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Abstract

Reduced limbs and limblessness have evolved independently in many lizard clades. Skinks
exhibit a wide range of limb-reduced morphologies, but only some species have been used to
study the embryology of limb reduction (i.g., digit reduction in Chalcides and limb reduction in
Scelotes). The genus Brachymeles, a Southeast Asian clade of skinks, includes species with a
range of limb morphologies, from pentadactyl to functionally as well as structurally limbless
gpecies. Adults of the small, snake-like species Brachymeles lukbani show no sign of external
limbs in the adult except for small depressions where they might be expected to occur. Embryos
of B. lukbani in early stages of development, on the other hand, show a truncated but well-
developed limb with a stylopod and a zeugopod, but no signs of an autopod. As development
proceeds, the limb’s small size persists even while the embryo elongates. These observations are
made based on external morphology. We used florescent whole-mount immunofluorescence to
visualize the morphology of skeletal elements and muscles within the embryonic limb of B.
lukabni. Early stages have a humerus and separated ulna and radius cartilages; associated with
these structures are dorsal and ventral muscle masses as those found in the embryos of other
limbed species. While the limb remains small, the pectoral girdle grows in proportion to the rest
of the body, with well-developed skeletal elements and their associated muscles. In later stages
of development, the small limb is still present under the skin but there are few indications of its
presence, save for the morphology of the scale covering it. The adult morphology consists of a
well-developed pectoral girdle, small humerus, extremely reduced ulna and radius, and well-
developed limb musculature connected to the pectoral girdle. These muscles form in association
with a developing limb during embryonic stages, a hint that “limbless’ lizards that possesses

these muscles may have or have had at least transient developing limbs, as we find in B. lukbani.
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Overall, the observed pattern of ontogenetic reduction, leading to an externally limbless adult in
which a limb rudiment is hidden and covered under the trunk skin, is a situation called
cryptomelia. The results of this work add to our growing understanding of clade-specific patterns
of limb reduction and the convergent evolution of limbless phenotypes through different

developmental processes.

KEYWORDS

limb development, limb reduction, lizard evolution, muscul oskeletal evolution

1|INTRODUCTION

Limb reduction and limblessness have evolved many times independently within sguamate
reptiles (Gans, 1975; Greer, 1991). Snakes are easily the most recognizable limbless clade.
Although some groups of snakes (Aniliidae, Boidae, Leptotyphlopidae, Pythonidae,
Typhlopidae; List, 1966) possess rudimental hindlimbs, with pelvic and proximal limb skeletal
elements, forelimbs and pectoral girdles are not present in any extant species. Similarly, almost
every large clade of lizards has, in fact, evolved its own snake-like morphotype at least once,
including Amphisbaenidae, Anguidae, Cordylidae, Dibamidae, Gekkota, Gymnophthalmidae,
Gerrhosauridae, and Scincidae (Greer, 1991; Lea and Cohn, 2018). Limbs could, in theory, be
reduced or absent as a consequence of a variety of developmental mechanisms such as extreme
allometry, degeneration and agenesis. Among the various cases of convergence towards limbless
body plans among clades of lizards, embryonic development has been investigated in only a

handful of lineages, all of which are species of snakes or anguid and scincid lizards (Raynaud,
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1985; Infante et al., 2018), and as a consequence our understanding of similarities and
differences in the ontogeny of limb loss is limited. In python embryos, hindlimbs develop but
have no apical ectodermal ridge (AER), nor expression of genes normally associated with
maintenance of limb growth (Cohn and Tickle, 1999). Hindlimb development becomes truncated
and at least some distal skeletal elements fail to form. In contrast, forelimb devel opment is never
initiated (Cohn and Tickle, 1999). In snakes lacking hindlimb remnants that have been studied
(Zehr, 1962; Raynaud, 1985; Jackson, 2002), neither fore- nor hindlimbs initiate development.
The developmental pattern of the reduced hindlimb of python embryos differs from that of other
limbless lizards (Raynaud, 1985). In comparison, in a study of the limbless anguid genus Anguis,
fore- and hindlimb rudiments appear in early stages, however, development soon ceases and
regression and sequential disappearance of the forelimb and then the hindlimb occurs (Raynaud,
1985). This pattern is similar to observations made in another extremely limb reduced anguid,
Pseudopus (referred to as Ophisaurus in the references), in which fore- and hindlimb buds also
start to develop before subsequent degeneration and disappearance occurs (Rahmanl, 1974;
Raynaud, 1985).

