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Abstract

The inflamed rheumatic joint is a highly heterogeneous and complex tissue with dynamic
recruitment and expansion of multiple cell typesthat interact in multifaceted wayswithin a
localized area. Rheumatoid arthritis synovium has primarily been studied either by
immunostaining or by molecular profiling after tissue homogenization. Here, we use
Spatial Transcriptomics to study local cellular interactions at the site of chronic synovial
inflammation. We report comprehensive spatial RNA-seq data coupled to quantitative and
cell type-specific chemokine-driven dynamics at and around organized structures of

infiltrating leukocyte cellsin the synovium.
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Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the joints. It
consists of two broad subsets, seropositive and seronegative. Seropositive RA, comprises two
thirds of patients, who often exhibit more severe symptoms, is a classical autoimmune disease
defined by the presence of rheumatoid factor (RF) or anti-citrullinated protein antibodies
(ACPA)'. RA pathogenesis involves complex interactions between fibroblasts and cells of the
innate and adaptive immune systems that lead to imbalanced secretion of pro- and anti-
inflammatory cytokines’. Studies of RA pathology have reported markers for an activated
synovial fibroblast state®®, while others revealed the contribution of adaptive immune responses
in isolated MHC class Il-dependent T cells in response to the production of specific
cytokines®®’. Activation and expansion of fibroblasts in the synovial lining also contributes to
changes in the extracellular matrix, further contributing to bone and cartilage destruction®.
Current existing therapies, mainly targeting the immune cell components, can reduce symptoms

and progression, but only ~60% of patients respond adequately to these treatments”.

Regions within sites of inflammation are filled with local accumulations of infiltrating
leukocytes that form more or less organized structures. Such aggregates histologically resemble
secondary lymphoid organs (SLOs) and are often termed tertiary lymphoid organs (TLOs)™.
Patients with large and developed TL Os have been reported to respond more poorly to existing
therapies™, but this is a topic of discussion in the field®*®. Recently, single cell RNA-Seq
studies have uncovered additional fibroblast and immune cell types and states associated with
RA and TLOs"*. However, the spatial organization of these cells and their impact on TLO

pathogenesisin RA remains unknown.
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We have previously developed Spatial Transcriptomics™®*® (ST), a method for high-throughput
transcriptome profiling that retains spatial information in tissues™®. In ST, transcriptomes are
barcoded directly from frozen tissue sections. Tissue sections are placed on a glass slide covered
with 1,000-2,000 features, each carrying a uniquely barcoded poly(d)T capture sequence
enabling spatial MRNA capture. Tissue sections are then stained with Hematoxylin and Eosin
(H&E) and imaged by transmitted light microscopy, followed by gentle permeabilization,
MRNA capture on the poly(d)T probes and RNA-seq. Analysis of the resulting data provides a

direct link between histology and RNA-seq.

Here, we used ST to spatially profile synovial tissues from seropositive and seronegative RA
patients. To address the genomic variability and profile the TLO-like structures, we have studied
gene expression as localized (2D) and three dimensional (3D) views. We report the resulting
gene expression signatures, quantitative single-cell morphological features and patterns of cell
migration patterns at the sites of synovial inflammation. This provides the first 3D, high-

throughput transcriptomic view of rheumatoid arthritis-affected synovial biopsies.

Results
3D gpatial profiling of RA synovia

To study the spatial organization in RA, we profiled 23 tissue sections by ST from five biopsies
collected from RA patients at the time of joint replacement; specimens comprise three knee and
two hip biopsies (Fig. 1, Supplementary Table 1). We optimized the technology for the tissue
with the specific characteristics of synovia (M ethods, Supplementary Fig. 1), collected profiles

from consecutive sections, and aligned and interpolated the data to create a 3D view within each
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biopsy (Methods, Fig. 1). This 3D sampling approach spanned larger distances creating the first

exploratory multidimensional view of an RA synovial tissue biopsy.

Variation within and between TL O-like structuresin RA

The biopsies from RA joints contained regions where infiltrating leukocytes (“infiltrates’)
organize into cell-dense areas to form TLO-like aggregates™ (Fig. 2a, left), which we annotated
manually. We also detected TLOs automatically as regions of high density and distinct cellular
topology (Methods, Supplementary Fig. 2). 80% of al manually-annotated infiltrates were in

regions with a cell density score higher than 70% (Supplementary Fig. 3).

