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Summary 

Synchronization has been implicated in neuronal communication, but causal evidence 

remains indirect. We used optogenetics to generate depolarizing currents in pyramidal 

neurons of cat visual cortex, emulating excitatory synaptic inputs under precise 

temporal control, while measuring spike output. Cortex transformed constant 

excitation into strong gamma-band synchronization, revealing the well-known cortical 

resonance. Increasing excitation with ramps increased the strength and frequency of 

synchronization. Slow, symmetric excitation profiles revealed hysteresis of power and 

frequency. Crucially, white-noise input sequences enabled causal analysis of network 

transmission, establishing that cortical resonance selectively transmits coherent input 

components. Models composed of recurrently coupled excitatory and inhibitory units 

uncovered a crucial role of feedback inhibition and suggest that hysteresis can arise 

through spike-frequency adaptation. The presented approach provides a powerful 

means to investigate the resonance properties of local circuits and probe how these 

properties transform input and shape transmission. 

Introduction 

The brain’s computational abilities arise from communication within and between 

neuronal groups, and the dynamic modulation of neuronal communication is believed 

to enable flexible behavior (Engel et al., 2001; Fries, 2015; Varela et al., 2001). A 

compelling means to modulate neuronal communication is synchronization (Akam and 

Kullmann, 2010; Azouz and Gray, 2003; Börgers and Kopell, 2008; Hahn et al., 2014; 

Palmigiano et al., 2017; Salinas and Sejnowski, 2001; Wang, 2010). Neuronal 

synchronization is determined by cellular and network properties that define intrinsic 

timescales for activity. The intrinsic timescale of cells and circuits can be characterized 

by resonance, i.e. how inputs are amplified, or preferentially transmitted. In single 

neurons, specific combinations of diverse conductances can establish membrane and 

firing-rate resonances (Fellous et al., 2001; Hutcheon and Yarom, 2000; Lampl and 

Yarom, 1997; Schreiber et al., 2004). In networks, interactions between recurrently 

coupled excitatory and inhibitory neurons generate resonances based on connectivity 

(Börgers and Kopell, 2003; Buzsáki and Wang, 2012; Tiesinga and Sejnowski, 2009; 

Whittington and Traub, 2003). 

A prominent cortical resonance occurs in the gamma-band (30-90 Hz) (Adesnik and 

Scanziani, 2010; Cardin et al., 2009; Etter et al., 2019; Iaccarino et al., 2016; Lu et al., 

2015; Ni et al., 2016; Sohal et al., 2009). The Communication-through-Coherence 

(CTC) hypothesis (Fries, 2005, 2015) proposes that gamma-band synchronization 

between neuronal groups can flexibly determine their communication. Computational 

models have demonstrated that gamma-rhythmic inputs can entrain a postsynaptic 

population of recurrently coupled excitatory and inhibitory (E-I) units, thereby 

enhancing the impact of the entraining input, and reducing the impact of competing 

inputs (Börgers and Kopell, 2008; Hahn et al., 2014; Palmigiano et al., 2017). This 
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proposal has accrued considerable correlative evidence, for example, gamma-

rhythmic gain-modulation of neuronal and behavioral responses (Ni et al., 2016); 

phase-dependent power-covariation and transfer entropy between neuronal groups 

(Besserve et al., 2015; Womelsdorf et al., 2007); and selective enhancement of 

interareal gamma-band synchronization by attention (Bosman et al., 2012; Grothe et 

al., 2012), which improves behavioral performance (Rohenkohl et al., 2018). However, 

it has remained difficult to provide direct causal evidence for selective transmission of 

coherent inputs via network resonance. 

Direct evidence for a causal role of synchronization in neuronal communication can 

be obtained through experimental control of network input and simultaneous 

measurement of spike output (Akam et al., 2012). We emulated excitatory synaptic 

input to a local population with millisecond temporal precision using 

Channelrhodopsin-2 (ChR2), a light-activated cation channel (Boyden et al., 2005). 

We transfected pyramidal cells in cat visual cortex, a classical model for investigating 

cortical information processing (Douglas and Martin, 2004). Illumination of ChR2-

expressing neurons enabled control of synchronous excitation in vivo.  

Stimulation with constant light confirmed the previous finding that cortical networks 

can transform temporally flat excitatory input into gamma-rhythmic spike output 

(Adesnik and Scanziani, 2010; Lu et al., 2015; Ni et al., 2016) with features similar to 

that generated by visual stimulation (Fries et al., 1997; Fries et al., 2002; Gray et al., 

1989; Gray and Viana Di Prisco, 1997). Slowly varying the excitation to the network 

with ramps and symmetric stimulation profiles revealed that the peak frequency of the 

gamma resonance could vary between 30 and 70 Hz, and that there was pronounced 

hysteresis for both the power and the frequency. Sinusoidal stimulation demonstrated 

that network spike output was entrained by rhythmic input with a fidelity that increased 

up to 40 Hz and decreased slightly for 80 Hz.  

Finally, we sought to determine if the intrinsic resonance of visual cortical populations 

can act as a filter to select coherent components of external excitatory drive. Direct 

stimulation of excitatory cells with temporal white noise dramatically illustrated that the 

resonant properties of the local circuit established an endogenous temporal receptive 

field, or window of opportunity, for external excitatory drive. In contrast to periodic 

signals (like sinusoids or rhythmic pulse-trains), white noise is not auto-correlated, and 

therefore enables a causal analysis of network transmission, i.e. from excitatory input 

to spike output (Bryant and Segundo, 1976; Mainen and Sejnowski, 1995; Marmarelis 

and Naka, 1972). Spike-triggered averaging of the white-noise light sequence 

revealed that spikes were preceded by episodes of gamma-rhythmic input. 

Correspondingly, an analysis of Granger causality between the white noise input and 

neuronal spike output revealed a pronounced gamma-band peak. Simulations with a 

well-established recurrent network composed of conductance-based model neurons 

(Börgers, 2017) reproduced our core results. Modeling confirmed the central role of 

strong, fast feedback inhibition in gamma-band resonance (Börgers and Kopell, 2003; 
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Sohal et al., 2009; Stark et al., 2014). The essential resonance phenomena were also 

evident in a greatly simplified network of leak-integrate and fire units. Modeling of the 

power and frequency hysteresis effects required the addition of a non-inactivating 

potassium current, the M-current, to the excitatory units. Overall our results suggest 

that recurrent excitatory-inhibitory coupling establishes intrinsic temporal scales for 

neuronal activity in local circuits. These intrinsic scales are apparent in the resonant 

properties of the population, which temporally transform excitatory input, selecting 

components of time-varying input coherent with the resonant oscillation and 

attenuating non-coherent components. 

Results 

AAV1 and AAV9 transfect excitatory neurons in cat visual cortex, and constant 

optogenetic stimulation reveals gamma-band resonance 

Recombinant adeno-associated virus (AAV) vectors are widely used as gene-delivery 

tools (Vasileva and Jessberger, 2005). AAV-mediated expression of 

Channelrhodopsin-2 (ChR2) has been used in several mammalian species, including 

mice, rats and non-human primates (Diester et al., 2011; Gerits et al., 2015; 

Scheyltjens et al., 2015). In this study, three pseudo-typed AAVs , AAV1, AAV5 and 

AAV9, were applied in visual cortex of the domestic cat (felis catus). We injected AAVs 

carrying the gene for hChR2(H134R)-eYFP under the control of the Ca2+/ 

/calmodulin-dependent protein kinase type II alpha (CamKIIα) promoter. Injections 

targeted either area 17, the cat homologue of primate area V1, or area 21a, the cat 

homologue of primate area V4 (Payne, 1993). All AAV1 and AAV9 injections resulted 

in robust transfection (which was not the case for AAV5, see Methods). Transfection 

was evident in confocal fluorescence microscopy (and often in epifluorescence) and 

in the neuronal responses evoked by light. In total, we transfected neurons in area 17 

in four hemispheres of three cats, and in area 21a in four hemispheres of four cats.  

