

1 **Regions of Highly Recurrent Electrogram Morphology at Sites of Low Cycle Length**
2 **Accurately Reflect Arrhythmogenic Substrate for Atrial Fibrillation – Implications For a**
3 **New, Mechanism Guided Therapeutic Approach for Atrial Fibrillation**

4
5 Shin Yoo, PhD*, Markus Rottmann, PhD*, Jason Ng, PhD, David Johnson, BS, Bassel Shanab,
6 Anna Pfenniger, MD, PhD, Gail Elizabeth Geist, DVM, Suman Mandawa, BS, Amy Burrell, BS,
7 Wenwei Zhang, MS, J Andy Wasserstrom, PhD, Bradley P Knight, MD, Rod Passman, MD,
8 Jeffrey J Goldberger, MD, Rishi Arora, MD
9

10 * Both authors contributed equally to the study

11
12 ***Short Title: Electrogram Morphology in Atrial Fibrillation***

13
14
15
16 Affiliations: Feinberg Cardiovascular and Renal Research Institute, Northwestern University
17 Feinberg School of Medicine, Chicago, IL

18
19
20
21 **Word count:** 8919

22
23 **Correspondence:**
24 Rishi Arora, MD
25 Northwestern University-Feinberg School of Medicine
26 251 East Huron, Feinberg 8-503
27 Chicago, IL 60611
28 **Phone:** +1 (312) 503-3217, Fax: +1 (312) 926-6295
29 **E-Mail:** r-arora@northwestern.edu
30

1 **ABBREVIATION**

2	AF	Atrial fibrillation
3	AI	Anisotropy index
4	ANOVA	Analysis of variance
5	CFAE	Complex fractionated atrial electrograms
6	CL _R	Cycle length of the most recurrent electrogram morphology
7	DF	Dominant frequency
8	EGM	Electrogram
9	EMR	Electrogram morphology recurrence
10	FI	Fractionation interval
11	LAT	Local activation time
12	LAA	Left atrial appendage
13	LAFW	Left atrial free wall
14	PLA	Posterior left atrium
15	PRA	Posterior right atrium
16	RAA	Right atrial appendage
17	RAFW	Right atrial free wall
18	Rec%	Recurrence percentage
19	PV	Pulmonary vein
20	SD	Standard deviation
21	SEM	Standard error of the mean
22	ShEn	Shannon's entropy
23		
24		

1 **ABSTRACT**

2 **Background:** Although atrial electrograms (EGMs) are thought to reflect pathophysiological
3 substrate for atrial fibrillation (AF), it is not known which electrograms are suitable targets
4 during AF ablation. We hypothesized that electrogram morphology recurrence (EMR) better
5 reflects arrhythmogenic AF substrate than traditional frequency and complexity measures of AF.
6 In a canine rapid atrial pacing (RAP) model of AF, we assessed the relationship between EMR
7 and traditional AF electrogram measures, rotational activity in the atria, fibrosis, myofiber
8 orientation and parasympathetic innervation.

9 **Methods:** Persistent AF was induced in 13 dogs by RAP for 6-8 weeks. High-density epicardial
10 mapping (117 electrodes) was performed in six atrial sub-regions. EMR measures Recurrence
11 percentage (Rec%) and cycle length of the most frequent electrogram morphology (CL_R),
12 Fractionated Interval (FI), Organization Index (OI), Dominant Frequency (DF) and Shannon's
13 Entropy (ShEn) were analyzed before and after atropine administration. Myocyte fiber
14 orientation, amount of fibrosis and spatial distribution of parasympathetic nerve fibers were
15 quantified.

16 **Results:** Rec% was greatest in the appendages, and CL_R was lowest in the posterior left atrium.
17 Rec%/CL_R correlated with FI, OI and the complexity measure ShEn, but not with DF. All
18 electrogram measures were poorly correlated with fibrosis and myofiber anisotropy. Rec%
19 correlated closely with stability of rotational activity. Unlike other measures, Rec% correlated
20 closely with spatial heterogeneity of parasympathetic nerve fibers; this was reflected in CL_R
21 response to atropine.

22 **Conclusion:** EMR correlates closely with stability of rotational activity and with the pattern of
23 atrial parasympathetic innervation. CL_R may therefore be a viable therapeutic target in persistent
24 AF.

25 **KEYWORDS:** Arrhythmias, Atrial Fibrillation, Fibrosis, Mapping

26

27

1 **Introduction**

2 AF drivers such as rotational and focal activities are thought to sustain AF and are often located
3 near pulmonary veins (PVs).^{1, 2} PV isolation has been widely applied to treat patients with AF,
4 however, the suboptimal ablation outcomes in patients with persistent AF (< 50%) suggests that
5 other atrial regions besides the PVs may be responsible for sustaining AF activity.^{3, 4, 5} Multiple
6 electrogram based approaches have been promulgated to help identify regions of interest,
7 including mapping complex fractionated atrial electrograms (CFAE), dominant frequency (DF),
8 Shannon's entropy (ShEn), voltage, and focal impulse and rotor mapping (FIRM). None have
9 been established as a widely successful strategy. The challenges of using DF analysis for AF
10 electrograms have been shown^{6, 7}, underscoring the need for a new approach.

11

12 There are multiple factors that determine atrial electrograms in AF, including characteristics of
13 the recording electrodes, the activation rate, the underlying electrophysiologic properties, and the
14 underlying tissue anatomy/pathology. Analysis of the electrogram morphology may provide
15 information on the latter 3 components. Indeed, electrogram morphology recurrence analysis can
16 provide important classification of electrograms.⁸ We applied electrogram morphology
17 recurrence analysis in a preliminary clinical study of patients with AF⁹. In that study, multisite
18 mapping of the right and left atrium was performed. At each site, the recurrence percentage of
19 the most frequent electrogram morphology was determined (Rec%), as well as the cycle length
20 of this most frequent electrogram morphology (CL_R). None of the patients with shortest CL_R in
21 the right atrium had a successful outcome from left atrial ablation. Rec% provides a measure of
22 the consistency of electrogram morphology. This is expected to be high near AF drivers due to

1 the consistency of activation, but may also be high at other sites for anatomic reasons. Hence, the
2 CL_R provides an assessment of the sites with both consistent and rapid activation.
3
4 We hypothesize that measures of electrogram morphology recurrence – Rec% and/or CL_R – are a
5 more sensitive marker of pathophysiological substrate for AF than traditional electrogram
6 measures of AF. Indeed, even though several investigators have suspected that potential AF
7 mechanisms such as heterogeneous myocyte fiber orientation, ion channel remodeling, structural
8 remodeling (i.e. fibrosis)¹⁰⁻¹² and altered parasympathetic nervous system signaling¹³ may
9 contribute to AF electrogram formation,¹⁴ very few studies have systematically examined the
10 relationship between AF electrogram measures and the underlying structural and molecular
11 aspects of AF substrate. The present study was therefore designed to obtain a thorough
12 assessment of the electrophysiological and structural basis of AF electrograms – both established
13 frequency and complexity parameters and the recurrence morphology measures - by performing
14 detailed, high resolution epicardial mapping in all sub-regions of the left and right atrium in a
15 canine model of rapid atrial pacing (RAP) induced persistent AF. The specific goals of this study
16 were as follows: a) to assess the regional and sub-regional distribution of established measures of
17 AF frequency and complexity (DF, OI, FI and ShEn) and our novel recurrence morphology
18 analyses; b) to determine the precise relationship between these different measures; c) to
19 determine whether there is a relationship between electrophysiological substrate for AF –
20 specifically the ability of the atria to harbor rotational (reentrant) activities – and recurrence
21 morphology; d) to assess whether myocyte fiber orientation and fibrosis affect recurrence
22 morphology and e) to determine the relationship between parasympathetic nerve innervation and
23 recurrence morphology.

1 **Methods**

2 **Rapid atrial pacing model**

3 Thirteen purpose-bred hounds weighing 25 to 35 kg over one year in age were used for this
4 study. The dogs underwent rapid atrial pacing (RAP) for the AF electrogram mapping. The RAP
5 model for AF was performed similarly to previously published techniques.¹⁵ Sterile surgery for
6 pacemaker implantation was performed for each dog. Endocardial pacing leads were placed into
7 the right atrial appendage (RAA). The pacemakers were then programmed to pace at 600 bpm at
8 a minimum of four times the capture threshold. The dogs were paced for 6 to 8 weeks to induce
9 sustained AF. Once persistent/sustained AF had been induced, the animals were subjected to a
10 terminal, open-chest electrophysiological mapping study. The animal study protocol conforms to
11 the Guide for the Care and Use of Laboratory Animals published by the U.S. National Institutes
12 of Health (NIH Publication No. 85-23, revised 1996) and was approved by the Animal Care and
13 Use Committee of Northwestern University. Before undergoing pacemaker implantation and
14 electrophysiological mapping, all animals were premedicated with acepromazine (0.01 – 0.02
15 mg/kg) and were induced with propofol (3-7 mg/kg). All experiments were performed under
16 general anesthesia (inhaled) with isoflurane (1-3 %). Adequacy of anesthesia was assessed by toe
17 pinch and palpebral reflex.

18

19 ***In vivo* electrophysiological mapping**

20 ***AF Electrogram Mapping.***

21 At the terminal study, high-density epicardial activation mapping was performed using the
22 epicardial UNEMAP mapping system (Univ. of Auckland, Auckland, New Zealand) containing
23 130 electrodes (inter-electrode distance of 2.5 mm) and 117 bipolar EGM recordings at 1 kHz

1 sampling rate on a triangular plaque. Consecutive recordings were obtained using the GE Prucka
2 Cardiolab system (GE Healthcare, Waukesha, WI, USA). We collected bipolar electrograms
3 from six different regions and in quadrants of these regions in the left atrial free wall (LAFW),
4 posterior left atrium (PLA), left atrial appendage (LAA), posterior right atrium (PRA), right
5 atrial free wall (RAFW), right atrial appendage (RAA). AF EGMs were recorded for calculating
6 the following EGM parameters: 1) Recurrence Percentage (Rec%), 2) Recurrence Cycle Length
7 (CL_R), 3) Dominant Frequency (DF), 4) Organization Index (OI), 5) Fractionation Interval (FI)
8 and 6) Shannon's Entropy (ShEn).

