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ABSTRACT 

Information encoding has received a wide neuroscientific attention, but the underlying rapid 

spatiotemporal brain dynamics remain largely unknown. Here, we investigated the rapid brain 

mechanisms for encoding and prediction of sounds forming a complex temporal sequence. 

Specifically, we used magnetoencephalography (MEG) to record the brain activity of 68 

participants while they listened to a highly structured musical prelude. Advanced analysis of 

the phase synchronisation and graph theoretical measures showed the rapid transition of brain 

activity from primary auditory cortex to higher order association areas including insula and 

superior temporal pole within a whole-brain network, occurring during the first 220 ms of the 

encoding process. We discovered individual differences, revealing the rapid unfolding of brain 

network dynamics responsible for the processing of the current sounds and the prediction of 

the forthcoming events of the sequence. This provides a first glimpse of the general 

mechanisms underlying pattern encoding in the human brain. 
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Introduction 
Memory is doubtless one of the most crucial cognitive abilities of humans and animals, 

necessary to allow species to survive and act 1. Among its building elements, information 

encoding plays a fundamental role, allowing individuals to accomplish the crucial goal of 

learning from experience. In the last decades of neuroscience, much has been done on 

information encoding, working both with humans and animal models 2–4. A large part of this 

research focused on encoding of visual and spatial stimuli 5,6, whereas a conspicuous amount 

of studies explored auditory processes related to early and even pre-attentive elaboration of 

standard and deviant sounds inserted in elementary sequences 7–9. 

The former approach led to several examples of visual encoding and recognition studies 

which employed faces as main stimuli. Along this line of research, neuroscientists have 

revealed the primary role of fusiform gyrus in face encoding and recognition and shown the 

progressive dynamics of different face features elaboration 10–12. 

Conversely, regarding auditory research a large number of studies deeply explored the 

early and pre-attentive processing of sounds and simple temporal sequences. For instance, this 

research highlighted several automatic event related potentials/fields (ERP/F) to standard and 

deviant sounds such as the well-known N100 and mismatch negativity (MMN). Indeed, it has 

also shown that N100 and MMN were modulated by the stimuli characteristics, suggesting a 

primitive intelligence and memory of the primary auditory cortex 7–9. However, this research 

mainly involved passive listening paradigms and studied the automatic brain responses to 

sound stimulations, while it did not directly explain how the sounds were actually encoded. A 

more general approach on sound processing investigation reported the activation of auditory 

cortex brain regions such as Heschl’s and superior temporal gyri in response to acoustic stimuli 

varying in temporal and spectral features 13,14 as well as a contribution coming from inferior 

frontal gyrus, cingulo-insular cortex, mediotemporal limbic lobe, basal ganglia, supplementary 

motor area and posterior orbitofrontal cortex 15,16. 

The encoding of temporal sequences has also been investigated by applying more 

complex paradigms, especially within the domains of language and algebraic representation. 

For instance, the analysis of the brain activity underlying the attentive processing of sound 

sequences comprising regular subgroups of items returned not only the well-known automatic 

mismatch response (MMN) to deviant sounds, but also a late surprising-elicited P3b 

component when the coherence of the sequence was broken 17,18. These studies have suggested 

that the brain actively chunked the different pieces of information that were presented. Others 
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studies demonstrated that the ordinal arrangement of a series of items is encoded by the brain 

and represents a very important feature of the learning process of the presented stimuli. Such 

brain mechanisms have been detected both in humans and monkeys showing a neural code for 

ordinal numbers and items ordinal representation within the intraparietal and dorsolateral 

prefrontal cortices 19,20. Further research employing animal models and temporal sequences 

characterized by constant algebraic patterns suggested that naive non-human primates were 

able to represent the abstract numerical and algebraic patterns of sequences, understanding a 

higher level of abstract regularities than elementary sequences with sensorial deviations 21,22. 

To review the decades of sequence encoding findings within cognitive sciences and 

neuroscience, a recent key paper by Dehaene, Meyniel, Wacongne, Wang and Pallier 23  

proposed a taxonomy of the encoding mechanisms for temporal sequences, elaborating five 

distinct categories. They refer to transition and timing knowledge between subsequent items 

(i), chunking of contiguous items of the sequence (ii), ordinal knowledge of which item comes 

first (iii), algebraic patterns capturing complex regularities within a sequence (iv), nested tree 

structures based on abstract symbolic rules (v). However, even though Dehaene et al. 23 

provided a detailed description of the brain responses to sequences evolving over time, they 

did not reveal the temporal dynamics of the subsequent brain processes required for the 

encoding and prediction of sounds forming a complex temporal sequence. Moreover, as 

explicitly stated in their work, Dehaene et al. 23 highlighted the urgency to unravel which is the 

specific contribution of cortical and subcortical brain networks to the extraction of the sequence 

structure and the prediction of its forthcoming elements.  

Thus, here we used music, which is the human art that mainly acquires meaning through 

the logical combination of sounds extended over time 24, to investigate the rapid whole-brain 

networks underlying the encoding and prediction of items forming a complex temporal 

sequence. Understanding such topic is a key step to discover the general neural mechanisms 

underlying pattern encoding and thus unveil how the information becomes meaningful for the 

human brain. 
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Results 

 
Experimental design and data analysis overview 

In our study, we aimed to investigate the fine-grained spatiotemporal dynamics of the brain 

during the encoding and prediction of sounds forming a complex temporal sequence. To this 

aim, we used MEG to record the brain functioning of 68 participants while listening to a 

musical instrumental digital interface (MIDI) version of the full prelude in C minor BWV 847 

composed by Johann Sebastian Bach. 

