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1 Abstract

Multi-omics data integration is widely used to understand the genetic architecture of disease. In multi-omics
association analysis, data collected on multiple omics for the same set of individuals are immensely important
for biomarker identification. But when the sample size of such data is limited, the presence of partially missing
individual-level observations poses a major challenge in data integration. More often, genotype data are available for
all individuals under study but gene expression and/or methylation information are missing for different subsets of
those individuals. Here, we develop a statistical model TIMEG, for the identification of disease-associated biomarkers
in a case-control paradigm by integrating the above-mentioned data types, especially, in presence of missing omics
data. Based on a likelihood approach, TIMEG exploits the inter-relationship among multiple omics data to capture
weaker signals, that remain unidentified in single-omics analyses. Its application on a real tuberous sclerosis dataset
identified functionally relevant genes in the disease pathway.

2 Introduction

Advances in next-generation sequencing (NGS) technologies have led to harness robust structural and functional
knowledge of the human genome. Thus, NGS provides unprecedented opportunities to understand health and disease
at the present time" ™. But the transformation of knowledge from bench to bedside lies in mining the massively
available data for genes and variants of high clinical relevance®. To understand the genetic architecture of disease,
genome-wide association studies®” and several other studies based on single-omics data such as gene expression or
DNA methylation have cataloged many disease-associated loci. Nonetheless, we are yet to understand the etiology
of many complex diseases as they occur due to an intricate interplay of various genetic elements®.

Multi-omics data integration serves as a springboard for unravelling such inherent complexity underlying the
genetic architecture of a disease™“. Data integration through statistical and/or computational models, plays a
major role in the prediction of genomic and environmental perturbations underlying disease/complex traits, and
transferring preclinical knowledge to clinical trials with increased speed and accuracy™™. Statistical models™ ™
for data integration enhance the predictive power of gene-disease association, by incorporating prior knowledge of
regulatory relation among different omics data and analysing them under one statistical framework.

With access to enormous data from several consortiums on various omics data, many data integration tech-
niques have been developed so far. Such methods comprise of dimension reduction techniques, feature selection
techniques using supervised, unsupervised or semi-supervised learning, graph or kernel-based techniques, Bayesian,
and frequentist approaches™ #'. But more often, integration methods combine multiple omics data from large
consortiums pertaining to different cohorts™%?. Such methods are prone to spurious prioritisation of associated
genes owing to substantial cross-cell-type variation®. For these reasons and to reduce the stratification bias due
to population diversity, increasing attempts are being made to create large scale multi-omics datasets recently by
combining multiple assays from the same set of samples?.
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However, individual research groups made substantial efforts for generating data on genetic variation, gene
expression, methylation, phenotype, etc. simultaneously from the same set of samples to study biomarkers. Realising
its great potential, data sharing platforms/repositories stored such heterogeneous data for the broader markets
immediate study® ?®. But unlike large consortium data, these data might have a relatively small sample size. In
addition, missing data occur across multiple omics. For example, while integrating information from different types
of genomic data, typically, genotype information are available for all the individuals but gene expression and/or
methylation information are often partially missing®. Yet gene expression and/or methylation assays are rarely
repeated for generating the missing data due to various reasons such as the huge cost of the assays?, degradation
of mMRNAZ and/or dearth of tissue samples, etc. So, a major challenge is to integrate multi-omics data in presence
of partially missing individual-level observations®.

Few Bayesian methods®*5” consider missing value imputation in multi-omics data integration model. But
sometimes the imputed data overshadow the contribution from the partially observed data for certain percentages
of missing data and generally involves a huge computational cost to decide whether or not to impute®. Moreover,
imputing the missing values might be misleading™ as it introduces bias and uncertainty in the data®™, especially
when the missing percentage is large and/or the reason of missing is unclear. To deal with the missing values it
is important to understand the data source, data structure, missing mechanism, and amount of missing data®™
along with its relation with the phenotype®'. Some network-based methods®™ considers partial multi-omics data
integration using similarity network but assumes the same contribution of different omics.

In this paper, we propose a multi-omics genetic association tool, called TIMEG (Tool for integrating Methylation,
gene Expression and Genotype), for identification of disease-associated biomarkers, by integrating single nucleotide
polymorphism (SNP), gene expression, and DNA methylation with partially missing omics data under case-control
paradigm. Our method elucidates the effect of multiple omics on the qualitative phenotype (case-control status). It
jointly dissects the information on various omics data, their inter-relationship, and the information from individuals
with completely as well as partially available omics data, without imputing the missing data. Using a likelihood-
based approach, TiMEG models the conditional distribution of the response variable using the missing predictor
variables 553,

The asymptotic distribution of our test statistic under the null hypothesis of no genetic association computes
p-values much faster compared to other computational methods like permutation-based techniques etc. Extensive
simulation confirms robust performance in terms of prediction accuracy of estimation in 10-fold cross-validation,
controlled type I error rate, high statistical power, and consistency of the test under different missing data schemes.
Application of our method on a real dataset of tuberous sclerosis (also called tuberous sclerosis complex (TSC))
patients and healthy controls (phs001357.v1.pl) identified functionally relevant genes and gene clusters belonging
to the pathways that are involved in TSC pathogenesis. Even with a small sample size and a substantially high
percentage of missing data, TIMEG could be used for the identification of biomarkers without losing any information.
This leads to capturing weaker signals that remain unidentified in larger single-omics data analysis.

3 Results
3.1 TiMEG method

In presence of a limited sample size, missing individual-level information on multiple assays poses a great loss
of information. Imputation might lead to bias in such a small sample size as the percentage of missing data is
large. We introduce TiMEG, a general analytical approach for the identification of biomarkers associated with a
disease by integrating multiple omics data with/without missing individual-level omics information under a case-
control paradigm. We integrate data from DNA sequencing, gene expression, and DNA methylation assays along
with covariates and qualitative phenotype (disease status) from the same set of samples. Figure 1 gives a general
structure of omics data availability. Based on Figure 1, we design our missing data schemes (Table 1).

TiMEG relies on a likelihood approach to gather information on the missing data by estimating the parameters in
the likelihood function containing incomplete omics data rather than imputing the missing data before the analysis.
To obtain the likelihood function where one or more omics data are missing, we find the probability distribution
of the response variable (disease status) conditional on the available omics information by (1) integrating out the
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missing variable from the joint likelihood function (see Methods), and (2) exploiting the interdependence among the
multiple omics data.

