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Abstract

To understand the pathophysiological impact of liver microbiota on the early stages of fibrosis we identi-
fied the corresponding microbiota sequences and overcome the impact of different group size and patient
origins with adapted statistical approaches. Liver samples with low liver fibrosis scores (FO, F1, F2) were
collected from Romania(n=36), Austria(n=10), Italy(n=19), and Spain(n=17). The 16SrDNA gene was
sequenced. We considered the frequency, sparsity, unbalanced sample size between cohorts to identify
taxonomic profiles and statistical differences. Multivariate analyses, including adapted spectral clustering
with L1-penalty fair-discriminant strategies, and predicted metagenomics were used to identify that 50 %
of liver taxa were Enterobacteriaceae and Pseudomonadaceae. The Caulobacteraceae, Flavobacteriaceae
and Propionibacteriaceae discriminated between FO and F1. The preQO biosynthesis and pathways in-
volving glucoryranose and glycogen degradation were negatively associated with liver fibrosis F1-F2 vs
FO. Altogether, our results suggest a role of bacterial translocation to the liver in the progression of fibro-
sis. This statistical approach can identify microbial signatures and overcome issues regarding sample size

differences, the impact of environment, and sets of analyses.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is a common consequence of obesity and type 2 diabetes
[1,2]. In NAFLD, the origin of inflammation and hepatocyte injury is related to dietary lipids, bile acids,
adipokines and cytokines, to cite a few. Furthermore, gut microbiota seems to be one of the key players of
NAFLD development [3,4]. Markers and receptors of microbiota-related injury features have been de-
scribed in this disorder such as TLRs, NODS, and NLRP3 [5-8] as well as the activation of the innate and
adaptive immune systems [9]. In early sets of experiments, we initially showed that hepatic steatosis in
the obese diabetic mouse was due to an increased circulating concentration of lipopolysaccharides (LPS)
i.e. metabolic endotoxemia [10]. Lipoproteins transport LPS [11] to tissues, triggering the CD14/TRL4
pathway that increases liver inflammation and fat deposition [10]. Gut bacteria were also reported to
translocate through the intestinal tract to tissues [12] such as the adipose depots and the liver, establishing
a tissue microbiota as observed in rodents [13-15] and humans [16-18] which could trigger liver inflam-
mation and the onset of fibrosis [13]. This mechanism activates immune cells, including Kupffer cells, to
release various pro-inflammatory cytokines and chemokines [19] damaging the surrounding tissues initi-
ating fibrosis. This hypothesis is now largely supported by recent major advances in NAFLD research,
which show gut and blood microbiota dysbiosis of patients with advanced stages of NAFLD [20-22].
Hence, the identification of specific groups of translocated bacteria from dysbiotic gut microbiota could
aid in the design of novel therapeutic strategies. To address this issue, we have sequenced and identified
the bacterial 16S rDNA from liver tissue of a cohort of 36 Romanian, 17 Spanish, 19 Italians and 10 Aus-
trian patients with different stages of liver fibrosis, notably at their early stages. We could design hypoth-
eses regarding the putative causal role of liver microbiota in the development of liver fibrosis. We used
this database to evaluate the efficacy of Principal Coordinate Analysis (PCoA) to visualize the different
liver fibrosis group scores using Wilcoxon-Mann-Whitney statistical tests [23]. Eventually, since the
overall database of patients issued from different separated cohorts we anticipated some degree of hetero-
geneity of the overall cohort therefore, we adapted and developed a specific statistical approach i.e. L1
spectral clustering with fairness. This approach establishes inter-relations between liver microbiota and

low scores of liver fibrosis that allowed the identification of the translocated bacteria putatively causal to
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the disease and independent from the group size, the patient origins and sets of sequencing. Overall, we

drew a European microbial profile of patients at early stages of liver fibrosis.

Materials and Methods

Subjects and Ethics

A multicentric observational study was conducted in the Second Department of Surgery, Emergency
Mures County Hospital of Romania, the Department of Systems Medicine of the Tor Vergata University
of Rome, the Institut d’Investigacio Biomedica de Girona IdibGi, the Endocrinology and Nutrition De-
partment of Dr. Josep Trueta University Hospital, and the University Hospital of Innsbruck. All research
procedures performed in this study were in strict accordance with a pre-defined protocol and adhered to
the Good Clinical Practice guidelines and the Declaration of Helsinki. The study was approved by the
Coordinating Ethics Committee of the Emergency Mures County Hospital, Romania (registration
4065/2014), the Institutional review board & Ethics Committee and the Committee for Clinical Research
(CEIC) of Dr. Josep Trueta University Hospital, Girona, Spain; the Policlinico Tor Vergata Ethics Com-
mittee, Rome, Italy as part of the FLORINASH Study the Institutional Ethics Commission at the medical
University of Innsbruck (amendment to AN20170016 369/4.21). All participants provided informed con-
sent prior to participation. The patients who gave their consent to perform a liver biopsy during the pro-
cedure were eligible. Exclusion criteria were serious liver diseases (eg hemochromatosis, alcoholic fatty
liver disease, Hepatits B and Hepatitis C infection, chronic diseases, inflammatory systemic diseases,
acute or chronic infections in the previous month, use of antibiotic, antifungal, antiviral drugs, proton-
pump inhibitors, anti-obesity drugs, laxatives, excessive use of vitamin D supplementation, fiber supple-
ments or probiotics or participation in a weight loss program or weight change of 3 kg during the previous
6 weeks, pregnancy or breastfeeding, or major psychiatric antecedents; neurological diseases, history of
trauma or injured brain, language disorders, and excessive alcohol intake (> 40 g/day in women or 80g

OH/day in men) or intravenous drug abuse, and previous bariatric surgery.
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The cohort consists of 82 Caucasian patients where 34 were diagnosed with fibrosis stage 0 (F0);
37 stage 1 (F1) and 11 stage 2 (F2), as diagnosed from histological analyses of liver biopsies (Table 1).
The patients suffered from morbid obesity with a mean BMI 42.6 (x7.3). The mean waist circumference

was 121.49 (x£18.73) in male and 123.23 (+18.26) in female participants.

Liver biopsies and liver fibrosis diagnosis

Liver biopsies were performed during laparoscopic surgical bariatric procedures or via ultrasound
guided liver biopsy. No energy devices were used for collecting the samples since hemostasis was done
afterwards when the samples were extracted from the abdomen. Ultrasound (US) guided percutaneous
liver biopsy (UPLB) was performed in 10 patients. In all patients, antiplatelet drugs and oral anticoagula-
tion therapy was paused 1 week before UPLB was performed. One experienced physician (> 3000 US-
exams and >100 UPLB) performed the US-examinations with the Philips EPIQ 5° (Philips Corporation,
Amsterdam, The Netherlands). UPLB was performed using an 18 G Temno Il semi-automatic tru-cut
biopsy needle (Cardinal Health, Dublin, Ohio, USA). After UPLB, all patients were monitored for any
signs of pain or clinically suspected bleeding by nursing staff over a 6-h period. If no serious complica-
tions were evident, all patients would be discharged after the mandatory 6-h observation, a stable blood
count and a normal ultrasound examination. All patients were follow-up in 2 weeks to review the results
of the histology. All the samples were stored in a sterile container and kept at -80°C until assayed. Fur-

thermore, NAFLD was confirmed histologically by an independent pathologist.

