

1 High-throughput Single-cell CNV Detection Reveals Clonal 2 Evolution During Hepatocellular Carcinoma Recurrence

3

4 Liang Wu^{1,2,3,#,*}, Yuzhou Wang^{2,#}, Miaomiao Jiang^{2,#}, Biaofeng Zhou^{1,2,3}, Yunfan
5 Sun⁴, Kaiqian Zhou⁴, Jiarui Xie^{2,3,5}, Yu Zhong^{2,3,5}, Zhikun Zhao², Michael Dean⁶,
6 Yong Hou^{1,2,3}, Shiping Liu^{1,2,3,*}

7

8 ¹ *BGI Education Center, University of Chinese Academy of Sciences, Shenzhen
9 518083, China*

10 ² *BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China*

11 ³ *Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100,
12 China*

13 ⁴ *Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan
14 Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion,
15 Ministry of Education, Shanghai 200032, China*

16 ⁵ *School of Biology and Biological Engineering, South China University of
17 Technology, Guangzhou 510640, China*

18 ⁶ *Laboratory of Translational Genomics, Division of Cancer Epidemiology &
19 Genetics, National Cancer Institute, Gaithersburg, MD 20877, USA*

20

21 [#] Equal contribution.

22 ^{*} Corresponding authors.

23 E-mail: wuliang@genomics.cn (Wu L), liushiping@genomics.cn (Liu SP).

24

25

26 **Abstract**

27 Single-cell genomics provides substantial resources for dissecting cellular
28 heterogeneity and cancer evolution, but classical DNA amplification-based methods
29 are low-throughput and introduce coverage bias during sample preamplification. We
30 developed a single-cell DNA library preparation method without preamplification in
31 nanolitre scale (scDPN). The method has a throughput of up to 1,800 cells per run for
32 copy number variation (CNV) detection. Also, it has a lower level of amplification
33 bias and noise than the multiple displacement amplification (MDA) method and
34 showed high sensitivity and accuracy based on evaluation in cell lines and tumour
35 tissues. We used this approach to profile the tumour clones in paired primary and
36 relapsed tumour samples of hepatocellular carcinoma (HCC). We identified 3 clonal
37 subpopulations with a multitude of aneuploid alterations across the genome.
38 Furthermore, we observed that a minor clone of the primary tumour containing
39 additional alterations in chromosomes 1q, 10q, and 14q developed into the dominant
40 clone in the recurrent tumour, indicating clonal selection during recurrence in HCC.
41 Overall, this approach provides a comprehensive and scalable solution to understand
42 genome heterogeneity and evolution.

43

44 **KEYWORDS:** Single-cell sequencing; Hepatocellular carcinoma; Heterogeneity;
45 Clonal evolution; Relapse

46

47 **Introduction**

48 Heterogeneity is pervasive in human cancer [1] and manifests as morphologic,
49 transcriptomic, and genetic differences between cells. However, intercellular genetic
50 heterogeneity in cell populations is often obscured in genome analysis at the bulk
51 level. Single-cell technologies have advanced rapidly in the past decade and can
52 detect variants at the single-cell level [2-4]. Technologies for transcriptome analysis
53 have been used to profile intra-tumour heterogeneity or define immune infiltration in
54 various cancer types [5-13]. Although less widely utilized due to throughput and cost
55 limitations, single-cell genome sequencing is a powerful tool to track clonal dynamics
56 and infer evolutionary trajectories [14-18].

57 Most strategies for single-cell whole-genome sequencing (WGS) require
58 whole-genome amplification (WGA) before library construction, which introduces
59 bias and increases cost. The degenerate oligonucleotide-primed PCR (DOP-PCR)
60 method attempts to amplify the entire single-cell genome by random oligonucleotide
61 priming [19]. However, it preferentially amplifies regions rich in cytosine and
62 guanosine, resulting in lower genomic coverage. Multiple displacement amplification
63 (MDA) is another commonly used avenue utilizing random primers and the high
64 fidelity φ29 polymerase. This method generates data with good genome coverage and
65 lower error rates. However, due to the polymerase's strand displacement activity [20],
66 compromised uniformity is not suitable for copy number variation (CNV) detection.
67 A hybrid method called multiple annealing and looping based amplification cycles
68 (MALBAC) amplifies the genome with random primers and creates looped precursors
69 to prevent continuous amplification before the PCR, achieving a better uniformity
70 [21]. The other category of single-cell genome sequencing approaches is
71 preamplification-free and transposase-based, including linear amplification via
72 transposon insertion (LIANTI) [22], direct library preparation (DLP) [23], and
73 transposon barcoded (TnBC) methods [24]. These approaches transpose single-cell
74 genomic DNA directly and add common sequences to the end of the fragments for

75 further amplification, reducing biases compared with preamplification-based
76 techniques. These methods are based on a single tube or use complicated
77 microvalve-based microfluidic chips, limiting the throughput.

78 Hepatocellular carcinoma (HCC) is a high-grade malignancy with a high
79 recurrence rate of up to approximately 60% within 5 years [25]. As a risk factor for
80 reduced survival, early recurrence of HCC is ascribed to a residual tumour and
81 intrahepatic micrometastasis, closely related to intra-tumour heterogeneity [26].
82 Next-generation sequencing (NGS) studies based on cell population have reported a
83 high degree of intra-tumour heterogeneity in HCC [27, 28]. A single-cell triple-omics
84 approach applied to 26 tumour cells from HCC identified 2 tumour clones based on
85 their CNV profiles [29]. Also, monoclonal and polyclonal origins have been reported
86 recently based on single-cell WGS of ~ 30 cells in two individual patients [30].
87 However, a large number of cells are required to more comprehensively understand
88 the heterogeneity in HCC, clonal expansion, and selection during HCC relapse.