9 *Recurrence Percentage (Rec%)*

10 EMR analysis of AF involves the creation of morphology recurrence plots, as previously
11 described¹⁶ with the modification of a paper by Eckmann et al.¹⁷ Rec% is defined as the
12 percentage of the most common morphology and was recently developed by our group for AF
13 electrogram analysis.¹⁸ The EGM morphology recurrence plots of AF recordings at each site
14 were calculated by cross-correlation of each detected activation using an iterative method¹⁸ with
15 all the other activations during a 10 s recording period (examples in Fig 1A). Rec% was then
16 computed as percentage of the number of the most common morphology against the total number
17 of activations.¹⁶ Electrograms with a high degree of similarity have cross-correlation values near
18 1, while dissimilar electrograms had values closer to zero.

19 *Cycle length of the most recurrent morphology (CL_R)*.

20 Cycle length of the most recurrent morphology was obtained by dividing the average cycle
21 length for all EGMs by Rec%.

22 *Dominant Frequency (DF)*.

1 DF is a frequency domain measure of the activation rate. The EGM signals recorded during a 10
2 s period were bandpass filtered with cutoff frequencies of 40 and 250 Hz and rectification. The
3 power spectrum of the EGM segment was computed using the Fast Fourier transform. The
4 frequency with the highest power in the power spectrum was considered the DF.

5 *Organization Index (OI)*

6 OI is a frequency domain measure of temporal organization or regularity^{19 20}. OI was calculated
7 as the area under 1-Hz windows of the DF peak and the next three harmonic peaks divided by the
8 total area of the spectrum from 3 Hz up to the fifth harmonic peak. It has been shown that AF
9 episodes with recordings with high OI are more easily terminated with burst pacing and
10 defibrillation.²⁰

11 *Fractionation Interval (FI)*

12 FI is the mean interval between deflections detected in the EGM segment.²¹ Deflections were
13 detected if they meet the following conditions: 1) the peak-to-peak amplitude was greater than a
14 user-determined noise level, 2) the positive peak was within 10 ms of the negative peak, and 3)
15 the deflection was not within 50 ms of another deflection. The noise level was determined by
16 selecting the amplitude level that would avoid the detection of noise-related deflections in the
17 iso-electric portions of the signal. FI is dependent on both the AF cycle length and the
18 fractionation of the EGM.

19 *Shannon's Entropy (ShEn)*

20 ShEn is a statistical measure of complexity.²² The 4000 or 3908 (depending on the 1kHz or 977
21 Hz sample rate) amplitude values of each EGM segment were binned into one of 29 bins with a
22 width of 0.125 standard deviations. ShEn was then calculated as:

$$23 ShEn = \frac{-\sum_{i=1}^{29} p_i \log_{10} p_i}{\log_{10} p_i}$$

1 In this equation, p_i is the probability of an amplitude value occurring in bin i .

2 *Parasympathetic Blockade*

3 Parasympathetic blockade was performed by atropine (0.04 mg/kg; Med-Pharmex Inc). AF
4 characteristics were analyzed at baseline, and after parasympathetic blockade.

5 *Detection of Reentries and their Stability*

6 Reentries were detecting based on phase singularity detections using the Hilbert phase and
7 sinusoidal recombination.²³ The phase $\varphi(t)$ of the complex-valued analytic signal $z(t)$ was
8 calculated as with the real and imaginary part of the analytic signal:

$$9 \quad \varphi(t) = \arctan \frac{\text{imag}(z(t))}{\text{real}(z(t))}$$

10 The stability was assessed as duration of observed reentrant activity over time.

11

12 **Tissue preparation for analysis**

13 After mapping the epicardial surface, we excised the heart out of the chest and immersed in ice-
14 cold cardioplegia solution containing (in mmol/l) NaCl 128, KCl 15, HEPES 10, MgSO₄ 1.2,
15 NaH₂PO₄ 0.6, CaCl₂ 1.0, glucose 10, and heparin (0.0001 U/ml); pH 7.4. All solutions were
16 equilibrated with 100% O₂. We cannulated the heart via the aorta and perfused with ice-cold
17 cardioplegia solution containing protease inhibitors (Millipore Sigma, P8340) until the vessels
18 were clear of blood, and tissue was cold. Atrial tissue was excised and 6 atrial regions were
19 dissected. Specimens from 4 dogs were fixed in 10% formalin and embedded in paraffin for
20 further examination.

21

22 **Masson's trichrome staining**

1 Paraffin sections with 5 μ m thickness were stained using Masson's Trichrome stain kit (Sigma)
2 as described previously.²⁴ In brief, paraffin was removed in Xylene and the sections were then
3 rehydrated with ethanol series. The sections were treated with Bouin's mordant at room
4 temperature overnight. The following day the sections were stained in Weigert's Iron
5 Hematoxylin solution and Beibrich Scarlet-Acid fuchsin. Then the sections were incubated in the
6 phosphomolybdic-phosphotungstic acid solution. The sections were stained in the Aniline Blue
7 solution. The sections were incubated in 1% Glacial acetic acid, were dehydrated through
8 ethanol series and were placed in Xylene, A coverslip was placed using cytoseal mounting media
9 on the sections.

10

11 **Examination of uniformity of fiber orientation and degree of fibrosis**
12 Masson's trichrome stained tissue sections at different depths (0, 200, and 500 μ m) from the
13 epicardial surface were digitized with the NanoZoomer 2.0-HT at 5x magnification. For
14 quantitative morphometric analysis, the whole sections were divided into quadrant by drawing
15 regions of interest. In order to quantify uniformity of fiber orientation in RAP atrial tissue
16 sections at 200 μ m and 500 μ m from the epicardial surface, we were able to automatically
17 quantify the orientation of the myocytes using an ImageJ plugin called FibrilTool.²⁵ Fibril-Tool
18 calculates a value referred to anisotropy index (AI), which is a measure of how parallel the fibers
19 are with respect to each other. We further analyzed the degree of fibrosis in Masson's trichrome
20 stained tissue section at 200 μ m levels using ImageJ with a macro²⁶ as there was qualitative
21 similarity among sections at different depths.

22

23 **Quantification of parasympathetic nerve fiber density by immunohistochemistry**

1 Cryosections from 6 atrial regions (LAFW, PLA, LAA, PRA, RAFW, and RAA) taken from -80
2 °C freezer were air-dried and underwent fixation with 75% acetone/25% ethanol and washed in
3 Tris-buffered saline with 0.5% tween 20 (TBS-T). The sections were then treated in 3%
4 hydrogen peroxide. After washing in TBS-T, the sections were blocked in protein block reagent
5 (Dako) and then incubated overnight with anti-mouse acetylcholinesterase (AChE, Millipore-
6 Sigma, MAB303) at 4 °C. The next day, the sections were washed in TBS-T and incubated with
7 HRP-conjugated anti-mouse secondary antibody (Dako, K4000). The sections were stained
8 brown by incubation of 3,3'-diaminobenzidine (DAB). After reapplication of protein block, anti-
9 rabbit antibody for dopamine β -hydroxylase (DBH; Chemicon, AB1538) was incubated for 1
10 hour at room temperature. After being washed in TBS-T, the sections were incubated with HRP-
11 conjugated anti-rabbit secondary antibody (Dako, K4002) for 30 minutes at room temperature.
12 The sections were stained blue by incubation of 5-bromo-4-chloro-3-indolyl phosphate (BCIP).
13 Cell nuclei were counter-stained in methyl green (Dako). Specimens were then dehydrated in
14 series of ethanol and xylene, mounted in cytoseal mounting media (Thermo Fisher Scientific).
15 Stained sections were examined using transmitted light microscope (Olympus) or TissueFax
16 system (TissueGnostics). Parasympathetic fiber density in the myocardium in acquired whole
17 scan images were quantified by TissueFax system and histoquest software (TissueGnostics).
18

19 **Statistical analysis**

20 All values were expressed as mean \pm standard error if samples were normally distributed. If
21 normality test was not passed, Box and Whiskers plot was employed. When comparing EGM
22 parameters or tissue characteristics between atrial regions, one-way ANOVA was performed
23 with Holm-Sidak method for pairwise multiple comparison if samples were normally distributed.

1 If normality test was not passed, Kruskal-Wallis one way ANOVA with Turkey test for pairwise
2 multiple comparison was performed. Effect of atropine on EGM parameters was determined by
3 paired t-test with a Wilcoxon rank sum test. Correlation of two variables was performed with the
4 Pearson Product Moment Correlation. The p values were considered significantly different at $p <$
5 0.05.

1 **Results**

2 In this study, we induced persistent AF in 13 dogs. We analyzed the novel EMR measures -
3 Rec% and CL_R - in six different regions in the left and right atrium and compared them with
4 established AF source EGM measures i.e. FI, OI, DF and ShEn. Next, we assessed whether
5 Rec% and CL_R can help predict the presence and stability of rotational (reentrant) activity in the
6 fibrillating atrium. We further investigated the effect of degree of fibrosis and myofiber
7 orientation on morphology recurrence. Since parasympathetic nerve remodeling²⁷⁻³¹ has been
8 shown to be an important mechanism underlying AF, we also investigated the effect of
9 parasympathetic innervation – and parasympathetic blockade – on EMR.

10

11 **EMR analysis in canine RAP of model of AF**

12 We analyzed the electrogram morphology in the different atrial regions during AF. Supplemental
13 Figure 1A demonstrates examples of cross-correlation of detected activation waveforms to
14 generate EMR plots. The N x N cross-correlation values are plotted in a two-dimensional color-
15 coded map as shown in Supplemental Figure 1B, where N is the number of activations. In this
16 plot, the x-axis and y-axis represent the first and the second activation template that is cross-
17 correlated. The points in red represent the combination with the highest cross-correlation values
18 near 1, while the points in blue represent the cross-correlation values near 0. The checkerboard
19 pattern shown in Supplemental Figure 1B suggests there is a dominant morphology that
20 periodically recurs for the duration of the recording.

21

22 **CL_R is lower in the PLA than in other regions of the left and right atrium**

1 We quantified Rec% in the different atrial regions of the canine RAP model of AF. We also
2 calculated the mean cycle length of the most recurrent electrogram morphology (i.e. CL_R)
3 because there may be areas with very recurrent electrogram morphology that may be too slow to
4 be likely drivers for AF. For this reason, in addition to quantifying the Rec% at a particular site,
5 CL_R also needs to be determined.

6 Figure 1A shows examples of recurrence plots and electrograms in each sub-region. Distinct
7 checkerboard patterns in the different sub-regions indicate that the activation patterns have
8 different levels of complexity. High-density mapping data revealed that Rec% and CL_R are
9 regionally variable (Figure 1B). The highest overall Rec% was measured in the appendages and
10 the lowest overall Rec% was observed in the PRA. CL_R was lower in the left atrium as compared
11 to the right atrium, with the lowest CL_R measured in the PLA.

