quality of
our data by assessing the ERF and especially the N100, a well-known component of the ERF
arising 100 — 150 ms after sound stimulation 8. To this purpose, we averaged together all trials
obtained after epoching the data and combined planar gradiometers by mean root square >°.
Then, we calculated a t-test for each MEG gradiometer channel and time-point between the
ERF to the sound and the averaged pre-stimulus brain activity. To correct for multiple
comparisons, we adopted MCS . Specifically, we reshaped the previously calculated statistics
for obtaining, for each time-point, a two-D approximation of the MEG channels layout and we
binarized it according to the p-values obtained from the previous t-tests (threshold = 1.0e-12).
The resulting three-D matrix (M3) was therefore composed by Os when the t-tests were not
significant and 1s when they were. Then, we made 1000 permutations of the elements of the
original binary matrix M3, identified the maximum cluster size of 1s for each permutation and
built the distribution of the 1000 maximum cluster sizes. Finally, we considered significant the
original clusters that had a size bigger than the 99.9% of the permuted data maximum cluster

sizes.
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To assess the contribution of each frequency, we estimated the power spectra of the brain signal
by employing complex Morlet wavelet transform (from 1 to 40 Hz with 1-Hz intervals) ©!.
Then, we calculated a t-test for each time-point within the range: 0.050 — 0.200 seconds and
the averaged power spectra of the 100ms pre-stimulus baseline. Emerging p-values were
binarized according to threshold = 1.0e-18 and then submitted to a two-D MCS. Specifically,
we calculated the clusters size of continuous significant values in frequency and time and then
made 10000 permutations of the binarized p-values. For each permutation we detected the size
of the maximum emerging cluster and built a reference distribution with one value for each
permutation. Then, we considered significant the original clusters that had a size bigger than
the 99.99% of the permuted data maximum cluster sizes.

Thresholds for binarizing the p-values matrices were very low since we were comparing the
brain activity vs baseline and therefore, as conceivable, the results were highly significant and,
to individuate the strongest contribution of MEG channels, time-points and frequencies, it was

necessary to select very low thresholds.

Source reconstruction

As depicted in Figure 1B, the brain activity recorded on the scalp by the MEG sensors was
reconstructed in source space by adopting an overlapping-spheres forward model and a
beamformer approach as inverse model 2, with an eight-mm grid and both planar gradiometers
and magnetometers. The spheres model represented the MNI-co-registered anatomy as a
simplified geometric model utilizing a basic set of spherical harmonic volumes ®. The
beamforming used a different set of weights sequentially applied to the source locations for
individuating the contribution of each source to the activity recorded by the MEG sensors at
each time-point %64,

To assess the brain activity associated to the sound encoding task we submitted the
beamformed reconstructed activity to first-level statistical analysis carried out by calculating a
GLM for each time-point and at each dipole location %. Then, after calculating the absolute
value of the reconstructed time-series to avoid sign ambiguity of the neural signal, we
conducted group-level analysis, using one-sample t-tests with spatially smoothed variance
obtained with a Gaussian kernel (full-width at half-maximum: 50 mm). Finally, to correct for
multiple comparisons, a cluster-based permutation test 4 with 5000 permutations has been

calculated on group-level analysis results. Considering an a level = .05, we used a cluster

forming threshold #-value = 1.7.
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Static functional connectivity