Skinks of the genus Scelotes show different degrees of limb reduction, including limbless
forms (Lande, 1978; Wiens and Slingluff, 2001; Siler and Brown, 2011). Embryos of different
species form both fore- and hindlimb buds, which stop developing and regress to different
degrees (Raynaud et al., 1975; Raynaud and Van den Elzen, 1976; Raynaud, 1985). For
example, embryos of Scelotes inornata form a rudimentary AER which later degenerates
differentially among the fore- and hindlimbs (Raynaud, 1985). In the forelimb, regression occurs
rapidly, while in the hindlimb it does so more slowly, resulting in an adult with a rudimentary

hindlimb possessing a proximal portion of the femur (Raynaud, 1985). In S. brevipes, limb
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development follows a similar pattern; however, the hindlimb develops further and the adult
retains an ossified femur and fused cartilaginous tibia and fibula (Raynaud, 1985). Finally, S.
gronovii embryos have a well-developed AER in the hindlimb, and the adult hindlimb has an
ossified femur, tibia, fibula, and one finger with three phalanges, while the AER is not well
developed in the forelimb, and degenerates early in development (Raynaud, 1985).

Among squamate clades, by far the greatest diversity of independent origins of limb
reduction and limblessness occurs in skinks (family Scincidae), which have evolved limb
reduced forms more times than any other lizard group (Greer, 1991; Russell and Bauer, 2008).
Furthermore, a number of skink genera include suites of closely related species that display the
full spectrum of body forms, from pentadactyl to limbless, including Brachymeles (Wagner et
al., 2018; Siler and Brown, 2011), Chalcides (Carranza et al., 2008; Y oung et al., 2009), Lerista
(Skinner et al., 2008; Skinner and Lee, 2009) and Scelotes (Raynaud, 1985), making them
attractive model clades for studying evolutionary convergence in phenotype and major
trangitions in body form. In this study, we investigate the anatomy of embryos of Brachymeles
lukbani, a recently described, elongated, slender skink without any trace of external limbs in
adults, except for a small depression where the limb could be expected to be found (Siler et al.,
2010). Our results provide new information on the developmental patterns leading to the origin
of limblessness and clues into the sequence of evolutionary events behind the evolution of

repeated limb reduction and loss in lizards.

2| METHODS
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92 Embryos of Brachymeles lukbani were collected in the field during an expedition to the
93  Philippinesin May and June 2016. Surveys for individuals of B. lukbani were conducted at Mt.
94  Labo, Barangay Tulay Na Lupa, Municipality of Labo, Camarines Norte Province, Luzon Island,
95 in coordination with local community partners. Animals were captured by hand raking leaf litter
96 and loose soil surrounding tree root networks and rotting logs along the forest floor (Siler and
97 Brown, 2011). Pregnant female individuals were euthanized and prepared as vouchered
98 gpecimens after embryos were extracted for subsequent preparation (Simmons, 2015).
99  Vouchered specimens were deposited in the National Museum of the Philippines and the Sam
100  Noble OklahomaMuseum of Natural History.

101 Corn snake (Pantherophis guttatus) eggs were obtained from a colony housed at Trinity
102  College. Embryos were staged according to (Zehr, 1962), collected and dissected in cold PBS,
103  then fixed in 4% PFA in ashaker at 4°C for 7 days, then dehydrated 3—4 times with 15 minutes
104  washes of Methanol 100% and stored at -20°C until further processing.