In two cats, after electrophysiological recordings were completed, brains were 

histologically processed, and slices were stained for parvalbumin (PV) and/or gamma-

Aminobutyric acid (GABA) (Fig. 1 and S1). One cat had been injected with AAV1-

CamKIIα-hChR2(H134R)-eYFP into area 17. Across several slices and imaging 

windows of area 17, we identified 264 unequivocally labeled neurons, which showed 

ChR2-eYFP expression or GABA-anti-body staining; of those, 146 were positive for 

GABA, and 118 expressed ChR2-eYFP, and there was zero overlap between these 

groups (Fig. 1A-D). In the same cat, across several additional slices and imaging 

windows of area 17, we identified 284 unequivocally labeled neurons, which showed 

ChR2-eYFP expression or PV-anti-body staining; of those, 145 were positive for PV, 

and 139 expressed ChR2-eYFP, with four neurons showing clear ChR2-eYFP 

fluorescence and partial (patchy) PV staining (Fig. S1A-D). The other cat had been 

injected with AAV9-CamKIIα-ChR2-eYFP into area 21a. Across several slices and 

imaging windows of area 21a, we identified 182 unequivocally labeled neurons, which 
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showed ChR2-eYFP expression or PV-anti-body staining; of those, 73 were positive 

for PV, and 109 expressed ChR2-eYFP, and there was zero overlap between these 

groups (Fig. S1E-H). Thus, ChR2 expression occurred almost exclusively in excitatory 

neurons. 

 
Figure 1. Viral transfection and gamma-band resonance to stimulation (A-C) Confocal microscopy 

images of immunohistochemistry performed on slices from area 17 after viral transfection. (A) Endogenous 

fluorescence of ChR2-eYFP, (B) Fluorescence from secondary antibody after staining for GABA+. (C) Merged 

images, testing for neuronal co-labeling with ChR2-eYFP and GABA+ antibody. No co-labeled neurons can be 

found. (D) Counts of GABA+ labeled neurons, EYFP+ labeled neurons, and co-labeled neurons in area 17. (E) 

Example recording site in area 17 shows strong gamma-band synchronization in the local field potential induced 

by constant-illumination. (F) Robust MUA response to constant illumination at the same site. Blue: 473 nm 

wavelength light; Yellow: 594 nm wavelength light. Shaded area indicates ±1 SEM across trials. (G) Spike-

triggered LFP for example data shown in E and F. Shaded area indicates ±1 SEM across trials.  
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We performed terminal experiments under general anesthesia 4-6 weeks after virus 

injection. The transfected portion of cortex was illuminated with blue or yellow laser 

light (473 nm or 594 nm), while neuronal spike and local field potential (LFP) activity 

was recorded. Since ChR2 is a light-activated cation channel, illumination of 

transfected neurons emulates excitatory synaptic inputs. The external excitatory drive 

to the network can thus be controlled by modulating the intensity of the illumination. 

Visual cortex exhibits strong gamma-band synchronization in response to sustained 

visual stimulation (Gray et al., 1992; Gray and Singer, 1989). Gamma-band 

synchronization has also been reported during optogenetic activation of excitatory 

cells in the primary motor cortex of macaque monkeys (Lu et al., 2015), as well as 

primary somatosensory cortex and hippocampus of the mouse (Adesnik and 

Scanziani, 2010; Akam et al., 2012; Stark et al., 2014). We have previously observed 

gamma-band synchronization in response to constant optogenetic stimulation of 

excitatory neurons in the visual cortex of the anesthetized cat (Ni et al., 2016). We 

now present a more detailed analysis of this phenomenon. A single trial of the LFP 

response to optogenetic stimulation with 2 s of constant blue light from area 17 is 

shown in Figure 1E. The raw LFP trace reveals strong optogenetically induced gamma 

that emerged immediately after the onset of stimulation. Figure 1F shows the spike 

responses of this recording site for many interleaved trials of stimulation with blue or 

yellow light, confirming that activation was selective for blue light. Activation was also 

specific to regions of cortex expressing ChR2, as laser stimulation with blue or yellow 

light had no measurable effect for control recordings in non-transfected cortex (Fig. 

S1I,J). Figure 1G shows the spike-triggered average (STA) of the LFP, demonstrating 

that optogenetic stimulation induced spikes that were locked to the LFP gamma-band 

component. Results in area 21a were highly similar and example data are presented 

in the supplemental information (Fig. S2A-C).  

This pattern was found very reliably across recording sites. Stimulation with two 

seconds of constant blue light, as compared to yellow control light, induced strong 

enhancements in firing rate, which were sustained for the duration of stimulation 

(Fig. S2D,G; Wilcoxon rank-sum test = 39581, p<0.0001, n =163 sites in 4 cats). The 

ratio of LFP power during stimulation versus pre-stimulation baseline showed an 

optogenetically induced gamma-band peak around 70 Hz (Fig. S2E,H; Wilcoxon rank-

sum test = 14751, p<0.0001, n = 99 sites in 4 cats). Note that the gamma-band peak 

frequency varied across animals and recording sessions, as shown previously (Ni et 

al., 2016). The LFP gamma-power changes reflected changes in neuronal 

synchronization, because optogenetic stimulation also induced strong MUA-LFP 

locking in the gamma band, as quantified by the MUA-LFP PPC (Fig. S2F,I; Wilcoxon 

rank-sum test = 9389, p<0.0001, n = 84 sites in 4 cats). In addition to the induction of 

gamma-band synchronization, optogenetic stimulation also reduced LFP power at 4-

14 Hz (Fig. S2E; Fig. S2H inset), and MUA-LFP locking at 10-12 Hz (Fig. S2F; Fig. 

S2I inset). These reductions of lower-frequency synchronization are reminiscent of 

effects of visual stimulation and/or selective attention in awake macaque area V4 

(Fries et al., 2008b; Mitchell et al., 2009). 
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Figure 2. Bandwidth and hysteresis of Gamma-band resonance (A) Time-frequency plot for an example 

site in area 21a in response to a slowly increasing ramp stimulus, shown on top. (B) Group result for ramp 

stimulation shows that the power of the gamma-band resonance increases sublinearly with increasing excitatory 

drive (N = 58 sites in 5 cats). (C) Same as in B, but for the frequency of the gamma-band resonance. (D) Time-

frequency plot for an example site in area 21a to a slow Gaussian temporal profile, shown on top. (E) Group results 

showing the change in power of gamma-band resonance as a function of laser intensity during slow Gaussian 

stimulation (N = 52 sites in 5 cats). (F) Same as in E, but for frequency of gamma-band resonance. Arrows indicate 

hysteresis in response to increasing (upper arrow) versus decreasing (lower arrow) laser power. Shaded areas in 

panels B, C, E and F indicates ±1 SEM across recording sites. 