To investigate functional connectivity, we used the source localized data obtained by the
beamforming algorithm. Then, this data was constrained into the 90 non-cerebellar regions of
the AAL parcellation, a freely and widely-used available template ®, in line with previous
MEG studies 7. This procedure has been carried out for: 2 — 8 Hz, the frequency band
characterized by the highest power, according to previous analysis described above. We chose:
2 — 8 Hz instead of: 2 — 5 Hz, as emerging from the power spectra statistics, to have a broader
frequency range usually employed in studies on theta waves. Since the length of each musical
tone was quite short (36 time-samples with our sampling rate of 150 Hz), to estimate more
reliable SFC through Pearson’s correlations, we concatenated and sub-averaged groups of
trials. This procedure returned a final time-series matrix M, made up by seven concatenated
sub-averaged trials, with dimensions: 90 brain regions x 252 time-points. Then, we performed
source leakage correction by orthogonalization ° and calculated Pearson’s correlations
between the envelope of the time-series of each couple of brain areas. This procedure was
carried out for both task and resting state (used as baseline) and resulted in two 90 x 90 matrices
for each participant, one for the task and one for the baseline. Those two matrices were
contrasted by applying Wilcoxon signed-rank test for each couple of brain areas. The resulting
z-values matrix Z was submitted to a degree MCS for assessing which brain area was
significantly central within the brain network. In graph theory, the degree of each vertex v (here
each brain area) of the graph G (here the matrix Z describing the whole brain connectivity) is
given by summing the connection strengths of v with the other vertexes of G, returning a value
of the centrality of each v in G 7!. In this MCS, we computed the degree of each vertex of Z,
obtaining a 90 x one vector (s;). Then, we made 10000 permutations of the elements in the
upper triangle of Z and we computed a 90 x one vector d,,,, containing the degree of each

vertex v for each permutation p. Combining vectors d,,, we obtained the distribution of the

degrees calculated for each permutation. We considered significant the degrees stored in s, that
were higher than the 99.9% of the degree distribution values calculated by permuting Z 10000
times. The threshold of 99.9% derived from simulations of the MCS function with matrices
composed by uniformly distributed random values. Setting a 99.9% threshold yielded to a
number of false positive nearly equal to zero, while a more common 95% threshold gave rise

to few false positives.
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Phase synchronization estimation

To unravel the brain dynamics of the sound encoding, we studied the phase synchronization
over time between brain areas for theta band.

By applying Hilbert transform 72> on the envelope of the reconstructed time-courses (matrix M
described in the paragraph above) we obtained the analytic signal S, ) expressed by the

following equation:

i6n.
Stpty = Amypye’” ™0 (1)

Where Ay, 1 refers to the instantaneous amplitude and 6y, +) to the instantaneous phase of the
signal for brain region n; at time t. A graphical depiction of Hilbert transform is reported in
Figure 1C. Then, since matrix M was made up by seven concatenated sub-averaged trials, after
estimating the instantaneous phase, we discarded the time-samples corresponding to the first
and last trials to prevent boundary artefacts introduced by instantaneous phase estimation and
we averaged the remaining five, obtaining a 90 brain region instantaneous phases x 36 time-
samples matrix M2. To estimate the phase synchronization between two brain areas n; and n,,

of the matrix M2 at time t, we calculated the cosine similarity expressed by equation (2) 73:

IFC(ni,nm,t) = COS(H(ni,t) - e(nm,t)) (2)

We carried out this procedure for each time-point and each couple of brain areas of the matrix
M2, obtaining one 90 x 90 symmetric instantaneous functional connectivity (IFC) matrix for
each time-point showing the phase synchronization of every couple of brain areas. This

procedure was carried out for both task and resting state and is illustrated in Figure 1D.

INSERT FIGURE 1 HERE
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Brain dynamics of sound encoding

To estimate the instantaneous connectivity matrix Z¢ associated to the task, for each time-point,
we contrasted the task IFC matrix at time t vs the resting state [FC matrices averaged over time
by using Wilcoxon sing-rank test. Then, as described above, an MCS computed on Zt assessed
the significantly central brain regions within the brain network for each time-point. We refer
to this measure as instantaneous brain degree (IBD,). Moreover, the sum (sIBD) over time of
IBD, for the brain area n showed us its centrality within the whole-brain network during the

whole sound encoding process, as expressed by equation (3):

SIBD(ny = Y IBD(ny 3)

T

t=1

Considering the noise inherent in the data and potentially added by signal processing, we
focused our attention towards two main equally-long time-windows (Figure 1E1), expressed

by the two 90 x one vectors SIBD ny1-110ms and SIBD (y)111-220ms- Then, for each brain

region n we calculated the vector difference vtdo, as expressed by equation (4):
vtdo = SIBD (n)1-110ms- SIBD )111-220ms 4)