Clinical assessments:

Anthropometric measurement of each subject was performed by trained nurses in the morning after fast-
ing for at least 8 h. Body height was recorded to the nearest 0.5 cm and body weight to the nearest 0.1 kg.
BMI was defined as body weight (kilograms) divided by the square of body height (meters). Waist cir-

cumference was measured in the horizontal plane midway between lowest rib and the iliac crest to the
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nearest 0.1 cm at the end of a normal expiration repeatedly in men and women by 3 trained nurses on 3
consecutive days. Blood pressure was recorded to the nearest 2 mmHg by a mercury sphygmomanometer
with the arm supported at heart level after sitting quietly for 10 min. Fasting plasma glucose was meas-
ured after fasting for at least 8 h. A standard oral 75-g glucose tolerance test was performed to measure 2-
h postprandial plasma glucose. Hypertension was defined in accordance to the Guidelines of the Europe-
an Heart Association or if the subject was taking medication for hypertension. Diabetes was diagnosed
when fasting plasma glucose was >126 mg/dL (7 mmol/L), 2-h postprandial plasma glucose >200 mg/dL

(11.1 mmol/L), and HbA;; >6.5% or if the subject was taking medication for diabetes

Biochemical and molecular analyses

Plasma parameters:

Biochemical analyses including total fasted plasma glucose, cholesterol, high-density lipoprotein (HDL)
cholesterol, plasma liver enzymes i.e. aspartate aminotransferase (AST/GOT), alanine aminotransferase
(ALT/GPT), gamma-glutamyl transferase (GGT), hematocrit and leukocytes were determined by Cobas
8000, (Roche, Basel, Switzerland) according to the manufacturer’s specification. Elevated liver enzymes
were defined as aspartate aminotransferase and alanine aminotransferase. HbAlc was measured by high-

performance liquid chromatography (Bio-Rad, Muenchen, Germany) and a Jokoh HS-10 autoanalyzer.

16S rDNA sequencing and bioinformatic analysis

The V3-V4 hypervariable regions of the 16S_rDNA were amplified by two steps PCR using v1 primers
(\Vaiomer) and sequenced using MiSeq Reagent Kit v3 (2x300 bp Paired-End Reads, Illumina, San Die-
go, CA, USA) as previously described [24]. The MiSeq sequences were then analyzed using the bioin-
formatics pipeline established by Vaiomer using FROGS v1.4.0 [25]. Briefly, after demultiplexing of the
bar-coded Illumina paired reads; single read sequences are cleaned and paired for each sample inde-

pendently into longer fragments. Operational taxonomic units (OTU) are produced with via single-
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linkage clustering and taxonomic assignment is performed in order to determine community profiles

(generated by Blast+ v2.2.30+ against the Silva v128 Parc databank restricted to the bacterial kingdom).

Linear Discriminant Analysis (LDA) Effective Size (LEfSe)

The bacterial profiles were further compared between the three groups using LEfSe pairwise anal-
ysis with an alpha cut-off of 0.05 and an effect size cut-off of 2.0. The bacterial diversity analyses (alpha
and beta diversity, MDS ordinations and taxonomic composition barplots) were generated using the Phy-
loseq (v1.14.0), vegan (v2.4.0) and ape (v3.5) packages under R environment v3.3.1. LEfSe analysis was
performed on the OTU table using the online Galaxy interface to identify bacterial taxa that were differ-
entially abundant in the three liver fibrosis groups [27]. Respective cladograms were generated with ge-
nus at the lowest level. Quantitative plots of differential features were generated from genus level percent
relative abundance data showing means with standard deviation using GraphPad Prism 6 software. Using
the LEfSe algorithm, bacterial taxa that were differentially abundant in analysis of liver fibrosis groups

were first identified and tested using the Kruskal Wallis test.

Beta diversity analysis

The bacterial diversity (alpha and beta diversity) was analyzed and represented using the phyloseq
(v1.14.0), vegan (v2.4.0), ape (v3.5), and ggplot (3.3.0) packages under R environment v3.5.1 with Chao,
Inverse Simpson, Simpson and Shannon as indexes. The alpha diversity statistical significance was de-
termined by Wilcoxon rank-test. The beta diversity was calculated for every pair of variables to generate
a matrix of distance using Bray-Curtis, Jaccard, Unifrac, and weighted Unifrac indexes. From distance
matrices, Multiple Dimension Scale (MDS) and hierarchical clustering were conducted for graphical
representation of beta diversity. PERMDISP2 procedure was used for the analysis of multivariate homo-
geneity of group dispersions. The Kruskall-Wallis test was performed to compare abundance across the

three groups.

Multivariate analyses
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To visualize the distribution of patients according to their clinical parameters, we performed a Principal
Component Analysis (PCA) using FactoMineR and factoextra R packages. For the study of 16SrDNA
diversity, we first filtered the less abundant OTUs to reduce the noise within the matrix before running
the PCA. We eliminated those with abundance <0.01. We then normalized the OTU table by using the
Cumulative Sum Scaling normalization followed by a log transformation, using mixOmics package
(https://pubmed.ncbi.nlm.nih.gov/29099853/). To explore the metagenomic data and identify the largest
sources of variation, another Principal Component Analysis was conducted. Also based on the projection
of the dataset into a space of lower dimension and originally designed for regression we performed a Par-
tial Least Square Discriminant Analysis (PLS-DA) and its sparse version (sSPLS-DA) on the normalized
OTU table count to predict and select the most discriminative features in the data that help to classify the

samples according to the fibrosis variable (package mixOmics).

Since we observed the influence of the metagenomic data on the outcome, we used alternative method of
classification such as random forest (package randomForest). The random forest is built from a multitude
of different decision trees and classifiers at training time thereby predicting and storing the predicted tar-

get outcome.

Cluster graphical analyses. The abundance matrix of OTUs can be modeled by a graph using PLNmodels
package under R where nodes represent OTUs and edges interactions between each pair of nodes. We
developed an analysis in clusters i.e. the L1-spectral clustering, implemented in R, a robust variant of the
well-known spectral clustering that aims to detect the natural structures of a graph by taking advantage of
its spectral properties. The adjacency matrix modeling the variable associations of the graph is used as an
input of the I1-spectralclustering algorithm. In front of the influence of the origin of the cohort on the
graphical classification through clusters we applied “fair” technics with k-median clustering objectives.
We identified k centers and assign each input point to one of the centers so that the average distance of
points to their cluster center is minimized. In the fair-variant, the points are colored while the goal is to

minimize the same average distance objective ensuring all clusters to have an approximately equal num-

.
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ber of points of each color. This technique called “fairtree” and developed in python takes as input the

desired number of clusters, the desired cluster balance and the normalized table count.

Functional metagenomic prediction

Metagenome inference and predicted functional analysis were initiated by analysis of the OTU clustered
16S sequence count table data and the OTU representative sequences using the PICRUSt2 tool [26]

(https://pubmed.ncbi.nlm.nih.gov/32483366/) version 2.3.0b for each sample. The metagenome predic-

tion process included four main steps: 1) The input OTU representative sequences were aligned against
the PICRUSt2 reference alignment, 2) From this alignment, the input OTU were placed into the PIC-
RUSt2 reference phylogenetic tree, 3) The metagenome functions were inferred by the hidden state pre-
diction method using this phylogenetic tree. During this inference process, the abundance values of each
OTU were normalized to their respective predicted 16S_rDNA copy numbers and then multiplied by the
respective gene counts of the target bacteria, 4) The predicted functions were mapped to the MetaCyc
database to determine the minimum set of pathways present in the samples. The resulting core output was
a list of enzyme functions (Enzyme Commission numbers) with predicted count data for each sample

from step 3 as well as a list of MetaCyc pathways with predicted count data for each sample from step 4.

Data Availability Section
- MiSeq 16S_rDNA sequences were deposited under the primary accession number PRIJEB41831

and a secondary number ERP125667 on December 9" 2020 with a release date on the 31% of December

2021.