As described in the Methods and depicted in Figure 1A, participants were requested to 

attentively listen to the music, trying to memorize its structure and sounds as much as they 

could. The analysis pipeline employed in our study is depicted in Figure 1 (and described in 

details in the Methods). Our results on brain functioning underlying sound encoding have been 

then organised as follows: 1) sensor space and beamformed source localised activity, 2) static 

source localised connectivity, 3) dynamic source localised connectivity and 4) dynamic source 

localised connectivity in subsamples characterized by different levels of general (GWM) and 

auditory working memory (AWM) and musical expertise. 

First, we detected the brain activity in MEG sensor space using univariate tests and Monte 

Carlo simulations (MCS). Then, we reconstructed the sources of the brain signal using a 

beamforming algorithm (Figure 1B). Second, we computed the static functional connectivity 

(SFC) by calculating Pearson’s correlations between the envelope of each couple of brain areas. 

Third, we computed dynamic functional connectivity (DFC) using the instantaneous phase 

obtained from Hilbert transform for each time-point of the brain areas timeseries (Figure 1C). 

After contrasting the brain connectivity patterns for sound encoding vs resting state (Figure 

1D), we computed the DFC for two short time-windows (1 – 110 ms, 111 – 220 ms), as depicted 

in Figure 1E1. Fourth, we analysed the DFC in subsamples of individuals characterized by 

different levels of GWM, AWM and musical expertise (Figure 1E2). DFC analysis consisted 

of detecting the whole-brain connectivity patterns and then the significant centrality of specific 

brain areas within the whole-brain network. 

 

INSERT FIGURE 1 HERE 
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Event related fields and power spectra analysis 

At first, as depicted in Figure 2A and 2C to assess the quality of the data, we analysed the ERF 

associated to the processing of the tones. To this aim, after carrying on standard pre-processing 

steps (see Methods for details), we epoched the data in correspondence to each musical tone 

(trials), we averaged the trials and combined planar gradiometers by mean root square. Then, 

we calculated a t-test for each time-point in the time-range 0.050 – 0.200 seconds and for each 

gradiometer channel contrasting the task vs its own baseline. Finally, we performed cluster-

based MCS to detect significant clusters (t-test threshold = 1.0e-16, MCS threshold = .001). 

Results showed two significant clusters in the time-range 0.053 – 0.160 seconds. Specifically, 

we observed a larger cluster in the right hemisphere (cluster size: 81, p < .001) and a smaller 

one in the left (cluster size: 40, p < .001). These results are reported in details in Table ST1. 

Then, we reconstructed the neural sources of the signal by applying a beamforming approach 

and calculating a general linear model (GLM) for each source voxel and each time-point within 

the significant time-range emerged by MCS on sensor data (0.053 – 0.160 seconds). Significant 

clusters were assessed by a cluster-based permutation test. Figure 2D shows that the activity 

was mainly localized within primary auditory cortex and insula. Complete results are reported 

in Table ST2. Finally, to convey our subsequent functional connectivity analysis to a specific 

frequency band, we calculated the power spectra associated to the task by complex Morlet 

wavelet transform (from 1 to 60 Hz with 1-Hz intervals) to define which frequencies were 

involved in the sound processing. We then calculated t-tests for each frequency and time-point 

within the range 0.050 – 0.200 seconds and the averaged power spectra of the baseline. 

Binarized values (threshold = 1.0e-18) were submitted to a two-dimensional (two-D) MCS 

(threshold = .001). As reported in Figure 2B, the analysis returned a significant cluster (size: 

69, p < .001) for frequency range: 3 – 5 Hz within the time-range: 0.053 – 0.200 seconds. 

 

INSERT FIGURE 2 HERE 

 

Static functional connectivity 

We constrained the reconstructed sources of the MEG signal from the 3559 voxels outputted 

by the beamforming algorithm to the 90 non-cerebellar parcels of automated anatomical 

labelling (AAL) parcellation and corrected for source leakage. Then, we calculated the SFC by 

computing Pearson’s correlations between the envelope of the timeseries of each couple of 

brain areas. This procedure was carried out for both task and resting state. Then, we contrasted 
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the SFC patterns of the sound encoding vs resting state to identify the brain connectivity 

properly associated to the experimental task. Finally, we used a degree MCS (MCS threshold 

= .001) for assessing which brain areas were significantly central within the whole brain 

network during the sound encoding process (see Methods for details). 

As depicted in Figure 2E and Figure SF2, the analysis returned a significant centrality of the 

following brain regions: left precentral (p = 3.5e-05), Rolandic operculum (p < 1.0e-07), 

caudate (p < 1.0e-07), putamen (p = 4.4e-06), thalamus (p < 1.0e-07), Heschl’s gyrus (p = 3.0e-

05), temporal superior (p < 1.0e-07), right temporal pole middle (p = 6.6e-06), temporal pole 

superior (p < 1.0e-07), temporal superior (p = 1.8e-05), Heschl’s gyurs (p < 1.0e-07), thalamus 

(p < 1.0e-07), pallidum (p < 1.0e-07), putamen (p < 1.0e-07), amygdala (p < 1.0e-07), 

hippocampus (p < 1.0e-07), insula (p < 1.0e-07), frontal medial orbital cortex (p = 6.5-e-04), 

subgenual (p < 1.0e-07), Rolandic operculum (p < 1.0e-07), frontal inferior operculum (p = 

8.2e-05). 