We then looked for differences between and within infiltrates in one biopsy (RA1, RF'ACPA”
patient, knee, Methods). Analysis of spatially variable gene expression patterns revealed two
clusters of infiltrate features in the TLO-like aggregates (Methods, Supplementary Fig. 4,
Supplementary Table 2) varying in the expression of multiple genes including CD52, MS4A1
and FN1 (Supplementary Fig. 5). These differences were found not only between aggregates

but also within aggregates along its z-axis, which we could capture due to 3D sampling.

Cytokine signaling from spatially resolved profiles of the RA synovium

Next, using unsupervised clustering of the regions in the entire RA1 biopsy, we identified four
major spatial domains. Cluster 1 included 87% of all annotated RA1 infiltrate data points (Fig.
2a, middle, Supplementary Table 3), and Clusters 2-4 included the remainder and followed
radial spatial patterns at consecutively increasing distance from the infiltrate Cluster 1 regions

and had lower cell density scores (Fig. 2a).
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97

98 Inthe RAL Cluster 1 infiltrates, lymph node/TLO-associated genes (LTB and CCL19) and genes

99  associated with B cells, T cells and their cross talk (CXCL13, CD52, MS4A1 and CD79A), were
100  up-regulated (Wilcoxon’'s rank sum test, p<0.05), both as averaged signatures per spatial cluster
101 (Fig. 2b) and as high-resolution spatial maps (Fig. 2c). CXCL13/CCL21 expression has
102  previously been associated with formation of the spatial niches of T cellsin model systems® and
103 CXCL13isaso akey chemokine produced by T follicular and T peripheral helper (Tfh and Tph)
104  cell subsets used in promoting B-cell mediated responses™. CXCL12/CCL19 expression, on the
105 other hand, affects the spatial distributions of dendritic (DCs), B and plasma cells in TLOS.
106  Signaling driven by these cytokines has also been previously associated with overexpression of
107 LTA and LTB®, afinding recapitulated in our spatially resolved data (Wilcoxon's rank sum test,
108 p<0.05, Fig. 2b-c). In addition, we find downregulation of CXCL13 in TYROBP-high areas
109  (presentin 46% of all spatial Cluster 1 features) (Fig. 2b-c, Supplementary Fig. 4b). TYROBP-
110 mediated ITAM pathway activity has previously been associated with immune cell co-
111  modulation of bone cellsin RA%,
112
113 In areas neighboring TLO-like aggregates (Clusters 2-4), gene expression was characterized by
114  significantly increased (Wilcoxon’s rank sum test, p<0.05) levels of metall oproteinases (MMP3,
115 Fig. 2c) which are involved in extracellular matrix degradation. Fibronectin-1 expression (FN1,
116  Fig. 2c), an extracellular matrix protein expressed by fibroblasts that induces transforming
117  growth factor-beta secretion, and vascular cell adhesion molecule 1 expression (VCAMY, Fig.
118 2c), were also upregulated, supporting the hypothesis that newly recruited hematopoietic cells

119  areretained in the TLO-like structures®.
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120

121  The spatia organization generalized by 3D ST profiling of consecutive sections in another joint-
122  affected RA patient biopsy (RA2, RFFACPA™ patient, hip), with large infiltrates that spanned
123 most of the sampled area (Supplementary Fig. 6a). Unsupervised clustering partitioned the
124 regionsto three major clusters having distinct spatial expression patterns (Supplementary Table
125  3). Cluster 1 corresponded to the infiltrate areas (Supplementary Fig. 6a), comprisng 90% of
126  regions annotated by cellular morphology and high cell density (Supplementary Fig. 7), and the
127  two other clusters formed a radial pattern. Key genes followed similar patterns to those in the
128 RA1 sample, and included induction of CD52, LTB, CCL19 and M$4A1 infiltrates (Cluster 1,
129  Wilcoxon's rank sum test, p<0.05) and increased FN1, MMP3 and PRG4 expression in the
130 surrounding areas (Clusters 2-3, Wilcoxon’'s rank sum test, p<0.05, Supplementary Fig. 6b-d).
131

132 Dense volumetric analysis highlights chemokine driven T and B cell organization in TLO-
133 like aggregates

134 Closer examination of intra-infiltrate spatial patterns, distinguished T and B cel specific
135 variation within the infiltrates (Fig. 3, Supplementary Table 2). For example, following
136 infiltrate 6 (Fig. 3, Supplementary Fig. 6a) in 3D, we observed co-expression of CD52 and
137  MS$AALin highly localized patterns within TLO-like aggregates. Upregulation of CCL21/CCL19
138 in RA2 (present in 75% of all Cluster 1 features), was accompanied with high expression of
139 IL7R in 39% of spatia measurements (Fig. 3). In combination with CXCL13 upregulation in
140 RAL, these data suggests a process of self-organization of T and B cells in TLO-like aggregates.
141  We aso reproduced our observation that CXCL13 is downregulated in TYROBP-high areas,

