

1 **Hidden limbs in the “limbless skink” *Brachymeles lukbani*: developmental observations**

2

3 **Daniel Smith-Paredes¹ | Oliver Griffith² | Matteo Fabbri¹ | Laurel Yohe¹ | Daniel G.**

4 **Blackburn³ | Cameron D. Siler⁴ | Bhart-Anjan S. Bhullar¹ | Günter P. Wagner⁵**

5

6 ¹Department of Earth and Planetary Science and Peabody Museum of Natural History, Yale
7 University, New Haven, CT, USA

8 ²Department of Biological Sciences, Macquarie University, Sydney, Australia

9 ³Department of Biology, and Electron Microscopy Center, Trinity College, Hartford,
10 Connecticut

11 ⁴Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of
12 Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072-7029, USA.

13 ⁵Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut

14

15 **Correspondence**

16 Daniel Smith-Paredes, Yale University, Department of Earth and Planetary Science and Peabody
17 Museum of Natural History, 210 Whitney Ave, New Haven, CT, 06511, USA.

18 Email: dsmithparedes@yale.edu

19

20 **Funding information**

21 National Science Foundation IOS 1353683, 1353743, 1353691, and 1353703

1 Abstract

2 Reduced limbs and limblessness have evolved independently in many lizard clades. Skinks
3 exhibit a wide range of limb-reduced morphologies, but only some species have been used to
4 study the embryology of limb reduction (i.g., digit reduction in *Chalcides* and limb reduction in
5 *Scelotes*). The genus *Brachymeles*, a Southeast Asian clade of skinks, includes species with a
6 range of limb morphologies, from pentadactyl to functionally as well as structurally limbless
7 species. Adults of the small, snake-like species *Brachymeles lukbani* show no sign of external
8 limbs in the adult except for small depressions where they might be expected to occur. Embryos
9 of *B. lukbani* in early stages of development, on the other hand, show a truncated but well-
10 developed limb with a stylopod and a zeugopod, but no signs of an autopod. As development
11 proceeds, the limb's small size persists even while the embryo elongates. These observations are
12 made based on external morphology. We used florescent whole-mount immunofluorescence to
13 visualize the morphology of skeletal elements and muscles within the embryonic limb of *B.*
14 *lukabni*. Early stages have a humerus and separated ulna and radius cartilages; associated with
15 these structures are dorsal and ventral muscle masses as those found in the embryos of other
16 limbed species. While the limb remains small, the pectoral girdle grows in proportion to the rest
17 of the body, with well-developed skeletal elements and their associated muscles. In later stages
18 of development, the small limb is still present under the skin but there are few indications of its
19 presence, save for the morphology of the scale covering it. The adult morphology consists of a
20 well-developed pectoral girdle, small humerus, extremely reduced ulna and radius, and well-
21 developed limb musculature connected to the pectoral girdle. These muscles form in association
22 with a developing limb during embryonic stages, a hint that “limbless” lizards that possesses
23 these muscles may have or have had at least transient developing limbs, as we find in *B. lukbani*.

24 Overall, the observed pattern of ontogenetic reduction, leading to an externally limbless adult in
25 which a limb rudiment is hidden and covered under the trunk skin, is a situation called
26 cryptomelia. The results of this work add to our growing understanding of clade-specific patterns
27 of limb reduction and the convergent evolution of limbless phenotypes through different
28 developmental processes.

29

30 **KEYWORDS**

31 limb development, limb reduction, lizard evolution, musculoskeletal evolution

32

33 **1 | INTRODUCTION**

34

35 Limb reduction and limblessness have evolved many times independently within squamate
36 reptiles (Gans, 1975; Greer, 1991). Snakes are easily the most recognizable limbless clade.
37 Although some groups of snakes (Aniliidae, Boidae, Leptotyphlopidae, Pythonidae,
38 Typhlopidae; List, 1966) possess rudimental hindlimbs, with pelvic and proximal limb skeletal
39 elements, forelimbs and pectoral girdles are not present in any extant species. Similarly, almost
40 every large clade of lizards has, in fact, evolved its own snake-like morphotype at least once,
41 including Amphisbaenidae, Anguidae, Cordylidae, Dibamidae, Gekkota, Gymnophthalmidae,
42 Gerrhosauridae, and Scincidae (Greer, 1991; Leal and Cohn, 2018). Limbs could, in theory, be
43 reduced or absent as a consequence of a variety of developmental mechanisms such as extreme
44 allometry, degeneration and agenesis. Among the various cases of convergence towards limbless
45 body plans among clades of lizards, embryonic development has been investigated in only a
46 handful of lineages, all of which are species of snakes or anguid and scincid lizards (Raynaud,

47 1985; Infante *et al.*, 2018), and as a consequence our understanding of similarities and
48 differences in the ontogeny of limb loss is limited. In python embryos, hindlimbs develop but
49 have no apical ectodermal ridge (AER), nor expression of genes normally associated with
50 maintenance of limb growth (Cohn and Tickle, 1999). Hindlimb development becomes truncated
51 and at least some distal skeletal elements fail to form. In contrast, forelimb development is never
52 initiated (Cohn and Tickle, 1999). In snakes lacking hindlimb remnants that have been studied
53 (Zehr, 1962; Raynaud, 1985; Jackson, 2002), neither fore- nor hindlimbs initiate development.
54 The developmental pattern of the reduced hindlimb of python embryos differs from that of other
55 limbless lizards (Raynaud, 1985). In comparison, in a study of the limbless anguid genus *Anguis*,
56 fore- and hindlimb rudiments appear in early stages; however, development soon ceases and
57 regression and sequential disappearance of the forelimb and then the hindlimb occurs (Raynaud,
58 1985). This pattern is similar to observations made in another extremely limb reduced anguid,
59 *Pseudopus* (referred to as *Ophisaurus* in the references), in which fore- and hindlimb buds also
60 start to develop before subsequent degeneration and disappearance occurs (Rahmanl, 1974;
61 Raynaud, 1985).

62 Skinks of the genus *Scelotes* show different degrees of limb reduction, including limbless
63 forms (Lande, 1978; Wiens and Slingluff, 2001; Siler and Brown, 2011). Embryos of different
64 species form both fore- and hindlimb buds, which stop developing and regress to different
65 degrees (Raynaud *et al.*, 1975; Raynaud and Van den Elzen, 1976; Raynaud, 1985). For
66 example, embryos of *Scelotes inornata* form a rudimentary AER which later degenerates
67 differentially among the fore- and hindlimbs (Raynaud, 1985). In the forelimb, regression occurs
68 rapidly, while in the hindlimb it does so more slowly, resulting in an adult with a rudimentary
69 hindlimb possessing a proximal portion of the femur (Raynaud, 1985). In *S. brevipes*, limb

70 development follows a similar pattern; however, the hindlimb develops further and the adult
71 retains an ossified femur and fused cartilaginous tibia and fibula (Raynaud, 1985). Finally, *S.*
72 *gronovii* embryos have a well-developed AER in the hindlimb, and the adult hindlimb has an
73 ossified femur, tibia, fibula, and one finger with three phalanges, while the AER is not well
74 developed in the forelimb, and degenerates early in development (Raynaud, 1985).

75 Among squamate clades, by far the greatest diversity of independent origins of limb
76 reduction and limblessness occurs in skinks (family Scincidae), which have evolved limb
77 reduced forms more times than any other lizard group (Greer, 1991; Russell and Bauer, 2008).

78 Furthermore, a number of skink genera include suites of closely related species that display the
79 full spectrum of body forms, from pentadactyl to limbless, including *Brachymeles* (Wagner *et*
80 *al.*, 2018; Siler and Brown, 2011), *Chalcides* (Carranza *et al.*, 2008; Young *et al.*, 2009), *Lerista*
81 (Skinner *et al.*, 2008; Skinner and Lee, 2009) and *Scelotes* (Raynaud, 1985), making them
82 attractive model clades for studying evolutionary convergence in phenotype and major
83 transitions in body form. In this study, we investigate the anatomy of embryos of *Brachymeles*
84 *lukbani*, a recently described, elongated, slender skink without any trace of external limbs in
85 adults, except for a small depression where the limb could be expected to be found (Siler *et al.*,
86 2010). Our results provide new information on the developmental patterns leading to the origin
87 of limblessness and clues into the sequence of evolutionary events behind the evolution of
88 repeated limb reduction and loss in lizards.

89

90 **2 | METHODS**

91

92 Embryos of *Brachymeles lukbani* were collected in the field during an expedition to the
93 Philippines in May and June 2016. Surveys for individuals of *B. lukbani* were conducted at Mt.
94 Labo, Barangay Tulay Na Lupa, Municipality of Labo, Camarines Norte Province, Luzon Island,
95 in coordination with local community partners. Animals were captured by hand raking leaf litter
96 and loose soil surrounding tree root networks and rotting logs along the forest floor (Siler and
97 Brown, 2011). Pregnant female individuals were euthanized and prepared as vouchered
98 specimens after embryos were extracted for subsequent preparation (Simmons, 2015).
99 Vouchered specimens were deposited in the National Museum of the Philippines and the Sam
100 Noble Oklahoma Museum of Natural History.