 

Dynamic functional connectivity 

To unravel the dynamics of the functional connectivity during sound encoding, we calculated 

the instantaneous phase of the signal envelope of matrix by applying Hilbert transform and we 

estimated the phase synchronisation between each couple of brain areas by computing the 

cosine of the difference of those instantaneous phases (Figure 1C). As done for SFC analysis, 

to estimate the instantaneous connectivity associated to the task, we contrasted the sound 

encoding vs rest DFC matrices using Wilcoxon sing-rank test. Then, as described above, a 

degree MCS assessed the significantly central brain regions within the brain network. 

Additionally, in this case we were able to describe and contrast using MCS the functional 

connectivity for two subsequent time-windows (1 – 110 ms and 111 – 220 ms). As illustrated 

in Figure 3 and Figure SF3, the results highlighted that right Rolandic operculum (p < 1.0e-

07) and Heschl’s gyrus (p = 2.2e-06) were more central within the first 110ms, while right 

insula (p = 2.2e-06) and superior temporal pole (p = 2.2e-06) in the second time-window. 

 

INSERT FIGURE 3 HERE 

 

Dynamic functional connectivity and individual differences 

In conclusion, we aimed to assess whether the neural networks activated during sound encoding 

differed across participants grouped according to WM abilities (general, assessed by Wechsler 

Adult Intelligence Scale-IV (WAIS-IV), and auditory, assessed by Musical Earing Test 
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(MET)) and musical expertise. To highlight the differences, we selected for each WM test two 

groups formed by participants that were at least one standard deviation (SD) apart from each 

other (see Methods for details). With regards to musicianship, we selected only non-musicians 

and musicians who had a formal training for at least 10 years. Then, for each of the three 

variables, we calculated independent contrasts between the two groups using MCS. 

Figure 4 shows that higher GWM was associated to higher centrality of right Rolandic 

operculum (p = 1.2e-05) and lower GWM to left (p = 8.4e-05) and right putamen (p = 8.4e-

05). With regards to AWM skills, the best participants reported higher centrality of right (p < 

1.0e-07) and left insula (p = 6.6e-06), left frontal middle orbital cortex (p = 1.1e-06), right 

temporal middle gyrus (p = 6.6e-06) while worst ones had a higher centrality of right occipital 

inferior (p < 1.0e-07), occipital superior (p = 6.4e-05) and frontal medial orbital cortex (p = 

6.4e-05). Finally, musicians exhibited higher centrality of right insula (p < 1.0e-07), subgenual 

cortex (p = 5.7e-05), left supplementary motor area (p = 1.1e-06), while non-musicians of right 

caudate (p < 1.0e-07) and occipital inferior (p < 1.0e-07), as illustrated in Figure 4. Additional 

information about WM, analysis methods and sound encoding brain networks related to all 

participants are provided in the Methods section and in Supplementary Materials (Figure SF1). 

 

INSERT FIGURE 4 HERE 
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Discussion 

In this study, we investigated the rapid spatiotemporal brain mechanisms for encoding and 

prediction of sounds forming a complex temporal sequence. Indeed, we highlighted the specific 

contribution of cortical and subcortical areas to the brain networks implicated in processing the 

current item of the sequence and predicting the forthcoming ones. Notably, investigating the 

brain functioning within the first 220 ms after sounds onset, we detected the brain mechanisms 

that are presumably responsible to make temporal information available to human awareness 
25. 

We detected significant activation and centrality, primarily in the right hemisphere, of 

several brain regions linked to memory, attentional and auditory processes such as primary 

auditory cortex, frontal operculum, basal ganglia, insula and hippocampus. Additional analysis 

employing phase synchronization and therefore dynamical changes over time of the 

connectivity patterns highlighted stronger centrality of auditory cortex regions such as right 

Heschl’s and superior temporal gyri as well as frontal operculum within the first 110 ms of the 

processing of each sound. Conversely, the second time-window that we defined (110 – 220 

ms) showed a higher centrality of right insula and superior temporal pole, suggesting the 

potential role of such structures within the whole-brain network to predict the forthcoming 

elements of our complex temporal sequence. In conclusion, we presented results connecting 

individual differences among WM skills and the brain network underlying sound encoding. 

Specifically, stronger auditory WM skills and musical expertise were linked to higher centrality 

of subgenual cortex, insula and supplementary motor area, while higher general WM abilities 

were connected to stronger centrality of right frontal operculum. 

 

Brain activity and static functional connectivity 

Coherently with our results, primary auditory cortex has been widely shown responsible for 

processing of sound stimulations by a number of well-known studies 26,27. Additionally, we 

detected the strongest activity within the right hemisphere, another result largely described and 

replicated by previous literature 28. Interestingly, the study of connectivity allowed us to detect 

several significantly central brain regions that are not directly implicated in auditory 

processing. Notably, this result suggested the relevance to conduct both activity and 

connectivity analyses to obtain a complete picture of the sound encoding processes. Studying 

connectivity, the significant centrality was observed for a number of brain regions such as 

hippocampus, an area repeatedly connected to memory encoding 29–31 and frontal operculum, 
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a brain region that has been linked to linguistic production and processing 32,33. Another key 

central area that we detected was insula, whose involvement could be related to the salience of 

the stimuli to be encoded, coherently with studies that showed the role of insula in processing 

stimulation salience 34,35. Basal ganglia also played a role in the sound encoding brain network. 

These subcortical regions have been shown important for several different tasks and are likely 

most known for their involvement in motor activities and associative learning 36,37. Since in 

this study participants were actively attempting to memorize the musical piece, basal ganglia 

centrality within the brain may be interpreted as a sign of the learning process occurring while 

listening to the piece. 