Greater excitation increases magnitude and frequency of resonance 

We next characterized the bandwidth of the network resonance by varying the 

excitation in the local network. Models and empirical data have both suggested that 

the frequency of gamma oscillations can increase with increasing excitation (Jia et al., 

2013; Lowet et al., 2017; Ray and Maunsell, 2010; Roberts et al., 2013; Traub et al., 

1996). We therefore slowly increased excitation linearly in time (ramp stimulation, 3 

seconds) to generate increasing excitation in the local network. A time-frequency plot 

for an example recording site in area 21a is presented in Figure 2A. We found that the 

network resonance varied non-linearly with the input excitation. Rather than scaling 

linearly with light strength, network resonance only began after a critical level of 

excitation was reached (Fig. 2A and B), as previously established in vitro and in 

models (Börgers et al., 2005; Traub et al., 1996). Power and frequency increased sub-

linearly with increasing excitation (Fig. 2B and C). Interestingly, previous studies 

reported that optogenetic drive of excitatory cells in somatosensory cortex and 

hippocampus of the mouse with light ramps resulted in gamma-band synchronization 
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with a constant frequency (Adesnik and Scanziani, 2010; Akam et al., 2012), and 

increasing the slope of the ramp gave rise to higher-frequency synchronization in 

somatosensory cortex (Adesnik and Scanziani, 2010). To further investigate additional 

non-linearities in the resonance, we stimulated the network with slow symmetric 

excitation profiles (single-slow-sine-wave stimulation, 10 seconds). A time-frequency 

plot for an example recording site in area 21a is presented in Figure 2D. Single-slow-

sine-wave stimulation revealed amplitude and frequency hysteresis, with the 

amplitude and frequency of the network resonance increasing sub-linearly after a 

critical point of excitation was reached, and slowing down more quickly upon waning 

excitation (Fig. 2E and F).  

Models reveal potential role of non-inactivating M-current in hysteresis 

To investigate the network mechanisms underlying the observed resonance 

phenomena and the hysteresis, we constructed mathematical models of recurrently 

coupled excitatory and inhibitory neurons. To this end, we used a well-established 

biophysically realistic pyramidal-interneuron network (PING) model (Börgers, 2017), 

without additional tuning (Fig. 5A). We initially investigated a model composed of two 

populations of single-compartment neurons implementing Hodgkin-Huxley dynamics. 

The excitatory population is based on a simplified model of pyramidal cells (Traub et 

al., 1991), and the inhibitory population is based on a simplified model of PV+ basket 

cells (Wang and Buzsáki, 1996). The network has a synaptic model that permits a 

gradual rise of synaptic gating (Wang, 1999). This model produced strong gamma-

band synchronization, as has been reported extensively (Börgers and Kopell, 2003) 

(Fig. S3A, B). 

The PING network reproduced the experimentally observed increase in the power and 

frequency of the resonance with increased external drive (Fig. S3C,D). Such increases 

have also been described in vitro (Traub et al., 1996) and in simple networks (Wilson 

and Cowan, 1972). We implemented a simple leaky-integrate-and-fire (LIF) network, 

and found that it also exhibited power and frequency increases with increased 

excitatory drive (Fig. S4A,B). However, neither the PING nor the LIF model were able 

to reproduce the experimentally observed hysteresis effects (Fig. S3C,D and Fig. 

S4A,B). We therefore modified the PING model, by adding a non-inactivating M-

current to the excitatory population (PING+M model). The M-current is a potassium 

current that is active at rest and during depolarization and raises the threshold for 

action potential generation. The PING+M model has lower firing rates and a lower 

resonant frequency for equal excitatory drive, as compared to the PING model 

(Fig. S3E,F). The PING+M model was able to produce both power and frequency 

hysteresis in qualitative concordance with our experimental findings (Fig. S3G,H, as 

compared to Fig. 2E,F). The hysteresis evident in the PING+M model was 

considerably less pronounced than what was observed experimentally, suggesting 

that more factors, such as additional currents, or cell-classes, are likely to contribute 

to the hysteresis observed in vivo. 
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Figure 3. MUA responses to sinusoidal stimulation. (A) MUA spike density (Gaussian smoothing with σ 

= 1.25 ms and truncated at ±2𝜎) for 10 Hz (top), 40 Hz (middle) and 80 Hz (bottom) sinusoidal stimulation, 

respectively. The inset shows an enlarged version of a few cycles to illustrate the gamma-band resonance induced 

at the peak of the depolarizing phase of the 10 Hz sinusoid. Data were baseline subtracted (-0.5 to 0s) and 

averaged over all MUA recording sites (N = 60 in 4 cats). Error regions for ±1 SEM across recording sites are 

smaller than line width. (B) Modulation depth quantified as peak-to-trough distance of the Pearson cross-correlation 

coefficient as function of the frequency of stimulation. (C) Peak latency from stimulation to MUA response as a 

function of frequency. The text inset gives the slope and the corresponding latency between optogenetic stimulation 

and neuronal response. 

Rhythmic input matching resonance is preferentially transmitted 

We next returned to the empirical data and sought to investigate whether the output 

of the local network, assessed by spike output, demonstrates a preference for 

temporally varying inputs with a timescale matching the network resonance, as has 

been suggested by computational models (Sherfey et al., 2018). We drove rhythmic 
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excitation in the network with sinusoidal stimulation of 5, 10, 20, 40 and 80 Hz. Light 

intensity was adjusted per recording site (see Methods) and was kept constant for a 

given site across the different stimulation frequencies. Sinusoids of all applied 

frequencies resulted in clear increases in firing rate, with strong rhythmicity at the 

stimulation frequency (Fig. 3). We calculated spike density functions, subtracted the 

baseline values and averaged them across recordings sites. Figure 3A shows those 

average spike densities for 10 Hz, 40 Hz and 80 Hz. Note that 10 Hz stimulation 

resulted in not only an entrained 10 Hz response, but also bursts of gamma-band 

synchronization around the peak of excitatory drive, in agreement with a previous 

report in rodent hippocampus (Butler et al., 2016). Note also that 80 Hz stimulation did 

not result in simple entrainment to the 80 Hz stimulation, but that the response varies 

on alternate cycles, exhibiting a prominent sub-harmonic to the driving frequency at 

40 Hz that was stable for the entire 2 s stimulation period. 

To capture entrainment by the optogenetic stimulation, we calculated the Pearson 

cross-correlation coefficient between the respective sinusoid and the resulting spike 

density, as a function of time lag between the two (Fig. 3B and S5A). We quantified 

the strength of entrainment as the peak-to-trough distance of the cross-correlation 

functions (Fig. 3B). Sinusoidal stimulation resulted in entrainment that increased with 

stimulation frequency to peak at 40 Hz and weakly decreased at 80 Hz (one-way 

ANOVA, p = 1.6E-9, F(4,295) = 11.25). The bandwidth of the preferential entrainment 

matches well the bandwidth found by varying excitation with ramps and gaussian 

stimulation, and the small fall-off at frequencies above the network resonance is in 

good agreement with previous modelling work (Sherfey et al., 2018). 

Sinusoidal stimulation of different frequencies enabled estimation of neuronal 

response latencies by computing the slope of relative phases between the stimulation 

signal and the output MUA across stimulation frequencies (See Supplementary text 

for an expanded discussion of this method). Figure 3C presents the relative-phase 

spectrum and reveals a strictly linear relationship, a signature of a fixed time lag. The 

slope of this linear relationship indicates a latency of 5.5 ms, in good agreement with 

previous reports (Boyden et al., 2005; Cardin et al., 2009). 

Optogenetic white-noise stimulation reveals causal role of gamma 

Finally, and crucially, we emulated input with a white-noise characteristic. White noise 

realizes continuously unpredictable values (innovation), and thus shows no 

autocorrelation i.e. no correlation with its own past or future. Thereby, time-lagged 

correlations between the optogenetically emulated neuronal input and the neuronal 

spike output cannot be due to time-lagged correlation within the input, but can be 

unequivocally attributed to a time-lagged correlation between input and output. A time-

lagged correlation between an experimentally controlled input and the observed spike 

output provides direct evidence for a causal role of the input. Importantly, white-noise 

stimulation enabled us to determine the causal roles separately for each frequency of 
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the spectrum. That is, white-noise excitatory drive during recording of spike output 

allowed us to determine the directed transfer function of the observed network. 