12 Since spatial heterogeneity of electrophysiological characteristics is an important predictor of
13 arrhythmogenic substrate, we also analyzed the spatial distribution of Rec% in all mapped
14 regions. The coefficient of variation of Rec% showed significant inter-regional variability, being
15 more homogeneous in the LAA as compared to other atrial regions (Figure 1C and 1D).

16

17 **Rec% and CL_R are more closely correlated with Fractional Interval and Shannon's
18 Entropy than with Dominant Frequency.**

19 Next, we examined the precise correlation between Rec% and each of the rest of the electrogram
20 measures at each electrode within each mapped region. The methodology for this correlation
21 analysis is shown in figure 2A. As shown in figure 2B, R was ≥ 0.5 in nearly all regions for
22 Rec%-FI and Rec%-ShEn, with Rec%-OI being close to 0.5 in several regions. In distinct
23 contrast Rec%-DF was markedly lower than 0.5 in every region, indicating a very poor

1 correlation between Rec% and DF. Although correlations were somewhat weaker for CL_R, the
2 correlation between CL_R – FI and CL_R – ShEn was ≥ 0.5 in most regions. Taken together, Rec%
3 and CL_R are moderately correlated with fractionation and complexity measures (FI and ShEn) of
4 AF.

5

6 **Rec% strongly reflects stability of rotational activities in the fibrillating atrium**

7 Evidence of the presence of rotational activities and the characteristics of these rotational
8 activities have previously been shown to correlate with arrhythmogenic substrate in patients with
9 AF. We therefore examined AF sources showing 360 degree rotations in the local activation time
10 maps in all 6 regions (figure 3). Even though reentry was seen in all regions, the temporal
11 stability of confirmed 360 degree rotations (reentries) differed significantly amongst the regions
12 (figure 3A and 3B). The stability of these reentries corresponded closely to that of the regional
13 distribution of Rec%, with the rotations being most stable in the RAA, followed by the LAA, and
14 then the rest of the left and right atrium (figure 3B). The stability of rotational activities
15 correlated closely with Rec% (figure 3C).

16 Since Rec% appears to a highly sensitive marker of stability of reentry, we postulate that the
17 cycle length of the most recurrent morphology (CL_R) may be highly indicative sites of potential
18 ‘driver’ rotors (see Discussion).

19

20 **Rec% and CL_R are poorly correlated with fibrosis**

21 A major tissue characteristic thought to affect the number of potential wavefront directions is
22 fibrosis.³² Therefore, we quantified the extent of fibrosis in each region and assessed the
23 relationship between fibrosis and AF electrogram characteristics. Figure 4A shows representative

1 images from Masson's Trichrome stained sections. The amount of fibrosis was regionally
2 variable, being highest in RAFW and lowest in the two appendages. (Figure 4B). There was a
3 modest inverse correlation between fibrosis and FI and between fibrosis and OI (Figure 4C).
4 There was a non-significant trend towards a correlation between fibrosis and Rec% (and between
5 fibrosis and CL_R).

6

7 **Rec% and CL_R are not correlated with myofiber anisotropy**

8 Another tissue characteristic that has been shown to affect electrophysiological characteristics in
9 atrial and ventricular tissue is myofibril orientation, with non-uniform myofiber orientation (i.e.
10 greater anisotropy of fiber orientation) thought to be related to slow and inhomogeneous
11 conduction.^{3, 33, 34} We therefore assessed the uniformity of fiber orientation in all 6 regions of the
12 atria and assessed the relationship between myofiber anisotropy index (AI) and all electrogram
13 measures. Figure 5A demonstrates varying degrees of fiber orientation in terms of AI in
14 exemplary LAFW and LAA tissue sections. AI in the different regions in the atria is shown in
15 Figure 5B. The highest AI (i.e. most uniform fiber orientation) was seen in RAFW and the
16 lowest AI was seen in PLA. This regional variability of AI was different from the regional
17 heterogeneity of Rec% and CL_R discussed earlier. Indeed, AI was not found to be correlated with
18 Rec%, CL_R or other established EGM measures (FI, OI, DF and Shen; Figure 5C).

19

20 **Rec% is closely related to the spatial distribution of parasympathetic nerve fibers in the**
21 **atria**

22 Previous studies have shown significant parasympathetic nervous system remodeling in
23 the atria, with the parasympathetic nervous system thought to contribute to the formation

1 of substrate for reentry in the atria.¹³ We therefore examined the spatial relationship
2 between parasympathetic innervation and EMR. We also examined the effects of
3 parasympathetic blockade on EMR in each region of the left and right atrium.
4 We have previously shown that RAP leads to marked hypertrophy of parent nerve bundles in the
5 PLA, resulting in a global increase in parasympathetic and sympathetic innervation throughout
6 the left atrium²⁹. Parasympathetic fibers were found to be more heterogeneously distributed in
7 the PLA and LAFW when compared with the LAA²⁹. In the current study, we assessed the
8 relationship between spatial distribution of parasympathetic nerve fibers and underlying EMR.
9 Figure 6A shows an example of significant parasympathetic fiber heterogeneity in the left atrium
10 (i.e. high standard deviation); in contrast, figure 6B shows another region in the left atrium with
11 significantly more homogeneous parasympathetic fiber distribution (i.e. lower standard
12 deviation). We discovered that heterogeneity of distribution of parasympathetic nerve fibers was
13 closely correlated with absolute value and the spatial heterogeneity of Rec% in the RAP atria
14 (figures 6C and D respectively). Such a correlation with parasympathetic nerve distribution was
15 not noted with any other AF electrogram parameter (Supplemental figure X). Next, we examined
16 the effect of parasympathetic blockade on AF electrograms. With atropine, there was a
17 significant decrease in Rec% in the LAFW (figure 6E). Changes in CL_R were more pronounced,
18 with atropine leading to a significant increase in CL_R in the LAFW, but a significant decrease in
19 CL_R in the RAFW and RAA (figure 6F). While the reasons for the differences in direction of
20 change of CL_R between the left and right atrium are not clear (also see Discussion), these data
21 when taken together indicate that parasympathetic innervation strongly influences recurrence
22 morphology in the fibrillating atrium, with parasympathetic signaling leading to a significant
23 change in CL_R both atria.

1 **Discussion**

2 In our high-density biatrial epicardial mapping study in a canine model of persistent atrial
3 fibrillation, we evaluated electrogram recordings in each of six atrial sub-regions and performed
4 a comprehensive analysis of bipolar atrial electrograms.

5 Our results demonstrated that (1) the recurrence morphology measures Rec% and CL_R showed
6 significant inter-regional differences across the different atrial sub-regions, with Rec% being
7 greatest in the appendages and CL_R being lowest in the PLA; (2) across animals and regions,
8 Rec% and CL_R correlated moderately with measures of AF fractionation (FI) and complexity
9 (ShEn) but not with DF; (3) Rec% closely reflects stability of rotational activities
10 (arrhythmogenic substrate) in the fibrillating atrium; (4) Rec% and CL_R had no significant
11 correlation with atrial fibrosis and myofibril orientation; (5) the spatial distribution of Rec%
12 corresponded closely to the spatial distribution of parasympathetic nerves, with CL_R
13 demonstrating significant responsiveness to parasympathetic blockade.

14

15 **Limitations of previous attempts to find ‘order’ amongst complex AF activation patterns**
16 **using AF electrograms**

17 The detection of arrhythmogenic regions during AF is challenging. The dynamics of AF are
18 complex and not clearly understood. Electrogram morphology is dependent on complex
19 activation wavefronts during atrial fibrillation. Moe et al hypothesized that multiple,
20 simultaneous reentrant depolarization wavefronts circulate in the atria.³⁵ However, previous
21 studies from Cox et al. and also from Konings et al during intraoperative studies of AF showed
22 that the process of AF activation in isochronal maps is not random.^{36, 37} Further studies from

1 Wells et al., Ropella et al. and Gerstenfeld et al. confirmed that wave-front propagation during
2 AF is nonrandom by analyzing similarities between electrogram signals and by using the
3 coherence spectrum.³⁸⁻⁴⁰ In a related study, Botteron et al. analyzed the spatial organization of
4 AF and found that the correlation in sequences of activation decreased with the distance between
5 the recordings exponentially with a higher correlation in paroxysmal compared to chronic AF.⁴¹
6 As a result, several investigators have postulated that detailed examination of the frequency,
7 complexity and more recently morphology characteristics of AF electrograms may help
8 determine the presence of potential AF driver sources, as well as yield information on the nature
9 of electrical and structural remodeling in AF.^{42, 43} However, clinical attempts at using AF
10 electrograms to detect and eliminate arrhythmogenic source regions (by using ablation) have had
11 mixed results.⁴⁴

12 Nademanee et al demonstrated a high AF success rate after ablation at regions that demonstrated
13 CFAE.⁴⁴ However, similar success rates have not been reproducible, with a recent randomized
14 trial (STAR AF 2) demonstrating no benefit of additional CFAE ablation compared to
15 pulmonary vein isolation alone in patients with persistent AF⁴⁵. One reason for this seeming
16 failure of CFAE ablation is that the pathological basis of CFAE in AF is still not clear. Although
17 numerous studies have demonstrated that progressive atrial remodeling with AF persistence is
18 associated with increasing atrial substrate complexity including electrogram fractionation, these
19 studies used CFAE bipolar algorithms which were highly variable. Furthermore, most of these
20 bipolar algorithms were found to correlate poorly with markers of AF substrate complexity such
21 as conduction velocity, number of waves or breakthroughs per AF cycle, and electrical
22 dissociation.⁴⁶

1 Another electrogram measure that has evoked significant interest is cycle length. Regional
2 differences in cycle length were reported in previous studies.⁴⁷ These findings increased the
3 interest in the analysis of the frequency spectrum as a measure of the activation rate in animal
4 models.^{43, 48-50} Measurements of AF cycle length and frequency domain were used to guide
5 ablation in patients with AF using high-resolution analysis of the Fourier power spectrum with
6 its dominant frequency (DF).⁵¹⁻⁵⁶ However, no beneficial effect of DF ablation compared to PVI
7 alone has been convincingly demonstrated to date.^{56, 57} One measure of AF frequency that has
8 shown some clinical promise is Organization Index (OI). It has been shown that AF episodes
9 with high OI are more easily terminated with burst pacing and defibrillation.²⁰ Jarman et al
10 showed that at sites of organized activation, the activation frequency was also significantly more
11 stable over time.⁵⁸ This observation is consistent with the existence of focal sources, and
12 inconsistent with a purely random activation pattern. Ablation of such regions was associated
13 with organization of AF in remote atrial regions in patients using left atrial noncontact mapping.
14 However, this study approach was limited to focal sources.