101 Corn snake (*Pantherophis guttatus*) eggs were obtained from a colony housed at Trinity
102 College. Embryos were staged according to (Zehr, 1962), collected and dissected in cold PBS,
103 then fixed in 4% PFA in a shaker at 4°C for 7 days, then dehydrated 3–4 times with 15 minutes
104 washes of Methanol 100% and stored at -20°C until further processing.

105 Dehydrated embryos were bleached overnight in a solution of Methanol:DMSO:H₂O₂
106 4:1:1 under light. After bleaching they were washed with Methanol 100% two times for ten
107 minutes and then rehydrated in increasing concentrations of PBS:Methanol
108 (25%,50%,75%,100%). After two extra washes in PBS, embryos were placed in a solution of 4%
109 Acrylamide in PBS, with 0.25% VG44 as initiator al left at 4°C overnight. Next day, embryos
110 were placed in a 50 mL falcon tube with a special adaptor, and O₂ was replaced by N₂ by taking
111 out air with a vacuum chamber and pumping N₂ from a tank. Embryos were incubated at 37°C
112 for 4 hours to allow acrylamide to polymerize, and later were washed in a solution of 200mM
113 SDS 200mM Boric Acid in distilled water until they became transparent. When transparent,
114 embryos were washed for an hour six times in PBS with 1% TritonX-100 (PBSt).

115 Immunostaining was performed using two antibodies targeting myosin heavy chain (MF-20,
116 DSHB) and the transcription factor Sox9 (Sox9, AB5535, Abcam) in concentrations 1:50 and
117 1:1000 respectively, in a solution with 5% DMSO, 5% normal horse serum in PBSt. Antibodies
118 were incubated overnight, washed six times for one hour in PBSt, and incubated with secondary
119 antibodies (Goat anti-mouse 555, Goat anti-rabbit 647 Invitrogen) overnight. Embryos were then
120 washed in PBSt three times and stored in RIMS (Refractive Index Matching Solution; Yang *et*
121 *al.*, 2014).

122 Embryos stored in RIMS were either photographed directly in RIMS or accommodated in
123 liquid agarose + RIMS (1% low temperature melt Agarose GPG/LMP, AmericanBio, dissolved
124 in RIMS). Embryos were imaged with a Zeiss Axio Zoom.V16 fluorescent scope or with a Zeiss
125 LSM880 Confocal Microscope collecting multiple tiles of Z-stacks, according to the size of the
126 embryo. 3D projections of images were reconstructed using Fiji software (Schindelin *et al.*,
127 2012).

128 Two adult *B. lukbani* specimens were stained in 5% I₂KI for 15 days, fixed in agarose
129 1%, and mounted for scanning in a 50 mL tube. The specimens were scanned on a high-
130 resolution Nikon H225 ST μ CT-scanner at Yale University. Scan parameters included
131 0.00967746 mm voxel size resolution, 105 kV, 64 μ A, and centered at a region focused on the
132 head and forelimb. The scan image stacks were imported into in-house Nikon post-scanning
133 image processing software, where they were reconstructed with dual high-resolution centers of
134 rotation and 3rd level beam hardening. Resulting image stacks were imported into VGStudio Max
135 v. 3.4.1 for segmentation.

136

137 **3 | RESULTS**

138

139 **3.1 | External embryonic morphology of *Brachymeles lukbani***

140

141 The youngest embryo of *B. lukbani* (Figure 1, OMNH 45693) has a slightly elongated
142 morphology, with a long body coiled once. The heart lies still outside of the thoracic cavity. The
143 forelimb is small but almost complete, with a bent elbow between the stylopod and zeugopod.
144 No autopod seems to be present, as there is no evident digital paddle. In the second embryo
145 (Figure 1, OMNH 45709), differential growth has resulted in a more elongated body shape, and a
146 smaller looking limb. The heart is now enclosed in the thoracic cavity. The limb looks
147 proportionally smaller, in relation to the rest of the body and the bent elbow is less obvious. In
148 later stage embryos (Figure 1, OMNH 45717, 45760), eyelids have started to cover the eye,
149 scales have developed and are pigmented, and the limb is limited to a small protuberance on the
150 side of the body, covered by a small, rounded scale.

151

152 **3.2 | Skeletal embryonic development of *Brachymeles lukbani***

153

154 The youngest of the *Brachymeles lukbani* embryos is in an early stage of skeletal development.
155 As revealed by immunostaining against Sox9 protein, to label pre-cartilaginous and early
156 cartilaginous condensations, vertebrae and chondrocranial components have already started to
157 develop (Figure 2, OMNH 45693). In the pectoral region, the developing scapulocoracoid plate
158 can be seen as a continuous structure, and a small humerus, ulna, and radius are present in the
159 arm.

160 In the next stage of development (Figure 2, OMNH 45709), rib precursors are visible as
161 extended projections off of the vertebral condensations. In the skull, the chondrocranial elements
162 are more differentiated, with distinct quadrate, optic and nasal capsules, and a well-defined hyoid
163 apparatus. The scapular plate and the coracoid plate are differentiated, including the excavations
164 that will form the margin of the fenestrae typical of lizard primary girdles. The humerus is much
165 longer than the ulna and radius, and the label seems to be interrupted in the diaphysis, which
166 could be a sign of cartilage maturation. The ulna and radius are in close contact and no other
167 skeletal element has developed distally.

168 In later stages (Figure 2, OMNH 45717) maturation of cartilage has proceeded, as
169 evidenced by the weak or absent Sox9 signal in portions of the ribs, vertebrae, and elements of
170 the chondrocranium and Meckel's cartilage. Ribs and tracheal rings are still Sox9 positive, as are
171 portions of the suprascapular, coracoids, and presternum. There is no evidence of Sox9 positive
172 cells in the forelimb skeleton.

173

174 **3.3 | Muscular embryonic development in the forelimb of *Brachymeles lukbani***

175

176 In amniotes, premuscular cells of somitic origin invade the limb and form dorsal and ventral
177 muscle masses, flanking the skeletal condensations. These masses later divide into individual
178 muscles of the chest, shoulder, arm, and hand (Romer, 1944; Christ and Brand-Saberi, 2004). In
179 the earliest embryo observed (Figure 2, OMNH 45693), the division of these muscle masses has
180 already started. The dorsal mass is split into identifiable Deltoid, Latissimus, Triceps, and
181 forelimb Extensor divisions, while ventrally a Pectoral, Supracoracoideus, Biceps, and forelimb
182 Flexor divisions are apparent. In the next stage (Figures 2 and 3, OMNH 45709), the shoulder

183 and chest muscle masses, extrinsic to the arm, have divided into identifiable individual muscles,
184 although they are small in comparison to the axial muscles in the region. The intrinsic muscles of
185 the arm seem to be much less developed, possibly even degenerating. Later stages (Figure 2,
186 OMNH 45717) do not show any evidence of intrinsic arm musculature, but small extrinsic arm
187 muscles (Deltoid, Latissimus, Pectoral, Supracoracoid musculature) remain.

188

189 **3.4 | Comparison to embryos of the snake *Pantherophis guttatus***

190

191 In Stage 29 corn snake embryos, most of the skeleton development seems to correspond to the
192 degree of development observed in *Brachymeles lukbani* embryo OMNH 45709, however, the
193 postcranial skeleton shows no trace of pectoral girdle elements or limb skeleton (Figure 3). Axial
194 musculature, in contrast to limb muscles, derives from muscles that develop first within the
195 boundaries of the somite and then extend towards their specific attachments (Burke and Nowicki,
196 2003). None of the well-developed girdle axial muscles (see below) present in *B. lukbani*
197 embryos can be observed in *Pantherophis*. Additionally, as expected in snakes, no trace of limb
198 musculature, intrinsic or extrinsic, is observed in *Pantherophis* either.

199

200 **3.5 | Adult morphology of *Brachymeles lukbani***

201

202 Adult *B. lukbani* preserve a fairly well-developed, albeit thin and poorly ossified, pectoral girdle,
203 a small and curved humerus, and extremely reduced radius and ulna (Figure 4 A, B). The
204 pectoral girdle consists of a well-developed but undivided scapulocoracoid. The coracoid portion
205 presents a well-defined metacoracoid only, with a primary and secondary coracoid ray

206 delineating a primary coracoid fenestra (Russell and Bauer, 2008). The suprascapula is broad in
207 its dorsal border, and probably calcified, as evidenced by the granular texture observed in the
208 CTscan. The lateral two-thirds of the clavicles are heavily curved, and the medial ends are
209 fenestrated. The interclavicle is arrow shaped, with an anterior process longer than the posterior
210 process and lateral processes arching anteriorly. The sternum is calcified and bears a sternal
211 fontanelle on its posterior end. The humerus is short and curved, with a pronounced humeral
212 crest (Figure 4 A, B, E). Both the radius and ulna are extremely reduced, each a tiny splint of
213 bone bone a few tens of microns in diameter (Figure 4 C, D). We confirmed that adult *B. lukbani*
214 still possess well developed limb musculature associated with the pectoral girdle (Figure 4 F, G),
215 such as broad latissimus dorsi and pectoralis muscles. The Deltoid musculature, on the other
216 hand, while easily divisible into its scapular and clavicular portions in the embryos, is not so
217 readily separated in the adult. The supracoracoid muscle, as in the embryos, has two, well
218 defined portions originating from the coracoids and clavicles. A coracobrachialis muscle was
219 identified, however other muscles deriving from the biceps, triceps, or more distal subdivisions
220 were not observed.