Figure 4. The component of white-noise stimulation coherent with network resonance is 

transmitted as MUA. (A-C) Example single trial LFP and MUA response to optogenetic white-noise stimulation. 

The bottom panel shows the white-noise time course of laser intensity. The sequence of vertical lines above it 

indicates time points of MUA spike occurrence. The black continuous line on top shows the LFP. (B) Spike-triggered 

average (STA) of laser power density, triggered by the spikes recorded at one example recording site. (C) Granger 

causality (GC) spectrum for the data shown in (B). Red line shows GC from light to spikes, blue line shows GC 
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from spikes to light (as control). (D, E) Same as (B, C), but for the average across recording sites (N=13 sites in 3 

cats). 

We employed optogenetic stimulation with light intensities following a gaussian 

random process (sampled at ≈1000 Hz) with a flat power spectrum (Figure 4A, bottom 

trace). This white-noise stimulus contains the same energy at all frequencies up to 

500 Hz. Light intensities were titrated such that firing rates were in the lower half of the 

dynamic range of the recorded neurons in response to optogenetic stimulation. 

Figure 4A shows an example LFP and MUA recording for an example trial of white-

noise stimulation. 

To reveal the temporal input patterns most reliably driving spikes, we aligned the 

white-noise time-series that drove the laser to the spikes and averaged it. Figure 4B 

shows the resulting spike-triggered average light power density for an example 

recording site. We found that spikes were preceded by a characteristic sequence of 

increased and decreased light intensity, with a peak-to-peak cycle length 

corresponding to 75 Hz, suggesting a causal role of the gamma band in eliciting 

spikes. To quantify this causal influence in a frequency-resolved manner, we 

calculated the Granger causality of the time-varying light intensity onto the spike train. 

This revealed a clear peak in the gamma band (Fig. 4C, red). As a control, we also 

calculated the Granger causality of the spike train onto the light, which confirmed 

values close to zero, as expected (Fig. 4C, blue). We found very similar effects in the 

average over recording sites (Fig. 4D,E, N=13 sites in 3 cats), confirming a 

predominant role of the gamma band in causing spikes. 

Models reveal key role of feedback inhibition in transmission of coherent input 

In order to better understand the network behavior under external drive with temporal 

white noise, we first returned to the PING model without M-current (Fig. 5A). When we 

stimulated this model with white noise, we found the same signature of frequency 

dependent transmission as in our experiments (Fig. 5B-C, as compared to Fig. 4B-E). 

This effect was also evident in the LIF network (Fig. S7A), and in a PING network 

without I-to-I connectivity (Fig. S7B). The model permitted us to separate excitatory 

from inhibitory activity, and we found that input in-phase with network excitation, and 

phase-advanced with respect to network inhibition is preferentially transmitted (Fig. 

5B). We computed the Granger causality spectra between the white noise input and 

the multi-unit activity in the network, and found a high degree of qualitative similarity 

to our empirical spectra (Fig. 5C, black line; Fig. 4C,E). Again, because we could 

separate excitation from inhibition in the model, we could separately investigate the 

transfer from the white-noise input to the excitatory (Fig. 5C, red line) and the inhibitory 

(Fig. 5C, blue line) activity of the network (see Fig. S7C for corresponding STAs). This 

suggests that the white-noise components transmitted to network excitation are 

broader, as compared to the components transmitted to the inhibition. We further 

investigated the transfer between the excitatory and inhibitory units of the network (Fig. 

5D). Excitatory units transmitted variance at gamma, and additionally significant low-
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frequency variance, to the output of the inhibitory network, whereas inhibitory units 

transmitted primarily gamma-band components back to the excitatory units (Fig. 5D). 

 

Figure 5. Computational modelling reveals potential mechanism underlying preferential 

transmission of coherent input. (A) Schematic of PING model driven by white noise. E: Excitatory neuron 

pool; I: Inhibitory neuron pool; WN: White-noise input. (B) Spike-triggered average of white-noise input signal 

(black), network excitation (red), and inhibition (blue) demonstrate selective transmission of gamma frequency input 

matching to the intrinsic dynamics of the network. White-noise averaging was triggered by spikes of all excitatory 

neurons; results for inhibitory neurons or all neurons (total MUA) are shown in Figure S6E. (C) Granger causality 

spectrum from white-noise input to total MUA (black), excitatory spikes (red), and inhibitory spikes (blue). Spectra 

from MUA and spikes to white noise are presented in muted color and overlap near zero. (D) Granger causality 

spectra between excitation and inhibition in the network. Spectrum from excitatory spikes to inhibitory spikes (blue) 

and vice-versa (red). (E) Schematic of a two-excitatory-populations model. The PING network shown on top, in 

lighter colors, contains a first excitatory population and an inhibitory population, and generates gamma upon white-

noise input. The resulting rhythmic inhibition is fed into a second excitatory population, shown on the bottom, which 

is driven by independent white noise. (F) Spike-triggered averages based on spikes from the second excitatory 
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population. Averages display the spike-triggered white noise (black) driving the second excitatory population and 

illustrate entrainment by the excitation (red) and inhibition (blue) of the recurrently coupled PING network. (G) 

Schematic of PING+M model driven by white noise. (H) Spike-triggered averages as in panel B, but for the PING+M 

model. 

To further understand the mechanisms of preferential transfer, we next asked whether 

the excitatory population receiving the white-noise innovation must project to the 

inhibitory population and thereby entrain a rhythm, or whether a resonant pool, isolated 

from the white-noise innovation, but projecting inhibitory synapses to that population 

could implement selective transmission. We simulated a network with one population 

of inhibitory neurons and two separate populations of excitatory neurons (Fig. 5E). A 

first excitatory population (illustrated at the top of Fig. 5E) was recurrently connected 

to the inhibitory population, and when this circuit was driven by white noise input, it 

generated gamma resonance. The resulting output of the inhibitory population was fed 

into the second excitatory population (illustrated at the bottom of Fig. 5E), which did 

not project back to the inhibitory pool. White-noise input to this second excitatory 

population was preferentially transmitted, if it was coherent with the gamma-rhythmic 

inhibition (Fig. 5F). Thus, rhythmic gating can be exerted by one circuit onto a 

separate, gated, circuit.  

Finally, because the M-current had been necessary to explain the experimentally 

observed hysteresis effects, we asked whether selective transmission occurs in the 

PING+M model (Fig. 5G). Using the same model parameters as used for the 

investigation of hysteresis, we performed analysis of the network under white-noise 

stimulation. We found that the PING+M model also exhibited selective transmission 

(Fig. 5H). Intriguingly, the M-current significantly reduced the timescale of the selective 

transmission, producing spike-triggered white noise in better agreement with that 

found experimentally (Fig. 5H as compared to Fig. 4B,D). Together with the hysteresis 

results, the close qualitative match between the experimental and the PING+M spike-

triggered white-noise results suggests the influence of some form of spike-frequency 

adaptation. As mentioned above, it is likely that additional cell-classes, or 

conductances may play a role in vivo and require further investigation. In any case, 

given the potential role of the M-Current suggested by our findings, it would be 

interesting to investigate the impact of acetylcholine on the phenomena described 

here. Acetylcholine can have an antagonistic effect on the M-current via muscarinic 

receptors, and in the PING+M model this would increase the power and frequency of 

the circuit resonance, enhance the amplitude and timescale of selective transmission, 

and reduce the hysteresis of the gamma-band resonance. Intriguingly, a number of 

previous studies in cat visual cortex have already described increased gamma band 

synchronization after electrical stimulation of the midbrain reticular formation (Munk et 

al., 1996), which appears to depend on muscarinic receptors (Rodriguez et al., 2004).  
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Discussion 

Visual stimulation induces clear gamma-band synchronization in cat visual cortex, 

both during wakefulness (Fries et al., 2002; Gray and Viana Di Prisco, 1997) and 

anesthesia (Gray et al., 1992). We recorded LFPs and neuronal spike output in the 

visual cortex of anesthetized cats, while optogenetically emulating external, excitatory 

inputs to pyramidal neurons with precise experimental control. Controlling external 

excitatory drive allowed us to investigate the functional consequences of the cortical 

gamma-band resonance. Optogenetic excitation with a variety of temporal patterns 

produced gamma-band activity qualitatively similar to that found for visual stimulation. 