89 Here, we developed an unbiased preamplification-free single-cell DNA library
90 preparation in nanolitre scale (scDPN) method using microwell chips and a 72×72
91 dual indexing strategy, which is capable of processing up to ~1,800 single cells in
92 parallel. This approach can obtain highly sensitive and accurate single-cell CNV
93 (scCNV) profiles based on evaluations in cell lines and tumour samples. We further
94 applied this approach to paired primary and relapsed HCC tumour samples from the
95 same patient. We identified 3 clonal subpopulations with aneuploid alterations across
96 the genome. Furthermore, we noticed that relapsed tumour cells were originated from
97 a minor subpopulation of the primary tumour, indicating clonal selection during HCC
98 recurrence.

99 **Results**

100 **Microwell-based single-cell DNA library preparation workflow**

101 To increase scCNV detection efficiency, we developed a preamplification-free and
102 unbiased single-cell DNA library preparation approach called scDPN for

103 high-throughput scCNV detection, which provides a comprehensive, scalable solution
104 for revealing genomic heterogeneity. The workflow of scDPN includes three main
105 parts: cell isolation and single-cell identification, transposase-based (Tn5) library
106 construction, and library pooling and sequencing. The first two steps were carried out
107 in a 5,184 microwell chip (**Figure 1**). A cell suspension stained with Hoechst and
108 propidium iodide (PI) was dispensed into the microwell chip with a MultiSample
109 NanoDispenser (MSND). Cell suspensions with a range from 0.5 to 2.6 cells/50 nL
110 (10~52 cells/ μ L) were optimum to obtain more than 1,000 wells with single-cell due
111 to the cell counts per well followed a Poisson distribution. We used automated
112 imaging to identify the number of cells and their viability, using fluorescent Hoechst
113 and PI signals on a fluorescence microscope. Only microwells with single and viable
114 cell (Hoechst⁺PI⁻) were selected for cell lysis and transposase fragmentation.
115 Individual single-cell products were discriminated using 72×72 paired barcoded
116 primers dispensed in succession with two individual dispensing steps. After several
117 cycles of PCR, the barcodes and sequencing adaptors were added to both ends of the
118 fragmented DNA. The microwell chip was then inverted, and all the barcoded
119 libraries were collected into a pooled library. We determined the size distribution of
120 pooled single-cell libraries by Agilent 2100 analysis (Figure S1). The libraries were
121 then purified and cyclized for single-end 100 bp (SE100) sequencing on BGISEQ-500
122 [31].

123 **Assessment of data quality and uniformity under different reaction conditions**
124 The HeLa S3 and YH cell lines, HCC adjacent normal liver tissue (ANT), and tumour
125 tissues were processed and sequenced at $0.02\times$ depth (~600k reads under SE100). To
126 confirm whether our approach can generate enough data for scCNV detection, we
127 draw a CNV saturation curve using three tumour cells with deeper sequencing depths
128 up to $0.15\times$ (**Figure 2A**, Materials and Methods). The number of detected CNVs
129 increased in proportion to the number of randomly extracted uniquely mapped
130 deduplicated reads (UMDR). When the amount of UMDR reached 300k, with an

131 average sequencing depth of 0.01 \times , the detected CNV counts were saturated (Figure
132 2A).

133 We tested a combination of transposase (T1, T2, T3) and proteinase (P1, P2)
134 reaction conditions to optimize the protocol. Single-cell libraries with raw data above
135 30k reads (5% of average reads) were assumed to have a template-based reaction, and
136 148 cells from 5 conditions were qualified (Table S1). Afterward, we selected the
137 cells with oversaturated reads (UMDR > 300k) for further accuracy assessment. It
138 was evident that condition T2_P1 (65%) showed the highest rate of cells passing the
139 filtering criteria; conditions T1_P1, T2_P2, and T3_P2 showed a medium utilization
140 rate between 40%~50%; and T3_P1 showed the lowest utilization rate, below 30%
141 (Table S1). The qualified cells are listed in Table S2.

142 We statistically evaluated several features of these cells in different conditions,
143 including mapped reads, coverage, duplication rates, and median absolute pairwise
144 difference (MAPD) values. As the amount of sequencing reads affects these values,
145 we down-sampled each single-cell library to 400k raw reads for comparison.
146 Single-cell libraries treated with condition T3_P1 showed significantly fewer mapped
147 reads and lower coverage (Figure S2A). A low duplication ratio reflects high data
148 utilization. Conditions T2_P1, T2_P2, or T3_P2 had a mean duplication rate below
149 20%, which were lower than T1_P1 or T3_P1 (**Figure 2B**).

150 As a measurement of the bin-to-bin variation in read coverage, MAPD is an
151 indicator of the evenness of WGA. Conditions T2_P1, T3_P1, and T3_P2 exhibited
152 lower MAPD values (0.26 ± 0.07 , 0.26 ± 0.03 , and 0.23 ± 0.04 , respectively, under 5k
153 bins) compared with condition T1_P1 (0.37 ± 0.15 under 5k bins, $P < 0.05$) (Figure
154 2B). All of these conditions showed a much lower MAPD (mean MAPD < 0.4, 0.34
155 M mapping reads under a bin size of 300 kb) than that of normal cells prepared by
156 MDA (MAPD: 0.4-0.6, 1.5 M mapped reads under a bin size of 500 kb [32]). We
157 observed that CNV profiles generated from poor quality libraries had significant noise
158 and larger MAPD values, so we set MAPD ≤ 0.45 as a cut-off for acceptable quality

159 according to previous reports [32]. Because aberrant chromosomes influence MAPD,
160 we compared the utilization rates from the same HCC tumour tissue under different
161 conditions. The results showed that T2_P1 and T2_P2 had higher utilization rates up
162 to 100%, by using a selection criterion of $MAPD \leq 0.45$ for bin sizes of 600 kb or 300
163 kb (Figure S2B).