Results

Graphical classification of the clinical variables by principal component analyses
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We aimed at identifying liver 16SrDNA profiles associated with the early onset of fibrosis. We aggregat-
ed together a library of liver biopsies from patients from four cohorts of different European countries. We
first visualized the distribution of the patients according to the cohorts by performing a principal compo-
nent analysis using the anthropomorphic and clinical data where the projection of the different clinical
variables is represented (FiglA,B). The ellipses calculated for each cohort show some degree of differen-
tial distribution suggesting that specific environmental factors have influenced the clinical outcomes. In-
terestingly, the Romania cohort was unifying all cohorts and could be used as a reference. In addition, we

could detect numerous outlier patients from each cohort.

It is noteworthy that we voluntarily included all anthropomorphic and biochemical data, even if some
were redundant and confounding, to remain within the frame of a non-a priory statistical approach. The
age, diabetes and hypertension variables were the main drivers of the F2 classification while HDL choles-
terol and liver enzymes were drivers for the F1 histological phenotype. These observations are supported

by significant ANOVA tests (Table 1).

Analyses of the liver bacterial 16SrDNA ecology.

To identify whether the graphical differences between the three liver fibrosis scores are associated with a
differential liver bacterial DNA signature, we then performed PCA on the OTUs as entries in the data-
base. The analysis using countries as groups shows that the different cohorts poorly overlapped suggest-
ing the existence of specific environmental factors specific of each country cohort (Fig 2A). Using the
liver fibrosis scores as groups we could not clearly graphically discriminate the fibrosis scores since the
distribution of the patients according to their OTU profiles were too scattered and seemed to be depend-
ing upon the largest Romanian cohort (Fig 2B). To analyze differently the putative signatures according
to the cohorts or the liver fibrosis scores, we studied the frequencies of the phylum and family taxonomic
levels. The barplot analysis shows first a large degree of heterogeneity between all individuals at the phy-
lum level (Fig 2C) but still, we identified that the liver microbiota of the overall cohort was composed

mostly of Proteobacteria, (>75%) (Fig 2D). Group comparisons showed that statistical differences were
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observed between the FO and F1 groups for the Proteobacteria, Actinobacteria and Firmicutes phyla
(Supplementary Figl A,B,C). At the family taxonomic level, the most prominent taxa were the Entero-
bacteriaceae and the Pseudomonadaceae which accounted for more than 50 % of the overall taxa (Fig
2E). Group comparisons showed that the Caulobacteraceae, Flavobacteriaceae and Propionibacteriaceae

families were statistically different when comparing FO and F1 (Supplementary Figl D,E,F).

To further identify whether liver fibrosis scores could be characterized by specific signatures we
explored indexes of alpha and beta diversity of 16SrDNA in liver tissue. The data show that differences in
abundances at the phylum, and family taxonomic levels were also associated with differences of the alpha
diversity (Supplementary Fig 2A,B,C). Notably, the Observed, Shannon and Simpson indexes were sig-
nificantly different between the FO and F1 groups at the phylum and family levels. In addition to alpha
diversity, we analyzed beta diversity and performed a principal coordinate analysis (PCoA) considering
distances between variables (using Bray-curtis distance). The PCoA analyses showed that the FO group
was distant from the two others which suggests a specific 16SrDNA signature (Supplementary Fig
2D,E). It is noteworthy that outlier patients were also detected. Although, when analyzed together the
three groups could not be classified clearly. The FO group differed graphically from the F1,F2 groups
suggesting a specific signature discriminating between FO and F1,F2. To determine if the ellipse centers
of the FO group differs from the ellipse center of the other groups, a Permutational Multivariate Analysis
of variance (PERMANOVA) followed by a Kruskall-Wallis test were performed and found a difference
between FO and F1 groups (p<0.03). Along the same line of investigation, we performed different graph-

ical representations such as heatmaps and Venn diagrams.

Identification of specific bacterial signatures.

To identify the variables that are specific to Fibrosis scores we performed a first Venn diagram on the
overall set of variables (Fig 3A). Eighty-nine variables were common to all groups and considered as the
core of the cohort while 21, 77, and 108 OTUs were specific of the F2, F1, FO groups, respectively. To

isolate extremely rare variables and unbalanced distribution between groups we next considered only



https://doi.org/10.1101/2020.12.10.419051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419051; this version posted December 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

OTUs with more than 25% of non-zero counts and an average number of counts per group higher than
150 and similarly drew a second Venn diagram. We identified 12, 5, and 5 OTUs specific to F2, F1, and
FO scores, respectively (Fig 3B) and (Table 2). To identify if these specific OTUs could be picked up
using another approach we generated a heatmap where each OTUs was positioned while the fibrosis
scores was fixed (Fig 3C). We noted that the frequencies of the majority of OTUs equal O or are extreme-
ly low (<0.01%) thereby, most of these variables do not bring information. Similarly, a minority of the
variables of high frequencies were common to all liver fibrosis groups and did not provide discriminant
information neither. Such OTUs could be considered as the core variable of liver microbiota. Conversely,
a subset of OTUs could be considered as discriminant that was identified on a different heatmap follow-

ing the removing of the non-informative OTUs (Fig 3D).

To refine the identifications of the discriminant bacteria we performed a Linear discriminant anal-
ysis (LDA) coupled with effect size measurements (Fig 3E, Supplementary Fig 3A,B). The data show
that most of the discriminant information was identified when comparing between FO and F1. The Fir-
micutes, Flavobacteriaceae, Caulobacteraceae and Actinobacteria were specific to FO group and the Pro-
teobacteria was specific to F1 (Fig 3F). On the boxplot the taxa enriched in patients with no fibrosis are
indicated with a negative score and mild fibrosis enriched taxa are indicated with a positive score. We
performed LEFSe between each score pairs and identified much less differences between F1 F2 suggest-
ing that they could have a similar liver microbiota, as suggested in Fig 2B despite the discriminant clini-

cal variables identified in FiglB.

On these first sets of analyses, the number of fibrosis scores of each patient was too heterogeneous to
perform a discriminant analysis (overfitting). As shown on supplementary Fig 2D,3A they were almost
no difference between F1 and F2, therefore we merged F1 and F2 scores as F1/2 group, increasing hence

the number of patients of that group.

To validate the pertinence of such strategy we performed a partial least square discriminant analy-
sis i.e. PLS-DA. To select the most discriminative features in the model we used its sparse version sPLS-

DA based on a Lasso penalization. The number of variables to be selected per component involved in the
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visualization is optimized using leave-one-out cross-validation. On the sample plot (Fig 3F), we observe
a slight separation of the two fibrosis scores ellipses compared to the unsupervised PCA. From the most
discriminant OTUs selected on each sPLS-DA component, a dissociation between the two groups can be
visualized using a Clustering Image Map (CIM) (Fig 3 G,H). The graphs show a clear classification of
the patients based on the identified discriminant variables. Eventually, we calculated the ROC curve with

all discriminant variables that shows an increased specificity and sensitivity above baseline (Fig 31).

Altogether, some degree of graphical classification of the liver fibrosis score could be observed
using the clinical database and the 16SrDNA database. However, in both instances the individuals appear
to be still distributed according to the countries. Therefore, to overcome this issue we developed an ad
hoc fairness statistical strategy allowing the classification of variables i.e. OTUs independently from the

cohort.