 

Dynamic functional connectivity of sound encoding 

A further relevant result that we achieved comes from the study of functional connectivity rapid 

dynamics that allowed us to identify two main time-windows of sound encoding brain 

processes. This procedure returned two similar networks of brain regions that were however 

differentiated by a diverse centrality of few areas. Primary auditory cortex was central mainly 

in the early time window whereas its connectivity was less marked in the later time interval 

which was more distant from the sound onset. This result relates to previous literature 

highlighting its role for the first sensorial processing of upcoming auditory stimuli 38. More 

surprisingly, the same result regarded frontal operculum which could be as well important for 

the brain network associated to the first processes of sound encoding. On the contrary, right 

insula was predominantly central within the second time-window. In accordance to what we 

described above, insula may relate to salience of the stimuli and in this case could have played 

an important role for achieving a more fine-grained categorization of the upcoming sounds. 

Once again, this interpretation would be coherent with previous studies highlighting insula’s 

role in salience appraisal of stimuli 34,35. Moreover, we argue that, while the primary auditory 

cortex may play a crucial role for the first sensorial processing of the present sound, the 

centrality of insula and superior temporal pole within the whole-brain network may be essential 

to predict the forthcoming sounds building the temporal sequence. In conclusion, by 

investigating the brain connectivity dynamics within the first 220ms after sounds onset, we 

described the neural mechanisms that are presumably responsible to make temporal 

information available to human awareness, as suggested by previous investigations that 

explored the dynamics of human conscious processing25. 
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Sound encoding, working memory abilities and musical expertise 

A further achievement of this study is represented by the modulation of sound encoding brain 

networks on the basis of participants’ WM skills and musical expertise. First, general WM was 

associated to centrality of frontal operculum. This result can be seen in light of the several 

studies that highlighted the fundamental role of frontal and prefrontal cortices for WM tasks 
39–41. Indeed, in our study higher vs lower WM skills participants had a stronger centrality of 

the most frontal brain region that formed the significant sound encoding brain network. 

Remarkably, when considering auditory WM, we did not observe any difference related 

to frontal operculum. However, we detected a significant centrality of bilateral insula and right 

temporal middle cortex. Considering that these regions have been shown important for 

complex processing of auditory stimuli 42,43, we may speculate that their involvement in an 

auditory memory task may offer an additional help to encode sounds. While this may happen 

for best auditory WM scorers, worst participants may rely only on more primitive auditory 

cortices. 

Finally, the higher centrality of left supplementary motor area and right insula for 

musicians compared to non-musicians is worthy to be mentioned. Since motor learning is a 

key feature of musical practice, we claim that musicians may recruit also motor areas when 

encoding sounds. This result could be seen in light of several studies that showed the role of 

motor brain areas in musicians during music listening 44–46. Similarly, also insula has been 

shown more active when musicians compared to non-musicians listened to an early rehearsed 

and familiar musical piece 47. 

 

Conclusions 

In conclusion, this study revealed the rapid spatiotemporal dynamics of brain activity and 

connectivity underlying encoding and prediction of sounds forming a complex temporal 

sequence. Remarkably, the integration between activity and connectivity provided us with a 

complete picture of the brain networks involved in this complex cognitive process, networks 

that the sole brain activity missed to reveal. Notably, our investigation within the first 220 ms 

after sounds onset allowed us to detect the brain mechanisms that are presumably responsible 

to make temporal information available to human awareness 25. 

Furthermore, our study highlighted the potential of DFC and phase synchronization 

analyses to unravel the rapid transition of the brain connectivity patterns from primary auditory 

cortex to higher order association areas. Indeed, our results suggested that primary auditory 

cortex centrality would be implicated in the first elaboration of the present sound, while the 
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integration between insula and superior temporal pole with the rest of the brain may play a 

crucial tole to predict the forthcoming events of the temporal sequence. 

Finally, the DFC approach allowed us to detect also the subtle differences among brain 

regions centrality of participants divided according to their WM abilities and musical expertise. 

Taken together, these results remarkably advanced our knowledge of how the brain 

rapidly encodes and predicts temporal sequence information and provided a first glimpse of 

the general mechanisms underlying pattern encoding in the human brain. 
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Methods 
 

Participants 

Seventy volunteers participated in the study. However, the analyses were carried out on 68 of 

them since two have been excluded because of technical problems during part of the data 

acquisition. Thus, the final sample was composed by 68 participants (35 males and 33 females, 

age range: 18 – 42 years old, mean age: 24.88 ± 4.17 years). Since our experiment involved a 

well-known piano musical piece, we recruited 23 classical pianists (13 males and 10 females, 

age range: 18 – 34 years old, mean age: 24.83 ± 4.10 years), 21 non-pianist musicians (10 

males and 11 females, age range: 42 – 19 years old, mean age: 24.29 ± 5.02 years) and 24 non-

musicians (12 males and 12 females, age range: 21 – 35 years old; mean age: 25.46 ± 3.48 

years). 

All experimental procedures complied with the Declaration of Helsinki – Ethical Principles for 

Medical Research and were approved by the Ethics Committee of the Central Denmark Region 

(De Videnskabsetiske Komitéer for Region Midtjylland) (Ref 1-10-72-411-17). 