164 To further evaluate this approach's genome-wide uniformity, we drew Lorenz
165 curves for each condition and the data generated by the MDA method [24]. There
166 were no substantial differences between the five conditions, and they all showed
167 better uniformity than the MDA method (Figure 2C). Besides, the Lorenz curves
168 demonstrated that scDPN had comparable uniformity with DOP-PCR, MALBAC,
169 LIANTI, TnBC, a single-cell sequencing method that combines combinatorial
170 indexing and linear amplification (sci-L3) [33], and the 10x genomics CNV platform
171 (Figure 2D). The T2_P1 condition was chosen as optimal for further applications.

172 **scDPN provides reliable data for accurate scCNV detection**

173 To assess the sensitivity and accuracy of CNV calling with a depth of 300k reads, we
174 first generated analogue data of CNVs of different sizes (1~15 Mb), with 20
175 variations generated for each size (Materials and Methods). Approximately 80% of
176 CNVs above 2 Mb were detected in 5k, 10k, or 20k bins (Figure S3A). The false
177 discovery rate (FDR) was between 0.3~0.4 when detecting CNVs of 1 Mb and
178 decreased to below 0.25 when detecting CNVs ≥ 2 Mb using 5k bins (Figure S3B).

179 To assess the approach's reliability, we investigated the consistency of CNV
180 profiles between single-cell and bulk populations. We used normal (YH) and tumour
181 (HeLa S3) cell lines for single-cell copy number analysis and compared the results to
182 the bulk CNVs from published HeLa S3 [34] and YH data [35]. HeLa S3 cells are
183 known to harbour germline CNVs of defined sizes. The CNV profiles of single HeLa
184 S3 cells were similar to the bulk data; however, this analysis did not detect a deletion
185 on chromosome 4 posted in bulk HeLa S3 DNA (Figure 3A and S3C). We also
186 observed different copy number states in chromosomes 13 and 18, which agreed with

187 Liu's discovery of substantial heterogeneity between HeLa variants from other
188 laboratories [36]. The YH cells were B cells from a healthy donor, who was
189 considered without significant CNVs. As expected, the single-cell YH cell CNV
190 profile only had minor point CNV fluctuations (**Figure 3B** and S3C).

191 We then applied scDPN to an HCC tumour sample as well as paired ANT. The
192 bulk tumour sample and peripheral blood mononuclear cells from the same patient
193 (HCC01) were also subjected to whole-exome sequencing. We obtained 58 cells from
194 HCC tumour tissue and 10 cells from ANT after filtering (> 300k reads, MAPD <
195 0.45). All 10 cells from ANT had no significant CNVs, as expected. One cell in the
196 tumour did not have any CNVs and was considered normal (Figure S3C). The other
197 57 tumour cells had gain in 2p25.3-2p16.2, loss at 10q, and 56 had 8q11.23-8q24.3
198 gain (**Figure 3C** and S3C). This result indicated that there was only one major tumour
199 clone in the HCC01 primary tumour. By comparing a representative copy number
200 profile of a HCC tumour cell with a bulk CNV profile inferred from whole exome
201 sequencing data (Materials and Methods), we observed concordant chromosome
202 duplications of chromosomes 2, 8, and 12 and a deletion on chromosome 10,
203 verifying the reliability of our CNV data. For example, the CNV profiles revealed
204 multiple copy alterations, including 2p25.3-2p16.2, and 8q11.23-8q24.3, which are
205 also present in the bulk DNA (Figure 3C).

206 **Single-cell CNV detection reveals tumour clonal subtypes in HCC**

207 Genetic heterogeneity in HCC has been described in somatic nucleotide variations
208 (SNVs) by NGS or SNP array of multiple regions from the same primary HCC bulk
209 tumour tissue [37], but there are few studies at the single-cell level. Thus, we used
210 scDPN to investigate tumour subclones in patient HCC02. After quality control
211 (UMDR ≥ 0.30 M, MAPD ≤ 0.45), we obtained 106 cells from the primary tumour
212 for subsequent CNV calling. Three cells without chromosome copy number
213 alterations were designated as normal cells. The remaining 103 cells showed two
214 distinct CNV patterns, indicating that at least two tumour clones existed in this

215 primary tumour (**Figure 4A**). The major subpopulation consisted of 87 cells with
216 high-level amplifications on chromosomes 5p15.33-q35.3, 6p25.3-q12, 7p22.3-q36.3,
217 8q11.1-q24.3, and 15q11.2-q26.3 and deletions on chromosomes 6q12-q27 and
218 8p23.3-p11.21. Deletions of chromosomes 6q and 8p and gains in 6p and 8q are
219 known recurrent CNVs in HCC [38]. A minor subpopulation of HCC02 comprised
220 16/103 (15.5%) tumour cells and had additional alterations: chromosome 1q21.1-q44
221 gain, 10q11.21-q23.31 loss, and 14q32.2-q32.33 loss (**Figure 4B**). We also observed
222 common alterations in chromosomes 5, 6, 7, 8, and 15 in the same patient's bulk
223 tumour. However, the unique alterations in chromosomes 1, 10, and 14 found in the
224 minor population of single cells were not detectable in the bulk tumour,
225 demonstrating the capability of characterizing minor clones in single cells.

226 **Clonal selection in HCC recurrence**

227 A high recurrence rate is one of the risk factors contributing to the low 5-year survival
228 rate in HCC. Understanding the clonal evolution and selection that occurs during
229 relapse could aid in exploring the mechanism of recurrence. To investigate the
230 correlation between the primary and recurrent tumour, we applied scDPN to the
231 recurrent tumour from HCC02. We obtained 118 qualified cells from the recurrent
232 tumour using the same filtering criteria. To our surprise, except for 4 normal cells
233 without significant CNVs, the remaining 114 tumour cells had unique CNVs detected
234 in the minor clone of the primary tumour, including 1q21.1-q44 gain,
235 10q11.21-q23.31, and 14q32.2-q32.33 loss (Figure S4A). This result strongly
236 demonstrated that the minor clone in the primary tumour repopulated to be the
237 dominant clone during relapse in this patient.