105 Dehydrated embryos were bleached overnight in a solution of Methanol:DM SO:H,0,
106  4:1:1 under light. After bleaching they were washed with Methanol 100% two times for ten
107 minutes and then rehydrated in increasing concentrations of PBS:Methanol
108  (25%,50%,75%,100%). After two extrawashesin PBS, embryos were placed in a solution of 4%
109  Acrylamide in PBS, with 0.25% VG44 as initiator al left at 4°C overnight. Next day, embryos
110  were placed in a 50 mL falcon tube with a special adaptor, and O, was replaced by N, by taking
111 out air with a vacuum chamber and pumping N, from a tank. Embryos were incubated at 37°C
112 for 4 hours to allow acrylamide to polymerize, and later were washed in a solution of 200mM
113  SDS 200mM Boric Acid in digtilled water until they became transparent. When transparent,

114 embryos were washed for an hour six times in PBS with 1% TritonX-100 (PBSt).
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115  Immunostaining was performed using two antibodies targeting myosin heavy chain (MF-20,
116  DSHB) and the transcription factor Sox9 (Sox9, AB5535, Abcam) in concentrations 1:50 and
117  1:1000 respectively, in a solution with 5% DM SO, 5% normal horse serum in PBSt. Antibodies
118  were incubated overnight, washed six times for one hour in PBSt, and incubated with secondary
119  antibodies (Goat anti-mouse 555, Goat anti-rabbit 647 Invitrogen) overnight. Embryos were then
120  washed in PBSt three times and stored in RIMS (Refractive Index Matching Solution; Yang et
121 al., 2014).

122 Embryos stored in RIMS were either photographed directly in RIMS or accommodated in
123 liquid agarose + RIMS (1% low temperature melt Agarose GPG/LMP, AmericanBio, dissolved
124  inRIMYS). Embryos were imaged with a Zeiss Axio Zoom.V 16 fluorescent scope or with a Zeiss
125 LSM880 Confocal Microscope collecting multiple tiles of Z-stacks, according to the size of the
126 embryo. 3D projections of images were reconstructed using Fiji software (Schindelin et al.,
127  2012).

128 Two adult B. lukbani specimens were stained in 5% I,KI for 15 days, fixed in agarose
129 1%, and mounted for scanning in a 50 mL tube. The specimens were scanned on a high-
130 resolution Nikon H225 ST pCT-scanner a Yale University. Scan parameters included
131 0.00967746 mm voxe size resolution, 105 kV, 64 YA, and centered at a region focused on the
132 head and forelimb. The scan image stacks were imported into in-house Nikon post-scanning
133  image processing software, where they were reconstructed with dual high-resolution centers of
134  rotation and 3" level beam hardening. Resulting image stacks were imported into VGStudio Max
135  v. 3.4.1 for segmentation.

136

137 3|RESULTS
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138

139 3.1 | External embryonic morphology of Brachymeles lukbani

140

141  The youngest embryo of B. lukbani (Figure 1, OMNH 45693) has a dlightly elongated
142  morphology, with along body coiled once. The heart lies still outside of the thoracic cavity. The
143  forelimb is small but aimost complete, with a bent elbow between the stylopod and zeugopod.
144  No autopod seems to be present, as there is no evident digital paddle. In the second embryo
145  (Figure 1, OMNH 45709), differential growth has resulted in a more elongated body shape, and a
146 smaller looking limb. The heart is now enclosed in the thoracic cavity. The limb looks
147  proportionally smaller, in relation to the rest of the body and the bent elbow is less obvious. In
148  later stage embryos (Figure 1, OMNH 45717, 45760), eyelids have started to cover the eye,
149  scales have developed and are pigmented, and the limb is limited to a small protuberance on the
150  side of the body, covered by a small, rounded scale.