15 Ganesan et al showed that ShEn – a marker of signal amplitude distribution - may be associated
16 with the pivoting zone of rotors in some cases.⁵⁹ They showed that ShEn could differentiate the
17 pivot from surrounding peripheral regions and thereby assist in clinical rotor mapping. However
18 this method was limited to the pivot point of reentry, which might be detected only within 2-3
19 mm distance to rotor core.

20 Most recently, ablation strategies have targeted AF rotors as detected by the Focal Impulse and
21 Rotor Modulation (FIRM) method.⁶⁰ Using a basket catheter with 64 electrodes, this method
22 provided a panoramic activation map and initially reported improved ablation outcome compared
23 with conventional ablation alone.⁶⁰ However, subsequent studies have not shown significant

1 success with FIRM mapping in patients with persistent AF.⁶¹ Furthermore, it has been felt that
2 the phase map algorithms may lead to possible over-detection of AF sources⁶².
3 Taken together, nearly all the electrogram based ablation strategies in AF – several of which
4 have used FFT-based analyses of the AF electrogram - have had significant shortcomings. Below
5 we discuss why novel electrogram morphology measures – Rec% and CL_R - may be superior to
6 more established electrogram measures of AF at determining arrhythmogenic substrate for AF.

7 **Measures of EMR - Rec% and CL_R - may be superior to traditional AF electrogram
8 measures in detecting AF sources**

9 In AF electrograms the relative timings and morphologies are constantly changing. Indeed,
10 recent studies have argued that the shape (morphology) and the repeatability of the electrogram
11 signal over time provides significant information that is not contained in more typical frequency
12 and complexity measures of AF. A recent study showed that a novel frequency analysis
13 algorithm and longer duration of AF electrograms in search for temporally stable AF drivers
14 have some promise⁶³. Ciaccio et al showed that in paroxysmal AF, CFAE repetitiveness is low
15 and randomness is high outside the PVs, particularly the left superior PV, and that in persistent
16 longstanding AF CFAE repetitiveness becomes more uniformly distributed at disparate sites,
17 possibly signifying an increasing number of drivers remote from PVs.⁶⁴ Ciaccio et al further
18 showed that the dominant repetitive electrogram morphology of fractionated atrial electrograms
19 has greater temporal stability in persistent as compared with paroxysmal atrial fibrillation⁶⁵. Our
20 group recently developed a new electrogram measure which analyzes EMR,¹⁶ using modification
21 of a method by Eckmann et al.¹⁷ Rec% describes the percentage of the most common
22 morphology, with CL_R signifying the mean cycle length of activations of the most recurrent
23 morphology.⁶⁶

1

2 In this study, we discovered that discrete morphology patterns exist in AF and can be identified
3 with the novel morphology recurrence plots. Rec% and CL_R are only somewhat correlated with
4 established electrogram measures of AF fractionation (FI) and complexity (ShEn), and provide
5 new information in quantifying the degree of repeatability of electrogram morphologies. We
6 therefore believe that these new measures provide more information about the nature of
7 arrhythmogenic AF substrate than more traditional electrogram measures for detecting AF
8 sources. To test this hypothesis, we performed a systematic analysis of the number, stability and
9 cycle length of 360 degrees rotational activity in different regions of the atria. Previous studies
10 have found a strong relationship between the presence and number of these rotational activities
11 and the ability of the atria to sustain AF⁶⁷. In the current study, the stability of rotational
12 activities in different sub-regions of the atria was found to correlate closely with Rec%. These
13 data serve as an important initial validation of our postulate that sites of high recurrence
14 morphology with the shortest cycle lengths – i.e. regions of low CL_R – may represent sites of AF
15 drivers. These data also support further testing of this hypothesis in patients with persistent AF,
16 by performing targeted ablation at sites of low CL_R.

17

18

19 **Pathophysiological basis of sites of high morphology recurrence – role of parasympathetic
20 nerve distribution in genesis of sites of high Rec% and low CL_R**

21 Since myofiber orientation and fibrosis are thought to be important contributors to the creation of
22 arrhythmogenic substrate for AF,³⁴ we systematically assessed the relationship between
23 recurrence morphology measures and underlying myofiber orientation/fibrosis. We found that

1 the appendages exhibited the highest Rec% compared to other parts of the left and right atrium.
2 Previous investigations have suggested that myocyte fiber orientation may affect AF
3 organization.⁶⁸ However, we discovered no clear relationship between Rec% and myocyte fiber
4 orientation in this study, indicating that other mechanisms may underlie this regional predilection
5 of high Rec% for the appendages. In contrast to Rec%, CL_R was lowest in the PLA in the
6 majority of animals. This is consistent with our initial clinical findings in patients with persistent
7 AF⁹, where CL_R was the lowest in the PVs or PLA in nearly two thirds of all patients with AF
8 (see below).

9 Some previous studies have attempted to relate EGM parameters such as voltage, fractionation,
10 and DF with tissue characteristics like fibrosis. Marrouche et al. showed that there is a
11 correlation between atrial fibrosis – as determined by delayed enhancement on MRI - and low-
12 voltage regions.⁶⁹ A related study suggested that CFAEs also correlate with regions of atrial
13 fibrosis.⁷⁰ However, a limitation of these studies was that they were not performed with high-
14 resolution contact mapping; furthermore, detailed microscopic tissue analyses of fibrosis and
15 anisotropy were not performed. In this study, we systematically analyzed several electrogram
16 measures simultaneously with high-resolution mapping during AF, and then performed detailed
17 tissue correlations with fibrosis. While the amount of fibrosis was discovered to be the least in
18 the appendages, we discovered only a weak correlation between AF electrogram measures – both
19 established measures as well as new morphology measures - and fibrosis.

20 An important upstream mechanism that is thought to contribute to electrical remodeling is
21 increased activity of the parasympathetic nerve.¹³ We and others have shown in recent years that
22 increased parasympathetic nerve sprouting – and a resulting increase in parasympathetic
23 signaling in the atrium – is an important mechanism that contributes to electrical remodeling in

1 the atrium.¹⁵ In a recent publication²⁹, we showed that rapid atrial pacing leads to marked
2 hypertrophy of parent autonomic nerve bundles in the PLA, resulting in a global increase in
3 parasympathetic and sympathetic innervation throughout the LA. Parasympathetic fibers were
4 found to more heterogeneously distributed in the PLA and LAFW when compared with the
5 LAA. The coefficient of variation of CL_R was also found to be significantly greater in the PLA
6 and LAFW than in the LAA indicating, suggesting that the spatial distribution of
7 parasympathetic nerve fibers likely impacts recurrence morphology. In the current study, we
8 assessed the precise relationship between spatial distribution of parasympathetic nerves and
9 EMR. We discovered that the spatial distribution of parasympathetic nerve fibers was more
10 closely related to $Rec\%$ than to any other electrogram parameter. Furthermore, parasympathetic
11 blockade led to a significant change in CL_R in sub-regions of the right and left atrium, again
12 demonstrating the significant contribution of parasympathetic signaling to EMR. Interestingly,
13 the direction of change of CL_R in response to parasympathetic blockade differed between the
14 right and left atrium. The mechanisms underlying these regional changes in CL_R may reflect
15 differences in the precise pattern of parasympathetic innervation, M_2 receptor and IK_{Ach}
16 concentrations between the atria^{71, 72} and need to be further investigated in future studies.

17

18 **Study Limitations**

19 Our animal model demonstrated smaller amount of fibrosis, mainly < 20%, than in previous
20 studies that have attempted to correlated AF EGMs with underlying atrial fibrosis. It is possible
21 that a stronger correlation between $Rec\%$ and fibrosis exists, in the presence of greater degrees of
22 fibrosis. Further investigations therefore need to be performed with models incorporating a

1 higher degree of fibrosis (30-40%). We detected fibrosis percentage only near the epicardial
2 surface. Further studies showing differences of endocardial and epicardial fibrosis and EGM
3 measures need to be conducted. The analysis of the parameter Rec% was calculated based on
4 ten-second electrogram recordings in duration and may miss longer-term recurrence patterns.
5 Further investigations of the dependency of Rec% on electrode size and geometry as well as
6 distance to the tissue, near and far-field effects and endocardial vs. epicardial mapping need to be
7 explored. Further investigations of the temporal stability of these new measures in paroxysmal
8 and persistent AF need to be investigated.

9

10 **Conclusion**

11 Traditional anatomically-guided ablation and attempts in the last decade to perform electrogram
12 guided AF ablation (CFAE, DF, FIRM) have not been shown to be a sufficient treatment for
13 persistent AF. We have extensively studied the mechanistic basis of a new electrogram guided
14 approach to AF that combines high morphology recurrence with fast cycle length. Our results
15 suggest that EMR parameters – Rec% and CL_R – may be more reflective of arrhythmogenic
16 substrate for AF than any previously studied electrogram parameter of AF. Further studies are
17 necessary to determine the effectiveness of this novel electrogram approach in guiding catheter
18 ablation of persistent AF.