221

222 **4 | DISCUSSION**

223

224 It has been an enduring question is to what extent convergent limb reduction is achieved by
225 employing the same developmental mechanisms. Limbs can be lost without losing the
226 corresponding girdle, which probably indicates limbs are easier to lose or truncate during
227 embryonic development than girdles. Across most clades of lizards, absence or reduction of
228 forelimbs and/or pectoral girdles is not tied to reduction or loss of hindlimbs and/or pelvic

229 girdles (Stephenson, 1962; Rodrigues, 1991; Nussbaum and Raxworthy, 1995; Pellegrino *et al.*,
230 2001; Andreone and Greer, 2002; Sakata and Hikida, 2003a; Sakata and Hikida, 2003b;
231 Rodrigues *et al.*, 2008; Miralles *et al.*, 2012). The prominent exception is of course the absence
232 of forelimb elements in snakes. Otherwise, all “limbless” lizards for which embryonic
233 development has been investigated develop limbs in early developmental stages, which later
234 shrink, reabsorb or degenerate (Raynaud, 1985). As such, snakes are the only group of squamates
235 studied in which adult true limblessness (fore- and hindlimbs absent in most snakes, only
236 forelimbs absent in Aniliidae, Boidae, Leptotyphlopidae, Pythonidae and Typhlopidae,) reflects
237 total absence of limb development in embryonic stages (Zehr, 1962; Raynaud, 1985; Jackson,
238 2002). Although the exact developmental mechanisms of each studied case are not completely
239 understood, all seem to involve absent, reduced, or degenerated AER development or activity. In
240 *Brachymeles lukbani*, the earliest forelimb observed displays a bent elbow and, although the
241 autopod portion does not look properly developed, appears to be at a stage of development
242 similar to when digit rays begin to develop in other lizards (Sanger *et al.*, 2008; Wise *et al.*,
243 2009; Rapp Py□Daniel *et al.*, 2017; Griffing *et al.*, 2019). It was not possible to determine
244 whether or not the AER of the limbs is normal in *B. lukbani* given available material; however,
245 the earliest embryo seems to be around the temporal frame when the AER begins to become
246 reduced in typical pentadactyl lizards, such as is observed in *Lacerta* (Raynaud, 2003) or
247 *Paroedura* (Noro *et al.*, 2009).

248 In amniote embryos, induction of early limb buds is, at least in part, dependent on
249 signaling between the somites and the lateral plate mesoderm (LPM; Duester, 2008; Zhao *et al.*,
250 2009; Zeller *et al.*, 2009; Duboc and Logan, 2011), while the maintenance of limb development
251 depends on the activity of the AER (Mahmood *et al.*, 1995). The forelimb skeleton develops

252 from the mesoderm within the limb bud, derived from the LPM, while the pectoral girdle derives
253 from the LPM and an additional component of somitic origin (McGonnell, 2001). The
254 musculature of the forelimb and that connecting the limb skeleton to the pectoral girdle, and the
255 girdle to the vertebral column, derives from the somites. During development, some cells migrate
256 out of the somite and invade the limb buds where they differentiate into muscle cells and arrange
257 forming two opposing muscle masses that give rise to the muscles of the arm (intrinsic limb
258 muscles) and some major muscles originating on the pectoral girdle and extending to attachment
259 points within the arm or on the axial column (extrinsic limb muscles) (i.e. pectoralis,
260 supracoracoideus, latissimus, deltoideus, scapulohumeral, subscapular muscles). Other muscles
261 form within the somite boundaries and extend into the girdles from their origin sites at the
262 vertebrae or ribs (i.e. levator scapulae, trapezius, serratus, episternocleidomastoid muscles). The
263 former group of muscles correspond to proper limb muscles, irrespective of their origin or
264 attachments, as developmentally they derive from the limb muscle masses, while the latter group
265 corresponds to axial musculature, as they originate developmentally from the somitic primaxial
266 musculature (Romer, 1944; Russell and Bauer, 2008; Valasek *et al.*, 2011).

267 In the *limbless* chicken mutant, small limb buds start development but grow very little
268 and soon after shrink and disappear (Prahlad *et al.*, 1979). In these mutant embryos, both the
269 pectoral and pelvic girdles develop normally, however the limb skeletal elements and the limb
270 musculature do not (Prahlad *et al.*, 1979). Furthermore, there is no sign of the humerus or more
271 distal elements, nor of extrinsic limb muscles like the pectoralis, although axial girdle
272 musculature appears to be normal (Prahlad *et al.*, 1979; Lanser and Fallon, 1984). This
273 demonstrates that the maintenance of a developing limb bud is necessary for the formation and
274 development of the limb skeleton and limb intrinsic and extrinsic musculature, at least up to a

275 certain point, but is not needed for the development of the girdles nor the axial girdle
276 musculature. In *Brachymeles lukani*, although development of the limb is truncated, its early
277 presence seems to be sufficient to enable the development of the limb musculature. Subsequent
278 limb reduction to the point of near-disappearance does not seem to affect the later development
279 of extrinsic limb musculature associated with the normally developed pectoral girdle. This
280 observation suggests that in other limbless clades, the presence of limb musculature in adults
281 implies the presence of transient limbs during embryonic development.

282 As mentioned before, most lizard clades have evolved extremely limb-reduced or
283 limbless forms. In fact; gekkotans, gerrhosaurids, cordylids, gymnophthalmids and anguimorphs
284 display both limbed and limb-reduced or limbless species, and only in iguanians, lacertids, teiids
285 and xantusids is limb loss not observed. Dibamids, amphisbaenians, and snakes are composed
286 entirely of limb-reduced or limbless species (Figure 5). However, information on the
287 developmental patterns and adult muscle anatomy of limbs and girdles remains scarce.
288 Amphisbaenians form a highly specialized fossorial clade of lizards, composed by five families
289 characterized by limblessness (Kearney, 2002). Only members of the genera *Blanus* and *Bipes*
290 retain a reduced femur, and only species of *Bipes* have forelimbs, which are well developed and
291 include humerus, ulna, radius, carpals, and four or five digits (Kearney, 2002). In stark contrast
292 to *Bipes*, all other amphisbaenians lack any trace of forelimb skeletal elements. However, with
293 the exception of the family Rhineuridae, all have been reported recently to retain the ancestral
294 number of forelimb girdle muscles, although these muscles show somewhat modified
295 arrangements, and origin and attachment points, associated with their variably developed
296 pectoral girdles (Westphal *et al.*, 2019). Interestingly, Rhineuridae also lacks any pectoral girdle
297 skeletal element, but does possess highly modified strand-like muscles that are similar to those of

298 other amphisbaenians and lizards in position and number (Westphal *et al.*, 2019). The presence
299 of axial pectoral and limb girdle musculature in amphisbaenians suggests they may retain a
300 developing forelimb, at least during early embryonic stages. The retention of an early forelimb
301 during development may explain the apparent re-evolution of forelimbs or digits without the
302 necessity of invoking novel re-evolution of limb development mechanisms and processes in an
303 ancestrally limbless clade, not only in the case of *Bipes biporus* (Kearney and Stuart, 2004;
304 Brändle *et al.*, 2008), but also in analogous cases within Gymnophthalmidae (Kohlsdorf and
305 Wagner, 2006) and Scincidae (Wagner *et al.*, 2018).

306 Skinks are without a doubt the best clade to study the evolution of limb reduction and
307 loss among squamates. Extreme limb reduction and limblessness is observed in species in more
308 than 30 different genera representing an even larger number of independent transitions from the
309 pentadactyl ancestral state. As in many skink clades, instances of limb reduction and loss occur
310 independently in lineages of the same genus, as is observed in *Brachymeles* (Figure 5).
311 *Brachymeles lukbani* has at least externally limbless sister species, *B. minimus*, and both are
312 nested in a clade of seven species with reduced limb but digitized lineages (Figure 5; Wagner *et*
313 *al.*, 2018; Bergmann *et al.*, 2020). Within this clade, the two-digit forms are more closely
314 related to *B. lukbani* and *B. minimus*, sister to the three-digit species (Figure 5). This pattern
315 suggests a progressive loss of digits and more proximal limb structures in the *lukbani + minimus*
316 clade. Based on a dated phylogeny (Wagner *et al.*, 2018; Bergmann *et al.*, 2020) limb loss in
317 these animals is relatively recent, probably less than 12 million years ago. This phylogenetic
318 history is consistent with a developmental pattern that still includes the embryonic appearance of
319 stylo and zeugopodium and shoulder girdle and associated muscles, and retention of a reduced
320 limb covered under a scale, a condition called *cryptomelia* (Windle, 1898).