151

152 3.2 | Skeletal embryonic development of Brachymeles lukbani

153

154  The youngest of the Brachymeles lukbani embryos is in an early stage of skeletal development.
155 As revealed by immunostaining against Sox9 protein, to label pre-cartilaginous and early
156  cartilaginous condensations, vertebrae and chondrocranial components have already started to
157  develop (Figure 2, OMNH 45693). In the pectoral region, the developing scapulocoracoid plate
158  can be seen as a continuous structure, and a small humerus, ulna, and radius are present in the

159 am.
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160 In the next stage of development (Figure 2, OMNH 45709), rib precursors are visible as
161  extended projections off of the vertebral condensations. In the skull, the chondrocranial elements
162  are more differentiated, with distinct quadrate, optic and nasal capsules, and a well-defined hyoid
163  apparatus. The scapular plate and the coracoid plate are differentiated, including the excavations
164  that will form the margin of the fenestrae typical of lizard primary girdles. The humerusis much
165  longer than the ulna and radius, and the label seems to be interrupted in the diaphysis, which
166  could be a sign of cartilage maturation. The ulna and radius are in close contact and no other
167  skeletal element has developed distally.

168 In later stages (Figure 2, OMNH 45717) maturation of cartilage has proceeded, as
169  evidenced by the weak or absent Sox9 signal in portions of the ribs, vertebrae, and elements of
170  the chondrocranium and Meckel’s cartilage. Ribs and tracheal rings are still Sox9 positive, as are
171 portions of the suprascapular, coracoids, and presternum. There is no evidence of Sox9 positive
172 cellsin the forelimb skeleton.

173

174 3.3 | Muscular embryonic development in theforelimb of Brachymeles lukbani

175

176  In amniotes, premuscular cells of somitic origin invade the limb and form dorsal and ventral
177  muscle masses, flanking the skeletal condensations. These masses later divide into individual
178  muscles of the chest, shoulder, arm, and hand (Romer, 1944; Christ and Brand-Saberi, 2004). In
179  the earliest embryo observed (Figure 2, OMNH 45693), the division of these muscle masses has
180 aready started. The dorsal mass is split into identifiable Detoid, Latissimus, Triceps, and
181  forelimb Extensor divisions, while ventrally a Pectoral, Supracoracoideus, Biceps, and forelimb

182  Flexor divisions are apparent. In the next stage (Figures 2 and 3, OMNH 45709), the shoulder
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183  and chest muscle masses, extrinsic to the arm, have divided into identifiable individual muscles,
184  athough they are small in comparison to the axial muscles in the region. The intrinsic muscles of
185 the arm seem to be much less developed, possibly even degenerating. Later stages (Figure 2,
186 OMNH 45717) do not show any evidence of intringc arm musculature, but small extrinsic arm
187  muscles (Deltoid, Latissimus, Pectoral, Supracoracoid musculature) remain.

188

189 3.4 | Comparison to embryos of the snake Pantherophis guttatus

190

191  In Stage 29 corn snake embryos, most of the skeleton development seems to correspond to the
192  degree of development observed in Brachymeles lukbani embryo OMNH 45709, however, the
193  postcranial skeleton shows no trace of pectoral girdle elements or limb skeleton (Figure 3). Axial
194  musculature, in contrast to limb muscles, derives from muscles that develop first within the
195  boundaries of the somite and then extend towards their specific attachments (Burke and Nowicki,
196  2003). None of the well-developed girdle axial muscles (see below) present in B. lukbani
197  embryos can be observed in Pantherophis. Additionally, as expected in snakes, no trace of limb
198  musculature, intrinsic or extringc, isobserved in Pantherophis either.

199

200  3.5| Adult morphology of Brachymeles lukbani

201

202  Adult B. lukbani preserve afairly well-developed, albeit thin and poorly ossified, pectoral girdle,
203 a small and curved humerus, and extremely reduced radius and ulna (Figure 4 A, B). The
204  pectora girdle consists of a well-developed but undivided scapulocoracoid. The coracoid portion

205 presents a well-defined metacoracoid only, with a primary and secondary coracoid ray