Identification of clusters of cohort-independent 16SrDNA associated with different mild scores of

fibrosis

In front of these numerous signatures and the influence of confounding factors such as the impact
of the cohort set there is a need to identify clusters of variables specific to each liver fibrosis score but
independent of the cohort impact. To this aim we considered three different fair approaches on the overall
cohorts and then defined clusters of OTU variables independent from the cohort. The first fair approach
consists in identifying principal components from the metagenomic dataset as signatures of the cohorts
and removing them to generate a new dataset where no components would be cohort sensitive. To this
aim we compared the largest cohort i.e. from Romania to the others. Principal components conditional
distributions with respect to the cohorts were visualized (Fig 4A). Then, we removed the principal com-
ponents the most correlated with the cohorts when the absolute value of Pearson correlation was above a
threshold. The remaining non-overlapping components are cohort-insensitive and used to identify the
variables associated with the mild fibrosis score. Remarkably, more than 78% of the variation from the

original data was still included into the selected principal components suggesting that the discriminant
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information was only marginally affecting our previous results. On this “fair” dataset we applied the
standard random forest classification to predict fibrosis scores. From the variable importance plot, indi-
cating the contribution of the variables to classify the data, we selected the 10 more predictive principal

components and identified 3 significantly associated with fibrosis scores (Fig 4B,C,D).

The second fair clustering approach directly selects OTUs which are the most influenced by the cohorts
and removes them from the analysis. The associated matrix is then modeled by a graph and subjected to a
spectral clustering algorithm to which we applied an L1 penalty. The nodes represent OTUs and the edges
show interactions between each pair of variables (Fig 4E). Using this novel 11-spectral clustering algo-
rithm we identified 5 clusters of OTUs among which 3 were significantly associated with the liver fibro-

sis scores (Fig 4F).

Eventually, we performed the fair clustering method called “fair-tree”. We used the 16SrDNA normalized
table count to identify clusters with approximately equal number of patients from each cohort. Two of the
three clusters found containing respectively 36 and 97 OTUs, were statistically significant when compar-

ing FO versus F1 scores (Fig 4G,H).

To summarize all the identified OTUs significantly associated with the different low scores of fi-
brosis, we compiled them in (Table 3) and identified their respective taxa. From the fair principal com-
ponents identified, we only considered the five OTUs that contribute most to create each of these compo-
nents. Then, from the Venn diagram we identified common OTUs signatures of low fibrosis scores from
standard (sPLS-DA) and fair approaches (fair-tree, random forest, 11-spectral clustering) (Fig 41). Inter-
estingly, from all selected OTUs eight common OTUs were from the same phylum i.e. Proteobacteria
(Table 4) suggesting that most of the discriminant information could be due to these taxa. However, there
is still most likely some information that this predominant family could be hiding. We therefore set a new
mathematical strategy to exemplify the low frequency and meaningful bacteria by using the TF-IDF

(Term frequency-inverse document frequency) approach.
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Low frequency bacterial 16SrDNA gene contains classifying information.

From the table count of all significant OTUs detected we generated a “word-cloud” (Fig 5A, B) to
visualize the most abundant TF-IDF transformed OTU counts, regardless of fibrosis scores when com-
pared to those non-normalized. Cluster 2 emerged as the most important discriminant OTU (taxonomic
identifac-
tion=Bacteria|Proteobacteria| Gammaproteobacteria|Enterobacteriales|Enterobacteriaceae|Escherichia-

Shigella) further confirming the important amount of information contained in the Proteobacteria.

Based on the identified specific signatures the next step was to generate hypotheses regarding their puta-
tive mode of action to the induction of the early events of liver fibrosis. We therefore performed predicted

functional metagenomics.

Predicted functional metagenome pathways

To identify the pathways and enzymes involved in the early development of fibrosis, we run predicted
functional metagenomics algorithms based on the fairness-selected bacterial taxa. The heatmap shows
clusters of enzymes that are associated with the FO vs F1-2 fibrosis scores (Fig 6A). Eventually, sPLS-
DA showed also a clear discrimination between the FO vs F1-2 fibrosis scores. To evaluate the accuracy
and sensitivity of our analyses as potential diagnostic tool, we drew a ROC and quantified the urea under
curve with a score of 81.4% of accuracy (Fig 6B,C). We performed a similar analysis on pathways and
showed specific clusters also discriminately associated with the fibrosis scores with a score of accuracy of
81.2% (ROC curve) (Fig 6D-F). We then represented an listed all selected enzymes and pathways highly
expressed in the two major discriminant components (Fig 6G-J) and (Table5). Three pathways were
highly and negatively associated with the liver fibrosis score of F1-2 when compared to the FO. We iden-

tified from the MetaCyc database (https://metacy.org/) that the preQo biosynthesis (PWY-6703), specific

to Enterobacteriaceae such as E. coli, is involved notably in the synthesis of tetrahydrofolate and a class
of nucleoside analogues that often possesses antibiotic, antineoplastic, or antiviral activities [29,30] (Fig
6K). In addition, two other pathways related to glucoryranose (PWY 6737) and glycogen (GLYCOCAT-

PWY) degradation were identified probably providing energy to the main preQo biosynthesis pathway.
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On the other hand, six major metabolic pathways were positively associated with the FO score from both
components. One involves the glycolysis and pentose phosphate pathway (PWY-6629), while the 5 others
are all involved in the menaquinones and demethylmenaquinones pathway (Fig 6L). The low-molecular
weight lipophilic components of the cytoplasmic membrane are considered vitamin K, components that is
found in most aerobic Gram-positive bacteria and are the main quinones that function as a reversible re-
dox component of the electron transfer chain, mediating electron transfer between hydrogenases and cy-
tochromes. Altogether the functional metagenomics prediction suggests that gram negative bacteria from
the Proteobacteria family composed of preQq biosynthesis and glycolytic pathway are signature of F1-2
fibrosis scores while the vitamin K biosynthesis pathway from gram negative bacteria such as Actinobat-

eriaceae [31,32] would be signing FO liver fibrosis score.

Discussion

We here report a mathematical approach to identify a bacterial 16S rDNA signature in liver tissue
and corresponding putative biochemical pathways in patients with low scores of fibrosis. Our main find-
ing is that even low scores of fibrosis (FO vs F1-2) can be classified by biomarkers from the Proteobacte-
riaceae family within the liver. The second observation is related to the importance of cohort heterogene-
ity in term of size and data variability which could be major confounding factors that must be taken into
account in multi-centric clinical trials or database. We here present a mathematic approach that could help

solving this major and common issue.

A gut metagenomics signature of liver fibrosis in humans has been recently described, suggestive
of its causal role in the disease [21]. However, such patients where mostly characterized by a high score
of liver fibrosis questioning the putative causal role of the liver microbiota in the disease. We here fo-
cused our attention on low scores of liver fibrosis to putatively identify causal factors. We identified
mostly gram negative bacteria and notably the Proteobacteria as signature of the F1-2 liver fibrosis
scores. Among the families the Proteobacteriaceae, Flavobacteriaceae, and Propionibacteriaceae were

discriminating the low fibrosis scores from each other’s. They synthesize LPS, a dramatically inflamma-
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tory suggesting a pathophysiological role in development of liver fibrosis, probably via the maintenance
of a certain degree of immune vigilance. We further refined our analyses and mostly selected Enterobac-
teriaceae family from the Proteobacteria phylum suggesting that the liver proinflammation observed dur-
ing fibrosis would be due or associated with genera from the Enterobacteriaceae family [10]. The Entero-
bacteriaceae encompass the genera Arthrobacter and Acinetobacter. The mechanisms through which such
bacteria could induce inflammation might be linked to the unique structures of their LPS or peptidogly-
cans [32]. Furthermore, since such bacteria are motile with flagella, one could also contemplate that the
flagellar proteins are involved in the liver fibrosis process. However, data report that the TLR5 receptor
of flagellin is rather associated with protection against metabolic syndrome, putatively ruling out this hy-
pothesis [33]. Through functional metagenomics production we identified the preQo biosynthesis path-
way as a signature of F1-2 fibrosis scores. Such pathway is notably identified from gram negative bacte-
rial such as Proteobacteriaceae [28,29]. Conversely, the menaquinones and demethylmenaquinones path-
ways involved in K12 vitamin synthesis were the signature of the FO score. They are notably produced by
the gram positive Actinobacteriaceae such as Bacillus subtilis [31], therefore coherence with our meta-

genomics findings.