142  which were present in 53% of all TLO-like spatial features. The CCL21" sites were restricted to
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143  the centers, while MZB1"XBPL1" sites were spatially overlaid with the outer rim of the TLO-like
144  structures (Fig. 3), suggesting localized prevalence of plasma cells on the TLO-like edge sites.
145  Similar analyses of the three additional samples (RA3-5) i.e. spatial and intra-infiltrate clustering
146 was performed (Supplementary Fig. 8a, Supplementary Tables 1-3). RA3, a specimen from a
147  patient having clinical characteristics similar to those of RA1-2 (RF'ACPA"), aso exhibited
148  significantly higher (Wilcoxon's rank sum test, p<0.05) expression of CD52 and MSA1 in
149 Cluster 1 that marked the cell dense infiltrate regions. These marker genes were also
150 significantly higher (Wilcoxon's rank sum test, p<0.05) in the same cluster denoting the TLO-
151 like structures in RA4-5 (RFACPA™, Supplementary Fig. 8b) although the overall expression
152 of these markers was significantly lower (one-sided t-test, p<0.05) in the RFACPA"
153  (seronegative) than in RFACPA" (seropositive) patients. In regions surrounding Cluster 1, RA3
154  was again smilar to the other two seropositive patients with upregulation of MMP3, FN1, PRG4
155 and TYROBP in Clusters 2-3 (Wilcoxon’'s rank sum test, p<0.05). In seronegative patients, we
156 did not detect the same gene expression patterns (Supplementary Fig. 8b). There, the same
157 genes were instead found to be downregulated in the areas surrounding the TLO-structures
158  (Wilcoxon's rank sum test, p<0.05). CCL19, which we and others reported as implicated in B
159 cdl distribution in the TLO sites, was also found to be significantly downregulated (Wilcoxon’'s
160 rank sum test, p<0.05) in the TLO-structures of seronegative patients. This was also the opposite

161 of what was observed in the three seropositive patients (Supplementary Fig. 8b).
162
163 Substantial variation in cell composition and spatial organization in the RA synovium

164 To relate the spatial profiles to the cellular composition of RA regions, we used a previously

165 published scRNA-seq reference® to define cell type specific signatures, and scored our spatial
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166 regionsin each of the five patients (Fig. 4, Methods). Out of the 13 cell types available in the
167 reference'®, plasma cells, macrophages, CD55" fibroblasts (F1) and THY 1" fibroblasts (F2B)
168 were found in every analyzed sample and section (Supplementary Fig. 9), while B cdll
169  abundances were significantly higher in the tissue volume of RA2 than in any other sample (one
170  sided t-test, p<0.05), with smilar significantly spatially enriched (one sided t-test, p<0.05) Tph

171  cdl typedistributionsin RA1 and DCsdistributionsin RA4.
172

173  In RA1-3, macrophage-enriched cell areas were on average significantly co-localized with higher
174  presence of F2B fibroblast cells in the whole tissue volume (Pearson's R 0.93; 0.80; 0.72,
175 p<0.05, respectively RA1-3, Supplementary Fig. 10a). Additionally, in specific structures
176  spanning both TLOs and surrounding areas in RA1-2, macrophage areas were found together
177  with plasma cell areas (Supplementary Fig. 10b-c). In RA3, we observed a trend in which
178 macrophage-rich areas were spatially correlated with F2B-rich areas in 2 out of the 9 TLO-like
179  structures (Pearson's R 0.99, p<0.05, Supplementary Fig. 10d), whereas F2B-rich areas
180 gpatially surrounding the TLO-structures were exhausted of plasma cells (data not shown,
181 Pearson's R -0.98, p<0.05). Interestingly, while the TLO-like structures in RA1 and RA2 were
182  dominated by both B cells and CD4" T cells, RA2 was again specific with significantly higher
183  (one-sided t-test, p<0.05) abundances of CD8" T cells and Tph célls. In RA3, CD8' T cells and
184  Tph cells were not detected in the tissue and only few B cells were detected (Supplementary
185 Fig. 9). No significant levels (one-sided t-test, p>0.05) of either B or T cell scores were seen in
186 RAA4-5 in the tissue volume. Conversaly, DCs were substantially increased in RA4-5 and not
187  contained to specific areas in the tissue volume nor was their expression spatially correlated to B