10
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206  delineating a primary coracoid fenestra (Russell and Bauer, 2008). The suprascapulais broad in
207 its dorsal border, and probably calcified, as evidenced by the granular texture observed in the
208  CTscan. The lateral two-thirds of the clavicles are heavily curved, and the medial ends are
209 fenestrated. The interclavicle is arrow shaped, with an anterior process longer than the posterior
210  process and lateral processes arching anteriorly. The sternum is calcified and bears a sternal
211 fontanelle on its posterior end. The humerus is short and curved, with a pronounced humeral
212 crest (Figure 4 A, B, E). Both the radius and ulna are extremely reduced, each a tiny splint of
213 bone bone afew tens of micronsin diameter (Figure 4 C, D). We confirmed that adult B. lukbani
214  dtill possess well devel oped limb musculature associated with the pectoral girdle (Figure 4 F, G),
215  such as broad latissmus dorsi and pectoralis muscles. The Deltoid musculature, on the other
216  hand, while easily divisible into its scapular and clavicular portions in the embryos, is not so
217  readily separated in the adult. The supracoracoid muscle, as in the embryos, has two, well
218  defined portions originating from the coracoids and clavicles. A coracobrachialis muscle was
219  identified, however other muscles deriving from the biceps, triceps, or more distal subdivisions
220  were not observed.

221

222 4|DISCUSSION

223

224 It has been an enduring question is to what extent convergent limb reduction is achieved by
225 employing the same developmenta mechanisms. Limbs can be lost without losing the
226 corresponding girdle, which probably indicates limbs are easier to lose or truncate during
227  embryonic development than girdles. Across most clades of lizards, absence or reduction of

228  forelimbs and/or pectoral girdles is not tied to reduction or loss of hindlimbs and/or pelvic

11
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229  girdles (Stephenson, 1962; Rodrigues, 1991; Nussbaum and Raxworthy, 1995; Pellegrino et al.,
230 2001; Andreone and Greer, 2002; Sakata and Hikida, 2003a; Sakata and Hikida, 2003b;
231  Rodrigues et al., 2008; Miralles et al., 2012). The prominent exception is of course the absence
232 of forelimb elements in snakes. Otherwise, al “limbless’ lizards for which embryonic
233  development has been investigated develop limbs in early developmental stages, which later
234 shrink, reabsorb or degenerate (Raynaud, 1985). As such, snakes are the only group of squamates
235 studied in which adult true limblessness (fore- and hindlimbs absent in most snakes, only
236  forelimbs absent in Aniliidae, Boidae, Leptotyphlopidae, Pythonidae and Typhlopidae,) reflects
237  total absence of limb development in embryonic stages (Zehr, 1962; Raynaud, 1985; Jackson,
238  2002). Although the exact developmental mechanisms of each studied case are not completely
239  understood, all seem to involve absent, reduced, or degenerated AER development or activity. In
240  Brachymeles lukbani, the earliest forelimb observed displays a bent elbow and, although the
241 autopod portion does not look properly developed, appears to be at a stage of development
242  similar to when digit rays begin to develop in other lizards (Sanger et al., 2008; Wise et al.,
243  2009; Rapp Py Danid et al., 2017; Griffing et al., 2019). It was not possible to determine
244  whether or not the AER of the l[imbsis normal in B. lukbani given available material; however,
245  the earliest embryo seems to be around the temporal frame when the AER begins to become
246 reduced in typical pentadactyl lizards, such as is observed in Lacerta (Raynaud, 2003) or
247  Paroedura (Noro et al., 2009).

248 In amniote embryos, induction of early limb buds is, at least in part, dependent on
249  signaling between the somites and the lateral plate mesoderm (LPM; Duester, 2008; Zhao et al.,
250  2009; Zdler et al., 2009; Duboc and Logan, 2011), while the maintenance of limb devel opment

251  depends on the activity of the AER (Mahmood et al., 1995). The forelimb skeleton develops