TiMEG incorporates the inter-relationship among different omics data to provide additional information in the
model. Since an individual’s gene expression level could be regulated by alteration in the DNA sequence, TIMEG
considers the effect of genotype and methylation on gene expression. Similarly, it incorporates the effect of genotype
on methylation and also the effect of genotype, methylation, gene expression, and covariates on disease status. We
assume that after appropriate transformation and normalization procedures, individual-level gene expression and
methylation data follows a bivariate normal distribution™.

3.2 Features of TIMEG

TiMEG is a statistical tool for the identification of disease-associated combinations of multiple omics. For example,
a significant combination provides a gene along with a cis-methylation and a cis-genotype (collectively called a ‘trio’
throughout the paper). In this article, we illustrate a detailed pipeline for the identification of significant trios, if at
least one component of the trio is associated with the disease.

Other advantages of TIMEG include the ability:

e to theoretically handle an unrestricted number of missing transcriptomic and epigenetic data as elucidated in
the Methods section and confirmed using simulations,

e to capture weaker signals that remain unidentified in a single-omics analysis by incorporating more information
from the inter-relation among multiple omics data in the likelihood framework,

e of robust performance in terms of prediction accuracy of estimation in 10-fold cross-validation, controlled type
I error rate, and high statistical power,

e of efficient incorporation of correlated omics information to decipher significant signals resulting in reduced
false-negative rate, and

e of prompt calculation of p-values using the asymptotic distribution as opposed to computation-intensive
permutation-based methods.

Since alteration in gene expression regulation is expected to alter phenotype more than any change in the DNA
sequence, the performance of TIMEG reveals that the effect (in terms of statistical power) of a certain percentage
of missing gene expression data is more than the same percentage of missing methylation data (see Simulations).
Missing both omics information for a subset of individuals will lead to much more loss of information (and therefore
statistical power) than missing gene expression or methylation data on any subset of equivalent size. Thus, TIMEG
agrees with the biologically accepted notion. Regardless of the sample size and/or percentage of missing omics data,
wet-lab researchers will be able to promptly identify significant biomarkers from their data by calculating p-values
using this tool.

3.3 Performance of TIMEG
3.3.1 Simulations

We perform extensive simulations to study the performance of TIMEG for varying percentages of missing omics data
under different missing data schemes. As more often gene expression and methylation data are missing for a subset
of the genotyped individuals, we assume that genotype, phenotype, and covariate data are available for the entire
sample of size n (say). As shown in Table 1, for these n individuals, there could arise four different scenarios (1)
none of the other two omics data are missing for a certain subset of size n1 (say), (2) only gene expression data are
missing for another subset of size ny (say), (3) only methylation data are missing for a third subset of size n3 (say),
and (4) both of the omics data are missing for the remaining subset n4 (say). Here, we consider two covariates, age
and gender and simulate them from N(40,6) and Bin(1,0.5) respectively. First, we simulate data under scheme 1
i.e when there is no missing observation.
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Figure 1: Structure of data availability for genotype (G), gene expression (E), methylation (M) and phenotype (P). Each letter indicates
the presence of corresponding data

Table 1: Missing data schemes

Data type
. Phenotype | Covariates | Genotype | Gene expression | Methylation
Sample siz
ny v v v v v
No v Ve Ve X v
ns v v v v X

Notation: ‘v’ indicates ‘available’; ‘X’ means ‘missing’ data. For n; individuals, no data is missing; for na(ns) individuals
only gene expression (methylation) data are missing; both gene expression and methylation data are missing for n4 individuals

For generating genotype data, we assume an SNP having two alleles A and a with A as a minor allele. Considering
di-allelic loci, we simulate genotype data from Bernoulli distribution assuming Hardy-Weinberg Equilibrium (HWE)
for controls with minor allele frequency (MAF) 0.2 for associated SNP. We generate genotypes for cases using additive
model for relative risk®® based on disease prevalence = 0.1, genotypes (AA, Aa, and aa), and relative risk = 1.2.

Next, we generate methylation and gene expression values using Eqs. 2 and 3 (see Methods) and assuming
the values of the parameters as ag = 1.3,a, = 24,7 = 1.9,74 = 0.6,7,, = 2.3. Methylation-gene expression
pair follows a bivariate normal distribution with variances 07 = o2 = 1. We assume that the means of the
bivariate distributions for cases and controls differ by 0.3. Now, based on covariates, genotype, gene expression, and
methylation, we simulate the phenotype of each individual using Bernoulli distribution in Eq. 1 (see Methods) with
parameters By = 1,8, = 0.011, 8, = 0.1, B, = 0.2, B, = 0.3. We generate data for n cases and n controls where
the sample size n is taken as 100, 150 and 200. For the sake of power comparison, we take equal sample sizes for
cases and controls. However, our method works for unequal sample sizes for cases and controls as well.

For the other three schemes, we generate complete data as above and remove some omics information to introduce
missingness. For the second scheme where only gene expression is missing, we remove varying percentages (10%,
20%, 40%, 60%, 80%) of gene expression values. Similarly, we remove varying percentages of methylation values for
the third scheme. For both omics missing scheme, we remove gene expression and methylation values for different
combinations of missing percentages (Table 2 and 3).

To estimate the parameters in the model, we maximise the likelihood function using a numerical optimisation
technique (see Methods). We construct a test statistic using the above estimates to test whether a trio is associated
with the phenotype. Here, we use the likelihood ratio test for testing the null hypothesis (Hp) of no effect of
genotype, gene expression, and methylation on affection status. The asymptotic distribution of this test statistic
follows a 2 distribution with 3 degrees of freedom under Hy. Figure 2 illustrates the QQ plot of sample quantiles
from the empirical distribution of the test statistic under Hy with respect to theoretical quantiles of x3 distribution,
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for a complete data and another dataset with missing data.