321 Within individual genera, the morphology of reduced limbs and the degree of reduction
322 can be highly variable (Greer, 1970; Andreone and Greer, 2002; Sakata and Hikida, 2003a;
323 Sakata and Hikida, 2003b; Carranza *et al.*, 2008; Siler *et al.*, 2011a; Davis *et al.*, 2014; Miralles
324 *et al.*, 2015; Andrade *et al.*, 2016; Wagner *et al.*, 2018). The persistence of intermediate forms
325 between the fully pentadactyl and fully limbless represents a mystery, that has been interpreted
326 as evidence that these species represent different adaptive optima (Brandley *et al.*, 2008;
327 Bergmann and Morinaga, 2019; Skinner *et al.*, 2008; Bergmann and Morinaga, 2019), although
328 optimal for what is not known. The extent to which extremely reduced rudimentary limbs and
329 their associated muscles participate actively in locomotion is largely unknown (Bergmann *et al.*,
330 2020). There are indications that different morphologies do not affect locomotor performance
331 (Morinaga and Bergmann, 2020), further conflicting with the notion that intermediate forms are
332 adaptive (but see Bergmann *et al.*, 2020). The high variability in digit number and degree of
333 reduction seen at the interspecific level mirrored even within some individual species (Siler *et*
334 *al.*, 2011b; Davis *et al.*, 2014; Andrade *et al.*, 2016). This parallel of morphological variability
335 between species in a genus and among individuals within a species suggests that drift,
336 constrained by population sizes and isolation, rather than that active adaptation plays an
337 important role in the maintenance of intermediate limb-reduced morphologies. Meanwhile, the
338 apparent progression from moderate to extreme limb reduction observed in different limb
339 reduced lineages might hint at cumulative developmental effects behind the initial evolution and
340 persistence of reduced limb morphologies.

341 It is worth noting that the situation in *B. lukbani* is unusual as this species is externally
342 limbless but retains a hidden limb rudiment, a condition that has been called *cryptomelia* in the
343 medical literature (Windle, 1898). It is not clear how common this form of limbless phenotype is,

344 as it requires special techniques to detect. Cryptic limbs like these may have gone undetected in
345 many other apparently limbless lizard species. The results of this study provide a reasonable
346 scenario linking the transient existence of a developing limb with the presence of limb derived
347 girdle muscles in adults. Nevertheless, studies on other limb reduced taxa are needed to establish
348 whether transient embryonic limbs or cryptic adult limbs are regularly present in species where
349 these muscles are well developed but show no traces of limb skeleton. Further studies comparing
350 the adult musculoskeletal anatomy, embryonic development, and phylogenetic evolutionary
351 patterns of limb reduction in other skinks in the genus *Brachymeles*, as well as in the many other
352 limb-reduced lineages, are required to understand the recurrent evolution of limb reduced forms
353 in squamates and whether these similar phenotypes are the result of similar mechanisms evolving
354 in parallel.

355

356 **ACKNOWLEDGEMENTS**

357 We are particularly grateful to Mr. Jason Fernandez and our Filipino colleagues who were
358 instrumental in carrying out successful field expeditions throughout this work. We would also
359 like to thank Brandon Mercado for assistance with μ CT-scanning. We thank the Sam Noble
360 Oklahoma Museum of Natural History for granting access to its specimens. This research was
361 supported by the Yale Institute of Biospheric Studies at Yale University, the Peabody Museum
362 of Natural History, and the following NSF grants: 1353683, 1353743, 1353691, and 1353703.

363

364 **CONFLICT OF INTEREST**

365 The authors declare no conflicts of interest.

366

367 **AUTHOR CONTRIBUTIONS**

368 Oliver Griffith, Cameron D. Siler and Gunter P. Wagner collected the *Brachymeles lukbani*
369 embryos and adults on the field. Matteo Fabbri and Laurel Yohe mounted and CT-scanned the
370 adult specimens. Daniel Blackburn provided corn snake eggs from his colony at Trinity College.
371 Bhart-Anjan S. Bhullar provided logistical and financial support for the immunostaining and
372 microscopic imaging of the embryos. Daniel Smith-Paredes conceived the study, photographed
373 *B. lukbani* embryos, collected corn snake embryos, performed the immunostaining experiments,
374 imaged the immunostained embryos, created the figures and wrote manuscript with the
375 assistance of Cameron D. Siler and Gunter P. Wagner.

376

377 **DATA AVAILABILITY STATEMENT**

378 The data that support the findings of this study are available from the corresponding author upon
379 reasonable request

380

381 **ORCID**

382 *Daniel Smith-Paredes* ID <https://orcid.org/0000-0003-3108-1969>

383 *Oliver Griffith* ID <https://orcid.org/0000-0001-9703-7800>

384 *Matteo Fabbri* ID <https://orcid.org/0000-0002-1257-1594>

385 *Laurel Yohe* ID <https://orcid.org/0000-0003-1567-8749>

386 *Daniel Blackburn* ID <https://orcid.org/0000-0002-0446-6102>

387 *Cameron D. Siler* ID <https://orcid.org/0000-0002-7573-096X>

388 *Bhart-Anjan S. Bhullar* ID <https://orcid.org/0000-0002-0838-8068>

389 *Gunter P. Wagner* ID <https://orcid.org/0000-0002-3097-002X>

390

391 **REFERENCES**

392 Andrade, J. B., Lewis, R. P. & Senter, P. 2016. Appendicular skeletons of five Asian skink species of the
393 genera *Brachymeles* and *Ophiomorus*, including species with vestigial appendicular structures.
394 *Amphibia-Reptilia*, 37(4), pp 337-344.

395

396 Andreone, F. & Greer, A. E. 2002. Malagasy scincid lizards: descriptions of nine new species, with notes
397 on the morphology, reproduction and taxonomy of some previously described species (Reptilia,
398 Squamata: Scincidae). *Journal of Zoology*, 258(2), pp 139-181.

399

400 Bergmann, P. J. & Morinaga, G. 2019. The convergent evolution of snake-like forms by divergent
401 evolutionary pathways in squamate reptiles. *Evolution*, 73(3), pp 481-496.

402

403 Bergmann, P. J., Morinaga, G., Freitas, E. S., Irschick, D. J., Wagner, G. P. & Siler, C. D. 2020. Locomotion
404 and palaeoclimate explain the re-evolution of quadrupedal body form in *Brachymeles* lizards.
405 *Proceedings of the Royal Society B*, 287(1938), pp 20201994.

406

407 Brändley, M. C., Hulsenbeck, J. P. & Wiens, J. J. 2008. Rates and patterns in the evolution of snake-like
408 body form in Squamate reptiles: Evidence for repeated re-evolution of lost digits and long-term
409 persistence of intermediate body forms. *Evolution*, 62(8), pp 2042-2064.

410

411 Burke, A. C. & Nowicki, J. 2003. A new view of patterning domains in the vertebrate mesoderm.
412 *Developmental Cell*, 4(2), pp 159-165.

413

414 Carranza, S., Arnold, E., Geniez, P., Roca, J. & Mateo, J. 2008. Radiation, multiple dispersal and
415 parallelism in the skinks, *Chalcides* and *Sphenops* (Squamata: Scincidae), with comments on
416 *Scincus* and *Scincopus* and the age of the Sahara Desert. *Molecular Phylogenetics and Evolution*,
417 46(3), pp 1071-1094.

418

419 Christ, B. & Brand-Saberi, B. 2004. Limb muscle development. *International Journal of Developmental
420 Biology*, 46(7), pp 905-914.

421

422 Cohn, M. J. & Tickle, C. 1999. Developmental basis of limblessness and axial patterning in snakes.
423 *Nature*, 399(6735), pp 474.

424

425 Davis, D. R., Feller, K. D., Brown, R. M. & Siler, C. D. 2014. Evaluating the diversity of Philippine slender
426 skinks of the *Brachymeles bonitae* Complex (Reptilia: Squamata: Scincidae): redescription of *B.*
427 *tridactylus* and descriptions of two new species. *Journal of Herpetology*, 48(4), pp 480-494.

428

429 Duboc, V. & Logan, M. P. 2011. Regulation of limb bud initiation and limb-type morphology.
430 *Developmental Dynamics*, 240(5), pp 1017-1027.

431
432 Duester, G. 2008. Retinoic acid synthesis and signaling during early organogenesis. *Cell*, 134(6), pp 921-
433 931.

434
435 Gans, C. 1975. Tetrapod limblessness: evolution and functional corollaries. *American Zoologist*, 15(2), pp
436 455-467.

437
438 Greer, A. E. 1970. The Systematics and Evolution of the Subsaharan Africa, Seychelles, and Mauritius
439 Scincine Scincid Lizards. *Bull. Mus. Comp. Zool.*, 140 (1-23).

440
441 Greer, A. E. 1991. Limb reduction in squamates: identification of the lineages and discussion of the
442 trends. *Journal of Herpetology*, 166-173.