 

Experimental design and stimuli 

Participants’ brain activity was recorded by using MEG. At first, we had a resting state session 

that has been used later as baseline for evaluating the brain functional connectivity during the 

task. Participants were required to sit down in the scanner for 10 minutes trying to relax but 

without closing their eyes. The room was dark and participants were asked to fixate a cross on 

the screen and not to think about anything in particular. Then, to study the brain dynamics of 

sound encoding, we asked participants to actively listen to a MIDI homo-rhythmic version of 

the right-hand part of the entire prelude in C minor BWV 847 by Johann Sebastian Bach, as 

depicted in Figure 1A. Participants were required to try to memorize the prelude as much as 

possible. For this reason, as well as to collect more data, we played the musical piece four 

times. The stimuli were designed by using Finale (MakeMusic, Boulder, CO) and then 

presented through Presentation software (Neurobehavioural Systems, Berkeley, CA). After the 

MEG recording, in the same or in another day, participants’ brain structural images were 

collected by magnetic resonance imaging (MRI) exam. Furthermore, participants’ general and 

auditory WM abilities and musical expertise were assessed. Specifically, their musical 

expertise was collected using the Gold-MSI questionnaire 48,49. With regards to general WM 

we adopted one of the most used psychological tests for assessing cognitive abilities, namely 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.11.421669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.421669
http://creativecommons.org/licenses/by-nd/4.0/


 14 

WAIS-IV 50,51, while for the auditory WM abilities we employed the MET 52, a newly 

developed tool that presents couple of complex melodies requiring participants to state whether 

they are the same or different. 

 

Data acquisition 

We acquired MEG and MRI data in two independent sessions. The MEG data was collected 

using an Elekta Neuromag TRIUX system (Elekta Neuromag, Helsinki, Finland) equipped 

with 306 channels. The scanner was located in a magnetically shielded room at the Aarhus 

University Hospital, Denmark. The data was collected at a sampling rate of 1000 Hz with an 

analogue filtering of 0.1–330 Hz. Before the exam, we adjusted the sound volume at 50 dB 

above the participants’ minimum hearing threshold. Furthermore, by using a 3D digitizer 

(Polhemus Fastrak, Colchester, VT, USA) we recorded the participant's head shape and the 

continuous location of four headcoils, with respect to three anatomical landmarks (nasion, and 

left and right preauricular points). This data was then utilized to ensure a high-quality co-

registration of the MEG data with the anatomical structure obtained during the MRI exam. 

The location of the headcoils was registered during the whole recording session using a 

continuous head position identification (cHPI) and therefore we tracked the exact head position 

within the MEG scanner at each moment. This allowed us to perform an accurate movement 

correction at a later stage of data analysis. 

The MRI data consisted in structural T1. The acquisition parameters for the scan were: voxel 

size = 1.0 x 1.0 x 1.0 mm (or 1.0 mm3); reconstructed matrix size 256×256; TE of 2.96 ms and 

TR of 5000 ms and a bandwidth of 240 Hz/Px. Each individual T1-weighted MRI scan was 

then co-registered to the standard Montreal Neurological Institute (MNI) template brain 

through an affine transformation and referenced to MEG sensors space by employing the 

Polhemus head shape data and the three fiducial points collected during MEG session. 

 

Data pre-processing 

We conducted Maxfilter 53 noise reduction on the raw MEG sensor data (204 planar 

gradiometers and 102 magnetometers) for attenuating the interference that originated outside 

the scalp by applying signal space separation. Moreover, Maxfilter allowed us to correct for 

head movement and down-sample the data from 1000 Hz to 250 Hz. 

The data was converted into Statistical Parametric Mapping (SPM) format and further 

processed in Matlab (MathWorks, Natick, Massachusetts, United States of America) by 

utilizing Oxford Centre for Human Brain Activity Software Library (OSL), a freely available 
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toolbox that relies on a combination of Oxford Centre for fMRI of the Brain Software Library 

(FSL) 54, SPM 55 and Fieldtrip 56, and in-house-built functions. 

The data was high-pass filtered (0.1 Hz threshold) to remove too low frequencies for being 

originated by the brain. We also used a notch filter (48 - 52 Hz) to control for interference of 

the electric current. The data was then down-sampled again to 150 Hz and few segments of the 

data, altered by large artifacts, were discarded after visual inspection. Then, to correct for 

eyeblinks and heart-beat artifacts, we calculated independent component analysis (ICA) to 

decompose the original signal in independent components. Then, we individuated and 

discarded the components that picked up the heart-beat and eyeblink activities and we 

reconstructed the signal by using only the remaining components 57. Finally, data was epoched 

according to the beginning of each of the 605 musical tones of the prelude (pre-stimulus time 

of 100 ms) and baseline corrected by removing the mean value of the pre-stimulus baseline 

from the entire trial. Therefore, our trials were represented by the segment of the signal starting 

with the presentation of each musical tone. The same procedure was carried out also for the 

resting state. As conceivable, the resting state did not have any external stimulation, therefore 

we created trials in equal length and number at pseudorandom time-points of the recorded data. 

 

Event related fields and power spectra analysis 

Prior to performing connectivity analysis, as illustrated in Figure 1B, we tested the quality of 

our data by assessing the ERF and especially the N100, a well-known component of the ERF 

arising 100 – 150 ms after sound stimulation 58. To this purpose, we averaged together all trials 

obtained after epoching the data and combined planar gradiometers by mean root square 59. 

Then, we calculated a t-test for each MEG gradiometer channel and time-point between the 

ERF to the sound and the averaged pre-stimulus brain activity. To correct for multiple 

comparisons, we adopted MCS 60. Specifically, we reshaped the previously calculated statistics 

for obtaining, for each time-point, a two-D approximation of the MEG channels layout and we 

binarized it according to the p-values obtained from the previous t-tests (threshold = 1.0e-12). 

The resulting three-D matrix (M3) was therefore composed by 0s when the t-tests were not 

significant and 1s when they were. Then, we made 1000 permutations of the elements of the 

original binary matrix M3, identified the maximum cluster size of 1s for each permutation and 

built the distribution of the 1000 maximum cluster sizes. Finally, we considered significant the 

original clusters that had a size bigger than the 99.9% of the permuted data maximum cluster 

sizes. 
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To assess the contribution of each frequency, we estimated the power spectra of the brain signal 

by employing complex Morlet wavelet transform (from 1 to 40 Hz with 1-Hz intervals) 61. 