Sample quantiles
o
Sample quantik
10

T T T T T T T T T T
0 5 10 15 2 0 5 10 15 20

Theoretical quantiles Theoretical quantiles

Figure 2: QQ-plot with sample size 200 based on the performance of simulated data. Figure 2A: QQ-plot with no missing data, Figure
2B: QQ-plot with 10% both gene expression and methylation missing, 10% only methylation and 20% only gene expression missing

Based on 10000 datasets, we find that type I error rate of our test is controlled nearly at 5% level of significance
for each of the different sample sizes, missing data schemes, and percentages of missing omics data (Table 2). Hence,
our test statistic is conservative in controlling false positives and is useful for p-value computation in a real dataset.
To examine the performance of the test, we calculate statistical power under different missing data schemes and for
various percentages of missing omics data based on 1000 datasets. To find whether the power of the test increases
with an increase in sample size, we calculate power based on 5% cut-off points from 10000 datasets generated under
Hy, for different percentages of missing omics data corresponding to each missing data scheme. This would keep
the type I error rate fixed exactly at 5% level so as to make a uniform power comparison. Table 3 demonstrates
a substantial increase in power for every combination of missing data with increase in sample size. Under each
missing data scheme, when the percentage of missing data increases, the power decreases. Evidently, when there is
no missing data the power would be maximum. Thus, our test is consistent.

As mentioned earlier (in section 3.2), we now observe from Table 3, that TIMEG is more effected (as evident from
the drop in statistical power) by (1) a certain percentage of missing gene expression data than the same percentage
of missing methylation data and (2) missing both omics information for a subset of individuals than missing gene
expression or methylation data on any subset of equivalent size. For instance, let us consider a fixed sample size
200 (say) and a fixed percentage of missing omics data 40% (say). From Table 3 we note that the power of missing
only gene expression data (0.866) is less than that of missing only methylation data (0.936). Clearly, the power of
missing both omics (0.793) is less than the minimum of the above two. Such a difference in power is biologically
expected because alteration in gene expression is more informative than any other change in the DNA sequence.
Thus, for a subset of individuals, no information on any of the two mentioned omics causes more loss of information
compared to the presence of at least one of them. So, at the individual level, if possible, it is better to collect at
least one observation from gene expression or methylation. Thus, provided there exists a choice, less percentage of
missing gene expression is preferred than that of methylation because gene expression data is more informative.

When miscellaneous percentages of data are missing, we observe (from Table 3) a similar phenomenon as above.
For the fixed overall percentage of missing omics data (40%) and the fixed sample size (200), we consider three
combinations such as (1) 20% individuals have both omics missing, another 10% individuals have only gene expression
missing, and another 10% individuals have only methylation missing, (2) 10% individuals have both omics missing,
another 20% individuals have only gene expression missing, and another 10% individuals have only methylation
missing, and (3) 10% individuals have both omics missing, another 10% individuals have only gene expression
missing, and another 20% individuals have only methylation missing. The powers in the above three combinations
are 0.858, 0.867, and 0.907. So we observe that, even in a miscellaneous missing scenario with such marginal
difference in missing percentage of the omics, TIMEG is able to differentiate between statistical powers in accordance
with the biological expectation. These results indicate that our method is able to capture all available information
corresponding to every individual under study and its performance is robust to the percentage and scheme of missing
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omics data.

Table 2: Type I error rate under different combination of sample sizes and varying percentages of missing methylation
and/or gene expression values based on 10000 simulations

SS SS
O 100 150 200 O 100 150 200
missing /o massing /o

(0,0,0) 0.0534 | 0.0528 | 0.0533 |  (10,0,10) | 0.0860 | 0.0847 | 0.0708
(0,0,10) 0.0836 | 0.0805 | 0.0757 |  (0,10,10) | 0.0544 | 0.0519 | 0.0469
(0,0,20) 0.0828 | 0.0760 | 0.0758 |  (10,10,0) | 0.0536 | 0.0493 | 0.0537
(0,0,40) 0.0758 | 0.0803 | 0.0776 |  (20,0,20) | 0.0826 | 0.0810 | 0.0793
(0,0,60) 0.0826 | 0.0789 | 0.0741 (0,20,20) | 0.0557 | 0.0500 | 0.0476
(0,0,80) 0.0869 | 0.0848 | 0.0761 (20,20,0) | 0.0588 | 0.0502 | 0.0489
(0,10,0) 0.0552 | 0.0508 | 0.0497 | (40,0,40) | 0.0884 | 0.0773 | 0.0794
(0,20,0) 0.0538 | 0.0497 | 0.0520 |  (0,40,40) | 0.0546 | 0.0507 | 0.0455
(0,40,0) 0.0552 | 0.0533 | 0.0516 | (10,10,10) | 0.0551 | 0.0551 | 0.0566
(0,60,0) 0.0558 | 0.0537 | 0.0507 | (10,20,10) | 0.0557 | 0.0527 | 0.0530
(0,80,0) 0.0641 | 0.0570 | 0.0507 | (10,10,20) | 0.0556 | 0.0512 | 0.0502
(10,0,0) 0.0869 | 0.0755 | 0.0747 | (20,10,10) | 0.0536 | 0.0574 | 0.0495
(20,0,0) 0.0866 | 0.0796 | 0.0760 | (20,10,20) | 0.0556 | 0.0511 | 0.0573
(40,0,0) 0.0813 | 0.0783 | 0.0796 | (20,20,10) | 0.0523 | 0.0497 | 0.0501
(60,0,0) 0.0836 | 0.0871 | 0.0766 | (10,20,20) | 0.0523 | 0.0515 | 0.0467
(80,0,0) 0.0982 | 0.0854 | 0.0836 | (20,20,20) | 0.0538 | 0.0510 | 0.0518

missing% (m1,m2, m3) = (m1% both missing, m2% only methylation missing,

m3% only gene expression missing); SS: sample size for case (or control)

Table 3: Power under different combination of sample sizes and varying percentages of missing methylation and/or
gene expresssion values based on 1000 simulations

SS SS
o 100 150 200 o 100 150 200
missing /o massing /o
(0,0,0) 0.697 | 0.878 | 0.950 (10,0,10) 0.564 | 0.748 | 0.907
0,0,10 0.640 | 0.800 | 0.933 (0,10,10) 0.617 | 0.831 | 0.923
0,0,20 0.579 | 0.760 | 0.917 (10,10,0) 0.598 | 0.807 | 0.907
0,0,40 0.552 | 0.730 | 0.866 (20,0,20) 0.483 | 0.701 | 0.834

(

(

(

( )

( )

( )

(0,0,60) 0.485 | 0.676 | 0.829 0,20,20) | 0.581 | 0.767 | 0.901
(0,0,80) 20,20,0) | 0.506 | 0.722 | 0.844
(0,10,0) 40,0,40) | 0.327 | 0.483 | 0.642
(0,20,0) 0.646 | 0.830 | 0.933 | (0,40,40) | 0.514 | 0.745 | 0.879
(0,40,0) 0.647 | 0.817 | 0.936 10,10,10) | 0.567 | 0.762 | 0.889
( )
( )
( )
( )
( )
( )