238 Furthermore, a hierarchical cluster analysis was conducted on CNVs in
239 chromosomes 1, 10, and 14, revealing three subpopulations with distinct CNV
240 patterns (**Figure 4C**). Clone A comprised 81 primary tumour cells with no CNVs on
241 these three chromosomes and corresponded to the major clone in the primary tumour.
242 Both clones B and C showed similar CNVs in these three regions. Clone B was

243 composed of 17 primary tumour cells and 12 recurrent tumour cells and was
244 considered to be a transitional state of clone C. Clone C consisted of 102 relapsed
245 tumour cells and 5 primary tumour cells, indicating that the minor clone in the
246 primary tumour developed into a dominant clone during HCC relapse.

247 To determine which characteristics were associated with clone C selection during
248 recurrence, we investigated the genes located in these unique CNV regions. We found
249 several oncogenes and tumour suppressor genes described in the Catalogue Of
250 Somatic Mutations In Cancer (COSMIC) database (Table S3). Several oncogenes
251 were located in the amplification regions on chromosome 1q21.1-q44, including
252 *ABL2*, *BCL9*, *DDR2*, *FCGR2B*, *ELK4*, and *MDM4*, while several tumour suppressor
253 genes, including *PTEN*, *FAS*, and *PRF1*, were located in the loss region of
254 10q11.21-q23.31. We further validated that patients with 10q11.21-q23.31 loss or all
255 the three alterations (1q21.1-q44 gain, 10q11.21-q23.31, and 14q32.2-q32.33 loss)
256 showed lower disease or progression-free survival rate within two years in the TCGA
257 dataset for HCC (Figure S4B). However, we did not observe a significant difference
258 between patients with 1q21.1-q44 gain/14q32.2-q32.33 loss vs. others in disease-free
259 survival, suggesting that the loss of 10q11.21-q23.31 may make a substantial
260 contribution to tumour clone selection during relapse in HCC.

261

262 **Discussion**

263 Single-cell genomic technologies have greatly aided the analysis of the evolution
264 of cancer genomes and the study of genetic heterogeneity in cancer. However, the
265 lack of high-throughput, cost-effective single-cell WGS approaches has limited their
266 application. Here, we developed a preamplification-free, microwell-based single-cell
267 DNA library preparation approach named scDPN, which can handle up to 1,800 cells
268 per run. A fluorescence and imaging system enabled us to select a single and viable
269 cell accounting for a lower doublet rate. Through a series of experiments, we
270 determined the optimum on-chip experimental conditions for high data quality. The

271 strategy for constructing libraries of scDPN was similar to the DLP and TnBC
272 approaches. Improved version of LIANTI (sci-L3) and DLP (DLP+) [39] reported
273 recently also have increased the throughput.

274 Compared with MDA methods, our platform generated single-cell genome data
275 with better uniformity and lower noise, which decreases the required sequencing
276 depth. Low-depth single-cell genome data of the HeLa S3 and YH cell lines and
277 tumour samples generated by scDPN showed high sensitivity (only $0.02 \times$ depth data
278 needed) and accuracy compared with bulk tumour analysis. The small reaction
279 volume substantially reduced the library construction costs to \$0.5 per cell. ScDPN
280 has the advantages of amplification uniformity, throughput, and cost over existing
281 single-cell CNV detection methods. Additionally, we evaluated the performance of
282 CNV detection in the cell nuclei from frozen tissues (Figure S5), which extends the
283 application to additional cell types, including neurons and retrospective studies using
284 frozen tissues.

285 However, scDPN is not suitable for SNVs detection due to low genome coverage.
286 According to Zahn's study, sequencing reads from all cells can be merged to produce
287 a 'pseudo-bulk' genome with deep coverage accountable to an inference of SNV.
288 Otherwise, a collection of high-depth 'clonal genomes' can be generated by
289 combining all cells within a clone [23]. Additionally, there is a large difference in the
290 amount of data among single-cell libraries produced from the same run due to the
291 differential reaction efficiency during library preparation. Therefore, further condition
292 optimization is essential to obtain uniform library products from an individual cell.

293 We used scDPN to identify subgroups of HCC tumour cells that were not detected
294 in the bulk population (Figure 4A). This analysis indicates that important information
295 is missing from bulk level-based sequencing studies. A large cohort based on scCNV
296 in HCC may be needed to understand the genetic variance and heterogeneity more
297 comprehensively. Understanding the clonal selection mechanisms in HCC recurrence
298 could guide treatment and reduce relapse in HCC. Scaling our single-cell DNA

299 preparation approach with paired primary and relapsed tumour samples could address
300 essential questions concerning subclonal dynamics, such as how specific subclones
301 evolve, evade immune surveillance, and metastasize.

302 In the profiling of CNVs in paired primary tumour cells (n = 103) and relapsed
303 HCC tumour cells (n = 114), we observed a subpopulation (clone C) as the minor
304 clone (5/103, 4.8%) in the primary tumour. This minor clone had additional CNVs of
305 1q21.1-q44 gain, 10q11.21-q23.31 loss, and 14q32.2-q32.33 loss, which developed
306 into the dominant clone (102/114, 90%) in the recurrent tumour (Figure 4C). This is
307 solid evidence to support the tumour clonal selection during HCC relapse (**Figure**
308 **4D**). We validated in TCGA data that the loss of 10q11.21-q23.31, a region
309 containing several tumour suppressor genes, is frequent in HCC and may play a
310 crucial role in tumour clone selection during relapse. A chromosome 8p deletion has
311 been correlated with HCC metastasis [40] and exists 3 clones in this tumour. The loss
312 of 6p25.3-q12 presented in all clones would result in loss of heterozygosity (LOH)
313 across the major histocompatibility complex (MHC), which is also reported to be
314 associated with cancer metastasis [41]. Immune pressure has been proposed to shape
315 the clonal evolution of metastasis [42]. However, the drivers or critical factors
316 contributing to clonal selection during recurrence or metastasis in HCC and other
317 cancers remain unclear. High-throughput single-cell omics from a large set of cancer
318 patients, may potentially address these questions and simultaneously dissect the
319 tumour environment, as well as the genetic and transcriptome characteristics of
320 tumour cells.