443
444 Griffing, A. H., Sanger, T. J., Daza, J. D., Nielsen, S. V., Pinto, B. J., Stanley, E. L. & Gamble, T. 2019.
445 Embryonic development of a parthenogenetic vertebrate, the mourning gecko (*Lepidodactylus*
446 *lugubris*). *Developmental Dynamics*, 248(11), pp 1070-1090.

447
448 Infante, C. R., Rasys, A. M. & Menke, D. B. 2018. Appendages and gene regulatory networks: Lessons
449 from the limbless. *genesis*, 56(1), pp e23078.

450
451 Jackson, K. 2002. Post-ovipositional development of the monocled cobra, *Naja kaouthia* (Serpentes:
452 Elapidae). *Zoology*, 105(3), pp 203-214.

453
454 Kearney, M. 2002. Appendicular skeleton in amphisbaenians (Reptilia: Squamata). *Copeia*, 2002(3), pp
455 719-738.

456
457 Kearney, M. & Stuart, B. L. 2004. Repeated evolution of limblessness and digging heads in worm lizards
458 revealed by DNA from old bones. *Proceedings of the Royal Society of London. Series B: Biological
459 Sciences*, 271(1549), pp 1677-1683.

460
461 Kohlsdorf, T. & Wagner, G. P. 2006. Evidence for the reversibility of digit loss: a phylogenetic study of
462 limb evolution in *Bachia* (Gymnophthalmidae: Squamata). *Evolution*, 60(9), pp 1896-1912.

463
464 Lande, R. 1978. Evolutionary mechanisms of limb loss in tetrapods. *Evolution*, 73-92.

465
466 Lanser, M. E. & Fallon, J. F. 1984. Development of the lateral motor column in the *limbless* mutant chick
467 embryo. *Journal of Neuroscience*, 4(8), pp 2043-2050.

468
469 Leal, F. & Cohn, M. J. 2018. Developmental, genetic, and genomic insights into the evolutionary loss of
470 limbs in snakes. *Genesis*, 56(1), pp e23077.

471

472 List, J. C. 1966. Comparative osteology of the snake families Typhlopidae and Leptotyphlopidae. 36.

473 *Illinois biological monographs; v. 36.*

474

475 Mahmood, R., Bresnick, J., Hornbruch, A., Mahony, C., Morton, N., Colquhoun, K., Martin, P., Lumsden,

476 A., Dickson, C. & Mason, I. 1995. A role for FGF-8 in the initiation and maintenance of vertebrate

477 limb bud outgrowth. *Current biology*, 5(7), pp 797-806.

478

479 McGonnell, I. M. 2001. The evolution of the pectoral girdle. *Journal of Anatomy*, 199(1-2), pp 189-194.

480

481 Miralles, A., Anjeriniaina, M., Hipsley, C. A., Müller, J., Glaw, F. & Vences, M. 2012. Variations on a

482 bauplan: description of a new Malagasy “mermaid skink” with flipper-like forelimbs only

483 (Scincidae, *Sirenoscincus* Sakata & Hikida, 2003). *Zoosystema*, 34(4), pp 701-720.

484

485 Miralles, A., Hipsley, C. A., Erens, J., Gehara, M., Rakotoarison, A., Glaw, F., Müller, J. & Vences, M. 2015.

486 Distinct patterns of desynchronized limb regression in Malagasy scincine lizards (Squamata,

487 Scincidae). *PLoS One*, 10(6), pp e0126074.

488

489 Morinaga, G. & Bergmann, P. J. 2020. Evolution of fossorial locomotion in the transition from tetrapod

490 to snake-like in lizards. *Proceedings of the Royal Society B*, 287(1923), pp 20200192.

491

492 Noro, M., Uejima, A., Abe, G., Manabe, M. & Tamura, K. 2009. Normal developmental stages of the

493 Madagascar ground gecko *Paroedura pictus* with special reference to limb morphogenesis.

494 *Developmental dynamics: an official publication of the American Association of Anatomists*,

495 238(1), pp 100-109.

496

497 Nussbaum, R. A. & Raxworthy, C. J. 1995. Review of the scincine genus *Pseudoacontias* Barboza du

498 Bocage (Reptilia: Squamata: Scincidae) of Madagascar. *Herpetologica*, 91-99.

499

500 Pellegrino, K. C., Rodrigues, M. T., Yonenaga-Yassuda, Y. & Sites Jr, J. W. 2001. A molecular perspective

501 on the evolution of microteiid lizards (Squamata, Gymnophthalmidae), and a new classification

502 for the family. *Biological Journal of the Linnean Society*, 74(3), pp 315-338.

503

504 Prahlad, K., Skala, G., Jones, D. G. & Briles, W. 1979. Limbless: a new genetic mutant in the chick. *Journal*

505 *of Experimental Zoology*, 209(3), pp 427-434.

506

507 Pyron, R. A., Burbrink, F. T. & Wiens, J. J. 2013. A phylogeny and revised classification of Squamata,

508 including 4161 species of lizards and snakes. *BMC evolutionary biology*, 13(1), pp 1-54.

509

510 Rahmanl, T. M.-Z. 1974. Morphogenesis of the rudimentary hind-limb of the Glass Snake (*Ophisaurus*

511 *apodus* Pallas). *Development*, 32(2), pp 431-443.

512
513 Rapp Py-Daniel, t., Kennedy Soares De-Lima, A., Campos Lima, F., Pic-Taylor, A., Rodrigues Pires Junior,
514 O. & Sebben, A. 2017. A staging table of post-ovipositional development for the South American
515 collared lizard *Tropidurus torquatus* (Squamata: Tropiduridae). *The Anatomical Record*, 300(2),
516 pp 277-290.

517
518 Raynaud, A. 1985. Development of limbs and embryonic limb reduction. *Biology of the Reptilia*, 15(59-
519 148).

520
521 Raynaud, A. 2003. Developmental mechanism involved in the embryonic reduction of limbs in reptiles.
522 *International Journal of Developmental Biology*, 34(1), pp 233-243.

523
524 Raynaud, A., Gasc, J. & Renous-Lecuru, S. 1975. Les rudiments de membres et leur développement
525 embryonnaire chez *Scelotes inornatus* (A. Smith)(Scincidae, Sauria). *Bull Mus Natl Hist Nat*
526 (Paris), 208(537-551).

527
528 Raynaud, A. & Van den Elzen, P. 1976. La rudimentation des membres chez les embryons de *Scelotes*
529 *gronovii* (Daudin), reptile scincidé Sud-Africain. *Arch. Anat. Microsc. Morphol. Exp.*, 65(17-36).

530
531 Rodrigues, M. T. 1991. Herpetofauna das dunas interiores do Rio São Francisco, Bahia, Brasil. 1:
532 Introdução a área e descrição de um novo gênero de Microteiídeos (*Calyptommatus*) com notas
533 sobre sua ecologia, distribuição e espéciação (Sauria, Teiidae). *Papeis Avulsos de Zoologia, São*
534 *Paulo*, 27(329-342).

535
536 Rodrigues, M. T., Camacho, A., NUNES, P. M. S., Recoder, R. S., TEIXEIRA JR, M., Valdujo, P. H., Ghellere,
537 J. M. B., Mott, T. & Nogueira, C. 2008. A new species of the lizard genus *Bachia* (Squamata:
538 Gymnophthalmidae) from the Cerrados of Central Brazil. *Zootaxa*, 1875(1), pp 39-50.

539
540 Romer, A. S. 1944. The development of tetrapod limb musculature—the shoulder region of *Lacerta*.
541 *Journal of Morphology*, 74(1), pp 1-41.

542
543 Russell, A. & Bauer, A. M. 2008. The appendicular locomotor apparatus of *Sphenodon* and normal-
544 limbed squamates. In: C. Gans, A. G. K. A. (ed.) *Biology of the Reptilia*. Ithaca, NY: Society for the
545 Study of Amphibians and Reptiles.

546
547 Sakata, S. & Hikida, T. 2003a. A Fossorial Lizard with Forelimbs Only. *Current herpetology*, 22(1), pp 9-15.

548
549 Sakata, S. & Hikida, T. 2003b. A new fossorial scincine lizard of the genus *Pseudoacontias* (Reptilia:
550 Squamata: Scincidae) from Nosy Be, Madagascar. *Amphibia-Reptilia*, 24(1), pp 57-64.

551

552 Sanger, T. J., Losos, J. B. & Gibson-Brown, J. J. 2008. A developmental staging series for the lizard genus
553 *Anolis*: a new system for the integration of evolution, development, and ecology. *Journal of*
554 *Morphology*, 269(2), pp 129-137.

555

556 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C.,
557 Saalfeld, S. & Schmid, B. 2012. Fiji: an open-source platform for biological-image analysis. *Nature*
558 *methods*, 9(7), pp 676.

559

560 Siler, C. D., Balete, D. S., Diesmos, A. C. & Brown, R. M. 2010. A new legless loam-swimming lizard
561 (Reptilia: Squamata: Scincidae: Genus *Brachymeles*) from the Bicol Peninsula, Luzon Island,
562 Philippines. *Copeia*, 2010(1), pp 114-122.