0.445 | 0.634 | 0.795

0.605 | 0.842 | 0.937

( )
0,60,0 0.619 | 0.818 [ 0.931 | (10,20,10) | 0.568 | 0.753 | 0.907
0,80,0 0.596 | 0.802 | 0.916 | (10,10,20) | 0.543 | 0.724 | 0.867
10,0,0 0.612 | 0.804 | 0.911 | (20,10,10) | 0.524 | 0.755 | 0.858
( )
( )
( )

20,0,0 20,10,20 0.484 | 0.710 | 0.797
40,0,0 0.425 | 0.641 | 0.793 20,20,10 0.518 | 0.740 | 0.871
60,0,0 0.362 | 0.514 | 0.663 0.528 | 0.740 | 0.886
(80,0,0) 0.228 | 0.366 | 0.488 (2020 20) 0.497 | 0.695 | 0.831

missing% (m1, ma, m3) = (m1% both missing, m2% only methylation missing,

0.539 | 0.778 | 0.882

m3% only gene expression missing); SS: sample size for case (or control)

3.3.2 Performance evaluation

To evaluate the predictive performance of our method, we assess the prediction accuracy of our estimation by 10-fold
cross-validation (CV). We first generate a dataset that has a pre-assigned missing omics data structure and divide it
into two parts, test set and training set. Observations with no missing data are then split into 10 blocks. One block
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is selected as a test set and all remaining individuals form a training set. Based on the first training set, we find an
estimated (3 coefficients (using Eq. 1 in Methods) and classify the individuals in the corresponding test set to cases
and controls. We repeat this procedure for all 10 test sets and calculate average prediction accuracy, specificity,
and sensitivity for the dataset. For each pre-assigned missing omics data structure, we generate 100 datasets and
perform 10-fold CV on each of them. We find that the mean prediction accuracy for classifying an individual to case
or control group is more than 80% under all missing omics schemes and for different missing percentages (Table 4).

Table 4: Mean (+standard deviation) of prediction accuracy, specificity, sensitivity based on 10-fold cross validation
of 100 datasets for each pre-assigned missing omics data structure

missing % | Prediction accuracy Specificity Sensitivity
(0,0,0) 83.275 (£1.954) 0.836 (£0.020) 0.822 (+0.024)
(0,0,10) 83.464 (+1.839) 0.835 (£0.022) 0.834 (£0.022)
(0,0,20) 83.406 (+£1.993) 0.833 (£0.024) 0.833 (£0.024)
(0,0,40) 83.167 (£2.738) 0.825 (£0.034) 0.839 (£0.030)
(0,0,60) 82.775 (£3.040) 0.815 (£0.042) 0.841 (£0.039)
(0,0,80) 82.537 (+4.429) 0.815 (£0.059) 0.835 (£0.057)
(0,10,0) 83.531 (£1.773) 0.833 (£0.021) 0.838 (£0.022)
(0,20,0) 83.109 (£2.204) 0.827 (£0.027) 0.835 (£0.024)
(0,40,0) 83.133 (£2.259) 0.820 (+0.030) 0.843 (£0.026)
(0,60,0) 81.944 (+3.339) 0.805 (£0.041) 0.833 (£0.039)
(0,80,0) 82.500 (+4.533) 0.813 (£0.059) 0.837 (£0.058)
(10,0,0) 83.272 (+£2.274) 0.832 (£0.026) 0.833 (£0.025)
(20,0,0) 83.087 (£1.970) 0.827 (£0.023) 0.834 (£0.021)
(40,0,0) 82.800 (£2.546) 0.820 (+0.031) 0.836 (£0.029)
(60,0,0) 82.687 (+3.070) 0.809 (£0.039) 0.844 (£0.034)
(80,0,0) 82.712 (+4.619) 0.808 (£0.058) 0.847 (£0.051)
(5,0,5) 83.092 (+1.892) 0.828 (£0.021) 0.833 (£0.022)
(0,5,5) 83.405 (+2.068) 0.831 (£0.023) 0.837 (£0.025)
(5,5,0) 82.967 (+£1.828) 0.828 (+0.022) 0.831 (£0.021)
(10,0,10) 83.303 (+2.184) 0.829 (£0.027) 0.837 (£0.025)
(10,10,0) 82.991 (+2.134) 0.825 (£0.026) 0.835 (£0.025)
(10,5,5) 83.444 (+2.361) 0.831 (£0.028) 0.838 (£0.025)

missing% (m1, ma, m3) = (m1% both missing, m2% only methylation

missing, m3% only expression missing)

We observe that median prediction accuracy remains the same under all scenarios except when the percentage
of missing data is very high (Figure 3). Although the deviation of median prediction accuracy for an extremely
high percentage (~ 80%) of missing values compared to that for no missing data is small, the higher dispersions
indicate fluctuations of the prediction accuracies. This implies that the number of false-positive and false negative
classifications fluctuates for these extreme missing scenarios. We illustrated this increase in dispersion through the
plot of false-positive rate (1 - Specificity) versus misclassification rate ((1—prediction accuracy)/100) under different
percentages of missing omics data pertaining to different missing data schemes (Figure 4, S1-S3). It is evident that,
for comparatively smaller percentages of missing data, the dispersions are much less. Only for extreme conditions
of missing data, the dispersion is slightly higher. Thus, we find that our method provides a robust estimate of the
parameters under different missing omics schemes with a reasonable missing percentage and has high predictive
power.

3.4 Application to a real dataset

We applied our proposed method to a dataset on Tuberous Sclerosis Complex (TSC) patients and healthy controls
(phs001357.v1.p1)# obtained from the database of Genotypes and Phenotypes (dbGaP). TSC is a rare genetic
disorder that causes growth of non-cancerous (benign) tumours in the brain and other vital organs like kidneys,
heart, skin, etc., and in some cases leads to significant health problems.