321

322 **Materials and methods**

323 **Cell line and patient tissue samples**

324 The lymphoblastic cell line (YH cell line) was established from an Asian genome
325 donor [35]. We purchased the HeLa S3 cell line from the American Type Culture
326 Collection (CCL-2.2, ATCC, Manassas, VA, USA). The tumour sample used for

327 on-chip reaction determination was a resected sample of a 45-year-old male patient
328 (HCC01) with a primary HCC tumour. Paired primary and relapsed HCC tumour
329 samples were obtained from a 63-year-old male patient (HCC02). Peripheral white
330 blood cells and paired tumour sample and adjacent normal liver tissue were also
331 obtained for bulk whole-exome sequencing or whole-genome sequencing.

332 **Preparation of the single-cell suspension**

333 Cell suspension of cell lines were harvested and centrifuged at 500 g for 5 min,
334 washed by phosphate buffer solution (PBS) buffer twice, and resuspended in PBS.
335 The resected tumour samples were processed to a single-cell suspension using the
336 commercial Tumour Dissociation Kit (30095929, Miltenyi Biotec, Bergisch
337 Gladbach, Germany). Briefly, fresh tumour and adjacent normal liver tissues were cut
338 into approximately 2-4 mm pieces and transferred into the gentleMACS C Tube
339 containing the enzyme mix. Subsequently, the suspended cells were centrifuged at
340 300 g for 7 min after passing through cell strainers. The suspended cells were passed
341 through cell strainers and centrifuged at 300 g for 7 min. The cell pellets were
342 resuspended in 90% fetal bovine serum (FBS; 10270106, ThermoFisher Scientific,
343 Waltham, MA, USA) with 10% dimethyl sulfoxide (DMSO; D8418-50ML,
344 Sigma-Aldrich, St. Louis, MO, USA) and collected in a freezing container for -80 °C
345 storage.

346 **Single-cell DNA library preparation and sequencing**

347 We used the ReadyProbes Cell Viability Imaging Kit (R37609, ThermoFisher
348 Scientific, Waltham, MA, USA) that contained Hoechst and PI to identify living cells.
349 This staining process was at 37 °C for 20 min, then washed in cold 0.5× PBS twice.
350 For cells from tumour tissue, we added fluorescent antibody CD45 (55548, BD
351 Pharmingen™, San Jose, CA, USA) in the staining step. Based on FACS, CD45⁺
352 Hoechst⁺ PI cells from the single-cell suspension were sorted into single tubes for
353 tumour cell enrichment. Counted cells were dispensed into microwells using the
354 ICELL8 MSND (640000, Takara Bio USA, Mountain View, CA, USA) at the

355 concentration of 25 cells/ μ l in 0.5 \times PBS and 1 \times Second Diluent (640202, Takara Bio
356 USA, Mountain View, CA, USA) into the ICELL8 \circledR 350v Chip (640019, Takara Bio
357 USA, Mountain View, CA, USA). We used the mixed buffer of PBS and fiducial mix
358 (640202, Takara Bio USA, Mountain View, CA, USA) as the negative control wells.
359 The MSND precisely dispensed 50 nL volumes into the microwells. Following cell
360 dispensing, the chip was sealed with imaging film and centrifuged for 5 min at 500 g
361 at 4 °C, and imaged with a 4 \times objective using Hoechst and PI. Following imaging, 35
362 nL cell lysis buffer was added to each microwell (P1: 2.89 AU/L Protease K (19155,
363 Qiagen, Germany) and 72.8 mM pH 7.5 Tris-HCl (15567027, ThermoFisher
364 Scientific, Waltham, MA USA); P2: 8.67 AU/L Protease K and 72.8 mM pH 7.5
365 Tris-HCl). The sealed chip was centrifuged for 3 min at 3,000 g and room temperature,
366 then incubated at 50 °C for 1 h, followed by 75 °C for 20 min and finally 80 °C for 5
367 min to inactivate the protease. The chip was centrifuged for 3 min at 3,000 g again
368 before 50 nL Tn5 transposition mix (T1: 0.06 U/ μ L Tn5 transposase (1000007867,
369 MGI, China) and 2.4 \times TAG buffer (1000013442, MGI, China); T2: 2.4 \times TAG buffer,
370 0.14 U/ μ L Tn5 transposase; T3: 2.4 \times TAG buffer and 0.22 U/ μ L Tn5 transposase)
371 were dispensed. After sealed, the chip was centrifuged at the same condition with the
372 last step and incubated at 55 °C for 30 min. To stop transposase activity, 31 nL 5 \times NT
373 buffer (0.25% SDS solution), 1.45 nL ddH₂O, and 2.55 nL of Ad153-forward-tag
374 (1~72) primer [1 μ M] were dispensed, centrifuged and incubated for 5 min at room
375 temperature. Another barcode primer was added to 50 nL PCR mix1 (29.6 nL 5 \times
376 KAPA Fidelity Buffer, 7.69 nL 10 mM each dNTP, 5.1 nL PhoAd153 forward primer
377 [10 μ M], 5.1 nL Ad153 reverse primer [10 μ M], and 2.55 nL of 72 Ad153-reverse-tag
378 (1~72) primer [1 μ M] made by KAPA HiFi HotStart PCR Kit (KK2500, Kapa
379 Biosystems, Cape Town, South Africa). Finally, 50 nL PCR mix2 containing 21.4 nL
380 5 \times KAPA Fidelity Buffer, 5.1 nL 1 U/ μ L KAPA HiFi DNA polymerase, and 23.5 nL
381 ddH₂O was dispensed. We used the following conditions to perform PCR: 72 °C for 5
382 min; 95 °C for 3 min; 25 cycles of 98 °C for 3 min for 20 sec, 60 °C for 15 sec, and

383 72 °C for 25 sec; 72 °C for 5 min; and finally 4 °C. The final extraction of PCR
384 products was carried out by centrifuging at 3,000 g for 3 min with an extraction kit.
385 Product purification was performed using a 1.0× Agencourt Ampure XP bead
386 (A63881, Beckman Coulter, Indianapolis, IN, USA) to sample ratio. Following
387 ssDNA cyclization, digestion, and PEG32 bead purification (1000005259, MGI,
388 China), the libraries were sequenced in SE100 on the BGISEQ-500 sequencer.