A better understanding of cortical resonance sheds light on the dynamic 

transformations performed by the local circuit and reveals how time-varying excitation 

is transmitted.  

We confirmed that visual cortex transforms constant excitation into strong gamma-

band synchronization, producing rhythmic spike output similar to visual stimulation (Ni 

et al., 2016). Slowly increasing excitation with ramps increased the strength and 

frequency of synchronization, and revealed a threshold of excitation necessary for the 

ignition of synchronization. A positive correlation between excitatory drive and the 

strength and frequency of gamma-band synchronization has been predicted by 

computational models, demonstrated in vitro, and is reminiscent of effects seen in vivo 

for visual contrast and salience (Fries, 2015; Hadjipapas et al., 2015; Jia et al., 2013; 

Lowet et al., 2017; Ray and Maunsell, 2010; Roberts et al., 2013; Traub et al., 1996). 

Slow, temporally symmetric excitation profiles demonstrated profound hysteresis in 

both the strength and frequency of the synchronization. While hysteresis in 

synchronization has so far been unreported to our knowledge, it is reminiscent of 

effects seen when visual contrast is symmetrically varied (for example, see Fig. 3 of 

(Ray and Maunsell, 2010)). Modelling indicated that hysteresis could arise from spike-

frequency adaptation via a non-inactivating potassium current (M-current), suggesting 

that acetylcholine effects on the M-current may modify the dynamics of gamma band 

resonance (Börgers et al., 2005; Fellous and Sejnowski, 2000; Fisahn et al., 1998; 

Munk et al., 1996; Rodriguez et al., 2004). The observed hysteresis could play a 

powerful role in differentiating populations of cells with increasing versus decreasing 

excitation, even if the total level of excitation in the populations is equal. Future studies 

should elucidate the rich, non-linear features of the resonance described here, such 

as the minimal excitatory drive required for resonance, its dynamic range, and its 

interaction with neuromodulatory signals. 

Varying external drive on faster timescales enabled us to investigate how cortical 

resonance selectively transmits components of dynamic input. The effect of the 

network resonance on variable input was first demonstrated for rhythmic, sinusoidal 

excitation. Sinusoidal drive was transformed by the network into spike output with a 

fidelity that increased up to 40 Hz and declined slightly for 80 Hz. Intriguingly, slow 

sinusoidal input gave rise to bursts of gamma band synchronization at the peaks.  
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Crucially, the precise temporal control afforded by optogenetics enabled 

characterization of the network response to stochastic, white noise sequences. White-

noise stimulation facilitated causal analysis of network transmission: from external 

excitatory input to neuronal spike output. The gamma-band component of the 

stochastic input preferentially drove spiking in the neuronal population. Thus, feline 

visual cortex is predisposed to transform external excitation with a variety of temporal 

profiles into gamma-rhythmic spike output. Further, the resulting gamma-rhythmic 

output is ideally suited to preferentially drive activity in downstream populations.  

Network resonance emerges from the interaction between excitatory and inhibitory 

elements. In computational models, including those presented here, network 

resonance is determined largely by feedback inhibition. While resonance arises in 

reduced models with homogeneous cellular properties, the cat visual cortex contains 

a great deal of heterogeneity. The dominant gamma-band resonance we observed 

could be due to intracellular mechanisms, network properties, or combinations of both. 

Intracellular transfer functions have been characterized for assorted cell classes using 

in vitro electrophysiology and optogenetics. While there is diversity depending on 

morphology and channel composition, the dominant cell class we drove with light, 

pyramidal cells, typically exhibits a low-pass characteristic. Previous work 

characterized the transfer function of a variety of opsins, including the opsin used here 

(hChR2(H134R)), in cultured pyramidal cells and found that transfer peaked at 3 Hz 

and declined smoothly for higher frequencies, with currents reduced by half at ~40 Hz 

(ChR2R in Fig. 1 of (Tchumatchenko et al., 2013)). Therefore, the gamma-band 

resonance observed in the present study is most likely not due to the opsin or electrical 

properties of the individual neurons, but rather predominantly determined by feedback 

inhibition in the network (Buzsáki and Wang, 2012). This network mechanism is likely 

assisted and amplified by cellular mechanisms. Interneurons can show 1:1 phase 

locking to suprathreshold sinusoidal current injections up to 50 Hz (Fellous et al., 

2001). When the transfer function from injected current to spike times is directly 

measured for cortical interneurons in slices of ferret prefrontal cortex, it reveals a broad 

peak in the gamma range (Hasenstaub et al., 2005). Additionally, specialized classes 

of excitatory neurons have been described in cat and macaque visual cortex, with 

properties that likely promote gamma-band resonance (Gray and McCormick, 1996; 

Onorato et al., 2020). 

Interestingly, the spike-triggered average revealed that spikes were preceded not only 

by rhythmic peaks, but also by rhythmic troughs, suggesting that input which matches 

the intrinsic timescale of feedback inhibition is preferentially transmitted. In a driven 

state, network excitation and inhibition wax and wane with a delay determined by 

features of synaptic connectivity. This creates windows of enhanced susceptibility to 

external drive, and the pace of network inhibition will preferentially permit excitatory 

cells to transmit components of their time-varying extrinsic drive that match the 

endogenous dynamics (Fries, 2015). Exogenously driven excitatory spikes will 

subsequently drive inhibitory neurons and renew the cycle of feedback inhibition. If 
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excitation arrives out of phase with the network rhythm, it can prematurely drive 

inhibition in a feedforward manner, and sufficient premature capture of inhibition will 

lead to desynchronization of the inhibitory pool. Such premature forcing is kept in 

check by the strong synchronization within the inhibitory pool, via dense I-I coupling. 

Thus, exogenous excitation competes with the endogenous pace set by strong 

feedback inhibition. 

Spike-triggered average (STA) analysis has been used to characterize the input-

output relationship of single neurons, both in terms of their receptive field properties 

(Chichilnisky, 2001; Pillow et al., 2008), and in terms of their resonance properties 

(Bryant and Segundo, 1976; Mainen and Sejnowski, 1995; Marmarelis and Naka, 

1972). It is also routinely used to estimate the locking of neurons to simultaneous 

population activity, either by spike-triggered LFP averaging (Fries et al., 1997), or 

spike-triggered covariance analysis (Pillow et al., 2008). STA analysis of both 

intracellularly recorded membrane potentials (Azouz and Gray, 2008; Hasenstaub et 

al., 2005) and LFPs (Fries et al., 1997), has revealed strong gamma-band phase-

locking during visual stimulation. As membrane potentials and LFPs reflect synaptic 

currents (Pesaran et al., 2018), these observations are consistent with a scenario in 

which spikes are specifically caused by the gamma component of synaptic inputs. 