After processing raw data (see Methods), we obtained 8036 gene expression data on 27 cases and 7 controls,
methylation data at 481470 CpG sites on 22 cases and 7 controls, and 1298477 whole-genome genotype data on
38 cases and 7 controls. We got data on all three omics for the control individuals. But only 12 case individuals
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Figure 3: Boxplot of prediction accuracy from 10-fold CV based on 100 datasets each with 200 cases and 200 controls under different
missing omics data structure. The black horizontal line indicates median prediction accuracy for the datasets with no missing information.
Each boxplot (from left to right) signifies one combination each viz. no missing information, only 10%, 20%, 40%, 60%, 80% gene
expression missing respectively, only 10%, 20%, 40%, 60%, 80% methylation missing respectively, 10%, 20%, 40%, 60%, 80% of both
gene expression and methylation missing respectively, 5% of both missing along with 5% of only gene expression missing, 5% of only
gene expression missing along with 5% of only methylation missing, 5% of both missing along with 5% of only methylation missing, 10%
of both missing along with 10% of only gene expression missing, 10% of both missing along with 10% of only methylation missing, 10%
of both missing along with 5% of only gene expression missing and another 5% of only methylation missing.

had complete omics information. 9 other case individuals had all omics data except gene expression data, another
group of 13 patients had no methylation data, and 4 patients had neither gene expression nor methylation data.
Phenotype or disease status, covariates (such as age and gender), and genotype data were available for all cases and
controls.

Since control samples are only a few, we considered those genes that have no missing gene expression value in
controls, while in case samples we allow up to 50% missing gene expression value. Next, we find the SNPs that are
within 2000 bp upstream and downstream of each gene. We considered these SNPs as the cis-SNPs to the gene.
Moreover, if any methylation site is associated with a gene, information such as the corresponding gene name and
chromosome number are known from dbGaP. So, methylation sites in the vicinity of a gene are considered as cis-CpG
sites corresponding to the gene. After filtering the data, we find the number of unique genes containing at least
one cis-SNP and one cis-CpG site reduces to 1691 and the total number of trios (comprised of one gene expression
with one cis-genotype and one cis-CpG site corresponding to the gene) is 1184436. In order to identify the trios
associated with the disease, we perform our test for all the mentioned trios, followed by Benjamini-Hochberg (BH)
multiple corrections (across all tests).
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Figure 4: Plot of Misclassification rate vs False positive rate (1-Specificity) for only gene expression missing. Figure 4A depicts no
missing data scenario while Figures 4B-4F respectively depict 10%, 20%, 40%, 60% and 80% only gene expression data missing scenarios

3.4.1 Interpretation of a TIMEG trio

For each significant trio, one or more of its components are associated with the disease. However, we are more
interested to observe whether TIMEG is able to identify loci with moderately low effect sizes that are missed by
single-omics analyses. Therefore, we find those combinations where TIMEG shows association but not the separate
analyses. We see that TIMEG successfully captures weaker signals that remain unidentified in single-omics analyses.
The probable reason might be that, single-locus from any omics data is unlikely to account for much of the variability
in the phenotype. Moreover, it is often indicated that an increase in the sample size might capture the loci with
moderate or low effect on the disease, but in that case, multiple testing burden also increases resulting in missing
out true signals. But our method reduces false-negative associations by efficiently incorporating correlated omics
information to decipher the significant signals associated with the disease. Particularly in this article, TIMEG tests
if there is any effect of at least one of the components of the trio on the phenotype, but it is also able to test the effect
of a single omics locus or combination of any two omics (see Methods). Emphatically, testing a single omics locus
using TIMEG will provide greater insight than traditional single-omics analyses because of incorporating additional
information from other available omics in the integrated model.

3.4.2 Functional annotation of TSC genes

It is well known that mutation in either of the two tumor-suppressor genes viz. TSC1%? and TSC2%¥, that code for
hamartin and tuberin proteins respectively are responsible for TSC. The hamartin/tuberin heterodimer encoded by
the interaction of T'SC1 and TSC2 gene products, function in complex pathways®. TSC1/2 genes and hence the
hamartin/tuberin complex plays a fundamental role in the regulation of phosphoinositide 3-kinase (PI3K) signaling
pathway®” that inhibits the mammalian target of rapamycin (mTOR) through activation of the GTPase activity of
Rheb™".

Using TIMEG we obtained 170 unique genes (see Supplemental Table S1) from 3283 significant trios (https:
//github.com/sarmisthal23/TiMEG), to be associated with the disease risk. These trios are significant due to the
combined effect of all its components but none of the single-omics analyses could identify any of the corresponding
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components. Among the contents of this list, there exits a trio corresponding to gene T'SCI with cis-genotype
kgp7096367 and cis-methylation site cg19350728 that shows no association in any of the single-omics analysis but
their combined effect is significant. TSC2 gene is excluded from our analysis because of a mismatch between probe
id and HGNC IDs (See Methods).

We use David software®®%® to identify the functional annotations of these genes. Based on David’s group
enrichment score, we obtained 5 clusters of our genes. The cluster with the maximum group enrichment score
is associated with the serine/threonine kinase pathway. This pathway has a strong functional relation with TSC
disease, as it is known that mutations in T'SC1/2 genes impair the inhibitory function of the hamartin/tuberin
complex, leading to phosphorylation (activation) of ribosomal protein S6 kinase beta-1 (S6K1), a serine/threonine
kinase which is a downstream target of mTOR™".

Another cluster is associated with the zinc-finger protein pathway. Recent findings have highlighted the impor-
tance of the zinc-finger family and its involvement in tumorigenesis®. Interestingly, this pathway has some special
implications in terms of brain tissues. Protein associated with Myc (called Pam) that is abundantly expressed in the
brain, has been found to be associated with the tuberin/hamartin complex®. The C terminus of Pam containing the
RING zinc-finger motif binds to tuberin®. Besides, Pam is a highly conserved nuclear protein that interacts directly
with the transcriptional-activating domain of Myc (a protooncogene that plays an important role in the regulation
of cellular proliferation, differentiation, and apoptosis and can contribute to tumorigenesis)* and regulates mTOR
signalling®”.

Studies have revealed that TSC receives inputs from at least three major signaling pathways (PI3K-Akt-mTOR,
ERK1/2-RSK1, LKB1-AMPK) in the form of kinase-mediated phosphorylation events that regulate its function as
a GTPase activating protein (GAP)®. But only two genes viz. TSC1/2 are widely known to be responsible for
the disease. Therefore, we searched whether any of our significant genes belonging to the same pathway as that
of TSC1 gene. Using David software we identified genes ACACA and CREBS5 in our list of significant genes, that
occur in two pathways to which T'SCT? belongs.