188 cdl presence. Thisis the opposite of what was observed in RAL, in which tissues recruitment of
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189 DCsin areas surrounding the infiltrates was associated with a decrease in B cells (Pearson'r R -
190 0.68, p<0.05, Supplementary Fig. 10e). In RA2, which had the largest TLO-like structures and
191 most B cells, DCs were few, their abundance significantly lower (one-sided t-test, p<0.05) as
192  compared to all other tissue volumes but these DCs were also spatially contained to B cell sparse

193  zones (Pearson’r R -0.60, p<0.05, Supplementary Fig. 10e).
194

195 Connecting H&E and spatial transcriptomics reveals unified spatial clusters of

196  morphological and molecular profilesfeatures

197  Connecting morphological data to tissue-specific molecular profiles®*?" helps translating
198 clinicaly relevant H&E information®® to spatialy resolved molecular signatures. We
199 hypothesized that digtinct cellular morphological features would also be reflected in different ST
200 profilesand in other spatial features, such as cell density. To explore this, after cell segmentation
201  of the H&E image accompanying spatial transcriptomics, we clustered the segmented cells by
202  their morphological features (Methods, Supplementary Fig. 11a) and then examined their

203  relation to other features from the H& E image and from ST.
204

205  Clusterl (RA2), which represents the areas of infiltration, was enriched in specific H& E-derived
206 cdl clusters (Supplementary Fig. 11b), and those were, as expected, also regions of high
207 cdlular density of small cells across all samples (Supplementary Fig. 11c,d). Conversdy,
208 Cluster4 (in RA2) was prevalent in other H& E-defined cell clusters and those were associated
209  with phenotypically large cell sizes (Supplementary Fig. 11d), in line with abundances of larger

210 cdl types like macrophages and fibroblasts in those distinct areas (Supplementary Fig. 11e-f).
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211  Across al sections, we distinguished quantitative descriptions of cellular morphology and
212  architecture in TLO-like areas and related them to single cell signatures (viewable in an

213  extension we developed for histoCAT?*, M ethods).
214

215 Discussion

216  Spatialy resolved genomic analysis of disease tissue holds promise for better precision
217  phenotyping of patients and assessment of treatment responses in a manner that combines
218 established histopathology with comprehensive molecular profiling. Here, we created an
219 exploratory 3D spatial gene expression catalogue comprising high-resolution transcriptome-wide
220  volumetric maps correlated to morphological features. This serves, to the best of our knowledge,
221 as the first combined morphological, spatial and transcriptional blueprint of tissue from
222  autoimmune disease patients, and spans multiple sections from five patient specimens.

223

224  The spatia clusters observed in synovial biopsies were distributed radially around the infiltrate
225  sub-regions, further confirming the uniqueness of signals and cell types present in those areas,
226  and highlighting the potential role of complex center-based TLO-like dynamics in these biopsies.
227  The spatial cell type organization throughout the 3D volume was transcriptionally connected to
228 genes related to extracellular structure organization, regulation of B cell activation and
229 proliferation, cytokine production and platelet degranulation in all analyzed samples.

230

231 Tph cels initiate B cel to plasma cell differentiation®®*! and given CXCL13 and IL-21
232 production, recruit more B cells to the TLO sites resulting in increased localized autoantibody

233 and cytokine production®. Interestingly, 34% of these regions expressing Tph signature genes

10


https://doi.org/10.1101/2020.12.10.420463
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.420463; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

234  included RASGRP2 overexpression in the RA2 seropositive patient tissue, a gene previously
235  reported in the development of destructive arthritis®. Fibroblast cells surrounding TLOs have, on
236  the other hand, been associated with propagation of T cell-rich zones and are considered marker
237  features of lymphoid neogenesis®. The CD55" fibroblast population was present in the synovia
238 lining (i.e. outer rim of the tissue) while CD90" (F2B) fibroblast populations were located closer
239 totheTLO regionsin all seropositive samples. Seronegative tissue volumes lacked robust signals
240  of ongoing adaptive immune responses and were characterized by increased presence of DCs.
241 DCs are involved in recruiting proinflammatory immune cells including macrophages,
242  neutrophils and monocytes in RA®. Specifically in the seronegative tissue volumes, we report
243 smilar spatial cell distributions - the fibroblast populations as well as macrophages were
244  significantly overexpressed (one-sided t-test, p<0.05) in the TLO structures; implicating a
245 completely different immunological ‘drive’ in the sites of inflammation as compared to spatially

246  deconvolved disease responses in seropositive tissues.