389 **Preprocessing of sequencing data**

390 The raw reads derived from BGISEQ-500 were assessed by SOAPnuke (v1.5.6) [43]
391 using the parameters “-Q 2 -G”. Afterward, we mapped the qualified reads to the
392 human reference genome (hg19) by Burrows-Wheeler Aligner (BWA, v0.7.16a) [44]
393 with BWA-MEM algorithms using arguments “-t 2 -k 32 -M /path/to/ref.fa”. The
394 output SAM files were compressed and sorted by reference coordinates and then
395 indexed with SAMtools (v1.1.19) [45]. Subsequently, uniquely mapped reads were
396 extracted. Reads considered “PCR duplications” were removed by “samtools rmdup”
397 from the downstream analysis.

398 **Detection of copy number variations**

399 We calculated the copy number of each cell with an optimized method developed by
400 the Baslan et.al. [35, 46, 47]. Based on the coverage suggestion of 30-180 reads per
401 window for CNV calling from Gusnanto et al., we estimated the number of bins
402 according to the average sequencing depth (< 1 Mbp) by the R package NGSoftwin
403 [48]. The “bin boundaries” files for 5,000 bins in hg19 that suited the read length of
404 100 bp were generated. After GC content normalization, DNAcopy was employed for
405 segmentation and copy number calculation, which points to gains and losses in
406 chromosomes.

407 The FASTQ files of bulk HeLa S3 were downloaded from the NCBI Sequence
408 Read Archive repository (SRP028541). The YH dataset was available in the
409 GigaScience repository, GigaDB (<http://gigadb.org/dataset/100115>) [35].

410 For the matched bulk WES dataset, snp-pileup from htstools was first employed
411 for processing BAM files using parameters “/path/to/dbsnp_150.common.hg38.vcf.gz
412 -g -q15 -Q20 -P100 -r25,0”. We then used facets [49] for copy number estimation
413 from the paired (normal/tumour) samples.

414 **Accuracy of CNV detection from the low coverage single-cell WGS data**

415 The accuracies of CNV calling in the paper were assessed by sensitivity and FDR
416 gain from the simulated dataset. A series of rearranged genomes with a defined size of
417 CNVs was randomly generated by SimulateCNVs [50]. In each of the 10 outputs, 0.1
418 \times WGS datasets with 20 CNVs of a specific size (1, 2, 3, 5, 10, 15 Mbp) were used to
419 randomly extract 3×10^5 uniquely mapped reads after duplicate removal with 5
420 replicates. A detected CNV was assumed to be true when it overlapped with at least
421 50% of the simulated CNVs. The sensitivity was defined as TP/(TP + FN), where the
422 numerator was the true positive CNV mentioned above, while the total number of
423 CNVs simulated served as the denominator. FDR was defined as FP/(FP+TP), where
424 the numerator was the false positive CNV, and the denominator was the total number
425 of CNVs detected by the algorithm.

426 **Estimation of sequencing saturations**

427 The uniquely mapped reads after duplicate removal were randomly down-sampled to
428 3×10^4 , 6×10^4 , 9×10^4 , 1.2×10^5 , 1.5×10^5 , 1.8×10^5 , 2.1×10^5 , 2.4×10^5 , $2.7 \times$
429 10^5 , 3×10^5 , 4.5×10^5 , 6.5×10^5 , 1.05×10^6 , 1.5×10^6 , and 2×10^6 reads. We used
430 the down-sampled reads to estimate the sequencing saturation for our low-coverage
431 WGS method. After calculating the copy number of each bin in the down-sampled
432 datasets, the boundaries of the bins with copy number unequal to 2 were compared to
433 that of samples with the highest read depth. The percentages of bins with abnormal
434 copy number in samples with the highest coverage found in the down-sampled
435 datasets were recorded. The saturation curves were fitted with locally weighted
436 (LOESS) regression in geom_smooth function in the R package ggplot2 [51]. The
437 inflection point of the curves was considered as the saturation point.

438 **Evaluation of the uniformity**

439 The FASTQ files of MDA, DOP-PCR, MALBAC, LIANTI, TnBC, and sci-L3
440 datasets were downloaded from the NCBI Sequence Read Archive repository
441 (SRR504711 for single-cell MDA, SRR1006146 for DOP-PCR, SRR975229 for
442 MALBAC, SRX2660685 for LIANTI, SRX2847396 for TnBC, SRX5179905 for
443 sci-L3) respectively. The sequence generated by 10x genomics platform was derived
444 from https://support.10xgenomics.com/single-cell-dna/datasets/1.1.0/bj_cells_1k.

445 The uniquely mapped reads after duplicate removal from all samples were
446 randomly down-sampled to 10^5 reads for uniformity evaluation. To better indicate the
447 bias of amplification methods, we binned reads into 60kb intervals across the genome
448 with an average of 20 reads per bin according to the results from Xi et al. [24]. Reads
449 in each bin were counted by bedtools2 (v2.20.1) and then applied for Lorenz model
450 estimation.