A major hurdle of aggregation of different cohort altogether is related to the heterogeneity of the
size of the groups and of the diversity of the variables considered. Regarding invasive analyses such as
liver biopsies the group size at completion of the inclusions could be different from what predicted during
the calculation of power of the trial. Eventually, the distribution of the variables to be studied could be
highly heterogeneous for a given disease. Altogether, we here faced several statistical challenges which
are linked to liver fibrosis. The first major step preceding the microbial analysis was a prefiltering and
then an adapted pathway to normalize the data to deal with their sparse nature. The package Mixomics
[35] used for this study recommends CSS normalization on sparse OTU table counts that could prevent
the bias included in the TSS normalization. In addition, it includes multivariate methods for microbiome
studies and addresses its limits. In addition, we observed a strong impact of the cohort of origin since the
largest cohort from Romania could discriminate the patients from the others based on the 16SrDNA OTU

variables. The patients could even be classified by cohort when we used the clinical data as entries show-
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ing that this issue also has to be taken into account when analyzing the data. Mathematical approaches to
overcome this issue are currently being developed however, little has been done regarding the handling of
the 16sRDNA data now widely used by the scientific community that addresses the role of microbiota on
diseases and notably liver diseases. Therefore, we here developed several approaches of fairness to over-
come the classical cohort impact. Eventually, we noticed that two patients from the F1 groups were dis-
tributed with the F2 group. This ectopic distribution could be due to the extreme BMI (>55) featuring a
specific clinical phenotype. Conversely, a patient from the F2 group was associated with the FO/F1 distri-
bution. This patient was characterized by his young age (<40 years old) while the mean age of the F2

group was of 54 years old.

The statistical approach required to properly analyze microbial data sets needed to be better fitted
to the nature of the data. As a preliminary analysis we performed PCoA since better adapted than PCA to
dissimilar and sparse data then followed by a sPLS-DA to identify subsets of 16S rDNA that are discrim-
inatory for the liver fibrosis scores. PLS-DA aims to classify a data set according to the values of a quali-
tative variable by maximizing the covariance between linear combinations of the observed variables and
the qualitative outcome. The sparse version, on the other hand, delivers variables per each component,
only selected in the OTU dataset, that are the most discriminatory for the liver fibrosis scores. We fo-
cused our attention on the identification of the OTU frequencies within and across each group of patients
and on the understanding of the importance that OTUs carry within and across the cohort. We found that
the data set is mostly populated by a few high frequency OTUs. However, beside the level of information
gained form this approach where overrepresented OTUs we identified cannot rule out that some more
information could be obtained from OTUs rarely represented. Therefore, some information could be hid-
den in the low frequency OTUs. To test this hypothesis we introduced a new normalization approach
called TF-IDF [36] originally developed for text mining, to attenuate the effects of the high frequencies
OTUs in the data set. Furthermore, aside from the fibrosis scores, it reveals some new predominant taxa

at the different taxonomic levels.
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In conclusion, the first evidence of the existence of a liver microbiota opens alternate routes for
novel therapeutic strategies since specific bacteria could be involved in the process of liver fibrosis. How-
ever, to generate information which could serve as a substratum to reach this aim, we here adapted pre-
dicted metagenomics and mathematical approaches to the original and novel nature of the tissue meta-
genomics data set. We here found that these data are constituted of high heterogeneity variables which are
dominated by a few high frequency taxa such as Proteobacteria, signature of F1-2 liver fibrosis scores,
and Actinobacteria/Firmucutes, signature of FO liver fibrosis scores. These major taxa are masking infor-
mation residing in the lower frequency taxa. Predicting metabolic pathways from selected 16S _rDNA-
based taxa revealed a role of folate metabolism in F1-2 liver fibrosis scores while a role of vitamin k12
biosynthesis was characterizing FO liver fibrosis score. Altogether, the combined use of metagenomics,
sPLS-DA, TF-IDF and fainess strategies appeared useful since we identified signatures specific to the

lower scores of liver fibrosis i.e. at the onset of the disease.
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Figure and table legends

Fig. 1: Visualization of clinical variables by principal component analysis according to countries

and fibrosis scores.

The clinical variables were used as entries for a principal component analysis (PCA). PCA-biplot from
package Factoextra and FactomineR of individuals for the first two principal components are shown.
They sum up 30.4% of the total variance of the dataset. Patients were grouped by A, countries (red
dots=Austria, green triangle=Italy, blue square=Romania, purple cross=Spain) and by B, fibrosis scores
(red dots=FO0, green triangle=F1, blue square=F2). The vectors corresponding to the clinical variables are

shown as arrows.

Fig. 2: Visualization of liver 16SrDNA sequences by principal component analyses according to

countries and fibrosis scores.

The 16SrDNA OTUs sequences were used as entries for a principal component analysis (PCA). PCA-
biplot from package Factoextra and FactomineR of individuals for the first two principal components are

shown. They sum up 10.0% of the total variance of the dataset. Patients were grouped by A, countries
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(red dots=Austria, green triangle=Italy, blue square=Romania, purple cross=Spain) and by B, fibrosis
scores (red dots=FO0, green triangle=F1, blue square=F2). The vectors corresponding to the clinical varia-
bles are shown as arrows. C Barplot depicting the frequencies of liver microbial composition of each pa-
tient at the phylum level or D as means of the phyla frequencies or E the family frequencies for the over-

all cohort (total) or according to the fibrosis scores (FO, F1, F2).

Fig. 3: Discriminant analysis strategies of the liver microbiota 16SrDNA OTUs according to the

fibrosis scores.

Venn diagrams where A all the 16SrDNA taxa or B data after removing those extremely rare and with
unbalanced distribution within the 3 groups of patients with liver fibrosis, were used as entry variables
characterizing the 3 liver fibrosis scores (red=FO0, green=F1, blue=F2). C Heatmap of normalized OTU
counts according to the 3 groups of patients with liver fibrosis scores and D a corresponding subset of
normalized OTU counts with groups of patients fixed. E LEfSe cladogram of taxonomic assignments
from 16SrDNA sequence data of the two liver biopsy fibrosis groups (FO and F1). The cladogram shows
the taxonomic levels represented by rings with phyla at the innermost ring and genera at the outermost
ring, and each circle is a member within that level. Taxa at each level are shaded according to the liver
fibrosis group in which it is more abundant (P < 0.05; LDA score >2.0). LDA scores are shown on the
right panel for each taxon. F sPLSDA classification performance on a CSS normalized microbial table
count of the FO versus F1/2 groups of patients. Sample plot, each point corresponds to an individual and
is colored according to its fibrosis score (red=F0, green=F1/2). G Clustering Image Map (CIM) of the
OTUs selected on each sPLS-DA component. H Heatmap of the OTUs selected on each sPLS-DA com-
ponent with groups of patients fixed. 1 ROC calculated on the predicted scores obtained from the

SPLSDA model.

Fig.4: discriminant analyses of the 16SrDNA OTUs variables using fairness strategies
A Distribution curves (or densities) of the coordinate of individuals, split into two cohort types

(black=Romania, red= the other countries: Italy, Austria, and Spain), when projected on the five first
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principal components built from the 16SrDNA OTUs normalized table count. The non-overlapping plots
(for example components 1,2,3) correspond to cohort discriminant components and will be removed from
the final analysis to identify the liver fibrosis discriminant variables.

Boxplot representing the frequencies of the most significant OTUs contributing to B the 6™, C the 24™, D
the 52" principal components for the different groups of liver fibrosis scores (red=F0, green=F1,

blue=F2).

E Graphical representation of the normalized OTU table counts whose nodes are colored according to the
5 clusters identified by the I1-spectral clustering algorithm (red= 1, green= 2, blue, 3, pink= 4 and yel-

low=5).