However, these findings are also consistent with a scenario in which visual stimulation 

induced gamma-rhythmic neuronal activity reflected in both spiking and LFP, without 

a specific causal role of gamma-rhythmic inputs. Optogenetic white noise stimulation 

allowed us to isolate the effect of external gamma-rhythmic drive from ongoing 

synchronization. We were therefore able to demonstrate the causal role of network 

resonance in selectively transmitting the gamma component of time-varying external 

input. Importantly, the gamma-rhythmic component of the spike-triggered white-noise 

average cannot be explained by the mere fact that the stimulation induced gamma-

rhythmic neuronal spiking. Rather, it required that spikes were time locked (and 

thereby phase locked) to the relevant temporal pattern in the white noise. If white noise 

had simply induced spikes that were gamma-rhythmic but not phase-locked to the 

gamma component of the white noise, the STA of the white noise would have been 

flat. However, the STA revealed significant modulation in the gamma band, suggesting 

that spikes were preferentially driven by the input’s gamma components.  

The gamma synchronization produced by white-noise input was weaker, and more 

unstable than that produced with constant stimulation (Fig. S6). During constant 

stimulation, the exogenous drive lacks temporal structure, and network dynamics are 

dominated by the endogenous resonance. However, during white-noise stimulation, 

endogenous dynamics are perturbed by broadband exogenous drive, resulting in 

irregular, fragmented synchronization. Similarly, gamma-band activity in macaque V1 

is strong when induced by a smoothly moving grating, and substantially reduced by 

the addition of random motion (Kruse and Eckhorn, 1996). Interestingly, temporally 

variable exogenous drive leads to precise spike timing, increased stimulus information, 

and improved perceptual discrimination (Buracas et al., 1998; Christensen et al., 2019; 
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Mainen and Sejnowski, 1995). Complementary results suggest that endogenous 

gamma dynamics provide additional temporal structure that can enhance the 

information communicated by neurons (Azouz and Gray, 2003; Harris et al., 2003; 

Womelsdorf et al., 2012). Together, these results suggest that networks balance the 

deviations introduced by exogenous drive with the timescale imposed by their 

endogenous dynamics. Indeed, exogenous transients may function as an external 

clock to synchronize activity and facilitate transmission, while under continuous or 

slowly varying drive, resonance may assume the role of timekeeper and discretize 

transmission into synchronous packages so as to maximize their effect on downstream 

populations. Under such a regime, temporal information imposed by a variable 

stimulus will be faithfully conveyed, and in the absence of exogenous temporal 

structure, the synchronization imposed by network resonance will endow neuronal 

communication with increased reliability and precision (Fries, 2015). The balance of 

exogenous and endogenous drive is likely to fluctuate dynamically according to their 

relative strength, or other variables which can alter the dynamic set-point of the circuit. 

The flexible balancing of extrinsic and intrinsic factors provides a powerful means to 

selectively amplify and propagate or suppress and gate sensory signals according to 

behavioral state or goals. 

The experiments reported here were limited to visual cortex and have focused on the 

gamma-band resonance prominent in activated visual cortex (Brunet et al., 2015; Gray 

and Singer, 1989; Onorato et al., 2020). However, all recurrently coupled excitatory-

inhibitory networks are likely to demonstrate similar resonances, which will function to 

selectively filter their input and temporally tune their output. This reasoning predicts 

that spikes in other areas, in which other rhythms predominate (Brown et al., 1998; 

Csicsvari et al., 2003; Fries, 2009; Gregoriou et al., 2009; Pesaran et al., 2002), might 

be caused predominantly by the corresponding rhythm in their input. Likewise, 

because our experiments were carried out in anesthetized animals, we could not 

establish the behavioral relevance of the reported phenomena. Previous work has 

used white noise flicker to investigate the reverberatory nature of visual responses 

(VanRullen and Macdonald, 2012) and attentional gating of stimulus information 

(Grothe et al., 2018). These promising results suggest that optogenetic stimulation in 

behaviorally engaged circuits may provide a powerful means to probe the dynamic 

routing of information between relevant brain areas. 

The filtering and preferential transmission reported here suggest that resonance is a 

compelling mechanism by which to achieve flexible communication. The resonant 

frequency of a circuit or population will determine the communication channel of that 

circuit, and coherent input will be transmitted, while non-coherent input is suppressed 

(Akam and Kullmann, 2010). Indeed, distinct resonances are likely to exist within a 

single cortical area, for example, between distinct neuronal subpopulations, 

projections, or laminae. For example, superficial and deep layers in macaque areas 

V1, V2 and V4 show very different rhythms during activation. While superficial layers 

express strong gamma synchronization, deep layers show an alpha-beta rhythm 
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(Buffalo et al., 2011; van Kerkoerle et al., 2014). Rhythms can also change 

dynamically depending on intrinsic or extrinsic factors such as behavioral state or 

cognitive context, and such changes might alter resonances and input-output 

functions, perhaps via modulatory signals (Gulbinaite et al., 2019). A hierarchy of 

areas with intrinsic resonances could act to selectively distinguish and propagate 

feedforward and feedback signals in the spectral domain, as has been suggested by 

functional-anatomical studies (Bastos et al., 2015; Michalareas et al., 2016; van 

Kerkoerle et al., 2014) and modelling (Lee et al., 2013). It will be a highly interesting 

task for future studies to probe resonances in different areas, layers, projections, or 

cell classes and especially in different cognitive contexts. Note that the approach 

presented here can also be used to investigate the transfer between input to one 

neuronal group and the spike output of another neuronal group, with the two groups 

possibly residing in different layers and/or areas. With recordings at site A and 

stimulation at sites B and C, it might be possible to characterize not only the spectral 

transfer function from B to A, but also the frequency-resolved modulatory influence of 

C on this transfer function. By facilitating such investigations, the presented approach 

provides a novel framework in which to study the mechanisms underlying flexible 

neuronal communication. 
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Methods 

Eight adult domestic cats (felis catus; four females) were used in this study. We used 

cats because the physiology with regard to gamma is highly similar to human and non-

human primates (Fries et al., 2008a), both during wakefulness (Fries et al., 2002; Gray 

and Viana Di Prisco, 1997) and light anesthesia (Gray et al., 1992). Data from the 

same animals were used in a previous study (Ni et al., 2016). All procedures complied 

with the German law for the protection of animals and were approved by the regional 

authority (Regierungspräsidium Darmstadt). After an initial surgery for the injection of 

viral vectors and a 4-6 week period for opsin expression, recordings were obtained 

during a terminal experiment under general anesthesia.  

Viral vector injection 

For the injection surgery, anesthesia was induced by intramuscular injection of 

ketamine (10 mg/kg) and dexmedetomidine (0.02 mg/kg), cats were intubated, and 

anesthesia was maintained with N2O:O2 (60/40%), isoflurane (~1.5%) and remifentanil 

(0.3 µg/kg/min). Four cats were injected in area 17 and another four cats in area 21a. 

Rectangular craniotomies were made over the respective areas (Area 17: AP 

[0, -7.5] mm; ML: [0, 5] mm; area 21a: AP [0,-8] mm, ML [9, 15] mm). The areas were 

identified by the pattern of sulci and gyri, and the dura mater was removed over part 

of the respective areas. Three to four injection sites were chosen, avoiding blood 

vessels, with horizontal distances between injection sites of at least 1 mm. At each 

site, a Hamilton syringe (34 G needle size; World Precision Instruments) was inserted 

with the use of a micromanipulator and under visual inspection to a cortical depth of 

1 mm below the pia mater. Subsequently, 2 µl of viral vector dispersion was injected 

at a rate of 150 nl/min. After each injection, the needle was left in place for 10 min 

before withdrawal, to avoid reflux. Upon completion of injections, the dura opening 

was covered with silicone foil and a thin layer of silicone gel, the trepanation was filled 

with dental acrylic, and the scalp was sutured.  