451 **CNV profiling and tumor evolution visualization**

452 MAPD is used for noise assessment in CNV calling [47, 52]. Since higher MAPD
453 values reflect the poorer quality of a cell, we excluded single-cell samples with
454 $\text{MAPD} > 0.45$. Segment ratios of samples were presented and clustered by hclust
455 using ‘ward.D2’. Fishplot [53] was employed for fishplot construction.

456

457 **Ethical statements**

458 We clarified that no animals were involved in this study. All samples involved in
459 human beings were obtained after written informed consent and approval from the
460 Institutional Review Board (IRB) at Fudan University ZhongShan Hospital and
461 BGI-Shenzhen.

462 **Data availability**

463 The low-coverage WGS data generated by BGISEQ-500 were deposited at CNGB
464 Nucleotide Sequence Archive (<https://db.cngb.org/>) with the accession ID
465 CNP0000448 and GSA at the National Genomics Data Centre (<https://bigd.big.ac.cn/>)
466 with the accession ID HRA000478 and HRA000476.

467 **CRedit author statement**

468 **Liang Wu:** Conceptualization, Methodology, Investigation, Writing-Original Draft,
469 Writing-Review & Editing, Supervision. **Yuzhou Wang:** Methodology, Investigation,
470 Writing-Original Draft. **Miaomiao Jiang:** Software, Data Curation, Investigation,
471 Writing-Original Draft, Writing-Review & Editing, Visualization. **Biaofeng Zhou:**
472 Software, Data Curation, Visualization. **Yunfan Sun:** Resources. **Kaiqian Zhou:**
473 Resources. **Jiarui Xie:** Visualization. **Yu Zhong:** Software. **Zhikun Zhao:**
474 Writing-Review & Editing. **Michael Dean:** Writing-Review & Editing. **Yong Hou:**
475 Supervision, Project administration. **Shiping Liu:** Supervision, Project
476 administration, Funding acquisition. All authors read and approved the final
477 manuscript.

478 **Competing interests**

479 No conflicts of interest are declared.

480 **Acknowledgements**

481 This work was supported by Technology and Innovation Commission of Shenzhen
482 Municipality (Grant No. GJHZ20180419190827179), and Science, Technology and
483 Innovation Commission of Shenzhen Municipality (Grant No.
484 JCYJ20170303151334808). We sincerely thank the support provided by China

485 National GeneBank. We thank Dr. Xiaoyun Huang for the helpful comments on the
486 manuscript. We are also grateful to Lei Li and Shishang Qin for assistance in data
487 analysis as well as Dandan Chen for experimental support.

488 **Authors' ORCID IDs**

489 0000-0001-6259-261X (Liang Wu), 0000-0003-0033-6383 (Yuzhou Wang),
490 0000-0002-8473-8955 (Miaomiao Jiang), 0000-0002-0261-8256 (Biaofeng Zhou),
491 0000-0001-9790-2761 (Yunfan Sun), 0000-0002-2763-5976 (Kaiqian Zhou),
492 0000-0001-9022-4881 (Jiarui Xie), 0000-0001-6902-2732 (Yu Zhong),
493 0000-0001-5161-7818 (Zhikun Zhao), 0000-0003-2234-0631(Michael Dean),
494 0000-0002-0420-0726 (Yong Hou), 0000-0003-0019-619X (Shiping Liu).

495

496 **References**

497 [1] Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N, Werb Z. Tumour
498 heterogeneity and metastasis at single-cell resolution. *Nat Cell Biol* 2018;20:1349-60.

499 [2] Macaulay IC, Voet T. Single cell genomics: advances and future perspectives.
500 *PLoS Genet* 2014;10:e1004126.

501 [3] Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies
502 will revolutionize whole-organism science. *Nat Rev Genet* 2013;14:618-30.

503 [4] Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the
504 science. *Nat Rev Genet* 2016;17:175-88.

505 [5] Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al.
506 Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
507 *Science* 2014;344:1396-401.

508 [6] Tirosh I, Izar B, Prakadan SM, Wadsworth MH, 2nd, Treacy D, Trombetta JJ, et
509 al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell
510 RNA-seq. *Science* 2016;352:189-96.

511 [7] Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, et al. An
512 immune atlas of clear cell renal cell carcinoma. *Cell* 2017;169:736-49.

513 [8] Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al.
514 Single-cell map of diverse immune phenotypes in the breast tumor microenvironment.
515 *Cell* 2018;174:1293-308.

516 [9] Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, et al. Innate
517 immune landscape in early lung adenocarcinoma by paired single-cell analyses. *Cell*
518 2017;169:750-65.

519 [10] Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al.
520 Phenotype molding of stromal cells in the lung tumor microenvironment. *Nat Med*
521 2018;24:1277-89.

522 [11] Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, et al. Global
523 characterization of T cells in non-small-cell lung cancer by single-cell sequencing.
524 Nat Med 2018;24:978-85.

525 [12] Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al.
526 Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in
527 head and neck cancer. Cell 2017;171:1611-24.

528 [13] Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi
529 ACJ, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated
530 compartment within human melanoma. Cell 2019;176:775-89.

531 [14] Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al.
532 Mutational analysis reveals the origin and therapy-driven evolution of recurrent
533 glioma. Science 2014;343:189-93.

534 [15] Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, et al. Clonal evolution
535 in breast cancer revealed by single nucleus genome sequencing. Nature
536 2014;512:155-60.

537 [16] Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour
538 evolution inferred by single-cell sequencing. Nature 2011;472:90.

539 [17] Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al. Single-cell exome
540 sequencing and monoclonal evolution of a JAK2-negative myeloproliferative
541 neoplasm. Cell 2012;148:873-85.

542 [18] Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome
543 sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell
544 2012;148:886-95.

545 [19] Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome
546 amplification from a single cell: implications for genetic analysis. P Natl Acad Sci
547 USA 1992;89:5847-51.

548 [20] Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers
549 I, et al. Whole-genome multiple displacement amplification from single cells. *Nat*
550 *Protoc* 2006;1:1965-70.

551 [21] Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of
552 single-nucleotide and copy-number variations of a single human cell. *Science*
553 2012;338:1622-6.