12
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252  from the mesoderm within the limb bud, derived from the LPM, while the pectoral girdle derives
253 from the LPM and an additional component of somitic origin (McGonnell, 2001). The
254  musculature of the forelimb and that connecting the limb skeleton to the pectoral girdle, and the
255  girdleto the vertebral column, derives from the somites. During development, some cells migrate
256 out of the somite and invade the limb buds where they differentiate into muscle cells and arrange
257  forming two opposing muscle masses that give rise to the muscles of the arm (intrinsic limb
258  muscles) and some major muscles originating on the pectoral girdle and extending to attachment
259 points within the arm or on the axia column (extringc limb muscles) (i.e. pectoralis,
260  supracoracoideus, latissimus, deltoideus, scapulohumeral, subscapular muscles). Other muscles
261 form within the somite boundaries and extend into the girdles from their origin sites at the
262  vertebrae or ribs (i.e. levator scapulae, trapezius, serratus, episternocleidomastoid muscles). The
263  former group of muscles correspond to proper limb muscles, irrespective of their origin or
264  attachments, as developmentally they derive from the limb muscle masses, while the latter group
265  corresponds to axial musculature, as they originate developmentally from the somitic primaxial
266 musculature (Romer, 1944; Russell and Bauer, 2008; Valasek et al., 2011).

267 In the limbless chicken mutant, small limb buds start development but grow very little
268  and soon after shrink and disappear (Prahlad et al., 1979). In these mutant embryos, both the
269  pectoral and pelvic girdles develop normally, however the limb skeletal elements and the limb
270  musculature do not (Prahlad et al., 1979). Furthermore, there is no sign of the humerus or more
271 distal dements, nor of extrinsic limb muscles like the pectoralis, athough axial girdle
272 musculature appears to be normal (Prahlad et al., 1979; Lanser and Fallon, 1984). This
273 demonstrates that the maintenance of a developing limb bud is necessary for the formation and

274  development of the limb skeleton and limb intrinsic and extrinsic musculature, at least up to a
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275  certain point, but is not needed for the development of the girdles nor the axial girdle
276  musculature. In Brachymeles lukani, although development of the limb is truncated, its early
277  presence seems to be sufficient to enable the development of the limb musculature. Subsequent
278  limb reduction to the point of near-disappearance does not seem to affect the later development
279  of extrinsic limb musculature associated with the normally developed pectoral girdle. This
280  observation suggests that in other limbless clades, the presence of limb musculature in adults
281  impliesthe presence of trangent limbs during embryonic devel opment.

282 As mentioned before, most lizard clades have evolved extremey limb-reduced or
283  limbless forms. In fact; gekkotans, gerrhosaurids, cordylids, gymnophthalmids and anguimorphs
284  display both limbed and limb-reduced or limbless species, and only in iguanians, lacertids, telids
285 and xantusids is limb loss not observed. Dibamids, amphisbaenians, and snakes are composed
286  entirdly of limb-reduced or limbless species (Figure 5). However, information on the
287 developmental patterns and adult muscle anatomy of limbs and girdles remains scarce.
288  Amphisbaenians form a highly specialized fossorial clade of lizards, composed by five families
289  characterized by limblessness (Kearney, 2002). Only members of the genera Blanus and Bipes
290 retain areduced femur, and only species of Bipes have forelimbs, which are well developed and
291 include humerus, ulna, radius, carpals, and four or five digits (Kearney, 2002). In stark contrast
292  to Bipes, al other amphisbaenians lack any trace of forelimb skeletal elements. However, with
293  the exception of the family Rhineuridae, all have been reported recently to retain the ancestral
294 number of forelimb girdle muscles, athough these muscles show somewhat modified
295 arrangements, and origin and attachment points, associated with their variably developed
296  pectora girdles (Westphal et al., 2019). Interestingly, Rhineuridae also lacks any pectoral girdle

297  skeletal element, but does possess highly modified strand-like muscles that are similar to those of
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298  other amphisbaenians and lizards in position and number (Westphal et al., 2019). The presence
299 of axia pectoral and limb girdle musculature in amphisbaenians suggests they may retain a
300 developing forelimb, at least during early embryonic stages. The retention of an early forelimb
301  during development may explain the apparent re-evolution of forelimbs or digits without the
302 necessity of invoking novel re-evolution of limb development mechanisms and processes in an
303 ancestrally limbless clade, not only in the case of Bipes biporus (Kearney and Stuart, 2004,
304 Brandley et al., 2008), but also in analogous cases within Gymnophthalmidae (Kohlsdorf and
305  Wagner, 2006) and Scincidae (Wagner et al., 2018).