247

248  Combining morphological features and high-throughput spatial signatures could aid in clinical
249 diagnosis and overall disease management of RA. ST technology is compatible with
250 conventional histological staining, has fast turnaround times and user-friendly laboratory setup.
251  Future clinical studies using high-throughput spatially resolved transcriptomics® may be able to
252  provide higher statistical power and more insights into monitoring disease severity and
253  treatment-specific responses in seropositive and seronegative rheumatoid arthritis.

254

255 Methods

256  Patient information and sample collection

11
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257  Synovial tissue biopsies from knee or hip joints were obtained during orthopedic replacement
258 surgery. Additional patient information can be found in Supplementary Table 1. Ethical
259  approvals were granted by the Ethics Committee of Karolinska University Hospital (2009/1262-
260 31/3) and patients gave their informed written consent to participate in the study. The biopsies
261 were snap frozen in isopentane prechilled with liquid nitrogen within 15 minutes of collection
262  and kept at -80°C until embedding in OCT (Sakura, The Netherlands) and sectioning could be
263  performed.

264

265  Spatial transcriptomics

266  Tissues were cryosectioned at 7um thickness. Each section was carefully handled inside a
267 cryotome (CryoStar NX70, Thermo Fisher Scientific, Life Technologies, Paisey, UK) and
268 placed onto an individual array without any direct contact between the array surface and the
269 cryotome asto avoid contamination. All sections were placed in the same fashion onto individual
270  arrays. RA1 sections were sectioned at 21um distance from each other while the RA2-5 sections
271  were consecutives (z=7um). The whole dide was then warmed for 1 min at 37°C and
272 immediately fixed for 10 min at room temperature (RT) in a 2% formaldehyde solution (1:20
273  37% formaldehyde acquired from Sigma-Aldrich, Missouri, USA in 1x PBS pH 7.4). The
274  sections were dried with isopropanol and stained with hematoxylin and eosin (H&E). To ensure
275  proper staining, the dried sections were incubated for 7 min with hematoxylin (Mayer’s solution,
276  Sigma-Aldrich, Missouri, USA) followed by 2 min in bluing buffer (DAKO, Agilent, California,
277 USA) and 10 sec in eosin Y (1:20 in slightly acidic pH 6 Tris). To record both morphological
278 and positional information, each tissue area was imaged at 20x resolution (Olympus, Japan)

279 individualy with a Metafer system (MetaSystems, Germany). Image stitching was performed

12
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280 using VSide software provided by MetaSystems. The Spatial Transcriptomics protocol was

281 carried out as previously described"”*"®

. Sequencing was carried out on either the Nextseq 550
282  (RA1-2) or Novaseq 6000 (RA3-5) instruments,

283

284  Data mapping, annotation and filtering

285 Data was pre-processed using a recently published pipdine®. Raw sequencing reads were
286  demultiplexed using CASAVA according to the TruSeq LT index information. The forward read
287  contained 28-30 nt; 18 nt spatial barcode followed by a semi-randomized 9 nt unique molecular
288 identifier (UMI) (RA1-2) or randomized UMI (7 nts, RA3-5), while the reverse read contained
289  the 50 nt transcript information. The first five bases in the reverse read were hard trimmed and
290 then the rest of the read was quality trimmed based on the Burrows-Wheeler aligner. Trimmed
291  reads were mapped to the human genome reference (GRCh38) using STAR™. Mapped reads
292  were annotated based on Ensembl’s v79 information and then paired with their forward read,
293  UMI-filtered with a Hamming distance of 2 and counted using HTseg-count*. Quality control
294  statistics were computed as number of paired reads per spatial barcode; number of UMI counts
295  per spatia barcode and number of unique gene counts per spatial barcode. Data were normalized
296  per biopsy using a linear regression approach™ with a mean gene cutoff per ST spot prior to
297  normalization as recommended by the developer.

298

299 Imageregistration, alignment and visualization

300 Images were randomly down-sampled to approximately the same image size per patient biopsy.
301 Inthe RA1 biopsy, all sections were also cropped to contain approximately the same tissue areas.

302 Image background was removed using scikit-image® before registering the sections using
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303 SCALED_ROTATION (biopsies RA1 and RA2) and RIGID_BODY (biopsies RA3, RA4 and
304 RA5) from PyStackReg™. Transformation matrices were used to align the spatially resolved
305 count matrices in the same fashion. All of the following data processing was performed in R. As
306 the spatially resolved data is of restricted resolution, the data was interpolated using the akima
307 package in R over the tissue section area to aid in data interpretation. Volumetric expression
308 heatmaps were created that could be viewed interactively using the developed RShiny

309 application (https.//spatialtranscriptomi cs3d.shinyapps.io/3DSeTH/).