Then, we calculated a t-test for each time-point within the range: 0.050 – 0.200 seconds and 

the averaged power spectra of the 100ms pre-stimulus baseline. Emerging p-values were 

binarized according to threshold = 1.0e-18 and then submitted to a two-D MCS. Specifically, 

we calculated the clusters size of continuous significant values in frequency and time and then 

made 10000 permutations of the binarized p-values. For each permutation we detected the size 

of the maximum emerging cluster and built a reference distribution with one value for each 

permutation. Then, we considered significant the original clusters that had a size bigger than 

the 99.99% of the permuted data maximum cluster sizes. 

Thresholds for binarizing the p-values matrices were very low since we were comparing the 

brain activity vs baseline and therefore, as conceivable, the results were highly significant and, 

to individuate the strongest contribution of MEG channels, time-points and frequencies, it was 

necessary to select very low thresholds. 

 

Source reconstruction 

As depicted in Figure 1B, the brain activity recorded on the scalp by the MEG sensors was 

reconstructed in source space by adopting an overlapping-spheres forward model and a 

beamformer approach as inverse model 62, with an eight-mm grid and both planar gradiometers 

and magnetometers. The spheres model represented the MNI-co-registered anatomy as a 

simplified geometric model utilizing a basic set of spherical harmonic volumes 63. The 

beamforming used a different set of weights sequentially applied to the source locations for 

individuating the contribution of each source to the activity recorded by the MEG sensors at 

each time-point 62,64. 

To assess the brain activity associated to the sound encoding task we submitted the 

beamformed reconstructed activity to first-level statistical analysis carried out by calculating a 

GLM for each time-point and at each dipole location 65. Then, after calculating the absolute 

value of the reconstructed time-series to avoid sign ambiguity of the neural signal, we 

conducted group-level analysis, using one-sample t-tests with spatially smoothed variance 

obtained with a Gaussian kernel (full-width at half-maximum: 50 mm). Finally, to correct for 

multiple comparisons, a cluster-based permutation test 65 with 5000 permutations has been 

calculated on group-level analysis results. Considering an a level = .05, we used a cluster 

forming threshold t-value = 1.7. 
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Static functional connectivity 

To investigate functional connectivity, we used the source localized data obtained by the 

beamforming algorithm. Then, this data was constrained into the 90 non-cerebellar regions of 

the AAL parcellation, a freely and widely-used available template 66, in line with previous 

MEG studies 67–69. This procedure has been carried out for: 2 – 8 Hz, the frequency band 

characterized by the highest power, according to previous analysis described above. We chose: 

2 – 8 Hz instead of: 2 – 5 Hz, as emerging from the power spectra statistics, to have a broader 

frequency range usually employed in studies on theta waves. Since the length of each musical 

tone was quite short (36 time-samples with our sampling rate of 150 Hz), to estimate more 

reliable SFC through Pearson’s correlations, we concatenated and sub-averaged groups of 

trials. This procedure returned a final time-series matrix M, made up by seven concatenated 

sub-averaged trials, with dimensions: 90 brain regions x 252 time-points. Then, we performed 

source leakage correction by orthogonalization 70 and calculated Pearson’s correlations 

between the envelope of the time-series of each couple of brain areas. This procedure was 

carried out for both task and resting state (used as baseline) and resulted in two 90 x 90 matrices 

for each participant, one for the task and one for the baseline. Those two matrices were 

contrasted by applying Wilcoxon signed-rank test for each couple of brain areas. The resulting 

z-values matrix Z was submitted to a degree MCS for assessing which brain area was 

significantly central within the brain network. In graph theory, the degree of each vertex v (here 

each brain area) of the graph G (here the matrix Z describing the whole brain connectivity) is 

given by summing the connection strengths of v with the other vertexes of G, returning a value 

of the centrality of each v in G 71. In this MCS, we computed the degree of each vertex of Z, 

obtaining a 90 x one vector (𝑠!). Then, we made 10000 permutations of the elements in the 

upper triangle of Z and we computed a 90 x one vector 𝑑",$ containing the degree of each 

vertex v for each permutation p. Combining vectors 𝑑",$ we obtained the distribution of the 

degrees calculated for each permutation. We considered significant the degrees stored in 𝑠! that 

were higher than the 99.9% of the degree distribution values calculated by permuting Z 10000 

times. The threshold of 99.9% derived from simulations of the MCS function with matrices 

composed by uniformly distributed random values. Setting a 99.9% threshold yielded to a 

number of false positive nearly equal to zero, while a more common 95% threshold gave rise 

to few false positives. 
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Phase synchronization estimation 

To unravel the brain dynamics of the sound encoding, we studied the phase synchronization 

over time between brain areas for theta band.  