19

20

21

1 References

- 2 1. Trayanova NA. Mathematical approaches to understanding and imaging atrial fibrillation:
3 significance for mechanisms and management. *Circ Res.* 2014;114:1516-31.
- 4 2. Heijman J, Guichard JB, Dobrev D and Nattel S. Translational Challenges in Atrial
5 Fibrillation. *Circ Res.* 2018;122:752-773.
- 6 3. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le
7 MA, Le MP and Clementy J. Spontaneous initiation of atrial fibrillation by ectopic beats
8 originating in the pulmonary veins. *N Engl J Med.* 1998;339:659-666.
- 9 4. Schotten U, Verheule S, Kirchhof P and Goette A. Pathophysiological mechanisms of
10 atrial fibrillation: a translational appraisal. *Physiol Rev.* 2011;91:265-325.
- 11 5. Ganesan AN, Shipp NJ, Brooks AG, Kuklik P, Lau DH, Lim HS, Sullivan T, Roberts-
12 Thomson KC and Sanders P. Long-term outcomes of catheter ablation of atrial fibrillation: a
13 systematic review and meta-analysis. *J Am Heart Assoc.* 2013;2:e004549.
- 14 6. Ng J, Kadish AH and Goldberger JJ. Technical considerations for dominant frequency
15 analysis. *J Cardiovasc Electrophysiol.* 2007;18:757-64.
- 16 7. Ng J and Goldberger JJ. Understanding and interpreting dominant frequency analysis of
17 AF electrograms. *J Cardiovasc Electrophysiol.* 2007;18:680-5.
- 18 8. Gordon D, Goldberger JJ, Arora R, Aistrup GL and Ng J. Searching for "order" in atrial
19 fibrillation using electrogram morphology recurrence plots. *Computers in biology and medicine.*
20 2015;65:220-8.
- 21 9. Ng J, Gordon D, Passman RS, Knight BP, Arora R and Goldberger JJ. Electrogram
22 morphology recurrence patterns during atrial fibrillation. *Heart Rhythm.* 2014;11:2027-34.
- 23 10. Zaman JA and Narayan SM. When Is Structure, Function? Revisiting an Old Concept in
24 Atrial Fibrillation. *J Cardiovasc Electrophysiol.* 2015;26:1361-3.
- 25 11. Daccarett M, Badger TJ, Akoum N, Burgon NS, Mahnkopf C, Vergara G, Kholmovski E,
26 McGann CJ, Parker D, Brachmann J, Macleod RS and Marrouche NF. Association of left atrial
27 fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in
28 patients with atrial fibrillation. *J Am Coll Cardiol.* 2011;57:831-8.
- 29 12. Nattel S, Maguy A, Le BS and Yeh YH. Arrhythmogenic ion-channel remodeling in the
30 heart: heart failure, myocardial infarction, and atrial fibrillation. *Physiol Rev.* 2007;87:425-456.
- 31 13. Chen PS, Chen LS, Fishbein MC, Lin SF and Nattel S. Role of the autonomic nervous
32 system in atrial fibrillation: pathophysiology and therapy. *Circ Res.* 2014;114:1500-1515.
- 33 14. Koduri H, Ng J, Cokic I, Aistrup GL, Gordon D, Wasserstrom JA, Kadish AH, Lee R,
34 Passman R, Knight BP, Goldberger JJ and Arora R. Contribution of fibrosis and the autonomic
35 nervous system to atrial fibrillation electrograms in heart failure. *Circ Arrhythm Electrophysiol.*
36 2012;5:640-649.
- 37 15. Gussak G, Pfenniger A, Wren LM, Gilani M, Zhang W, Yoo S, Johnson DA, Burrell A,
38 Benefield B, Knight GM, Knight BP, Passman R, Goldberger JJ, Aistrup G, Wasserstrom JA,
39 Shiferaw Y and Arora R. Region specific parasympathetic nerve remodeling in the left atrium
40 contributes to creation of a vulnerable substrate for atrial fibrillation. *JCI Insight.* 2019.
- 41 16. Ng J, Gordon D, Passman RS, Knight BP, Arora R and Goldberger JJ. Electrogram
42 morphology recurrence patterns during atrial fibrillation. *Heart Rhythm.* 2014;11:2027-2034.
- 43 17. Eckmann JP, Kamphorst SO and Ruelle D. Recurrence Plots of Dynamic-Systems.
44 *Europophys Lett.* 1987;4:973-977.

1 18. Ng J, Sehgal V, Ng JK, Gordon D and Goldberger JJ. Iterative method to detect atrial
2 activations and measure cycle length from electrograms during atrial fibrillation. *IEEE Trans
3 Biomed Eng.* 2014;61:273-8.

4 19. Takahashi Y, Sanders P, Jais P, Hocini M, Dubois R, Rotter M, Rostock T, Nalliah CJ,
5 Sacher F, Clementy J and Haissaguerre M. Organization of frequency spectra of atrial
6 fibrillation: Relevance to radiofrequency catheter ablation. *J Cardiovasc Electr.* 2006;17:382-
7 388.

8 20. Everett TH, Akar JG, Kok LC, Moorman JR and Haines DE. Use of global atrial
9 fibrillation organization to optimize the success of burst pace termination. *J Am Coll Cardiol.*
10 2002;40:1831-1840.

11 21. Lo LW, Lin YJ, Tsao HM, Chang SL, Hu YF, Tsai WC, Tuan DC, Chang CJ, Lee PC,
12 Tai CT, Tang WH, Suenari K, Huang SY, Higa S and Chen SA. Characteristics of complex
13 fractionated electrograms in nonpulmonary vein ectopy initiating atrial fibrillation/atrial
14 tachycardia. *J Cardiovasc Electrophysiol.* 2009;20:1305-12.

15 22. Ng J, Borodianskiy AI, Chang ET, Villuendas R, Dibs S, Kadish AH and Goldberger JJ.
16 Measuring the Complexity of Atrial Fibrillation Electrograms. *J Cardiovasc Electr.*
17 2010;21:649-655.

18 23. Kuklik P, Zeemering S, Maesen B, Maessen J, Crijns HJ, Verheule S, Ganesan AN and
19 Schotten U. Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a
20 concept of sinusoidal recombination and Hilbert transform. *IEEE Trans Biomed Eng.*
21 2015;62:296-302.

22 24. Kunamalla A, Ng J, Parini V, Yoo S, McGee KA, Tomson TT, Gordon D, Thorp EB,
23 Lomasney J, Zhang Q, Shah S, Browne S, Knight BP, Passman R, Goldberger JJ, Aistrup G and
24 Arora R. Constitutive Expression of a Dominant-Negative TGF-beta Type II Receptor in the
25 Posterior Left Atrium Leads to Beneficial Remodeling of Atrial Fibrillation Substrate. *Circ Res.*
26 2016;119:69-82.

27 25. Boudaoud A, Burian A, Borowska-Wykret D, Uyttewaal M, Wrzalik R, Kwiatkowska D
28 and Hamant O. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy
29 images. *Nat Protoc.* 2014;9:457-63.

30 26. Kennedy DJ, Vetteth S, Periyasamy SM, Kanj M, Fedorova L, Khouri S, Kahaleh MB,
31 Xie Z, Malhotra D, Kolodkin NI, Lakatta EG, Fedorova OV, Bagrov AY and Shapiro JI. Central
32 role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic
33 cardiomyopathy. *Hypertension.* 2006;47:488-95.

34 27. Arora R, Ng J, Ulphani J, Mylonas I, Subacius H, Shade G, Gordon D, Morris A, He X,
35 Lu Y, Belin R, Goldberger JJ and Kadish AH. Unique autonomic profile of the pulmonary veins
36 and posterior left atrium. *J Am Coll Cardiol.* 2007;49:1340-8.

37 28. Arora R, Ulphani JS, Villuendas R, Ng J, Harvey L, Thordson S, Inderyas F, Lu Y,
38 Gordon D, Denes P, Greene R, Crawford S, Decker R, Morris A, Goldberger J and Kadish AH.
39 Neural substrate for atrial fibrillation: implications for targeted parasympathetic blockade in the
40 posterior left atrium. *Am J Physiol Heart Circ Physiol.* 2008;294:H134-44.

41 29. Gussak G, Pfenniger A, Wren L, Gilani M, Zhang W, Yoo S, Johnson DA, Burrell A,
42 Benefield B, Knight G, Knight BP, Passman R, Goldberger JJ, Aistrup G, Wasserstrom JA,
43 Shiferaw Y and Arora R. Region-specific parasympathetic nerve remodeling in the left atrium
44 contributes to creation of a vulnerable substrate for atrial fibrillation. *JCI Insight.* 2019;4.

45 30. Koduri H, Ng J, Cokic I, Aistrup GL, Gordon D, Wasserstrom JA, Kadish AH, Lee R,
46 Passman R, Knight BP, Goldberger JJ and Arora R. Contribution of fibrosis and the autonomic

1 nervous system to atrial fibrillation electrograms in heart failure. *Circ Arrhythm Electrophysiol*.
2 2012;5:640-9.

3 31. Ng J, Villuendas R, Cokic I, Schliamser JE, Gordon D, Koduri H, Benefield B, Simon J,
4 Murthy SN, Lomasney JW, Wasserstrom JA, Goldberger JJ, Astrup GL and Arora R.
5 Autonomic remodeling in the left atrium and pulmonary veins in heart failure: creation of a
6 dynamic substrate for atrial fibrillation. *Circ Arrhythm Electrophysiol*. 2011;4:388-96.

7 32. Spach MS. Mounting evidence that fibrosis generates a major mechanism for atrial
8 fibrillation. *Circ Res*. 2007;101:743-745.

9 33. Arora R, Verheule S, Scott L, Navarrete A, Katari V, Wilson E, Vaz D and Olglin JE.
10 Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping.
11 *Circulation*. 2003;107:1816-1821.

12 34. Hocini M, Ho SY, Kawara T, Linnenbank AC, Potse M, Shah D, Jais P, Janse MJ,
13 Haissaguerre M and de Bakker JM. Electrical conduction in canine pulmonary veins:
14 electrophysiological and anatomic correlation. *Circulation*. 2002;105:2442-2448.

15 35. Moe GK and Mendez C. Basis of pharmacotherapy of cardiac arrhythmias. *Mod
16 Concepts Cardiovasc Dis*. 1962;31:739-44.

17 36. Konings KT, Kirchhof CJ, Smeets JR, Wellens HJ, Penn OC and Allessie MA. High-
18 density mapping of electrically induced atrial fibrillation in humans. *Circulation*. 1994;89:1665-
19 80.

20 37. Cox JL, Schuessler RB, D'Agostino HJ, Jr., Stone CM, Chang BC, Cain ME, Corr PB
21 and Boineau JP. The surgical treatment of atrial fibrillation. III. Development of a definitive
22 surgical procedure. *J Thorac Cardiovasc Surg*. 1991;101:569-83.

23 38. Gerstenfeld EP, Sahakian AV and Swiryn S. Evidence for transient linking of atrial
24 excitation during atrial fibrillation in humans. *Circulation*. 1992;86:375-82.

25 39. Ropella KM, Sahakian AV, Baerman JM and Swiryn S. The coherence spectrum. A
26 quantitative discriminator of fibrillatory and nonfibrillatory cardiac rhythms. *Circulation*.
27 1989;80:112-9.

28 40. Wells JL, Jr., Karp RB, Kouchoukos NT, MacLean WA, James TN and Waldo AL.
29 Characterization of atrial fibrillation in man: studies following open heart surgery. *Pacing Clin
30 Electrophysiol*. 1978;1:426-38.

31 41. Botteron GW and Smith JM. Quantitative assessment of the spatial organization of atrial
32 fibrillation in the intact human heart. *Circulation*. 1996;93:513-8.

33 42. Jalife J. Deja vu in the theories of atrial fibrillation dynamics. *Cardiovasc Res*.
34 2011;89:766-75.

35 43. Mansour M, Mandapati R, Berenfeld O, Chen J, Samie FH and Jalife J. Left-to-right
36 gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart.
37 *Circulation*. 2001;103:2631-6.

38 44. Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T,
39 Khunnawat C and Ngarmukos T. A new approach for catheter ablation of atrial fibrillation:
40 mapping of the electrophysiologic substrate. *J Am Coll Cardiol*. 2004;43:2044-53.