We first tried to transfect with AAV5, because this serotype had been successfully 

used in many studies on different species (Diester et al., 2011). In one cat, area 17 of 

the left hemisphere was injected with AAV5-CamKIIα-ChR2-eYFP (titer 

4*1013 GC/ml). However, this did not result in detectable ChR2-eYFP expression. This 

failure of AAV5 expression is consistent with one previous study suggesting that AAV5 

is not able to provide transduction in the cerebral cortex of the cat (Vite et al., 2003). 

Subsequently, we tried both AAV1 and AAV9 and found robust transfection with both 

of these serotypes. In one cat, area 17 in the left hemisphere was injected with AAV1-

CamKIIα-hChR2(H134R)-eYFP (titer 8.97*1012 GC/ml) and area 17 in the right 

hemisphere with AAV9-CamKIIα-ChR2-eYFP (titer 1.06*1013 GC/ml). In two cats, 

area 17 of the left hemisphere was injected with AAV1-CamKIIα-hChR2(H134R)-

eYFP (titer: 1.22*1013 GC/ml). In four cats, area 21a of the left hemisphere was 

injected with AAV9-CamKIIα-hChR2(H134R)-eYFP (titer: 1.06*1013 GC/ml). The DNA 
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plasmids were provided by Dr. Karl Deisseroth (Stanford University, Stanford, CA). 

AAV5 viral vectors were obtained from UNC Vector Core (UNC School of Medicine, 

University of North Carolina, USA); AAV1 and AAV9 viral vectors were obtained from 

Penn Vector Core (Perelman School of Medicine, University of Pennsylvania, USA). 

Neurophysiological recordings 

For the recording experiment, anesthesia was induced and initially maintained as 

during the injection surgery, only replacing intubation with tracheotomy and 

remifentanyl with sufentanil. After surgery, during recordings, isoflurane concentration 

was lowered to 0.6%-1.0%, eye lid closure reflex was tested to verify narcosis, and 

vecuronium (0.25mg/kg/h i.v.) was added for paralysis during recordings. Throughout 

surgery and recordings, Ringer solution plus 10% glucose was given (20 ml/h during 

surgery; 7 ml/h during recordings), and vital parameters were monitored (ECG, body 

temperature, expiratory gases). 

Each recording experiment consisted of multiple sessions. For each session, we 

inserted either single or multiple tungsten microelectrodes (~1 MΩ at 1 kHz; FHC), or 

three to four 32-contact probes (100 µm inter-contact spacing, ~1 MΩ at 1 kHz; 

NeuroNexus or ATLAS Neuroengineering). In one cat, one 16-contact probe with 

150 µm inter-contact spacing and one 46 µm optic fiber, and one 16-contact probe 

with 150 µm inter-contact spacing and four 46 µm optic fibers were used (Plexon V- 

and U-probe, respectively). Standard electrophysiological techniques (Tucker Davis 

Technologies, TDT) were used to obtain multi-unit activity (MUA) and LFP recordings. 

For MUA recordings, the signals were filtered with a passband of 700 to 7000 Hz, and 

a threshold was set to retain the spike times of small clusters of units. For LFP 

recordings, the signals were filtered with a passband of 0.7 to 250 Hz and digitized at 

1017.1 Hz. 

Photo-stimulation 

Optogenetic stimulation was done with a 473 nm (blue) laser or with a 470 nm (blue) 

LED (Omicron Laserage). A 594 nm (yellow) laser was used as control. Laser light 

was delivered to cortex through a 100 µm or a 200 µm diameter multimode fiber 

(Thorlabs), LED light through a 2 mm diameter polymer optical fiber (Omicron 

Laserage). Fiber endings were placed just above the cortical surface, immediately next 

to the recording sites with a slight angle relative to the electrodes. Laser waveform 

generation used custom circuits in TDT, and timing control used Psychtoolbox-3, a 

toolbox in MATLAB (MathWorks) (Brainard, 1997). 

For white noise stimulation, the laser was driven by normally distributed white noise, 

with light intensities updated at a frequency of 1017.1 Hz. For each recording session, 

the mean of the normal distribution was chosen to fall into the lower half of the dynamic 

range of the laser-response curve of the recorded MUA. This resulted in mean values 
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in the range of 3-12 mW/mm2 (13 MUA recording sites in the 3 cats showing 

expression of ChR2 in area 17). The standard deviation (SD) of the normal distribution 

was scaled to be 1/2 the mean. The resulting distributions were truncated at 3.5 SDs. 

The resulting range of laser intensities always excluded both zero and maximal 

available laser intensities and thereby avoided clipping. 

Histology 

After conclusion of recordings, approximately five days after the start of the terminal 

experiment and still under narcosis, the animal was euthanized with pentobarbital 

sodium and transcardially perfused with phosphate buffered saline (PBS) followed by 

4% paraformaldehyde. The brain was removed, post-fixed in 4% paraformaldehyde 

and subsequently soaked in 10%, 20% and 30% sucrose-PBS solution, respectively, 

until the tissue sank. The cortex was sectioned in 50 µm thick slices, which were 

mounted on glass slides in antifade medium, protected with coverslips, and 

subsequently imaged with a confocal laser scanning microscope (CLSM, Nikon C2 

90i, Nikon Instruments) for eYFP-labelled neurons. 

Immunohistochemistry. In two cats, one with injections in area 17 and one with 

injections in area 21a, slices were processed as described above and additionally 

stained for parvalbumin (PV) and gamma-Aminobutyric acid (GABA). To this end, 

slices were preincubated in 10% normal goat serum (NGS) with 1% bovine serum 

albumin (BSA) and 0.5% Triton X-100 in phosphate buffer (PB) for 1 h at room 

temperature to block unspecific binding sites. Floating slices were stained for PV 

(overnight, rabbit anti-Parvalbumin, NB 120-11427, Novus Biologicals) and GABA 

(48 hours, rabbit anti-GABA, ABN131, Merck Millipore) in 3% NGS containing 1% BSA 

and 0.5% Triton X-100. After washing two times 15 min in PB, the slices were 

incubated with the secondary antibody (goat anti-rabbit Alexa Fluor 647, A-21244, 

Thermo Fisher Scientific) in 3% NGS containing 1% BSA and 0.5% Triton X-100 for 

1 h at room temperature. Finally, slices were again washed in PB, protected with 

coverslips and imaged with a Zeiss CLSM, using a 25X water immersion objective. 

Data analysis 

All data analysis was performed using custom code and the Fieldtrip toolbox 

(Oostenveld et al., 2011), both written in MATLAB (MathWorks). 

Spike densities, MUA-laser cross-correlation, LFP power spectra, and MUA-LFP 

PPCs. MUA rate was smoothed with a Gaussian (for constant light stimulation: SD = 

12.5 ms; for stimulation with pulse trains and sinusoids: SD = 1.25 ms; in each case 

truncated at ± 2 SD) to obtain the spike density.  