306 Skinks are without a doubt the best clade to study the evolution of limb reduction and
307 loss among squamates. Extreme limb reduction and limblessness is observed in species in more
308 than 30 different genera representing an even larger number of independent transitions from the
309 pentadactyl ancestral state. As in many skink clades, instances of limb reduction and loss occur
310 independently in lineages of the same genus, as is observed in Brachymeles (Figure 5).
311  Brachymeles lukbani has an at least externally limbless sister species, B. minimus, and both are
312  nested in a clade of seven species with reduced limb but digited lineages (Figure 5; Wagner et
313  al.,, 2018; Bergmann et al., 2020). Within this clade, the two-digited forms are more closely
314 related to B. lukbani and B. minimus, sister to the three-digited species (Figure 5). This pattern
315  suggests a progressive loss of digits and more proximal limb structures in the lukbani + minimus
316 clade. Based on a dated phylogeny (Wagner et al., 2018; Bergmann et al., 2020) limb loss in
317 these animals is relatively recent, probably less than 12 million years ago. This phylogenetic
318  history is consistent with a developmental pattern that ill includes the embryonic appearance of
319  stylo and zeugopodium and shoulder girdle and associated muscles, and retention of a reduced

320 limb covered under a scale, a condition called cyptomelia (Windle, 1898).
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321 Within individual genera, the morphology of reduced limbs and the degree of reduction
322  can be highly variable (Greer, 1970; Andreone and Greer, 2002; Sekata and Hikida, 20033;
323  Sekata and Hikida, 2003b; Carranza et al., 2008; Siler et al., 2011a; Davis et al., 2014; Miralles
324 et al., 2015; Andrade et al., 2016; Wagner et al., 2018). The persistence of intermediate forms
325  between the fully pentadactyl and fully limbless represents a mystery, that has been interpreted
326  as evidence that these species represent different adaptive optima (Brandley et al., 2008;
327 Bergmann and Morinaga, 2019; Skinner et al., 2008; Bergmann and Morinaga, 2019), although
328 optimal for what is not known. The extent to which extremely reduced rudimentary limbs and
329  their associated muscles participate actively in locomotion is largely unknown (Bergmann et al.,
330 2020). There are indications that different morphologies do not affect locomotor performance
331  (Morinaga and Bergmann, 2020), further conflicting with the notion that intermediate forms are
332 adaptive (but see Bergmann et al., 2020). The high variability in digit number and degree of
333  reduction seen at the interspecific level mirrored even within some individual species (Siler et
334 al., 2011b; Davis et al., 2014; Andrade et al., 2016). This parallel of morphological variability
335 between species in a genus and among individuals within a species suggests that drift,
336 constrained by population sizes and isolation, rather than that active adaptation plays an
337 important role in the maintenance of intermediate limb-reduced morphologies. Meanwhile, the
338  apparent progression from moderate to extreme limb reduction observed in different limb
339  reduced lineages might hint at cumulative developmental effects behind the initial evolution and
340  persistence of reduced limb morphologies.

341 It is worth noting that the situation in B. lukbani is unusual as this species is externally
342  limbless but retains a hidden limb rudiment, a condition that has been called cryptomelia in the

343  medical literature (Windle, 1898). It is not clear how common this form of limbless phenotypeis,
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344  asit requires special techniques to detect. Cryptic limbs like these may have gone undetected in
345 many other apparently limbless lizard species. The results of this study provide a reasonable
346  scenario linking the transient existence of a developing limb with the presence of limb derived
347  girdle muscles in adults. Nevertheless, studies on other limb reduced taxa are needed to establish
348  whether transient embryonic limbs or cryptic adult limbs are regularly present in species where
349  these muscles are well developed but show no traces of limb skeleton. Further studies comparing
350 the adult musculoskeletal anatomy, embryonic development, and phylogenetic evolutionary
351  patterns of limb reduction in other skinks in the genus Brachymeles, as well as in the many other
352  limb-reduced lineages, are required to understand the recurrent evolution of limb reduced forms
353  in sguamates and whether these similar phenotypes are the result of similar mechanisms evolving
354 inparalél.
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634 FIGURE LEGENDS