By applying Hilbert transform 72 on the envelope of the reconstructed time-courses (matrix M 

described in the paragraph above) we obtained the analytic signal 𝑆(&!,!) expressed by the 

following equation: 

 

 

 𝑆(&!,!) = 𝐴(&!,!)𝑒
()(#!,%) (1) 

 

 

Where 𝐴(&!,!) refers to the instantaneous amplitude and 𝜃(&!,!) to the instantaneous phase of the 

signal for brain region 𝑛* at time 𝑡. A graphical depiction of Hilbert transform is reported in 

Figure 1C. Then, since matrix M was made up by seven concatenated sub-averaged trials, after 

estimating the instantaneous phase, we discarded the time-samples corresponding to the first 

and last trials to prevent boundary artefacts introduced by instantaneous phase estimation and 

we averaged the remaining five, obtaining a 90 brain region instantaneous phases x 36 time-

samples matrix M2. To estimate the phase synchronization between two brain areas 𝑛* and 𝑛+ 

of the matrix M2 at time 𝑡, we calculated the cosine similarity expressed by equation (2) 73: 

 

 

 𝐼𝐹𝐶(&!,&',!) =	 cos(𝜃(&!,!) − 𝜃(&',!)) (2) 

 

 

We carried out this procedure for each time-point and each couple of brain areas of the matrix 

M2, obtaining one 90 x 90 symmetric instantaneous functional connectivity (IFC) matrix for 

each time-point showing the phase synchronization of every couple of brain areas. This 

procedure was carried out for both task and resting state and is illustrated in Figure 1D. 

 

INSERT FIGURE 1 HERE 
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Brain dynamics of sound encoding 

To estimate the instantaneous connectivity matrix Zt associated to the task, for each time-point, 

we contrasted the task IFC matrix at time 𝑡 vs the resting state IFC matrices averaged over time 

by using Wilcoxon sing-rank test. Then, as described above, an MCS computed on Zt assessed 

the significantly central brain regions within the brain network for each time-point. We refer 

to this measure as instantaneous brain degree (𝐼𝐵𝐷!). Moreover, the sum (𝑠𝐼𝐵𝐷) over time of 

𝐼𝐵𝐷! for the brain area 𝑛 showed us its centrality within the whole-brain network during the 

whole sound encoding process, as expressed by equation (3): 

 

 

 𝑠𝐼𝐵𝐷(&) =	6𝐼𝐵𝐷(&,!)

,

!-.

 (3) 

 

 

Considering the noise inherent in the data and potentially added by signal processing, we 

focused our attention towards two main equally-long time-windows (Figure 1E1), expressed 

by the two 90 x one vectors 𝑠𝐼𝐵𝐷(&)./..0+1 and 𝑠𝐼𝐵𝐷(&).../220+1. Then, for each brain 

region n we calculated the vector difference 𝑣𝑡𝑑𝑜, as expressed by equation (4): 

 

 

 𝑣𝑡𝑑𝑜 = 	𝑠𝐼𝐵𝐷(&)./..0+1-	𝑠𝐼𝐵𝐷(&).../220+1 (4) 

 

 

Finally, to assess whether vector 𝑣𝑡𝑑𝑜 contained any significant value, we used MCS. 

Specifically, we made 10000 permutations of the matrices 𝐼𝐵𝐷./..0+1 and 𝐼𝐵𝐷.../220+1 and 

we summed the two matrices over the temporal dimension obtaining two 90 x one vectors, 

𝑣𝑡𝑜$ and 𝑣𝑡𝑣$. Subtracting 𝑣𝑡𝑣$ from 𝑣𝑡𝑜$ we obtained the difference vector 𝑣𝑡𝑑$ for the 

permutation p. Performing this procedure for every permutation, we obtained the distribution 

of the difference vectors. Then, we compared the original differences in vector 𝑣𝑡𝑑𝑜 with the 

distribution of difference vectors, independently for positive and negative differences, in order 

to get their associated p-values. Finally, we considered significant the brain areas whose p-

values were lower than: 
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 a3 = a/(ROIs ∗ tails) = 2.7e − 04 (5) 

 

 

where a corresponds to a level = .05, ROIs are the number of brain regions (90) and tails refers 

to the two tails of the normal distribution of difference vectors created by MCS. In other words, 

since our hypothesis was that some brain regions were different in the two time-windows, but 

we did not hypothesize which ones, we looked at the results for each brain region and each 

direction of the difference (time-windows one > time-windows two and vice versa). Therefore, 

we had to correct for multiple comparisons by calculating the new threshold a3 expressed by 

equation (5). 

 

Brain dynamics of sound encoding and individual differences 

In conclusion, as illustrated in Figure 1E2, we aimed to assess whether the neural networks 

underlying sound encoding differed across participants grouped according to general and 

auditory WM, and musical expertise. To highlight more clearly the differences, we selected for 

each WM test two groups formed by participants whose scores where at least one SD a part 

from each other. We adopted this approach since we wanted to include only groups of 

participants that were clearly differentiated by the tests. With regards to the WAIS test groups 

the best scorers had a range of 110 – 130, while the worst of 76 – 93 (according to the 

standardization of the WAIS test one SD corresponds to 15). In relation to MET test, we 

observed that our best scorers had a range of 43 – 52 while worst scorers of 28 – 36. The mean 

across all participants was 40.24 with a standard deviation of 6.28. Thus, also in this case the 

two groups were differentiated by at least one SD. Finally, for musicianship, we considered the 

24 non-musicians and the musicians (both pianists and non-pianists) that received a formal 

musical education for at least 10 years. Those participants were 24. This threshold was set in 

order to compare people with no musical expertise at all with individuals who engaged in a 

long-term professional education. Then, as described in the previous section, we focused on 

the number of times that each brain region was significantly central within the brain, 

contrasting those values across the two groups by an MCS analogous to the one described 

above. This procedure was carried out independently for the two WM and the musicianship 

analyses (since we had three independent tests, we divided the threshold a3 described by 
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equation (5) by three, obtaining a new threshold = 9.2e-05). In Figure SF1, to provide full 

information, brain regions centrality is depicted also for the remaining participants.  
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Data availability 
 