41 45. Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R, Macle L, Morillo
42 CA, Haverkamp W, Weerasooriya R, Albenque JP, Nardi S, Menardi E, Novak P, Sanders P and
43 Investigators SAI. Approaches to catheter ablation for persistent atrial fibrillation. *N Engl J Med*.
44 2015;372:1812-22.

45 46. Lau DH, Maesen B, Zeemering S, Kuklik P, van Hunnik A, Lankveld TA, Bidar E,
46 Verheule S, Nijs J, Maessen J, Crijns H, Sanders P and Schotten U. Indices of bipolar complex

1 fractionated atrial electrograms correlate poorly with each other and atrial fibrillation substrate
2 complexity. *Heart Rhythm*. 2015;12:1415-23.

3 47. Harada A, Sasaki K, Fukushima T, Ikeshita M, Asano T, Yamauchi S, Tanaka S and
4 Shoji T. Atrial activation during chronic atrial fibrillation in patients with isolated mitral valve
5 disease. *Ann Thorac Surg*. 1996;61:104-11; discussion 111-2.

6 48. Skanes AC, Mandapati R, Berenfeld O, Davidenko JM and Jalife J. Spatiotemporal
7 periodicity during atrial fibrillation in the isolated sheep heart. *Circulation*. 1998;98:1236-48.

8 49. Mandapati R, Skanes A, Chen J, Berenfeld O and Jalife J. Stable microreentrant sources
9 as a mechanism of atrial fibrillation in the isolated sheep heart. *Circulation*. 2000;101:194-9.

10 50. Berenfeld O, Mandapati R, Dixit S, Skanes AC, Chen J, Mansour M and Jalife J.
11 Spatially distributed dominant excitation frequencies reveal hidden organization in atrial
12 fibrillation in the Langendorff-perfused sheep heart. *J Cardiovasc Electrophysiol*. 2000;11:869-
13 79.

14 51. Antz M, Otomo K, Arruda M, Scherlag BJ, Pitha J, Tondo C, Lazzara R and Jackman
15 WM. Electrical conduction between the right atrium and the left atrium via the musculature of
16 the coronary sinus. *Circulation*. 1998;98:1790-5.

17 52. Atienza F and Jalife J. Reentry and atrial fibrillation. *Heart Rhythm*. 2007;4:S13-6.

18 53. Berenfeld O. Quantifying activation frequency in atrial fibrillation to establish underlying
19 mechanisms and ablation guidance. *Heart Rhythm*. 2007;4:1225-34.

20 54. Haissaguerre M, Sanders P, Hocini M, Hsu LF, Shah DC, Scavee C, Takahashi Y, Rotter
21 M, Pasquie JL, Garrigue S, Clementy J and Jais P. Changes in atrial fibrillation cycle length and
22 inducibility during catheter ablation and their relation to outcome. *Circulation*. 2004;109:3007-
23 13.

24 55. Pappone C, Santinelli V, Manguso F, Vicedomini G, Gugliotta F, Augello G, Mazzzone P,
25 Tortoriello V, Landoni G, Zangrillo A, Lang C, Tomita T, Mesas C, Mastella E and Alfieri O.
26 Pulmonary vein denervation enhances long-term benefit after circumferential ablation for
27 paroxysmal atrial fibrillation. *Circulation*. 2004;109:327-34.

28 56. Sanders P, Berenfeld O, Hocini M, Jais P, Vaidyanathan R, Hsu LF, Garrigue S,
29 Takahashi Y, Rotter M, Sacher F, Scavee C, Ploutz-Snyder R, Jalife J and Haissaguerre M.
30 Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in
31 humans. *Circulation*. 2005;112:789-97.

32 57. Atienza F, Almendral J, Jalife J, Zlochiver S, Ploutz-Snyder R, Torrecilla EG, Arenal A,
33 Kalifa J, Fernandez-Aviles F and Berenfeld O. Real-time dominant frequency mapping and
34 ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients
35 predicts long-term maintenance of sinus rhythm. *Heart Rhythm*. 2009;6:33-40.

36 58. Jarman JW, Wong T, Kojodjojo P, Spohr H, Davies JE, Roughton M, Francis DP,
37 Kanagaratnam P, Markides V, Davies DW and Peters NS. Spatiotemporal behavior of high
38 dominant frequency during paroxysmal and persistent atrial fibrillation in the human left atrium.
39 *Circ Arrhythm Electrophysiol*. 2012;5:650-8.

40 59. Ganesan AN, Kuklik P, Lau DH, Brooks AG, Baumert M, Lim WW, Thanigaimani S,
41 Nayyar S, Mahajan R, Kalman JM, Roberts-Thomson KC and Sanders P. Bipolar electrogram
42 shannon entropy at sites of rotational activation: implications for ablation of atrial fibrillation.
43 *Circ Arrhythm Electrophysiol*. 2013;6:48-57.

44 60. Narayan SM, Patel J, Mulpuru S and Krummen DE. Focal impulse and rotor modulation
45 ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with
46 elimination on follow-up: a video case study. *Heart Rhythm*. 2012;9:1436-9.

1 61. Buch E and Mandapati R. The continuing search for patient-specific atrial fibrillation
2 ablation targets: Need for rigorously verified and independently replicated data. *Heart Rhythm*.
3 2016;13:2331-2332.

4 62. Vijayakumar R, Vasireddi SK, Cuculich PS, Faddis MN and Rudy Y. Methodology
5 Considerations in Phase Mapping of Human Cardiac Arrhythmias. *Circ Arrhythm
6 Electrophysiol*. 2016;9.

7 63. Kimata A, Yokoyama Y, Aita S, Nakamura H, Higuchi K, Tanaka Y, Nogami A, Hirao K
8 and Aonuma K. Temporally stable frequency mapping using continuous wavelet transform
9 analysis in patients with persistent atrial fibrillation. *J Cardiovasc Electrophysiol*. 2018;29:514-
10 522.

11 64. Ciaccio EJ, Biviano AB, Whang W, Vest JA, Gambhir A, Einstein AJ and Garan H.
12 Differences in repeating patterns of complex fractionated left atrial electrograms in longstanding
13 persistent atrial fibrillation as compared with paroxysmal atrial fibrillation. *Circ Arrhythm
14 Electrophysiol*. 2011;4:470-7.

15 65. Ciaccio EJ, Biviano AB and Garan H. The dominant morphology of fractionated atrial
16 electrograms has greater temporal stability in persistent as compared with paroxysmal atrial
17 fibrillation. *Comput Biol Med*. 2013;43:2127-35.

18 66. Gordon D, Goldberger JJ, Arora R, Aistrup GL and Ng J. Searching for "order" in atrial
19 fibrillation using electrogram morphology recurrence plots. *Comput Biol Med*. 2015;65:220-228.

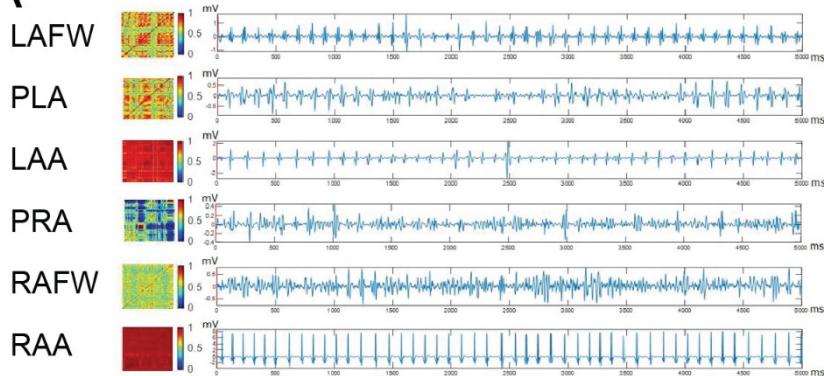
20 67. Lau DH, Linz D and Sanders P. New Findings in Atrial Fibrillation Mechanisms. *Card
21 Electrophysiol Clin*. 2019;11:563-571.

22 68. Zhao J, Butters TD, Zhang H, Pullan AJ, LeGrice IJ, Sands GB and Smaill BH. An
23 image-based model of atrial muscular architecture: effects of structural anisotropy on electrical
24 activation. *Circ Arrhythm Electrophysiol*. 2012;5:361-70.

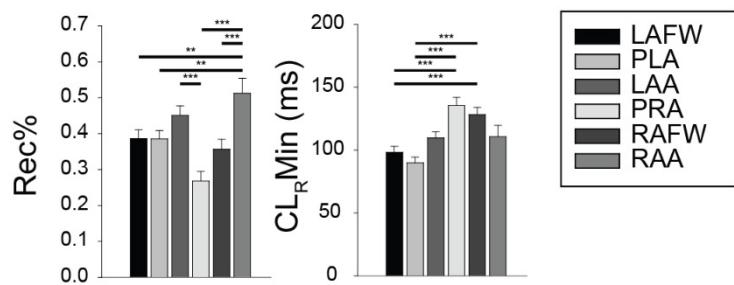
25 69. Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, Kholmovski E,
26 Burgon N, Hu N, Mont L, Deneke T, Duytschaever M, Neumann T, Mansour M, Mahnkopf C,
27 Herweg B, Daoud E, Wissner E, Bansmann P and Brachmann J. Association of atrial tissue
28 fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the
29 DECAAF study. *JAMA*. 2014;311:498-506.

30 70. Seitz J, Horvilleur J, Lacotte J, D OHI, Mouhoub Y, Maltret A, Salerno F, Mylotte D,
31 Monchi M and Garot J. Correlation between AF substrate ablation difficulty and left atrial
32 fibrosis quantified by delayed-enhancement cardiac magnetic resonance. *Pacing Clin
33 Electrophysiol*. 2011;34:1267-77.

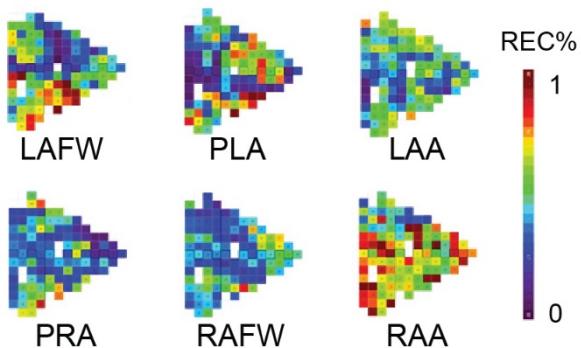
34 71. Deneke T, Chaar H, de Groot JR, Wilde AA, Lawo T, Mundig J, Bosche L, Mugge A and
35 Grawe PH. Shift in the pattern of autonomic atrial innervation in subjects with persistent atrial
36 fibrillation. *Heart Rhythm*. 2011;8:1357-63.