F Boxplot representing the mean frequencies of the OTUs in cluster 3, 4 and 5, identified by the 11-
spectral clustering algorithm, for the different groups of liver fibrosis scores (red=FO, green=F1,

blue=F2).

G, H Boxplot representing the frequencies of OTUs in cluster 1, and 2, identified by fair-tree algorithm,

for the different groups of liver fibrosis scores (red=FO0, green=F1, blue=F2).

I Venn diagram depicting the liver microbial taxonomies of common OTUs identified by standard (sPLS-
DA) and fair approaches (fairtree, random forest, 11-spectral clustering) as signatures of low fibrosis

scores (green= sPLSDA, red= fair algorithms).

Fig.5: identification of clusters by wordclouds representation with or without TFIDF normaliza-

tion.

Wordclouds representing taxa of all significant bacteria according to A, their frequencies or B, after
TFIDF normalization. The size of the name of bacteria is proportional to the frequency of the cluster in

the cohorts.



https://doi.org/10.1101/2020.12.10.419051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419051; this version posted December 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Fig.6: Predicted functional metagenomics analyses of discriminant enzymes and according to the

fibrosis score.

A,D: Heatmap (Clustering Image Map (CIM)), B,E: Sample plot, each point corresponds to an individu-
al and is colored according to its liver fibrosis score (red=F0, green=F1/2), C,F: ROC classification per-
formances of A-C: enzymes, and D-F: pathways, on a CSS normalized enzyme table count of the FO ver-

sus F1/2 groups of patients.

G-I: Loading plot representing the contribution of each enzyme (G,H), and pathways (1,J) selected to

build the first and second components (red=F0, green=F1/2).

K,L: main metabolic pathways from the MetaCyc database identified from the Loading plots for the K:

F1-2 and K: FO liver fibrosis scores.

Supplementary Figure 1: mean frequencies of discriminating taxa

Boxplot representing the frequencies of A Proteobacteria, B Actinobacteria C Firmicutes phyla and D
Caulobacteraceae, E, Flavobacteriaceae, and F, Propionibacteriaceae families throughout two groups of

liver fibrosis scores (red=FO0, green=F1, blue=F2).

Supplementary Figure 2: alpha and beta microbial diversity

Boxplot showing microbial alpha diversity A at the OTU, B, phylum, C, and family taxonomic level cal-
culated according to the Chao, Shannon, Simpson, inv Simpson indexes for the 3 liver fibrosis scores. D

PCoA showing Bray Curtis beta diversity of the normalized OTU table count. Dots are assigned to indi-

vidual patients and colored according to their fibrosis score (red=F0, blue=F2, green=F1). E Hierarchical
clustering of patients colored according to their fibrosis score (red=F0, blue=F2, green=F1) based on

Bray Curtis OTU distance.
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Supplementary Figure 3: Discriminant microbial signatures identified by linear effect size

LEfSe cladogram and LDA scores of taxonomic assignments from 16S rDNA sequence data of two liver

biopsy fibrosis groups A F1 vs F2, and B FO vs F2.
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Table 1. Baseline characteristics of patients with biopsy-proven fibrosis.

pVa- | pVa- | pVa-

All patients | Stage FO Stage F1 Stage F2 lue lue lue

Characteristics

N=62 N=34 N=37 N=11 | FovsF1 | FovsFo | FovsFl
Age (years) 4150+ 1152 | 39.5+12.77 39+9.53 50 £9.15 0.99 0.16 0.03*
Female (1) 47(57%) | 15(18%) | 26(32%) | 6(7.3%) 065 | 099 097
Height (m) 1.67 £ 0.08 1.67 £ 0.08 1.7 +0.08 1.62 +0.07 0.99 0.61 0.14
Smoker (n) 22 (27%) 10 (12%) 10 (12%) 2 (3%) 0.99 099 = 097

Weight (kg) 118.5+ 23.99 | 120+2255 | 118+21.59 |115.8+35.77 | 0.99 0.99 0.97

BMI (kg/mz) 42,65+ 7.73 | 43.25+6.9 416+7.2 |4152+1141 0.99 0.99 0.97

Waist (cm) 121+ 18.37 | 1245+19.4 | 120+ 15.61 @ 120+24.12 0.99 0.99 0.99

Blood Glucose 95.7+ 2576 | 95+ 27.46 99 +£21.22 95 + 34.63 0.99 0.99 0.97

(mg/dl)

0, 0, 0, 0, * *
Treated Diabetes | 7 (8:5%) 1(1.2%) 2 (2%) 4 (4.7%) 099 | 0.02* 0027

(n)

130+ 19.47 1 130.5+£20.76 | 124 +17.43 | 134 +18.45 0.65 0.99 0.73
Systolic (mm Hg)

80.0+ 1159 805+114 | 75%+1031 90 +£15.3 0.88 0.99 0.97

Diastolic (mm
Hg)
0, 0, 0, 0, *
Treated Hyper- 20 (24%) 8 (9.7%) 5 (6%) 7 (8.2%) 0.99 0.15 | 0.027
tension (n)
0, 0, 0, 0,
Treated Dysli- 6 (7.3%) 2 (2%) 3 (3.6%) 1(1.2%) 0.99 099 | 0.99
pidemia (n)
189.1 + 39.78 | 190.0 + 36.93 200.0 £ 167.0+£38.71 | 0.99 0.99 0.97
Total Cholesterol 43.11
(mg/dL)

4391 +13.38  47+11.73 43 +13.48 42 +16.62 0.99 0.61 0.97
HDL Cholesterol

(mg/dL)
GOT (U/) 20.85+ 17.56 | 18.50 +18.14 | 22 +18.97 22+7.54 0.99 0.99 0.97
GPT (U/l) 2750 +25.23 1 2350+17.50 29+3191 30+ 14.16 0.65 0.99 0.97
GGT (U/l) 29+23.04 | 2750+18.04| 30+25.84 32+23.3 0.65 0.61 0.99
HCT (%) 41+4.03 40+4.09 | 411+305 405+6.13 099 = 099 | 0.4

Leukocytes (G/L) 7.84 £2.63 7.48+24 8.1+239 7837 0.99 0.61 0.97

Neutrophils (G/L) 5+244 4.8 +2.36 5.15+2.28 5.3+3.2 0.99 0.99 0.99

Statistical significance is noted with * when p<0.05
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TABLE 2: Identification of specific bacterial signatures (unfair analyses).

FO
OTU name Phylum Family Genus
Cluster_30 | Proteobacteria Moraxellaceae Acinetobacter
Cluster_74 Firmicutes Ruminococcaceae Faecalibacterium
Cluster_35 | Actinobacteria Microbacteriaceae Rhodoluna
Cluster_28 | Actinobacteria Micrococcaceae Kocuria
Cluster_21 | Proteobacteria Caulobacteraceae Caulobacter

F1
OTU name Phylum Family Genus
Cluster_43 | Proteobacteria | Pseudomonadaceae Pseudomonas
Cluster_31 | Proteobacteria | Pseudomonadaceae Pseudomonas
Cluster_25 | Proteobacteria Enterobacteriaceae Multi-affiliation
Cluster_37 | Proteobacteria Rhodobacteraceae Paracoccus
Cluster_40 | Bacteroidetes Chitinophagaceae Ferruginibacter

F2
OTU name Phylum Family Genus
Cluster_122 Firmicutes Lachnospiraceae Multi-affiliation