The code and multimodal neuroimaging data from the experiment are available upon 

reasonable request. 
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Figure 1. Overview of the analysis pipeline 
a – Participants were requested to attentively listen to a whole musical piece trying to remember it as much as 

possible. Subsequent analyses focused on two main time-windows of the sound encoding process, as illustrated 

by the red and blue lines b - MEG data during musical encoding has been collected, pre-processed and 

beamformed into source space within the 90 non-cerebellar brain regions of the AAL parcellation. Then, we 

calculated the envelope of the time-course of each brain region (top right). c – After computing analysis on brain 

activity and SFC, we investigated the DFC. To this aim, we computed the Hilbert transform of the envelope of 

each brain region and estimated the phase synchronization by calculating the cosine similarity between the 

instantaneous phases of each couple of brain regions. d – We obtained IFC matrices for both sound encoding task 

and resting state (used as baseline). Afterwards, we contrasted the task matrices vs the average of the baseline 

matrices to isolate the brain activity specifically associated to the sound encoding brain processes over time. e1 –  

We used the whole-brain connectivity measures to derive the significant centrality of the brain regions within the 

whole-brain network. This was done for the two main time-windows of sound encoding (1 – 110 ms and 111 – 

220 ms). e2 – Similarly, contrasting participants who were grouped according to their level of WM and musical 

expertise, we computed the significant centrality of brain regions associated to those different skills. 
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Figure 2. N100 component 

a – Waveform depicting the N100 component of the ERF. The plot shows the brain activity averaged over the 

significant gradiometer channels emerged by MCS. The grey area illustrates the significant time-window. Thinner 

lines depict standard errors. b – Power spectra depiction over time for all MEG channels. c – Gradiometers (top) 

and magnetometers (bottom) topoplots of the N100 component amplitude computed over the significant time-

window emerged by MCS. Values correspond to neural signal in fT/mm for gradiometers and fT for 

magnetometers. d – Neural sources of the N100 component (t-values from group level analysis). e – SFC 

estimated by computing Pearson’s correlations between the envelope of each couple of AAL brain regions. The 

left matrix refers to sound encoding task, while the middle one to resting state (used as baseline). Finally, the right 

matrix depicts the t-values emerged by contrasting task vs baseline. 
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Figure 3. Dynamic functional connectivity 
a – Connectivity depicted within a brain template showing the strongest connections between the significantly 

central brain regions and the rest of the brain during two main time-windows (1 – 110 ms on the left and 111 – 

220 ms on the right). For each couple of brain templates, the left one is a refiguration from the left hemisphere, 

while the right one a posterior depiction. b – Schemaball showing the strongest connections between the 

significantly central brain regions and the rest of the brain during the two time-windows. c – Significantly central 

brain regions within the whole brain network during sound encoding depicted in the two time-windows. 

In all depictions, the colorbar values refer to the temporal extent (in ms) of the brain regions significance.  
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Figure 4. General and auditory WM, musical expertise and brain dynamics 

a – Depiction within brain templates of the connectivity between the significantly different brain regions emerged 

contrasting participants’ groups and the rest of the brain. Left column refers to all participants to have an 

immediate visual comparison, middle-left column represents participants grouped for general WM abilities, 

middle right relates to auditory WM abilities, while the right column shows the contrast between musicians and 

non-musicians. For each couple of brain templates, the left one is a posterior refiguration from the left hemisphere, 

while the right one a posterior representation. b – Schemaball depiction of connectivity between significantly 

different brain regions emerged contrasting participants’ groups and the rest of the brain. c – Significant 

differences of brain regions centrality for contrasts among the different groups of participants. 

All colorbars depict high scorers and musicians with red shades and low scorers and non-musicians with blue 

shades. Values show the temporal extent (in ms) of the significant differences.  
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SUPPLEMENTARY MATERIALS 
 

As follows, supplementary materials related to this study and organized as supplementary 

figures (i) and tables (ii). In the cases when the supplementary tables were too large to be 

conveniently reported in the current document, they have been reported in Excel files that can 

be found at the following link: 

https://www.dropbox.com/sh/z1xdxllcf28ohd1/AACIXDQnoLYjoV7hOaPDmvB7a?dl=0 
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SUPPLEMENTARY FIGURES 

 

 

 

 
 
Figure SF1. Brain areas centrality according to participants’ WM skills and musical expertise 

Brain regions centrality depicted for all participants, divided according to their general and auditory WM skills as 

well as musical expertise. Best scorers are represented by the right plotted brains, middle scorers by the middle 

brains and worst performers by the left ones. Colorbars show the amount of time (in ms) when the brain regions 

were significantly central within the whole-brain network. a – Plots related to general WM skills. b – Plots linked 

to auditory WM skills. c – Plots connected to musical expertise. 

  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.11.421669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.421669
http://creativecommons.org/licenses/by-nd/4.0/


 39 

 

 

 
 
 
 

 

Figure SF2. Sound encoding SFC - schemaball  

Schemaball representation of the SFC between brain regions concerning the sound encoding task. 
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Figure SF3. DFC matrices of sound encoding  

Matrix representation of the DFC between brain regions during two subsequent time-windows of the sound 

encoding task. 
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SUPPLEMENTARY TABLES 

 

 

Table ST1 – Detailed information of significant N100 clusters for MEG sensor data 

Significant clusters of MEG sensors emerged from MCS contrasting Bach’s original vs 

variation. The excel file depicts those clusters with regards to significant channels and time-

windows. 

 

Table ST2 – Detailed information of significant N100 clusters for MEG source data 

Significant clusters of MEG sources emerged from MCS contrasting Bach’s original vs 

variation. The excel file depicts those clusters with regards to significant voxels, time-windows 

and averaged t-values for each voxel. 
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