563

564 Siler, C. D. & Brown, R. M. 2011. Evidence for repeated acquisition and loss of complex body-form
565 characters in an insular clade of Southeast Asian semi-fossorial skinks. *Evolution: International*
566 *Journal of Organic Evolution*, 65(9), pp 2641-2663.

567

568 Siler, C. D., Diesmos, A. C., Alcala, A. C. & Brown, R. M. 2011a. Phylogeny of Philippine slender skinks
569 (Scincidae: *Brachymeles*) reveals underestimated species diversity, complex biogeographical
570 relationships, and cryptic patterns of lineage diversification. *Molecular Phylogenetics and*
571 *Evolution*, 59(1), pp 53-65.

572

573 Siler, C. D., Fuiten, A. M., Jones, R. M., Alcala, A. C. & Brown, R. M. 2011b. Phylogeny-based species
574 delimitation in Philippine slender skinks (Reptilia: Squamata: Scincidae) II: taxonomic revision of
575 *Brachymeles samarensis* and description of five new species. *Herpetological Monographs*, 25(1),
576 pp 76-112.

577

578 Simmons, J. 2015. Herpetological Collecting and Collections Management. *Society for the Study of*
579 *Amphibians and Reptiles Herpetology*, Circular 42(1-210).

580

581 Skinner, A. & Lee, M. S. 2009. Body-form evolution in the scincid lizard clade *Lerista* and the mode of
582 macroevolutionary transitions. *Evolutionary Biology*, 36(3), pp 292-300.

583

584 Skinner, A., Lee, M. S. & Hutchinson, M. N. 2008. Rapid and repeated limb loss in a clade of scincid
585 lizards. *BMC Evolutionary Biology*, 8(1), pp 1-9.

586

587 Stephenson, N. 1962. The comparative morphology of the head skeleton, girdles and hind limbs in the
588 Pygopodidae. *Zoological Journal of the Linnean Society*, 44(300), pp 627-644.

589

590 Valasek, P., Theis, S., DeLaurier, A., Hinitz, Y., Luke, G. N., Otto, A. M., Minchin, J., He, L., Christ, B. &
591 Brooks, G. 2011. Cellular and molecular investigations into the development of the pectoral
592 girdle. *Developmental biology*, 357(1), pp 108-116.

593
594 Wagner, G. P., Griffith, O. W., Bergmann, P. J., Bello-Hellegouarch, G., Kohlsdorf, T., Bhullar, A. & Siler, C.
595 D. 2018. Are there general laws for digit evolution in squamates? The loss and re-evolution of
596 digits in a clade of fossorial lizards (*Brachymeles*, *Scincinae*). *Journal of Morphology*, 279(1104-
597 19).

598
599 Westphal, N., Mahlow, K., Head, J. J. & Müller, J. 2019. Pectoral myology of limb-reduced worm lizards
600 (Squamata, Amphisbaenia) suggests decoupling of the musculoskeletal system during the
601 evolution of body elongation. *BMC evolutionary biology*, 19(1), pp 1-23.

602
603 Wiens, J. J. & Slingluff, J. L. 2001. How lizards turn into snakes: a phylogenetic analysis of body-form
604 evolution in anguid lizards. *Evolution*, 55(11), pp 2303-2318.

605
606 Windle, B. C. 1898. Eighth Report on Recent Teratological Literature. *Journal of Anatomy and Physiology*,
607 32(Pt 4), pp 780.

608
609 Wise, P. A., Vickaryous, M. K. & Russell, A. P. 2009. An embryonic staging table for in ovo development
610 of *Eublepharis macularius*, the leopard gecko. *The Anatomical Record: Advances in Integrative
611 Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology*,
612 292(8), pp 1198-1212.

613
614 Yang, B., Treweek, J. B., Kulkarni, R. P., Deverman, B. E., Chen, C.-K., Lubeck, E., Shah, S., Cai, L. &
615 Grdinaru, V. 2014. Single-cell phenotyping within transparent intact tissue through whole-body
616 clearing. *Cell*, 158(4), pp 945-958.

617
618 Young, R. L., Caputo, V., Giovannotti, M., Kohlsdorf, T., Vargas, A. O., May, G. E. & Wagner, G. P. 2009.
619 Evolution of digit identity in the three-toed Italian skink *Chalcides chalcides*: A new case of digit
620 identity frame shift. *Evolution & development*, 11(6), pp 647-658.

621
622 Zehr, D. R. 1962. Stages in the normal development of the common garter snake, *Thamnophis sirtalis*
623 *sirtalis*. *Copeia*, 322-329.

624
625 Zeller, R., López-Ríos, J. & Zuniga, A. 2009. Vertebrate limb bud development: moving towards
626 integrative analysis of organogenesis. *Nature Reviews Genetics*, 10(12), pp 845.

627
628 Zhao, X., Sirbu, I. O., Mic, F. A., Molotkova, N., Molotkov, A., Kumar, S. & Duester, G. 2009. Retinoic acid
629 promotes limb induction through effects on body axis extension but is unnecessary for limb
630 patterning. *Current Biology*, 19(12), pp 1050-1057.

631
632

633

634 **FIGURE LEGENDS**

635

636 **FIGURE 1** The external morphology of a series of embryos of *Brachymeles lukbani*. Left
637 column shows the whole embryo, middle column shows a close up on the forelimb, right column
638 shows a line drawing of the shape of the forelimb. From earlier to later stages, the limb does not
639 grow considerably and gets covered with small scales. Scale bar: 500 µm

640

641 **FIGURE 2** Musculoskeletal anatomy of the developing embryos of *Brachymeles lukbani*
642 visualized with immunofluorescence. Left and middle columns show Sox9 labelled in yellow,
643 right column shows Myosin heavy chain labelled in red. br: brachial musculature, co: coracoid
644 plate, cd: clavicular deltoid muscle, cm: cleidomastoid muscle, dm: deltoid musculature, fl:
645 forelimb, h: humerus, he: heart, hl: hindlimb, pe: pectoral muscle, sc: scapular plate, scc:
646 supracoracoid muscle, sd: scapular deltoid muscle, st: sternum, t: triceps musculature, tr:
647 trapezius muscle, u: ulna

648

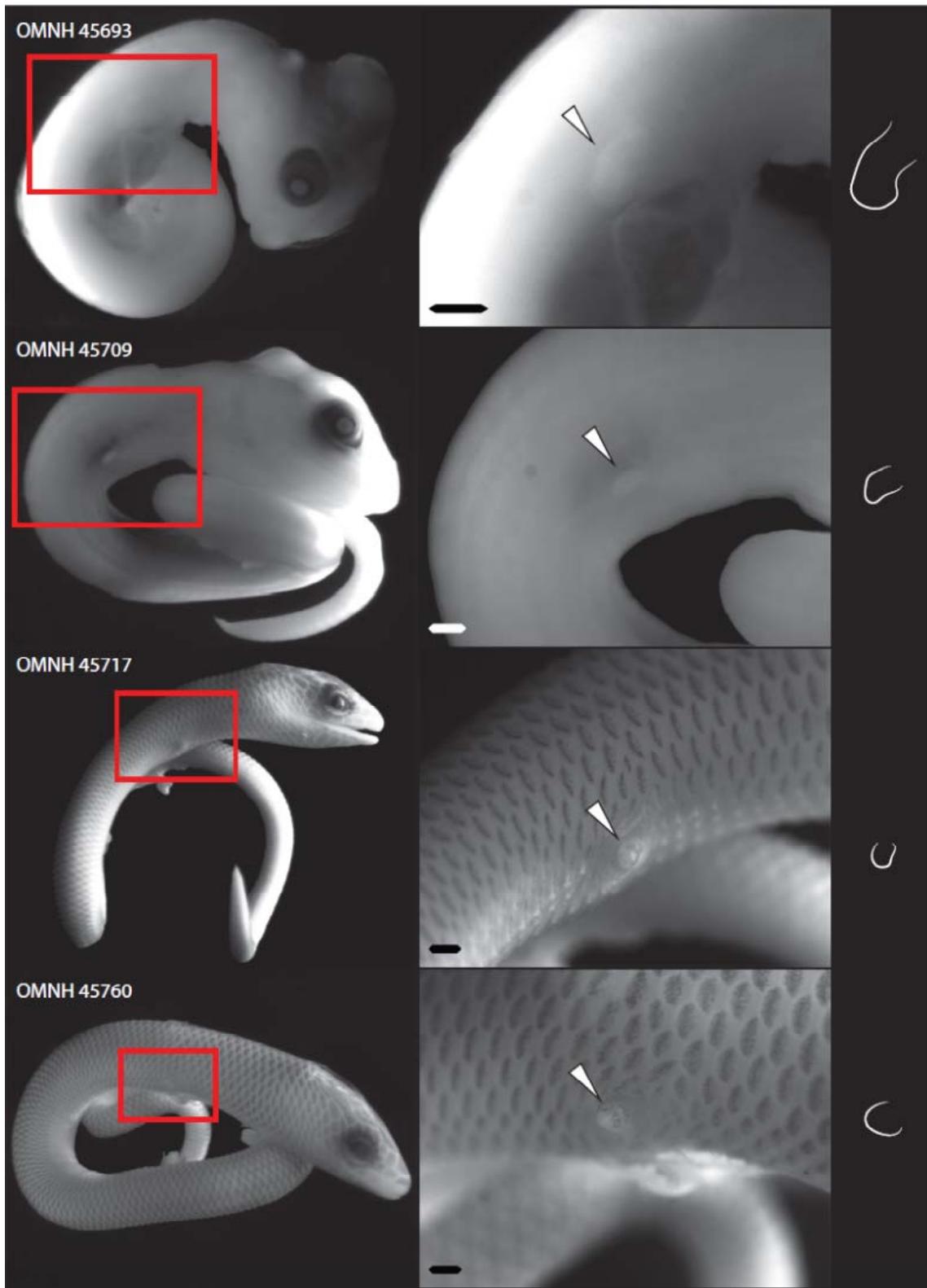
649 **FIGURE 3** Comparison of the true limbless embryo of the corn snake, *Pantherophis guttatus*,
650 with that of the limbed *Brachymeles lukbani*. Whereas *B. lukbani* develops both skeleton and
651 muscles associated and dependent on the development of a limb bud, snakes show no trace of
652 neither forelimb skeleton, girdles or musculature. Both the axial and the limb musculature of the
653 skink, although reduced distally, develop in association with the pectoral girdle in the limb
654 region, while the axial musculature of the snake remains undifferentiated along the
655 anteroposterior axis