310

311 Singlecell segmentation

312 Single cell segmentation was performed by combining llastik 1.3.2%* and CellProfiler 3.1.8%.
313 Random forest classification implemented in llastik was used to train three distinct classes
314 (nuclei, membrane, and background) to enable the prediction and export of probability maps.
315 CdIProfiler was then used to segment those exported probability maps to create labeled single
316  cel masksfor downstream analysis.

317

318 Coupling single cell topology to ST data

319 ST 100um barcoded area locations were used to crop areas of 200x200 pixels from the
320 corresponding H&E images. These cropped and segmented images and imported into
321  histoCAT® for single cell quantification and spatial analysis. ST based phenotypic clusters were
322 matched to the single cell data as well as the manual infiltrate annotations. Each image was
323 saved asanindividual interactive session for histoCAT loading.

324

325 Phenotyping cell type calling
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326 We used PhenoGraph*’ with the code in https:/github.com/jacoblevine/PhenoGraph to define

327  phenotypic groups (PG) based on the morphological single cell readouts. We used histoCAT? to
328  extract mean marker expression as well as morphological features from the single cell mask. The
329 default setting (30 nearest neighbors) was used to define 25 distinct phenotypic groups using a
330 fixed seed for the Louvain method (random seed: 2).

331

332  Spatially resolved DE analysis

333  To cluster regions, most variable genes were selected as previously described* and principal
334 component analysis (PCA) performed on the subsampled and normalized region x gene
335  expression matrices, followed by two dimensiona t-stochastic neighbor embedding (tSNE)®.
336 Hierarchical clustering was done on the 3D tSNE reduced data to determine numbers of
337 individual clusters present in the whole tissue volume followed by differential expression (DE)
338 analysis using a likelihood ratio test”. DE genes between the clusters were called as
339 differentially expressed™® if satisfying the following criteria: p<0.001 and log ratio >0.5.

340

341 Singlecdl signatures

342  Single cell type signatures were downloaded from Stephenson et al**, and the top 200 markers
343 m; were kept for each cell type [ with the following criteria: average log fold change>1 and
344 FDR<5%. A total of 13 cdl types were present in the reference. ST matrix is defined as
345 region x gene matrix for atotal of i regionsand j genes. To score each cell type ¢, - assignment

346 per each individual spatial feature S; ;, the normalized ST matrix for was first subset for m; if

i

347  morethan 3m,; genesfor each S; ; were present; creating aR x K matrix. Then, we computed the
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348  correlation coefficient over each S; ; for each pair of genes (j, k) and atotal of R regions such

349 that:
350 }ﬁ = % 5=1Xj,r1j = [1,K]
1 R
Covyy = ﬁZ(Xj,r = X)) Kyer — X)) ke = [1,K]
r=1 T
_ Cov]-’k
> COTik = e ok

352 A gene-to-gene co-expression score was considered valid if Corr;, > 0.2 and these genes M
353 were used in al further analysis. Now, the spatial matrix was subset to create a R x M matrix
354  used in the cell typing task and a cell type expression score c;,- for each gene expression value
355 Y, wascalculated:

M
Cl,r = z Ym,r

m=1

356  The cell type assignment ¢, . was then scaled between the different cell types present in all the
357 regions:
Crmax = maxrcl,r'

Cl,r

Cl,r =

Cmax

358 To represent proportions of cell types in each region, we finaly scaled the data by the

359 cumulative cdl type score calculated for the region such that:

R
Coum = z Cl,r!l = [1,13]
r=1

C . = Cl,r
Lr —
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C,, represented the approximated contribution of each cell type [ in each region r. The gene
signatures M were aso tested for functiona enrichment with Gene Ontology terms with

PANTHER®. We reported all terms at 5% FDR.

Data and materials availability: Raw sequencing data is available through an MTA with

Vivianne Malmstrom (vivianne.malmstrom@ki.se). All processed data files are available at the

Single Cdll Portal (https://portals.broadinstitute.org/single_cell/study/SCPA460/).

Code availability: All code has been deposited to https://github.com/klarman-cell-

observatory/3dst.
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521  Supplementary Table 1. Patient information.