635

636 FIGURE 1 The external morphology of a series of embryos of Brachymeles lukbani. Left
637  column shows the whole embryo, middle column shows a close up on the forelimb, right column
638  shows aline drawing of the shape of the forelimb. From earlier to later stages, the limb does not
639  grow considerably and gets covered with small scales. Scale bar: 500 um

640

641 FIGURE 2 Musculoskeletal anatomy of the developing embryos of Brachymeles lukbani
642  visualized with immunofluorescence. Left and middle columns show Sox9 labelled in yellow,
643  right column shows Myosin heavy chain labelled in red. br: brachial musculature, co: coracoid
644 plate, cd: clavicular deltoid muscle, cm: cleidomastoid muscle, dm: deltoid musculature, fl:
645  forelimb, h: humerus, he: heart, hl: hindlimb, pe: pectoral muscle, sc: scapular plate, scc:
646  supracoracoid muscle, sd: scapular deltoid muscle, st: sternum, t: triceps musculature, tr:
647  trapezius muscle, u: ulna

648

649 FIGURE 3 Comparison of the true limbless embryo of the corn snake, Pantherophis guttatus,
650  with that of the limbed Brachymeles lukbani. Whereas B. |ukbani develops both skeleton and
651  muscles associated and dependent on the development of a limb bud, snakes show no trace of
652  neither forelimb skeleton, girdles or musculature. Both the axial and the limb musculature of the
653  skink, although reduced distally, develop in association with the pectoral girdle in the limb
654 region, while the axial musculature of the snake remains undifferentiated along the
655  anteroposterior axis

656
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657 FIGURE 4 Adult morphology of Brachymeles lukbani obtained from pCT-scan imaging. A:
658 Lateral view of the neck and thoracic region. B: Ventral view of the neck and thoracic region.
659  Thegirdle elements are colored in yellow, humerusin orange, extremely reduced ulna and radius
660 inred. C, D: CTscan raw data slices showing the humerus and the extremely reduced ulna and
661 radius. E: Detail of the limb elements, humerus in orange, ulna and radius in red, pointed by the
662  red arrow. F, G: Some of the muscles of the pectoral region, with limb muscles colored in green,
663 red and yellow colors, and axial muscles in blue and purple colors. ch: coracobrachialis, dm:
664  detoid musculature, Id: latissmus dorsi, Is: levator scapulae, pe: pectordlis, r: radius, sc:
665  supracoracoideus, u: ulna. White scale bars: 500 um. Scale bar in C and D: 350 pum

666

667 FIGURE 5 Phylogenetic relationships among skinks in the genus Brachymeles in the context of
668 lizard phylogeny and limb reduction. Extreme limb-reduction has evolved independently within
669 most clades of squamates, with the exception of Xantusidae, Lacertidae, Teiidae and Iguania,
670  while Dibamidae, Amphisbaenia and Serpentes are composed exclusively by extremely limb-
671  reduced or limbless species. Whithin Scincidae (Right), Acontinae is composed exclusively of
672  extremely limb-reduced or limbless forms, and limbs have ben reduced or lost many times within
673  Lygosominae and Scincinae. Nested within Scincinae (orange branches of the tree, the genus
674  Brachymeles (light orange branches, node marked by a star) displays an interesting pattern of
675 multiple independent events of extreme limb reduction, exemplified by the number of digits
676  retained in the forelimb (colored squares). Orange colored triangle represents a Brachymeles
677 lineage composed of 17 pentadactyl species. White colored trianlges represent lineages of
678  Brachymeles with three species of similar degrees of limb reduction (2 or 3 digits retained), and

679 the yellow colored tringles represents the rest of genera whithin Scincinae, including at least 20
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680 genera with extremely limb reduced species (Chalcides, Scelotes, Feylinia, Jarujinia,
681  Pygomeles, among others, for example). Squamate tree modified from Leal and Cohn, 2018.
682  Skink phylogeny modified from Pyron et al., 2013; Andrade et al., 2016; Wagner et al., 2018

683
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