Studies show that T.SCI deficiency elevated ACACA expression and fatty acid synthesis, leading to impaired
epigenetic imprinting on selective genes; tempering ACACA activity was able to divert cytosolic acetyl-CoA for
histone acetylation and restore the gene expression program compromised by TSC1 deficiency®™. CREBS5 en-
codes CREB protein that serves as transcriptional activator of Rheb. Rheb acts as an immediate activator of
mTOR and in turn promotes tumorigenesis independently of TSC25”. Moreover, we identified other genes such as
JAKS,GNG4,FGFR2,EFNA2,LAMC?2 that belong to one of the pathways as that of TSC1.

3.4.3 Implication of TIMEG

It is important to note that these genes could not have been identified by single-omics analyses. Data integration of
different omics led to these findings even when the sample size is small and individual-level data is not available on all
omics. Thus, TIMEG holds the potential to understand the genetic architecture of a disease etiology by combining
three different omics data, even in presence of missing omics data, and when the sample size is not humongous.

Thus, if the sample size is not huge, studying single-omics data to find any new gene that is susceptible to
the disease risk is difficult because most of the known diseases have already been studied extensively. Moreover,
scientists nowadays are interested in developing drug targets with genetic evidence of disease association as they
are much more likely to get approved®™'. So, the identification of new disease-associated genes or biomarkers are
immensely important to understand the relation of disease with various genes in the pathways. Downstream/detailed
investigation of these biomarkers could provide a better understanding of the disease etiology and hence discovering
best drug targets that might lead to successful development of novel drugs.

4 Discussion

Multi-omics data integration elucidates understanding the genetic architecture of diseases and complex traits, by
incorporating additional information from different types of genomic data. But the presence of missing values poses
a major challenge. This is more crucial when the sample size is limited and/or the percentage of missing data is large.
Sometimes, these missing values occur due to biological reasons such as degradation of RNA or other technical issues.
But when resources are limited, more often these assays are not repeated for the missing omics data. Typically,
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genotype data, being less expensive than gene expression and DNA methylation assays, are available for the entire
sample. One option to analyse such data is using a sub-sample for which data are available for all omics. Clearly,
such a complete case analysis loses a great deal of information. Again, imputation might induce bias arising due to
the genetic diversity of reference data™%2. On the other hand, different types of omics data may be correlated and
associated with a disease, directly or indirectly. Thus, integrating evidence from the inter-relationship among omics
data provides additional information for biomarker identification.

We propose TIMEG, a tool for the identification of biomarkers integrating genotype, gene expression, and
DNA methylation in presence of missing data under the case-control paradigm. Based on a likelihood approach,
TiMEG is able to capture weaker signals that are often missed by single-omics analysis, by efficiently combining
the information on interdependence among multiple omics data. Rather than imputing the missing data before
the analysis, TIMEG accumulates information on the missing data by estimating the parameters in the likelihood
function containing incomplete omics data. For calculating the likelihood function for incomplete data, we evaluate
the conditional distribution of the response variable given the available information. This information not only
includes the available omics data but also the inter-relationship among different omics. Moreover, our method has
the ability to tackle an unrestricted number of missing transcriptomic and epigenetic data. Asymptotic distribution
of our test statistic derived under the null hypothesis of no association will lead to the fast calculation of p-values
compared to computation-intensive permutation-based techniques. Moreover, the normal approximation of the
sigmoid function® reduces the computation time to a great extent. Thus, TiMEG could be promptly applied by
the end-users on real datasets.

Simulation results confirm consistency of the test, robust performance in terms of prediction accuracy of es-
timation in 10-fold CV, controlled type I error rate, and high statistical power. Moreover, as the percentage of
missing values increases, the power of the test decreases as expected. Our method shows such robust performance
because we observe in the simulation that, for upto moderately high percentages of missing data, the power and
10-fold prediction accuracy of estimation are close to that of no missing data. Simulation results also indicate
the reduction in power of the test is not substantial for extremely large missing percentages. Besides, the median
prediction accuracy is nearly the same under all scenarios except when the percentage of missing data is very high
(Figure 3) but, the mean prediction accuracy of classifying an individual to case or control group is nearly the same
(Table 4). Only for extreme percentages of missing omics data, fluctuations in misclassification rate are slightly
higher (Figure 4, S1-S3). Thus, one of the major advantages of TIMEG lies in its applicability to moderately large
missing percentages and limited sample size for identification of biomarkers. Another advantage is that it identifies
a combination of multiple omics loci (or trio) as biomarkers. So, even when any one or all the components of a
significant trio has a small effect on the disease, TIMEG detects it. This is because, it is able to integrate multiple
omics loci with small effects together, such that their combined effect on the disease is moderately large.

More often, wet-lab researchers encounter missing data in multiple omics assays, when data are collected on
both patients and matched controls. One example of such an experiment is by Martin et al.?”. We applied our
method to their real dataset related to TSC that we obtained from dbGaP. The dbGaP data had genotype for all
individuals (both TSC patients and healthy controls) but gene expression and/or methylation data were missing for
a number of T'SC patients. Although mutations in TSC1 and TSC2 genes are widely known to be responsible for
the occurrence of TSC disease, several studies illustrated evidence of factors other than mutations in these genes, to
be involved in the etiology of the disease. Our method could identify a few more TSC associated genes at a much
smaller sample size combining different omics data. Some of the identified genes have been previously reported to
actively participate in the TSC disease causation®"53,

Although TiMEG tests a trio for possible association with a disease, it could be extended to test multiple SNPs
and multiple methylation sites along with gene expression. But, this will increase the number of parameters in the
model. One possibility is to replace multiple SNPs and methylation values by some combined value or score, for
example, the median of the methylation values under study etc. We plan to extend TiMEG for the accommodation of
multiple SNPs and CpG sites as future work. We have not considered any interaction effect among different omics
on the phenotype in this model. So, another extension of this work would be considering the interaction effect.
Moreover, extending TiMEG to accommodate mutations instead of SNPs is important for experiments related to
cancer. Some experiments collect data on quantitative phenotypes. TiMEG could be applied in such cases by
dichotomising the quantitative phenotype but it would lose information. Therefore, it is important to develop a
method for quantitative phenotypes, which might not be straightforward. However, another strength of TIMEG is
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that it can test the effect of a single omics locus or combination of any two omics immediately. Such tests of single
omics locus would provide greater insight than traditional single-omics analyses due to the additional insights from
the other omics data.

Moreover, application of TIMEG to the available data from public repositories might enhance understanding of
disease by identification of different biomarkers. A detailed functional analysis of the significant association signals
might facilitate understanding of the intricate genetic architecture of disease and therefore, translate the potential
stored in the genomic data to develop targeted therapies and aid in precision medicine research.