Corynebacterium

Cluster_59 | Actinobacteria Corynebacteriaceae 1
Cluster_34 | Bacteroidetes Weeksellaceae Cloacibacterium
Cluster_48 Firmicutes Peptostreptococcaceae Romboutsia
Cluster_42 | Proteobacteria Burkholderiaceae Tepidimonas
Cluster_26 Firmicutes Streptococcaceae Lactococcus
Cluster_53 | Bacteroidetes Weeksellaceae Cloacibacterium
Cluster_18 | Proteobacteria Enterobacteriaceae Pantoea
Cluster_115 | Proteobacteria Burkholderiaceae Delftia
Cluster_50 | Actinobacteria Microbacteriaceae Clavibacter
Cluster_91 | Actinobacteria Corynebacteriaceae Corynebacterium
Cluster_54 | Proteobacteria Burkholderiaceae Ralstonia

Clusters were identified from the overall database prior to applying the fair strategies. The impact of

countries is observed as shown in Fig 2.
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TABLE 3. Identification of clusters of cohort-independent 16SrDNA associated with the different

low scores of fibrosis

sPLSDA

OTU name Phylum Family Genus Significance
Cluster_20 Proteobacteria | Burkholderiaceae Ralstonia FOVS F1

Cluster_15 Proteobacteria | Xanthobacteraceae Bradyrhizobium FOVS F1

Cluster_16 Proteobacteria | Enterobacteriaceae Multi-affiliation FOVSF1

Cluster_31 Proteobacteria | Pseudomonadaceae |Pseudomonas FO VS F1

Cluster_24 Proteobacteria | Enterobacteriaceae Kluyvera FOVSF1

Cluster_14 Proteobacteria | Xanthomonadaceae |Stenotrophomonas FOVSF1

Cluster_4 Proteobacteria | Enterobacteriaceae Multi-affiliation FOVS F1

Cluster_25 Proteobacteria | Enterobacteriaceae Multi-affiliation FO VS F1 and FO VS F2
Cluster_11 Proteobacteria | Pseudomonadaceae |Pseudomonas FOVS F1

Cluster_89 Actinobacteria | Corynebacteriaceae | Corynebacterium 1 FO VS F1 and FO VS F2
Cluster_5 Bacteroidetes | Flavobacteriaceae Flavobacterium FO VS F1 and FO VS F2
Fair-tree

OTU name Phylum Family Genus Significance
Cluster_31 Proteobacteria | Pseudomonadaceae |Pseudomonas FOVSF1

Cluster_66 Proteobacteria |Pasteurellaceae Haemophilus F1VSF2and FO VS F2
Cluster_335 Proteobacteria |Burkholderiaceae Janthinobacterium FOVSF1

Cluster_42 Proteobacteria |Burkholderiaceae Tepidimonas FOVSF1

Cluster_341 Proteobacteria | Enterobacteriaceae Enterobacter FOVS F1

Cluster_248 Proteobacteria | Reyranellaceae Reyranella FO VS F1 and FO VS F2
Cluster_231 Proteobacteria | Enterobacteriaceae Multi-affiliation FOVS F1

Cluster_36 Bacteroidetes | Flavobacteriaceae Flavobacterium F1VSF2and FO VS F2
Cluster_64 Actinobacteria | Corynebacteriaceae |Lawsonella F1VSF2and FO VS F2
Cluster_339 Proteobacteria | Burkholderiaceae Limnohabitans F1VSF2

Cluster_15 Proteobacteria | Xanthobacteraceae Bradyrhizobium FOVSF1

Cluster_44 Actinobacteria | Intrasporangiaceae Multi-affiliation FOVS F1and FO VS F2
Cluster_25 Proteobacteria | Enterobacteriaceae Multi-affiliation FOVSF1

Cluster_45 Proteobacteria | Burkholderiaceae Comamonas FO VS F1

Cluster_14 Proteobacteria | Xanthomonadaceae |Stenotrophomonas FO VS F1

Fair Random Forest

OTU name Phylum Family Genus Significance
Cluster_14 Proteobacteria | Xanthomonadaceae |Stenotrophomonas FO VS F1

Cluster_77 Proteobacteria | Enterobacteriaceae Multi-affiliation F1VSF2 and FO VS F2
Cluster_35 Actinobacteria | Microbacteriaceae Rhodoluna FO VS F1

Cluster_36 Bacteroidetes | Flavobacteriaceae Flavobacterium FO VS F1

Cluster_16 Proteobacteria | Enterobacteriaceae Multi-affiliation FOVS F1and FO VS F2
Cluster_312 Proteobacteria | Enterobacteriaceae Kosakonia FOVSF1

Cluster_24 Proteobacteria | Enterobacteriaceae Kluyvera FOVSF1
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Fair I11_spectral clustering

OTU name Phylum Family Genus Significance
Cluster_31 Proteobacteria | Pseudomonadaceae |Pseudomonas FOVSF1
Cluster_15 Proteobacteria | Xanthobacteraceae Bradyrhizobium FO VS F1
Cluster_341 Proteobacteria | Enterobacteriaceae Enterobacter FO VS F1
Cluster_20 Proteobacteria | Burkholderiaceae Ralstonia FO VS F1
Cluster_4 Proteobacteria | Enterobacteriaceae Multi-affiliation FO VS F1
Cluster_2 Proteobacteria | Enterobacteriaceae Escherichia-Shigella FO VS F1
Cluster_27 Proteobacteria | Enterobacteriaceae Serratia FO VS F1
Cluster_3 Proteobacteria | Pseudomonadaceae |Pseudomonas FOVSF1
Cluster_24 Proteobacteria | Enterobacteriaceae Kluyvera FOVSF1
Cluster_22 Proteobacteria |Burkholderiaceae Multi-affiliation FOVSF1
Cluster_16 Proteobacteria | Enterobacteriaceae Multi-affiliation FOVSF1
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TABLE 4. Microbial signatures common to all strategies.

OTU name Phylum Family Genus Species Significance
Pseudomonas

Cluster_31 Proteobacteria Pseudomonadaceae |Pseudomonas putida FO VS F1
Bradyrhizobium

Cluster_15 Proteobacteria Xanthobacteraceae Bradyrhizobium sp. FO VS F1

Cluster_25 Proteobacteria Enterobacteriaceae Multi-affiliation Multi-affiliation FOVS F1

Cluster_14 Proteobacteria Xanthomonadaceae |Stenotrophomonas | Multi-affiliation FOVS F1

Cluster_16 Proteobacteria Enterobacteriaceae Multi-affiliation Multi-affiliation FOVS F1