To quantify the locking of neuronal responses to optogenetic stimulation, we 

calculated the Pearson correlation coefficient between MUA spike density and laser 

intensity as a function of time shift between them. 
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LFP power spectra were calculated for data epochs that were adjusted for each 

frequency to have a length of 4 cycles and moved over the data in a sliding-window 

fashion in 1 ms steps. Each epoch was multiplied with a Hann taper, Fourier 

transformed, squared and divided by the window length to obtain power density per 

frequency. For the different stimulation frequencies f, LFP power is shown as ratio of 

power during stimulation versus pre-stimulation baseline (-0.5 s to -0.2 s relative to 

stimulation onset). 

MUA-LFP locking was quantified by calculating the MUA-LFP PPC (pairwise phase 

consistency), a metric that is not biased by trial number, spike count or spike rate 

(Vinck et al., 2010). Spike and LFP recordings were always taken from different 

electrodes. For each spike, the surrounding LFP was Hann tapered and Fourier 

transformed. Per spike and frequency, this gave the MUA-LFP phase, which should 

be similar across spikes, if they are locked to the LFP. This phase similarity is 

quantified by the PPC as the average phase difference across all possible pairs of 

spikes. To analyze PPC as a function of frequency and time (Fig. 4 and 9), the LFP 

around each spike in a window of ±2 cycles per frequency was Hann tapered and 

Fourier transformed. PPC was then calculated for epochs of 100 ms length, i.e. using 

the phases of spikes in those epochs, moved over the data in a sliding-window fashion 

in 1 ms steps. To analyze PPC with higher spectral resolution (Fig. 5), the LFP around 

each spike in a window of ±0.5 s (Fig. 5F, lower frequencies) or ±0.25 s (Fig. 5F, 

higher frequencies) was Hann tapered and Fourier transformed to obtain the spike 

phase. For a given MUA channel, MUA-LFP PPC was calculated relative to all LFPs 

from different electrodes and then averaged. 

Estimation of Granger causality (GC) between light time course and MUA spike trains. 

The GC spectrum was first estimated separately for each recording site and 

subsequently averaged over sites. For each trial, we estimated the Fourier transforms 

of the input (laser) and the output (MUA). Specifically, each trial was segmented into 

non-overlapping epochs of 500 ms length. Per epoch, the time series of the input and 

the output were multiplied with a Hann taper, they were zero-padded to a length of 

1000 ms, and their Fourier transforms (FTs) were obtained. The FTs were used to 

calculate the power-spectral densities (PSDs) of the input and of the output, and the 

cross-spectral density (CSD) between input and output. CSDs and PSDs were 

averaged over trials and used for the estimation of GC by means of non-parametric 

spectral matrix factorization (Dhamala et al., 2008). For the example GC spectrum 

(Fig. 6C), the error region was determined by a bootstrap procedure, with 100 

iterations, each time randomly choosing 30% of the trials. The shown error boundary 

is the region containing 95% of the bootstrapped estimates. For the average GC 

spectrum (Fig. 6E), the error region indicates the standard error of the mean across 

the recording sites. 
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Statistical testing. All inferences were based on the combined data of all animals, for 

which a given experiment was performed. The resulting inferences are limited to the 

studied sample of animals, as in most neurophysiological in-vivo studies.  

High-resolution spectra of LFP power changes and MUA-LFP PPC were compared 

between stimulation with blue light and control stimulation with yellow light (Fig. 3B,C). 

We calculated paired t-tests between spectra obtained with blue and yellow light, 

across recording sites. Statistical inference was not based directly on the t-tests (and 

therefore corresponding assumptions will not limit our inference), but the resulting 

t-values were merely used as a well-normalized difference metric for the subsequent 

cluster-based non-parametric permutation test. For each of 10,000 permutations, we 

did the following: 1) We made a random decision per recording site to either exchange 

the spectrum obtained with blue light and the spectrum obtained with yellow light or 

not; 2) We performed the t-test; 3) Clusters of adjacent frequencies with significant 

t-values (p<0.05) were detected, and t-values were summed over all frequencies in 

the cluster to form the cluster-level test statistic. 4) The maximum and the minimum 

cluster-level statistic were placed into maximum and minimum randomization 

distributions, respectively. For the observed data, clusters were derived as for the 

randomized data. Observed clusters were considered significant if they fell below the 

2.5th percentile of the minimum randomization distribution or above the 97.5th 

percentile of the maximum randomization distribution (Maris and Oostenveld, 2007). 

This corresponds to a two-sided test with correction for the multiple comparisons 

performed across frequencies (Nichols and Holmes, 2002). 

PING model 

The neurons in the PING model are Hodgkin-Huxley-like point neurons. The excitatory 

population consists of a simplified version of model pyramidal neurons introduced 

by(Traub et al., 1991), the reduced Traub-Miles (RTM). The inhibitory population 

consists of model basket cells introduced by (Wang and Buzsáki, 1996). The 

parameters for the model are presented in the tables below, and we refer to the original 

publication of the model for more details (Börgers, 2017). 

PING Neuron parameters: 

 C (μF/cm2) vNa (mV) vK (mV) vL (mV) gNa (mS/cm2) gK (mS/cm2) gL (mS/cm2) 

E (RTM) 
1  

50 -100 -67 100 80 0.1 

I (WB) 1 55 -90 -65 35 9 0.1 

PING Network parameters: 

NE 200 
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NI 50 

IE 1.5 μA/cm2 

E 0.05 μA/cm2 

II 0 μA/cm2 

gEE 0 mS/cm2 

gEI 0.25 mS/cm2 

gII 0.25 mS/cm2 

pEI 0.5 

pIE 0.5 

pII 0.5 

r,E 0.5 ms 

peak,E 0.5 ms 

d,E 3 ms 

vrev,E 0 mV 

r,I 0.5 ms 

peak,I 0.5 ms 

d,I 9 ms 

vrev,I -75 mV 

PING+M model 

In order to reproduce the experimentally observed hysteresis effects, we implemented 

spike frequency adaption in the model pyramidal neurons. The PING+M model is 

taken from the Adaptation-based, Deterministic Weak PING model from Börgers 

(Chapter 32 of (Börgers, 2017)). In this model, the previous PING model is modified 

by the addition of a model M-Current to the pyramidal neurons. Otherwise, the network 

is identical to the PING model described above.   

PING+M Neuron parameters: 

gM 0.4 
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LIF model 

In order to investigate the generality of the model results, we next implemented a 

simple network of leaky-integrate-and-fire neurons. This network was composed of 

80% excitatory neurons and 20% inhibitory neurons, coupled via instantaneous 

synapses. Excitatory neurons were not mutually connected, while the remaining 

connectivity was all-to-all, with synapse magnitude randomly distributed uniformly 

between 0 and the respective post-synaptic-potential (PSP) value. Each neuron 

accumulates postsynaptic potentials until the threshold for spiking is reached. Upon 

spiking, each neuron transmits to its synaptic partners a post synaptic event and its 

potential is reset. The membrane voltage of the model LIF neurons is given by: dV/dt 

= - V/C + I/C, with the membrane timescale tau = R*C, where R is the input resistance 

of the neuron, C is the membrane capacitance, and I includes both basal and synaptic 

currents. We drove the network with symmetric single slow sine waves or with white 

noise. The dynamics of the network were evaluated numerically at a resolution of tau 

using the Euler method.  

 V = V + dt * ( -(V - E) + I * R) / tau  

LIF Network parameters: 

NE  200 

NI  50 

IE  1.5 nA 

E  0.05 μA/cm2 

II  0 μA/cm2 

PSPEE  0 mV 

PSPIE  1 mV 

PSPEI -1 mV 

PSPII -1 mV 

tau 0.5 ms 

C 0.5 nF 

R 40 Mohms 

Vrev,E 0 mV 

Vspike 30 mV 
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Vthresh -40 mV 

Vreset -70 mV 

Vleak -60 mV 
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