656

657 **FIGURE 4** Adult morphology of *Brachymeles lukbani* obtained from μ CT-scan imaging. A:
658 Lateral view of the neck and thoracic region. B: Ventral view of the neck and thoracic region.
659 The girdle elements are colored in yellow, humerus in orange, extremely reduced ulna and radius
660 in red. C, D: CTscan raw data slices showing the humerus and the extremely reduced ulna and
661 radius. E: Detail of the limb elements; humerus in orange, ulna and radius in red, pointed by the
662 red arrow. F, G: Some of the muscles of the pectoral region, with limb muscles colored in green,
663 red and yellow colors, and axial muscles in blue and purple colors. cb: coracobrachialis, dm:
664 deltoid musculature, ld: latissimus dorsi, ls: levator scapulae, pe: pectoralis, r: radius, sc:
665 supracoracoideus, u: ulna. White scale bars: 500 μ m. Scale bar in C and D: 350 μ m

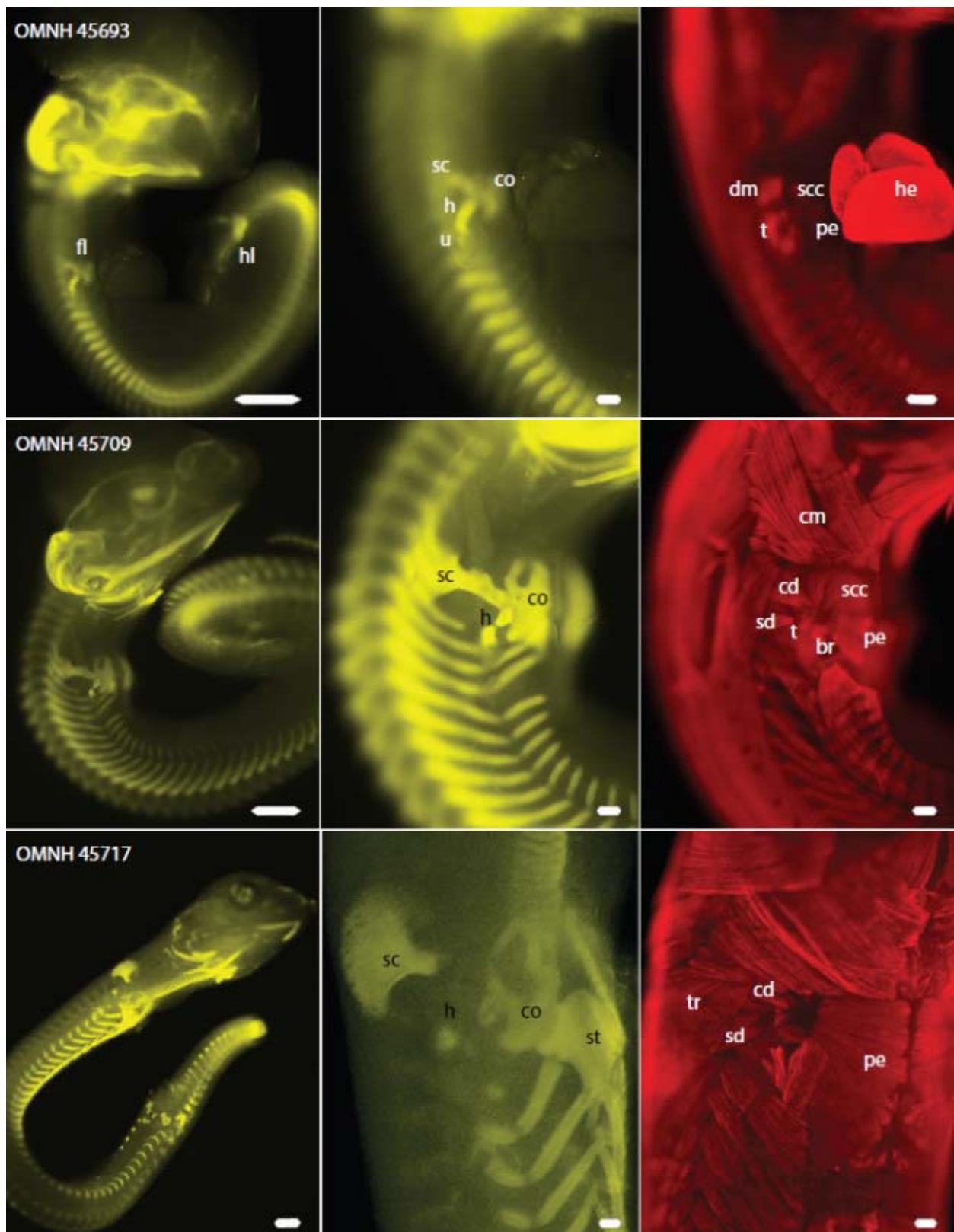
666

667 **FIGURE 5** Phylogenetic relationships among skinks in the genus *Brachymeles* in the context of
668 lizard phylogeny and limb reduction. Extreme limb-reduction has evolved independently within
669 most clades of squamates, with the exception of Xantusidae, Lacertidae, Teiidae and Iguania,
670 while Dibamidae, Amphisbaenia and Serpentes are composed exclusively by extremely limb-
671 reduced or limbless species. Within Scincidae (Right), Acontinae is composed exclusively of
672 extremely limb-reduced or limbless forms, and limbs have been reduced or lost many times within
673 Lygosominae and Scincinae. Nested within Scincinae (orange branches of the tree, the genus
674 *Brachymeles* (light orange branches, node marked by a star) displays an interesting pattern of
675 multiple independent events of extreme limb reduction, exemplified by the number of digits
676 retained in the forelimb (colored squares). Orange colored triangles represent a *Brachymeles*
677 lineage composed of 17 pentadactyl species. White colored triangles represent lineages of
678 *Brachymeles* with three species of similar degrees of limb reduction (2 or 3 digits retained), and
679 the yellow colored triangles represent the rest of genera within Scincinae, including at least 20


680 genera with extremely limb reduced species (*Chalcides*, *Scelotes*, *Feylinia*, *Jarujinia*,

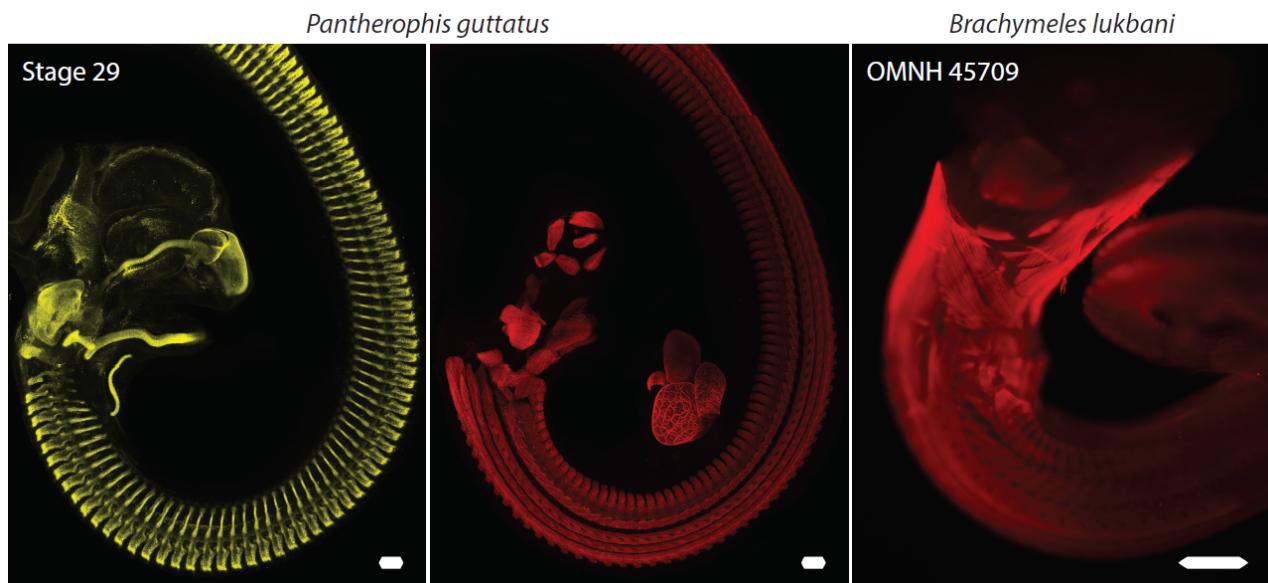
681 *Pygomeles*, among others, for example). Squamate tree modified from Leal and Cohn, 2018.