522  Supplementary Table 2. Differentially expressed genesin infiltrate structures (RA1-5).

523  Supplementary Table 3. Differentially expressed genesin all tissue sections (RA1-5).

524

525 Figures

526 Fig. 1. Sampling and spatial barcoding of rheumatoid arthritis samples. Synovial tissue
527  from two sites, hip and knee, was sampled and the biopsies cryopreserved in OCT compound.
528 The bhiopsies were cryosectioned and placed on a spatially barcoded microarray. Tissue sections
529 were H&E stained and the images recorded. While recording histology, positional information of
530 each spatia (x,y) feature was also tracked. Cells in the tissue were gently permeabilized and
531 mRNA molecules captured on the spatially barcoded poly(d)T capture probes. The cDNA
532  synthesis reaction was performed on the slide surface and mRNA information copied. Libraries
533 were prepared and pair-end sequenced. The data was processed so that spatially barcoded
534  expression information and the morphological images were registered and aligned. This resulted
535 ingpatial datatransformation, interpolation and imminent visualization.

536

537 Fig. 2. Spatial data clustering in RAL. (a) Morphological annotation, spatial clustering (color
538 code) and CD52 spatial expression (color scale). Pink marks spatial infiltrate positions that
539 ovelap between the morphological annotation and spatial clustering (Clusterl). (b) Average
540 expression of genes found in different spatial clusters. Statistical significance markings
541  (Wilcoxon's rank sum test) are displayed; 0.005<p<0.05 (*). (c) Spatial expression of nine
542  differentially expressed genes as determined by clustering. Color-scale denotes gene expression

543 and is shared between panels (a) and (c). Color code is shared between panels (a) and (b).
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544  Fig. 3. RA2 infiltrate dynamics. Zoomed in expression (color scale) of spatial clusters followed
545 by seven example genes (rows) in the Infiltrate6 region across in RA2 sections (columns).

546

547 Fig. 4. Spatial distribution of cell types in the rheumatoid arthritis synovium. Most
548  abundant cell types (color scale) shown in each of the five RA patient samples (columns) and
549  acrossall spatially prof Supplementary information for:

550

551  Supplementary Figures

552  Supplementary Figure 1. Fluorescent footprint and sequencing library statistics. (a) Images
553 of H&E stained tissue sections and corresponding fluorescent cDNA expression footprints
554  marking spatial gene activity for RA1 (knee) and RA2 (hip) patient biopsies. cDNA signal shows
555  optimized tissue handling for both RA sampling sites. (b) Sequencing library statistics for all
556 patient biopsies (RA1-5) reporting number of raw sequencing reads, UMIs and unique protein
557  coding gene counts per 100um spatial feature.

558

559  Supplementary Figure 2. Single cell segmentation and histoCAT analysis workflow. (a)
560 100um ST features were used to crop the respective H& E images as 100pum x 100um aress.
561 llastik software was used to train a random-forest classifier to create probabilities for three
562  classesin the H&E image (red: nuclei; green: membrane; blue: background). Those probabilities
563  were segmented using the CellProfiler software. Single cell areas (each cell has a discrete color
564 code) and density (color scale represents the percent of each cell’s area touching a membrane of

565 a neighboring cell) were quantified and visualized in the histoCAT software. In these
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566 representations, black background color denotes no cells were detected. (b) Same asin (@) for a
567 lesscell dense area overlapping a 100um ST feature.

568

569 Supplementary Figure 3. Cdlular morphology reproduces manual annotations. On average
570 80.20% of manually annotated infiltrates (red octagons) were present in ST features with a
571 density higher than 70 in all sections (left boxplot in pair) while at the same density threshold,
572 91% of al Clusterl ST features were present in cell dense areas (red circle; right boxplot in pair).
573

574  Supplementary Figure 4. Clustering analysis of RA1 infiltrate regions. (a) PCA plot of each
575 individual spatially resolved infiltrate feature present in any of the RA1 tissue sections. Samples
576 have been color-coded based on hierarchical clusters (cyan; purple). (b) Heatmap of
577 differentially expressed genes (color scale, rows) between the two clusters (color code, columns)
578 asdeterminedin (@). Color codeis shared between the panels,

579

580 Supplementary Figure 5. Spatial averages of annotated infiltrates in four RA1 biopsy
581 sections. (a) Volumetric morphological view with overlaid color-coded infiltrate regions present
582 inall four sections as determined by clustering (color code). Y ellow arrow marks an event where
583 theinfiltrate region changed its cluster assignment. (b) Barplots showing average expression of
584  three cluster driving genes;, CD52; MSA1 and FN1. Infiltrate regions are number coded (1-5)
585 and the numbering is shared between the panels. Error bars represent s.e.m. where more than one
586  gpatial data point was present.