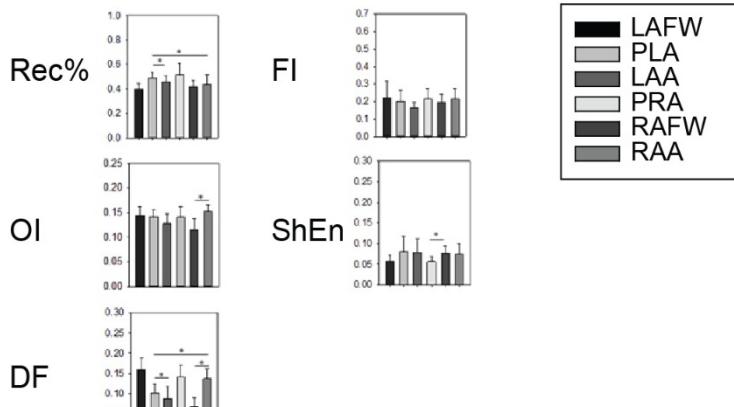

37 72. Zhao QY, Huang CX, Liang JJ, Chen H, Yang B, Jiang H and Li GS. Effect of vagal
38 stimulation and differential densities of M2 receptor and IK,ACh in canine atria. *Int J Cardiol*.
39 2008;126:352-8.

40


41

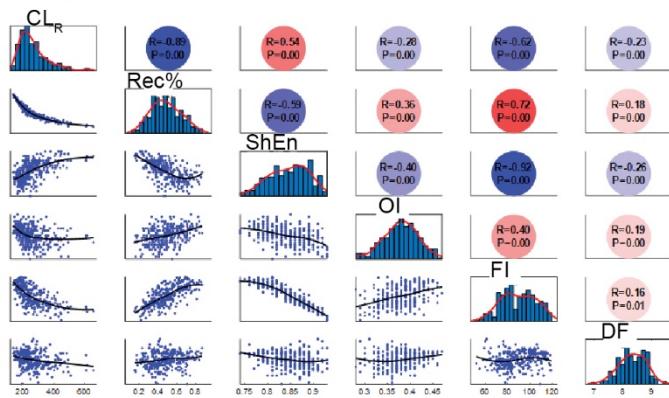
42


A

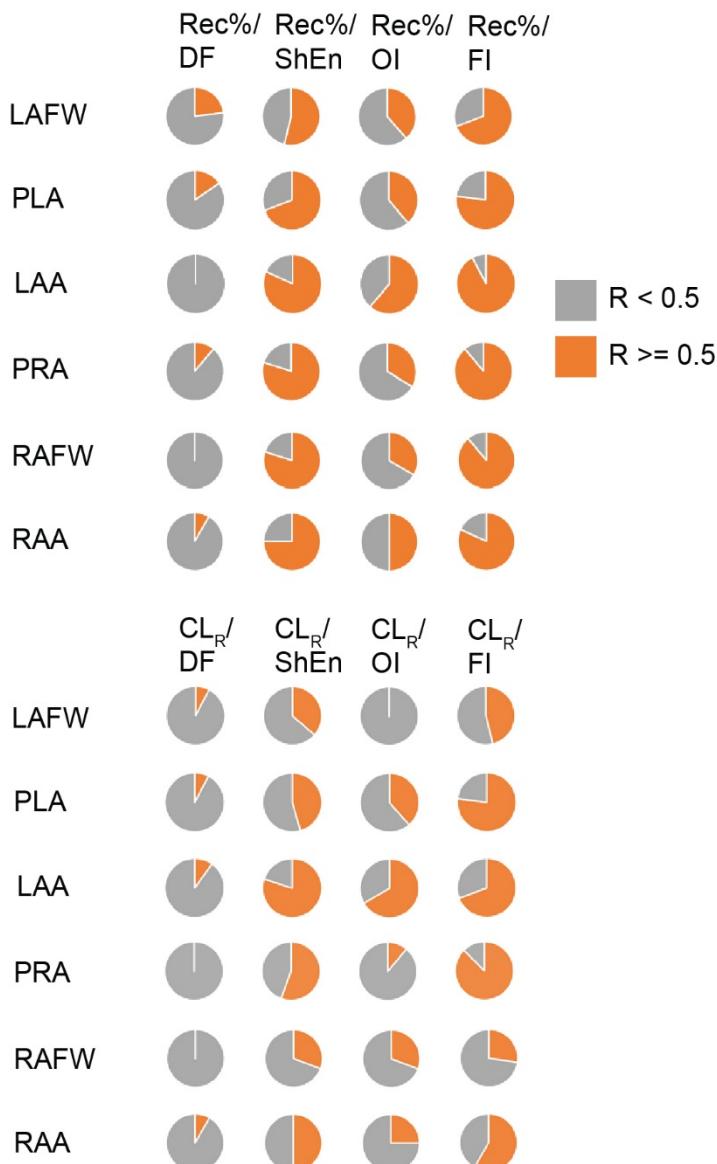

B

C

D

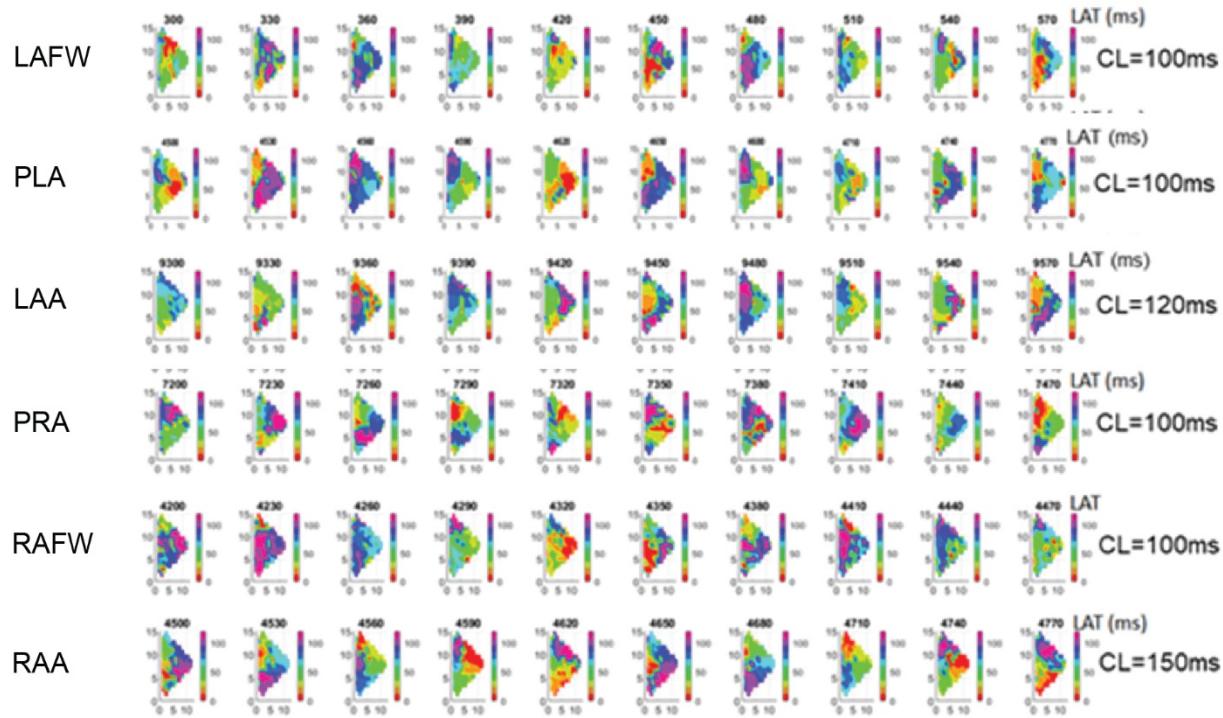


1 Figure 1. A, Illustration of a color coded cross-correlation matrix of all activations (left) and EGM
2 signals (right) in six atrial regions. B, Regional distribution of Rec% and CL_{Min} in six atrial
3 regions. Data are presented as mean \pm SEM; ** p < 0.01 and *** p < 0.001. C, Examples of spatial
4 distribution of Rec% in six atrial regions. D, Coefficient of variation of Rec%, FI, OI, ShEn and
5 DF in six atrial regions. Data are presented as mean \pm SEM; * p < 0.05. one-way ANOVA with
6 Holm-Sidak method for pairwise multiple comparison.

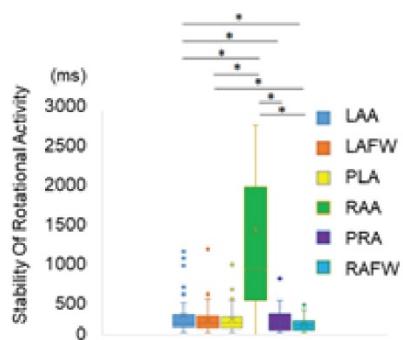

7

8

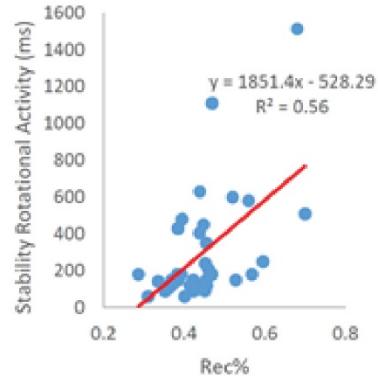
A Example of correlation coefficient between EGMs



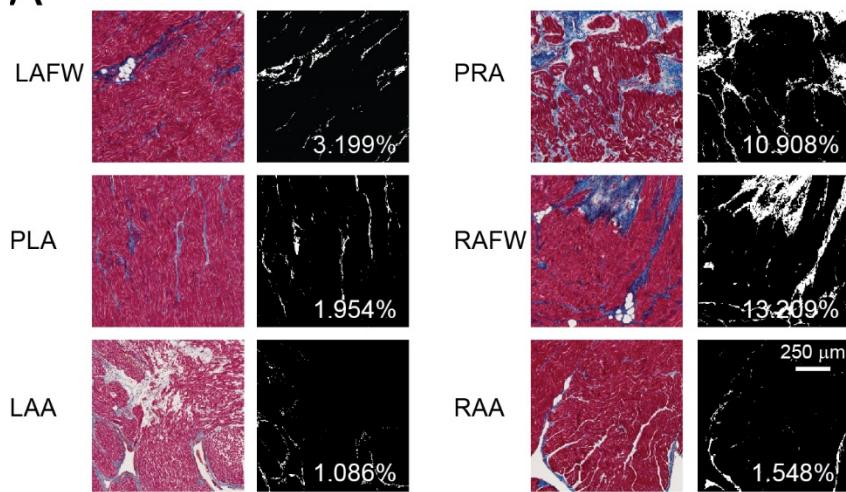
B Analysis of R values in six atrial regions (n = 13)