Finally, to assess whether vector vtdo contained any significant value, we used MCS.
Specifically, we made 10000 permutations of the matrices IBD; _119ms and IBD;11_220ms and
we summed the two matrices over the temporal dimension obtaining two 90 x one vectors,
vto, and vtv,. Subtracting vtv, from vto, we obtained the difference vector vtd,, for the
permutation p. Performing this procedure for every permutation, we obtained the distribution
of the difference vectors. Then, we compared the original differences in vector vtdo with the
distribution of difference vectors, independently for positive and negative differences, in order
to get their associated p-values. Finally, we considered significant the brain areas whose p-

values were lower than:
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o' = o/(ROIs * tails) = 2.7e — 04 (5)

where a corresponds to a level =.05, ROIs are the number of brain regions (90) and fails refers
to the two tails of the normal distribution of difference vectors created by MCS. In other words,
since our hypothesis was that some brain regions were different in the two time-windows, but
we did not hypothesize which ones, we looked at the results for each brain region and each
direction of the difference (time-windows one > time-windows two and vice versa). Therefore,
we had to correct for multiple comparisons by calculating the new threshold o’ expressed by

equation (5).

Brain dynamics of sound encoding and individual differences

In conclusion, as illustrated in Figure 1E2, we aimed to assess whether the neural networks
underlying sound encoding differed across participants grouped according to general and
auditory WM, and musical expertise. To highlight more clearly the differences, we selected for
each WM test two groups formed by participants whose scores where at least one SD a part
from each other. We adopted this approach since we wanted to include only groups of
participants that were clearly differentiated by the tests. With regards to the WAIS test groups
the best scorers had a range of 110 — 130, while the worst of 76 — 93 (according to the
standardization of the WAIS test one SD corresponds to 15). In relation to MET test, we
observed that our best scorers had a range of 43 — 52 while worst scorers of 28 — 36. The mean
across all participants was 40.24 with a standard deviation of 6.28. Thus, also in this case the
two groups were differentiated by at least one SD. Finally, for musicianship, we considered the
24 non-musicians and the musicians (both pianists and non-pianists) that received a formal
musical education for at least 10 years. Those participants were 24. This threshold was set in
order to compare people with no musical expertise at all with individuals who engaged in a
long-term professional education. Then, as described in the previous section, we focused on
the number of times that each brain region was significantly central within the brain,
contrasting those values across the two groups by an MCS analogous to the one described
above. This procedure was carried out independently for the two WM and the musicianship

analyses (since we had three independent tests, we divided the threshold o’ described by
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equation (5) by three, obtaining a new threshold = 9.2e-05). In Figure SF1, to provide full

information, brain regions centrality is depicted also for the remaining participants.
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Data availability

The code and multimodal neuroimaging data from the experiment are available upon

reasonable request.
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Figure 1. Overview of the analysis pipeline

a — Participants were requested to attentively listen to a whole musical piece trying to remember it as much as
possible. Subsequent analyses focused on two main time-windows of the sound encoding process, as illustrated
by the red and blue lines b - MEG data during musical encoding has been collected, pre-processed and
beamformed into source space within the 90 non-cerebellar brain regions of the AAL parcellation. Then, we
calculated the envelope of the time-course of each brain region (top right). ¢ — After computing analysis on brain
activity and SFC, we investigated the DFC. To this aim, we computed the Hilbert transform of the envelope of
each brain region and estimated the phase synchronization by calculating the cosine similarity between the
instantaneous phases of each couple of brain regions. d — We obtained IFC matrices for both sound encoding task
and resting state (used as baseline). Afterwards, we contrasted the task matrices vs the average of the baseline
matrices to isolate the brain activity specifically associated to the sound encoding brain processes over time. el —
We used the whole-brain connectivity measures to derive the significant centrality of the brain regions within the
whole-brain network. This was done for the two main time-windows of sound encoding (I — 110 ms and 111 —
220 ms). e2 — Similarly, contrasting participants who were grouped according to their level of WM and musical

expertise, we computed the significant centrality of brain regions associated to those different skills.
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Figure 2. N100 component