682 Skink phylogeny modified from Pyron *et al.*, 2013; Andrade *et al.*, 2016; Wagner *et al.*, 2018


683

684

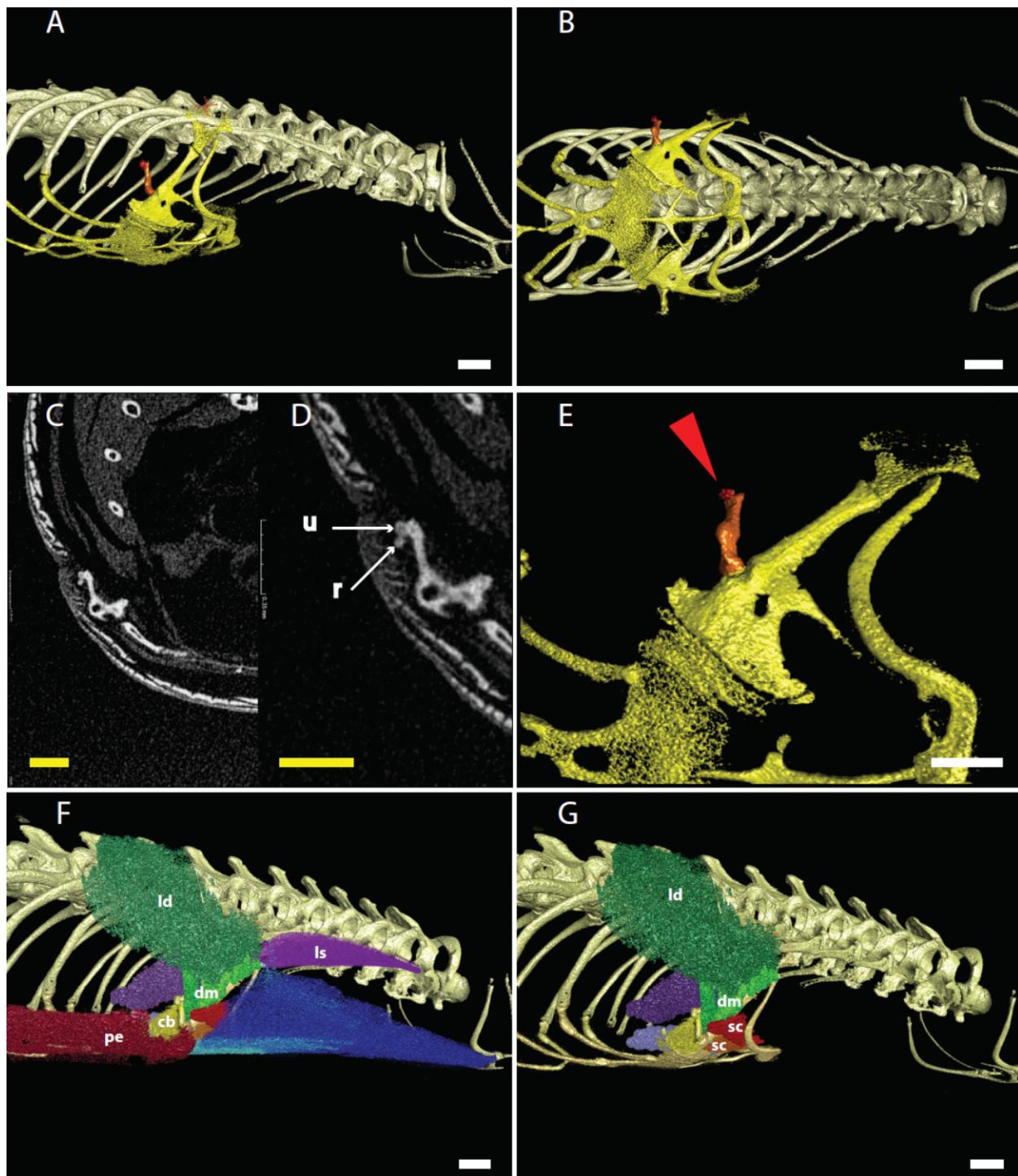
685


686 **FIGURE 1**

687

688 **FIGURE 2**

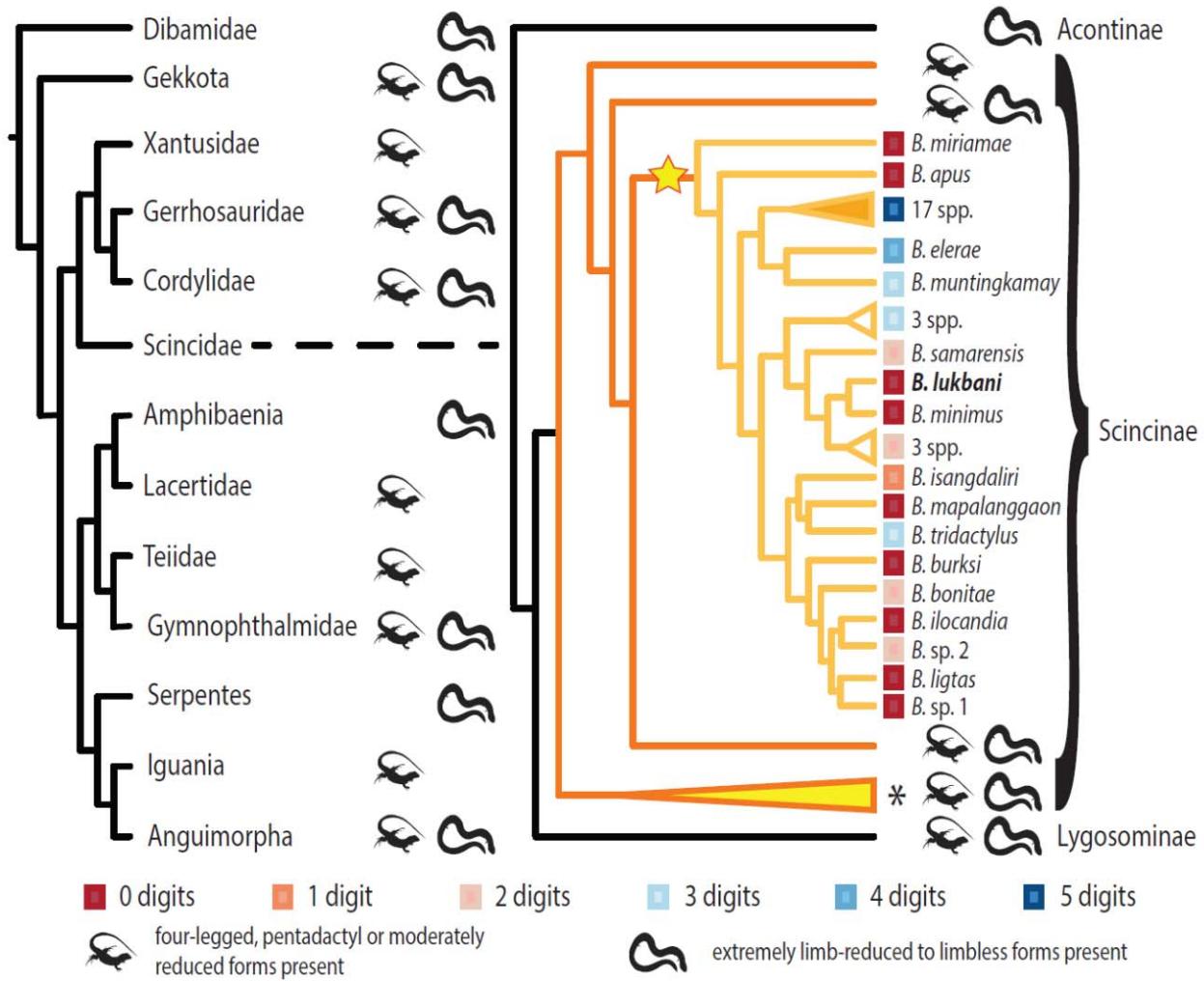
689



690

691 **FIGURE 3**

692


693

694

695 **FIGURE 4**

696

697

698 **FIGURE 5**