Cluster_24 Proteobacteria Enterobacteriaceae Kluyvera Multi-affiliation FOVS F1

Cluster_20 Proteobacteria Burkholderiaceae Ralstonia Multi-affiliation FOVS F1

Cluster_4 Proteobacteria Enterobacteriaceae Multi-affiliation Multi-affiliation FOVSF1
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Name Function
EC:4.1.2.52 4-hydroxy-2-oxoheptanedioate aldolase
EC:3.5.4.1 Cytosine deaminase
EC:3.2.24 AMP nucleosidase
EC:4.3.3.7 4-hydroxy-tetrahydrodipicolinate synthase
EC:6.3.4.20 7-cyano-7-deazaguanine synthase
EC:1.7.1.13 PreQ(1) synthase
EC:5.4.99.19 16S rRNA pseudouridine(516) synthase
EC:4.3.99.3 7-carboxy-7-deazaguanine synthase
EC:3.6.1.41 Bis(5'-nucleosyl)-tetraphosphatase (symmetrical)
EC:3.4.24.70 Oligopeptidase A
EC:2.1.1.197 Malonyl-[acyl-carrier protein] O-methyltransferase
EC:4.1.3.40 Chorismate lyase
EC:3.1.1.85 Pimeloyl-[acyl-carrier protein] methyl ester esterase
EC:2.1.1.200 tRNA (cytidine(32)/uridine(32)-2'-0)-methyltransferase
EC:2.1.1.173 23S rRNA (guanine(2445)-N(2))-methyltransferase
Enzymes
EC:2.1.1.264 23S rRNA (guanine(2069)-N(7))-methyltransferase
EC:2.3.1.183 Phosphinothricin acetyltransferase
EC:2.5.1.17 Cob(l)yrinic acid a,c-diamide adenosyltransferase
EC:1.1.1.95 Phosphoglycerate dehydrogenase
EC:2.4.1.21 Starch synthase
EC:2.4.1.18 1,4-alpha-glucan branching enzyme
EC:2.6.1.52 Phosphoserine transaminase
EC:2.1.1.207 tRNA (cytidine(34)-2'-0)-methyltransferase
EC:4.1.3.3 N-acetylneuraminate lyase
EC:3.2.1.22 Alpha-galactosidase
EC:2.4.1.187 mannosaminyltransferase
EC:3.1.21.4 Type Il site-specific deoxyribonuclease
EC:2.7.6.2 Thiamine diphosphokinase
EC:3.2.1.89 Arabinogalactan endo-beta-1,4-galactanase
EC:3.5.99.6 Glucosamine-6-phosphate deaminase
PWY-7664 oleate biosynthesis IV (anaerobic)
PWY-6282 palmitoleate biosynthesis | (from (5Z)-dodec-5-enoate)
FASYN-ELONG-PWY fatty acid elongation -- saturated
PWY-5989 stearate biosynthesis Il (bacteria and plants)
PWYO0-862 (5Z)-dodec-5-enoate biosynthesis
Pathways PWY-5417 catechol degradation Ill (ortho-cleavage pathway)
PWY-5431 aromatic compounds degradation via &beta,-ketoadipate
PWYO0-42 2-methylcitrate cycle |
PWY-5747 2-methylcitrate cycle Il
PWY-5855 ubiquinol-7 biosynthesis (prokaryotic)
PWY-5856 ubiquinol-9 biosynthesis (prokaryotic)



https://doi.org/10.1101/2020.12.10.419051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419051; this version posted December 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

PWY-5857 ubiquinol-10 biosynthesis (prokaryotic)
PWY-6708 ubiquinol-8 biosynthesis (prokaryotic)
UBISYN-PWY superpathway of ubiquinol-8 biosynthesis (prokaryotic)
FAO-PWY fatty acid &beta,-oxidation |
PROTOCATECHUATE-

ORTHO-CLEAVAGE-PWY

protocatechuate degradation Il (ortho-cleavage pathway)

FASYN-INITIAL-PWY

superpathway of fatty acid biosynthesis initiation (E. coli)

PWYG-321 mycolate biosynthesis
PWY-6519 8-amino-7-oxononanoate biosynthesis |
P562-PWY myo-inositol degradation |
BIOTIN-B:)O\;\;NTHESIS- biotin biosynthesis |
PWY-6608 guanosine nucleotides degradation IlI
GLYCOGENSYNTH-PWY glycogen biosynthesis | (from ADP-D-Glucose)
PWY-5667 CDP-diacylglycerol biosynthesis |
PWYO0-1319 CDP-diacylglycerol biosynthesis Il
PWY-6703 preQO biosynthesis
OANTIGEN-PWY O-antigen building blocks biosynthesis (E. coli)
PWY-6630 superpathway of L-tyrosine biosynthesis
PWY-5022 4-aminobutanoate degradation V
PWY-7431 aromatic biogenic amine degradation (bacteria)
P221-PWY octane oxidation
PWY4FS-7 phosphatidylglycerol biosynthesis | (plastidic)
PWY4FS-8 phosphatidylglycerol biosynthesis Il (non-plastidic)
PHOSLIPSYN-PWY superpathway of phospholipid biosynthesis | (bacteria)
PWY-5154 L-arginine biosynthesis Ill (via N-acetyl-L-citrulline)
PWY-6628 superpathway of L-phenylalanine biosynthesis
REDCITCYC TCA cycle VIII (helicobacter)
UDPNAGSYN-PWY UDP-N-acetyl-D-glucosamine biosynthesis |
PWY-7254 TCA cycle VIl (acetate-producers)

CATECHOL-ORTHO-
CLEAVAGE-PWY

catechol degradation to &beta,-ketoadipate

GLYCOLYSIS-TCA-GLYOX-

superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate

BYPASS bypass
PWY-7328 superpathway of UDP—qucose-deriveq O-antigen building blocks biosyn-
thesis
PWY-5384 sucrose degradation IV (sucrose phosphorylase)
PWYO0-1241 ADP-L-glycero-&beta,-D-manno-heptose biosynthesis
PWY-621 sucrose degradation Il (sucrose invertase)

GLYCOCAT-PWY

glycogen degradation | (bacterial)

3-
HYDROXYPHENYLACETATE-
DEGRADATION-PWY

4-hydroxyphenylacetate degradation

PWY-6737 starch degradation V
GLUCOSE1PMETAB-PWY glucose and glucose-1-phosphate degradation
PWY-5419 catechol degradation to 2-oxopent-4-enoate |
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PWY-7323 superpathway of GDP-mannose-derived O-antigen building blocks biosyn-

thesis
PWY-5420 catechol degradation Il (meta-cleavage pathway)
COLANSYN-PWY colanic acid building blocks biosynthesis
ASPASN-PWY superpathway of L-aspartate and L-asparagine biosynthesis
PWY-5651 L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
PWY-5941 glycogen degradation Il (eukaryotic)
PWY-6713 L-rhamnose degradation Il
THISYN-PWY superpathway of thiamin diphosphate biosynthesis |
LACTOSECAT-PWY lactose and galactose degradation |
PWY-6728 methylaspartate cycle
RHAMCAT-PWY L-rhamnose degradation |
PWY-6317 galactose degradation | (Leloir pathway)
PWY-7196 superpathway of pyrimidine ribonucleosides salvage
FUC-RHAMCAT-PWY superpathway of fucose and rhamnose degradation
PWY-6629 superpathway of L-tryptophan biosynthesis
PWY-5088 L-glutamate degradation VIII (to propanoate)

superpathway of N-acetylglucosamine, N-acetylmannosamine and N-

GLCMANNANAUT-PWY . .
acetylneuraminate degradation

P441-PWY superpathway of N-acetylneuraminate degradation
PWY-6071 superpathway of phenylethylamine degradation
PWYO0-1533 methylphosphonate degradation |
POLYAMSYN-PWY superpathway of polyamine biosynthesis |
ARG+POLYAMINE-SYN superpathway of arginine and polyamine biosynthesis
PWYO0-1296 purine ribonucleosides degradation
PWYO0-1298 superpathway of pyrimidine deoxyribonucleosides degradation
PWY-5838 superpathway of menaquinol-8 biosynthesis |
PWY-5840 superpathway of menaquinol-7 biosynthesis
PWY-5861 superpathway of demethylmenaquinol-8 biosynthesis
PWY-5899 superpathway of menaquinol-13 biosynthesis
PWY-5897 superpathway of menaquinol-11 biosynthesis
PWY-5898 superpathway of menaquinol-12 biosynthesis
PWY-7315 dTDP-N-acetylthomosamine biosynthesis
ALL-CHORISMATE-PWY superpathway of chorismate metabolism
PWY-5863 superpathway of phylloquinol biosynthesis
PWY-5837 1,4-dihydroxy-2-naphthoate biosynthesis |
PWY-5860 superpathway of demethylmenaquinol-6 biosynthesis |
PWY-5862 superpathway of demethylmenaquinol-9 biosynthesis
PWY-5896 superpathway of menaquinol-10 biosynthesis
PWY-5845 superpathway of menaquinol-9 biosynthesis

PWY-5850 superpathway of menaquinol-6 biosynthesis |
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SPLSDA FO F1F2, heatmap with discriminant variables and roc curve
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