5 Methods
5.1 Model

Figure 1 provides a general missing data structure of multiple omics in different studies. The effect of this structure
on the identification of biomarkers is much more prominent in studies with a limited sample size compared to large
consortium data. The objective of TIMEG is to identify disease-associated biomarkers by integrating individual-level
information from genetic (SNP), transcriptomic, and epigenomic data along with their phenotype (disease status),
and covariates in such scenario. So, TIMEG explores the effect of multi-omics data on disease status and the inter-
relation among multiple omics for biomarker identification. To illustrate the scenario, we consider n individuals with
a known binary qualitative phenotype. For individual ¢ (i = 1,2,...,n), let Y;, G;, M; and E; denote respectively
phenotype, genotype, methylation, and gene expression, and X ; denote the vector of J covariates like age, gender,
and other environmental variables. We denote Y; = —1, for controls and Y; = 1, for cases. Conventionally, G; takes
value 0, 1,2 depending on the number of minor alleles present. Let M and E denote the vectors of continuous values
for n individuals and X be a matrix of order n x J that includes covariate values for all n individuals. Based on
the aforementioned omics data, we propose the following model for the i*"(i = 1,...n) individual.

P(Y; = 1) = 0(yi(Bo + BeEi + B M; + B,Gi + B, X)) (1)
M; = ag+ agGi + e (2)
E; = 70 +79Gi + ymM; + € (3)

where o(z) = H—% We assume that G; ~ Bin(2,p) where, p is the probability of occurrence of a minor allele and

(€11, €2i) ~ N2(0,0,0%, 02, p) where 07 and 03 denote the variances of €;; and ey; respectively, and p = Cor (e, €2;)-
Here, we consider a likelihood based approach for estimation of the parameters in Egs. 1 — 3. We denote the set of
all parameters as, 0 = (B0, Be, Bms By B Q05 Qgy Y05 YVgs Yms T4, 03, p)'. So, our joint likelihood function for the full
data (i.e. when there is no missing observation), will be:

fo(y, B, M, G|X) =[] foyi, Bi, Mi, G| X )
=1

—.

I
—

{fG(yi|Ei7Mia Gi, X)) fo(E;| M;, Gy, X ) fo(M;] G, Xz‘)fe(Gi\Xi)}

?

= {U(yi(ﬂo + ﬂeEi + ﬁmMi + 6gGi + 6;;X1)) (GQ)pGl(l - p)27Gi

1

3

7

X e e

ooV 2T o1V 2T

As discussed earlier, genetic variants are available for a large population but transcriptomic and epigenomic
data tend to be missing due to various reasons. So, we assume that genotype, phenotype, and covariate data are
available for the whole population while varying percentages of either gene expression or methylation or both the
omics are missing (Table 1). In the following section, we introduce different schemes of missing values across multiple
platforms.

(4)

1 *Q(EifA/U*'YgGi*'YmMi)Q 1 7ﬁ(kji7a07agGi)2}
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5.2 Missing values scheme

We suppose that among n individuals, n; individuals have complete data on all omics, phenotype, and covariates,
for ngy individuals only gene expression is missing, ng has only methylation values missing, and n4 individuals neither
have data on gene expression nor on methylation. Thus, depending on the missing data type(s), we can consider
three schemes of missingness (Table 1). In each case, we shall write the appropriate likelihood function. For that,
we need to consider the following lemma (for proof see Appendix A, Supplemental Material).

Lemma 1. If ¢(x) is the p.d.f. of a standard normal distribution, i.e. ¢(x) = ﬁe’%, —00 < x < 00, then
T axr — [ v —0x ay — 6 1
. dr = . 5
[oE o oo i) o
—o0 71 T3

where «, B, vy, §, 02 and 03 are constants.
Moreover, while deriving the likelihood functions, we approximate the logistic function in equation (4) by cumu-

lative distribution function of a normal variable®. This approximation relation is given by:

2

v A i 1 _zZ
o(v) = [m gb(ﬁ)dz where § = 7 and ¢(x) = \/—27_6 (6)

5.2.1 Scheme 1: Only partial gene expression data are missing

Consider a situation where phenotype, genotype, covariate, and methylation data are available for all n individuals
but, gene expression data are missing only for ny individuals. This indicates that ng = ny = 0, and n; = n — na.
Based on this missing observation scheme, we need to write the likelihood function using Lemma 1. But before that,
we introduce a few notations for the sake of lucidity.

Z; = (1,X;,Gi, M;, E;), w = (Bo, By By, Bm» Be) s Zio = (1, X4, Gi, M), Ziy = Es, wo = (Bo, By By Bm)'-
Now, in order to rewrite the likelihood function as in (4), we need a precise expression for P(y;|Z;), as given in
the following result. Note that Result 1 (for Proof see Appendix B, Supplemental Material) is related to only ne
individuals for whom gene expression data are not available.

Result 1. Using the model (1-3),

YiB(BoBLX i + ByGi + B M; + Beuo))

VB +yiB2 + 03

where o = Yo + Y9Gi + ymM;, for each i € S_g, the set of ny individuals for whom gene expression data are not
available.

Now without any loss of generality, we assume that for the first ny individuals all data are available whereas
the last ny individuals do not have gene expression data. Hence, using Result 1, the likelihood function (4) can be
written under the scheme 1 as:

P(yilZi.) = 0( (7)

Ly, E,M,G,X)

1 7%(Ei77077gGi77mMi)2}

e
1= O'2\/27T
- 2\ ¢ G\ T 1 s (Mi—ao—ayGi)?
(2w [T L)
2131 (G) H o1V2m

=1

=1

n

X izl;[H {g(yzﬂ(ﬁo + ByGi +ﬂ€mfﬁi§";§6mMi + Betto) )}

where no = n — ny.
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5.2.2 Scheme 2: Only partial methylation data are missing

We may have a situation where all types of data are available for n; individuals and for another group of ng
individuals all types of data except methylation data are available. So here we have no = ny = 0 and ng =n — ny.
So, the terms involving M; are not available for n3 individuals. Again as in the above scheme, we now introduce
few notations as:

Z; = (1,X;,Gi, Mi,E;), w = (B0, 8, Bg: Bm» Be)s Zio = (1, Xi,Gi, E), Zim = My, wo = (Bo, B, By, Be)-
To write down the likelihood function, we first evaluate the expression for P(y;|Z;) as given in Result 2 using
Lemma 1. Note that Result 2 (for proof, see Appendix B, Supplemental Material) is related to only ng individuals
for whom methylation data are not available.