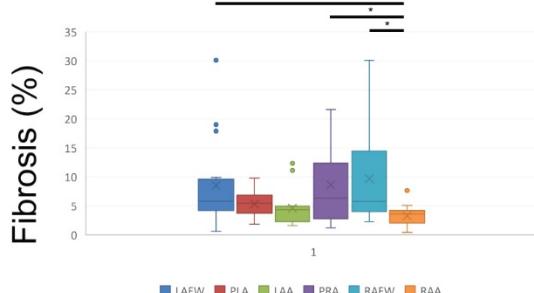


- 1 Figure 2. A, Example of calculation of correlation coefficient between EGMs in animal 1 in LAA.
- 2 B, Analysis of R values of Rec% (top) and CL_R (bottom) with other EGMs in six atrial regions.
- 3 Pie charts show proportion of animals with correlation factor R ≥ 0.5 (orange) and R < 0.5 (gray).
- 4

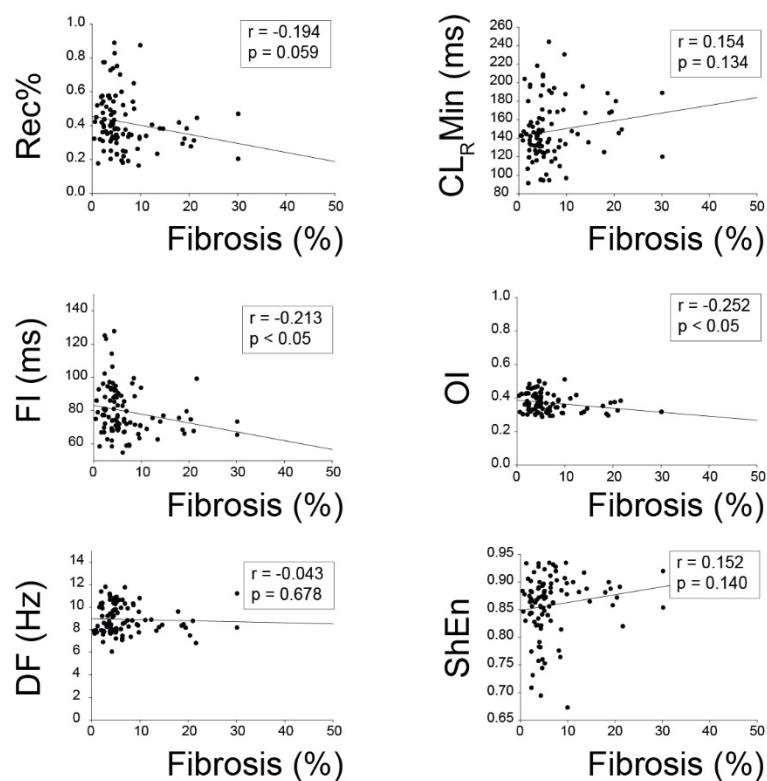

A Example of multiple interacting rotational activities in six atrial regions

B

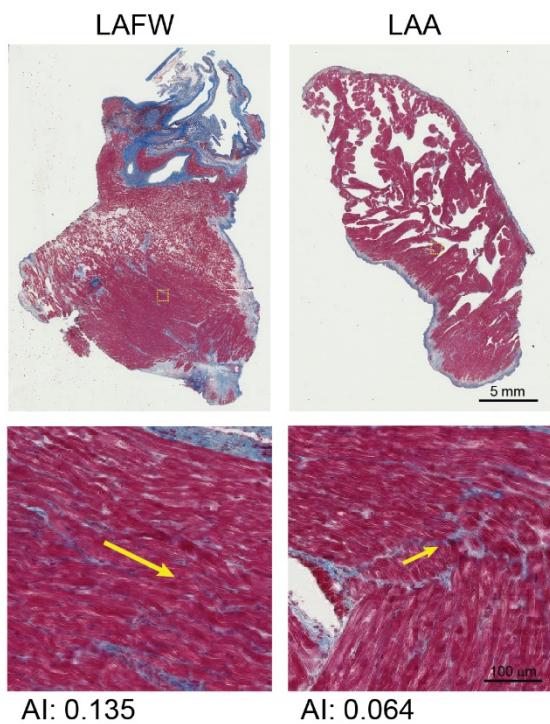

C

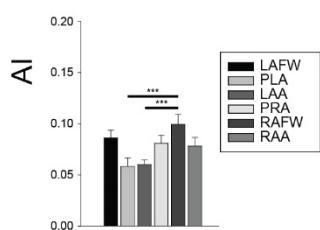

1
2 Figure 3. A, Examples of multiple interacting rotational activities in six atrial regions. B,
3 Comparison of stability of rotational activities in six atrial regions. Data are presented in Box and
4 Whiskers plot; * p < 0.05. one-way ANOVA with Holm-Sidak method for pairwise multiple
5 comparison. C, correlation of stability of rotational activities with Rec%.

6

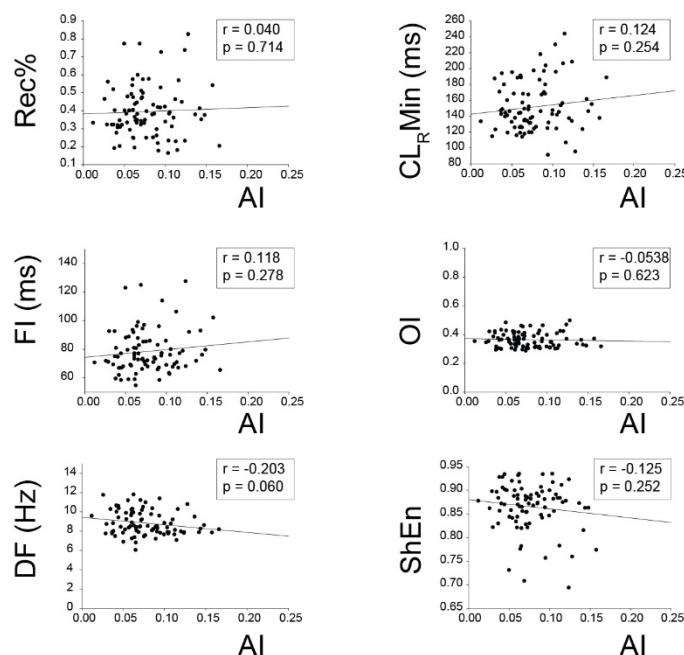

A

B

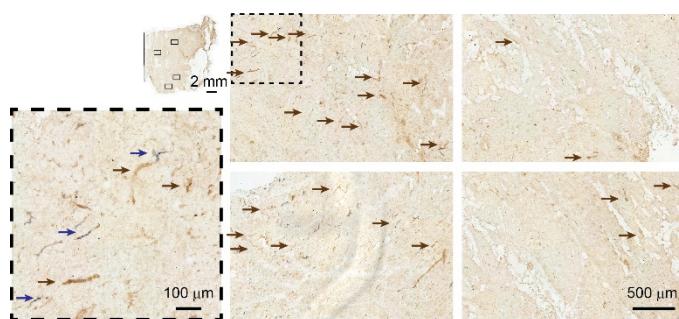

C


1 Figure 4. A, Exemplary images of masson's trichrome stained tissue section and outcome of
2 analysis in six atrial regions. Red indicated myocardium and blue indicated fibrosis. B, Regional
3 differences in fibrosis. Data are presented as mean \pm SEM; * $p < 0.05$. Kruskal-Wallis One Way
4 Analysis of Variance on Ranks with Turkey test for all pairwise comparison. C, Correlation of
5 fibrosis with Rec%, CL_{Min}, FI, OI, DF and ShEn.

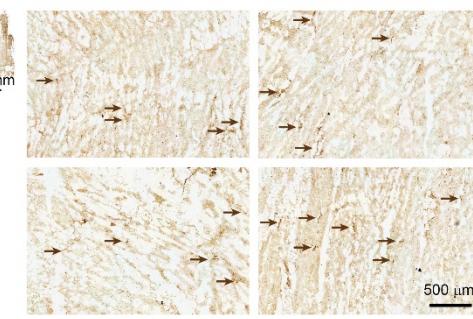
6


A

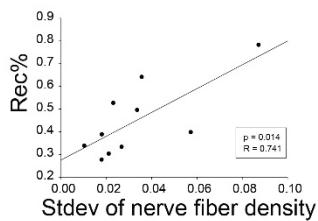
B

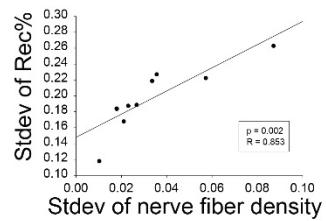


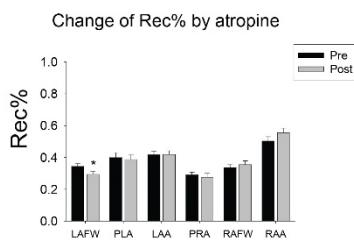
C

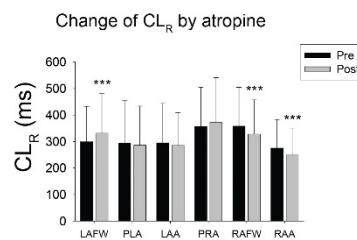


1 Figure 5. A, Example of fiber orientation measurements in LAFW and LAA. B, Regional
2 differences in AI. Data are presented as mean \pm SEM; *** p < 0.001. one-way ANOVA with
3 Holm-Sidak method for pairwise multiple comparison. C, Correlation of AI with Rec%, CL_{RMin},
4 FI, OI, DF and ShEn.
5


A Stdev = 0.0872


B Stdev = 0.0267


C


D

E

F

1 Figure 6. A and B, Representative micrographs of atrial regions with high (A) and low (B) standard
 2 deviation of parasympathetic nerve fiber density. Location of four random micrographs are
 3 denoted in mini map. Blue and brown arrows designate sympathetic and parasympathetic nerve
 4 fibers, respectively. C and D, Correlation of Rec% (C) and standard deviation of Rec% (D) with
 5 standard deviation of parasympathetic nerve fiber density. E, change of Rec% by atropine in six
 6 regions. Data are presented in Mean \pm SEM; * p < 0.05. paired t-test. F, change of CL_R by
 7 atropine in six atrial regions. Data are presented in Mean \pm standard deviation; *** p < 0.001.
 8 paired t-test.