a — Waveform depicting the N100 component of the ERF. The plot shows the brain activity averaged over the
significant gradiometer channels emerged by MCS. The grey area illustrates the significant time-window. Thinner
lines depict standard errors. b — Power spectra depiction over time for all MEG channels. ¢ — Gradiometers (top)
and magnetometers (bottom) topoplots of the N100 component amplitude computed over the significant time-
window emerged by MCS. Values correspond to neural signal in fT/mm for gradiometers and fT for
magnetometers. d — Neural sources of the N100 component (t-values from group level analysis). e — SFC
estimated by computing Pearson’s correlations between the envelope of each couple of AAL brain regions. The
left matrix refers to sound encoding task, while the middle one to resting state (used as baseline). Finally, the right

matrix depicts the -values emerged by contrasting task vs baseline.
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Figure 3. Dynamic functional connectivity

a — Connectivity depicted within a brain template showing the strongest connections between the significantly
central brain regions and the rest of the brain during two main time-windows (1 — 110 ms on the left and 111 —
220 ms on the right). For each couple of brain templates, the left one is a refiguration from the left hemisphere,
while the right one a posterior depiction. b — Schemaball showing the strongest connections between the
significantly central brain regions and the rest of the brain during the two time-windows. ¢ — Significantly central
brain regions within the whole brain network during sound encoding depicted in the two time-windows.

In all depictions, the colorbar values refer to the temporal extent (in ms) of the brain regions significance.
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Figure 4. General and auditory WM, musical expertise and brain dynamics

a — Depiction within brain templates of the connectivity between the significantly different brain regions emerged
contrasting participants’ groups and the rest of the brain. Left column refers to all participants to have an
immediate visual comparison, middle-left column represents participants grouped for general WM abilities,
middle right relates to auditory WM abilities, while the right column shows the contrast between musicians and
non-musicians. For each couple of brain templates, the left one is a posterior refiguration from the left hemisphere,
while the right one a posterior representation. b — Schemaball depiction of connectivity between significantly
different brain regions emerged contrasting participants’ groups and the rest of the brain. ¢ — Significant
differences of brain regions centrality for contrasts among the different groups of participants.

All colorbars depict high scorers and musicians with red shades and low scorers and non-musicians with blue

shades. Values show the temporal extent (in ms) of the significant differences.
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SUPPLEMENTARY MATERIALS

As follows, supplementary materials related to this study and organized as supplementary
figures (i) and tables (ii). In the cases when the supplementary tables were too large to be
conveniently reported in the current document, they have been reported in Excel files that can
be found at the following link:

https://www.dropbox.com/sh/z1xdxllcf280hd1/AACIXDQnoL YjoV7hOaPDmvB7a?d1=0
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Figure SF1. Brain areas centrality according to participants’ WM skills and musical expertise

Brain regions centrality depicted for all participants, divided according to their general and auditory WM skills as
well as musical expertise. Best scorers are represented by the right plotted brains, middle scorers by the middle
brains and worst performers by the left ones. Colorbars show the amount of time (in ms) when the brain regions
were significantly central within the whole-brain network. a — Plots related to general WM skills. b — Plots linked

to auditory WM skills. ¢ — Plots connected to musical expertise.
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Figure SF2. Sound encoding SFC - schemaball
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Schemaball representation of the SFC between brain regions concerning the sound encoding task.
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Figure SF3. DFC matrices of sound encoding
Matrix representation of the DFC between brain regions during two subsequent time-windows of the sound

encoding task.
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SUPPLEMENTARY TABLES

Table STI — Detailed information of significant N100 clusters for MEG sensor data
Significant clusters of MEG sensors emerged from MCS contrasting Bach’s original vs
variation. The excel file depicts those clusters with regards to significant channels and time-

windows.

Table ST2 — Detailed information of significant N100 clusters for MEG source data
Significant clusters of MEG sources emerged from MCS contrasting Bach’s original vs
variation. The excel file depicts those clusters with regards to significant voxels, time-windows

and averaged t-values for each voxel.
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