Result 2. Using the model (1-3), for each i € S_yy,

ap+ta (e m —74G4 o2
(1O + B+ Gt B, + B ot eaClobm B 200, A )
\//82 +’8mo—2+1'y 20_

where S_ 1 is the set of ng individuals for whom no methylation data are available.

Now without any loss of generality, we assume that for the first ny individuals all data are available whereas the
last ng individuals do not have methylation data. Hence, using Result 2, the likelihood function (4) can be written
under the scheme 2 as:

P(yilZ;) =0

L0y, B, M, G, X) = [ [ o(yi(Bo + Be Ei + B Mi + ByGi + 8, X))

i=1

n

« k { 1 e_ﬁ(Ei_'YO_'YgG'i_'Y'rrzMi)Z 1 e—ﬁ(l\/li—ao—agGi)Q}
ooV 2T o1V 2T
! (20t0yGi)os+vm(Ei—v0—76Gi)o?

n yiﬁ(ﬁo + BeEi + ﬂng + B, X + B . 2J§+U%,\/2 . ))

i :
D' U
i=ni+1 \/ﬂ2 + ﬂm 0'2+1<7 2,), 2z

n RISV o )2

% H 1 e 2("2+(’1"’m) (Ei=v0—79Gi—vm(o+agGi))

where, ng =n —ny

5.2.3 Scheme 3: Methylation and gene expression data are partially missing

Lastly, under the most general missing value scheme, we consider ny individuals have only missing gene expression
values, ns individuals have only missing methylation values, n4 individuals have both missing gene expression and
methylation values, and the rest of the individuals have all types of data. Similarly, as for other schemes, we now
introduce few notations as:

Z; = (1,X,Gi, My, E;)', w = (Bo, By, By Bm» Be)s Zio = (1, X3, Gi)s Zign = (Ei, M), wo = (Bo, B, By)-
Then, we evaluate P(y;|Z;) as given in Result 3 (for proof, see Appendix B, Supplemental Material) using Lemma
1 in order to write the joint likelihood equation.

Result 3. Under the model (1-3), for each i € S_(g ),

Byi(Bo + ByGi + BLX i + Be(v0 + 14Gi) + (o + agGi) (Beym + Bim))
VB2 + 28203 + y2(Beym + Bm)?03

where S_ (g ary is the set of ny individuals for whom both expression and methylation data are missing.

P(yilZio) = o(

) (11)
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In order to write down the likelihood function, we assume, without any loss of generality, that first n; individuals
have all data, next no individuals have all data except gene expression data, next ng individuals have all data except
methylation data and for the remaining n4 individuals neither gene expression data nor methylation data are
available but phenotype, covariate, and genotype data are available. Clearly ny =n —ny — ng — ns.

Using Results 1 — 3, the likelihood function (4) under scheme 3 can be written as:
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where o = 0 + v9Gi + ymM; + B. X, Ny =n—nj; —ng — nz.

Next, for estimating the parameters in each of the likelihood functions, we use the L-BFGS-B method (in R
package ‘stats’), an iterative algorithm for numerical optimisation to find the maximum likelihood estimates of the
parameters. Thus, theoretically, our method is able to incorporate any amount of missing gene expression and
methylation data. In this paper, we focus on the identification of disease-associated trios (that is, a combination of
the gene along with its cis-genotype and cis-methylation site). Thus, the components of a significant trio is expected
to have a joint effect on affection status. Traditional single-omics analyses of each component are likely to miss these
loci unless the sample size is humongous and/or the technologies are tremendously improved. More information from
multiple omics on each individual, coupled with additional insights from the inter-relationship among the omics,
support the identification of significant loci even at smaller sample sizes compared to large single-omics analyses.

5.3 Hypothesis of interest

With the objective to identify a trio that may be associated with the disease or phenotype, we formulate the
hypotheses of interest as:
Hy : Be = B = By = 0 against H; : not Hy

Rejection of Hy would indicate association with one or more components of the trio with the disease. To test the
null hypothesis we adopt likelihood ratio test under a very general likelihood structure under various schemes of
missing data as discussed in Section 3.3. The test statistic for testing Hy would be,

sup L(0|data)

[ASISH)

sup L(f|data)
6cO,UO,

A=-2In (13)

where 6 is the vector of parameters in the likelihood function L, ©¢ and ©; are the parametric spaces under Hy
and H; respectively. Using standard asymptotic theory, it can be easily shown that the test statistic A follows x?2
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distribution with 3 degrees of freedom asymptotically under Hy. Usually, the sample sizes are considerably large so
that we can use the asymptotic distribution of A under Hy for a real dataset. This reduces a huge computational
burden while calculating the p-value in order to come to a conclusion.
If interested, one may test the effect of any two components (duos) such as genotype and gene expression, by
testing
Hy : Be = B4 = 0 against H; : not Hy

to find whether any combination of a gene and a genotype is associated with the disease. Other alternative hypotheses
may be framed as per the objective. But here we consider only the identification of significant trios.

5.4 dbGaP data on TSC

We obtained a real data from dbGaP (phs001357.v1.p1)% on TSC patients and healthy controls. Next, we anal-
ysed raw BAM files for gene expression data, IDAT files for genotype, and methylation data from brain tissues
only. Genotypes are generated using Illumina Infinium Omni2.5 SNP arrays, methylation using Illumina In-
finium HumanMethylation450 (HM450) BeadArrays, and gene expression using mRNA sequencing (RNAseq) for
patient and control samples. For cases and controls, we derive log-normalised count for gene expression data,
normalised-beta count for methylation data, and genotype data using Bioconductor package ‘DESeq2’;, ‘methy-
lumi’, and ‘CRLMM’ respectively in R software. For each probe ID, we find its transcription start and end
sites according to the human genome assembly 19 (hgl9) from the UCSC genome browser using Bioconduc-
tor package ‘TxDb.Hsapiens.UCSC.hgl9.knownGene’ (Carlson and Maintainer 2015). To have the same gene
nomenclature across all omics platforms we convert probe IDs to gene names (or HGNC IDs) (using http:
//hgdownload.cse.ucsc.edu/goldenPath/hgi9/database/refFlat.txt.gZ) and annotate the SNPs using Bion-
conductor package ‘humanomni258vliaCrlmm in R’.
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