587

26


https://doi.org/10.1101/2020.12.10.420463
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.420463; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

588 Supplementary Figure 6. Spatial gene expression in the RA2 patient biopsy. (a) Spatial
589 clustering (color code) as compared to morphological annotation and infiltrate clustering (color
590 code). Pink (color code) marks infiltrate regions that we found as overlapping between the
591 morphological annotation and spatia clusters (Clusterl). Color codes are shared between the
592 panels. (b) Average expression of some spatially variable genes in the clusters. Wilcoxon’s rank
593 sum test for PRG4, MMP3, FN1 and TYROBP denotes difference in Cluster 1 lesser than in
594  another cluster while for the rest of the genes, the same denotation describes differences greater
595 in Cluster 1 than the rest. Statistical significance markings (Wilcoxon's rank sum test) are
596 displayed; p>0.5 (ns), 0.005<p<0.05(*), 0.0005<p<0.005(**), p<0.0005(***). (c) Heatmap of
597  gene expression (color scale) where each column represents one spatial feature and each row a
598 gene. Spatia features (columns) have been color-coded in the top pane into two annotation
599 categories (pink; annotated infiltrates and dark grey; rest other annotation). In the bottom
600 annotation panel, spatial features were color coded based on their spatia cluster identities as
601 determined in (a). Example genes (rows) have been highlighted in the image. (d) Heatmap of
602 differentially expressed genes (color scale, rows) between the three infiltrate clusters (color code,
603 columns) as determined by infiltrate clustering in (a). Example genes (rows) have been
604  highlighted in theimage.

605

606 Supplementary Figure 7. Cellular mor phology improves manual annotation in RA2 patient
607 sections. On average 90% of manually annotated infiltrates (red octagons) were present in ST
608 features with a dendity higher than 70% in all sections (left boxplot in pair) while at the same
609 density threshold, 84% of all Clusterl ST features were present in cell dense areas (red circle;

610 right boxplot in pair).
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611

612 Supplementary Figure 8. Spatial and infiltrate clustering for RA3-5 patient biopsies. (a)
613  Spatia clustering (color code) as compared to clustering of only infiltrate regions (color code).
614 Pink (color code) marks infiltrate regions that we found as overlapping between the
615 morphological annotation and spatial clusters (Clusterl). (b) Average expression of some
616 gpatialy variable genes in the clusters. For RA3, Wilcoxon’'s rank sum test for PRG4, MMP3,
617 FN1and TYROBP denotesdifferencein Cluster 1 lesser than in another cluster while for the rest
618 of the genes, the same denotation describes differences greater in Cluster 1 than the rest. For
619 RA4, al differences are described as greater while for RA5; PRG4, FN1 and TYROBP are only
620 genes that denote lesser significant expression in Cluster 1. Statistical significance markings
621 (Wilcoxon's rank sum test) are displayed; p>0.5 (ns), 0.005<p<0.05(*), 0.0005<p<0.005(**),
622  p<0.0005(***).

623

624  Supplementary Figure 9. Single cell distributionsin the tissue volume. Cell type percentage
625 of 13 tested cell types (color code) shown in each section (column) and divided in groups of
626  TLOinfiltrates or therest of thetissue (“Rest”).

627

628 Supplementary Figure 10. Correlations between different spatial cell type abundances in
629 the rheumatoid arthritis synovium. (a) Correlation plots between macrophage and F2B
630 abundances in the whole tissue volume in RA1-3. (b-c) Correlation plots between macrophage
631 and plasma cell abundances in infiltrates or surrounding regions (“rest”) in RA1 and RA2. (d)
632  Correlation plots between macrophage and F2B abundances in two infiltrate regions in RA3. (€)

633  Correlation plots between dendritic cell (DCs) and F2B abundances in the whole tissue volume
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634 in RAl and RA2. Reported are Pearson’s correlation coefficients (R) and empirical p values for

635  each comparison.
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636

637 Supplementary Figure 11. Dimensionality reduced RA2 topological features correlate with
638 cell type expression. (a) 25 phenotypic groups (PG) clustering visualized in tSNE projection.
639 (b) ST cluster color codes overlaid on top of (a). (c) Cel density as percent cells touching
640 another cell overlaid on top of (). (d) Cell area overlaid on top of (a). () Macrophage cell type

641 scoreoverlaid ontop of (a). (f) Fibroblast (F2B) cell type score overlaid on top of (a).
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