554 [22] Chen C, Xing D, Tan L, Li H, Zhou G, Huang L, et al. Single-cell whole-genome
555 analyses by Linear Amplification via Transposon Insertion (LIANTI). *Science*
556 2017;356:189-94.

557 [23] Zahn H, Steif A, Laks E, Eirew P, VanInsberghe M, Shah SP, et al. Scalable
558 whole-genome single-cell library preparation without preamplification. *Nat Methods*
559 2017;14:167.

560 [24] Xi L, Belyaev A, Spurgeon S, Wang X, Gong H, Aboukhalil R, et al. New
561 library construction method for single-cell genomes. *PLoS one* 2017;12:e0181163.

562 [25] Roayaie S, Obeidat K, Sposito C, Mariani L, Bhoori S, Pellegrinelli A, et al.
563 Resection of hepatocellular cancer <=2 cm: results from two Western centers.
564 *Hepatology* 2013;57:1426-35.

565 [26] Lu LC, C.-H H, Hsu C, Cheng AL. Tumor heterogeneity in hepatocellular
566 carcinoma: facing the challenges. *Liver Cancer* 2016;5:128-38.

567 [27] Friemel J, Rechsteiner M, Frick L, Bohm F, Struckmann K, Egger M, et al.
568 Intratumor heterogeneity in hepatocellular carcinoma. *Clin Cancer Res*
569 2015;21:1951-61.

570 [28] Xue R, Li R, Guo H, Guo L, Su Z, Ni X, et al. Variable intra-tumor genomic
571 heterogeneity of multiple lesions in patients with hepatocellular carcinoma.
572 *Gastroenterology* 2016;150:998-1008.

573 [29] Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics
574 sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in
575 hepatocellular carcinomas. *Cell Res* 2016;26:304-19.

576 [30] Duan M, Hao J, Cui S, Worthley DL, Zhang S, Wang Z, et al. Diverse modes of
577 clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell
578 genome sequencing. *Cell Res* 2018;28:359-73.

579 [31] Natarajan KN, Miao Z, Jiang M, Huang X, Zhou H, Xie J, et al. Comparative
580 analysis of sequencing technologies for single-cell transcriptomics. *Genome Biol*
581 2019;20:1-8.

582 [32] Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J, et al.
583 Interactive analysis and assessment of single-cell copy-number variations. *Nat
584 Methods* 2015;12:1058-60.

585 [33] Yin Y, Jiang Y, Lam KG, Berletch JB, Disteche CM, Noble WS, et al.
586 High-throughput single-cell sequencing with linear amplification. *Mol Cell*
587 2019;76:676-90.

588 [34] Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, et al. The
589 haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.
590 *Nature* 2013;500:207-11.

591 [35] Hou Y, Wu K, Shi X, Li F, Song L, Wu H, et al. Comparison of variations
592 detection between whole-genome amplification methods used in single-cell
593 resequencing. *Gigascience* 2015;4:s13742-015.

594 [36] Liu Y, Mi Y, Mueller T, Mueller, T., Kreibich, S., Williams, E. G., Van Drogen,
595 A., et al. Multi-omic measurements of heterogeneity in HeLa cells across laboratories.
596 *Nat Biotechnol* 2019;37:314-22.

597 [37] Ling S, Hu Z, Yang Z, Yang F, Li Y, Lin P, et al. Extremely high genetic
598 diversity in a single tumor points to prevalence of non-Darwinian cell evolution. *P
599 Natl Acad Sci USA* 2015;112:E6496-505.

600 [38] Chen L, Chan TH, Guan XY. Chromosome 1q21 amplification and oncogenes in
601 hepatocellular carcinoma. *Acta Pharmacol Sin* 2010;31:1165-71.

602 [39] Laks E, McPherson A, Zahn H, Lai D, Steif A, Brimhall J, et al. Clonal
603 decomposition and DNA replication states defined by scaled single-cell genome
604 sequencing. *Cell* 2019;179:1207-21.

605 [40] Qin LX, Tang ZY, Sham JS, Ma ZC, Ye SL, Zhou XD, et al. The association of
606 chromosome 8p deletion and tumor metastasis in human hepatocellular carcinoma.
607 *Cancer Res* 1999;59:5662-5.

608 [41] McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA,
609 et al. Allele-specific HLA loss and immune escape in lung cancer evolution. *Cell*
610 2017;171:1259-71.

611 [42] Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L, et
612 al. Evolution of metastases in space and time under immune selection. *Cell*
613 2018;175:751-65.

614 [43] Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, et al. SOAPnuke: a
615 MapReduce acceleration-supported software for integrated quality control and
616 preprocessing of high-throughput sequencing data. *Gigascience* 2017;7:gix120.

617 [44] Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler
618 transform. *Bioinformatics* 2009;25:1754-60.

619 [45] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
620 alignment/map format and SAMtools. *Bioinformatics* 2009;25:2078-9.

621 [46] Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, et al.
622 Genome-wide copy number analysis of single cells. *Nat Protoc* 2012;7:1024.

623 [47] Zhao Z, Goldin L, Liu S, Wu L, Zhou W, Lou H, et al. Evolution of multiple cell
624 clones over a 29-year period of a CLL patient. *Nat Commun* 2016;7:1-10.

625 [48] Gusnanto A, Taylor CC, Nafisah I, Wood HM, Rabitts P, Berri S. Estimating
626 optimal window size for analysis of low-coverage next-generation sequence data.
627 *Bioinformatics* 2014;30:1823-9.

628 [49] Shen R, Seshan VE. FACETS: allele-specific copy number and clonal
629 heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res
630 2016;44:e131.

631 [50] Xing Y, Dabney AR, Li X, Casola C. SimulateCNVs: a novel software
632 application for simulating CNVs in WES and WGS data. BioRxiv 2018; 407486.

633 [51] Wickham H. *ggplot2: elegant graphics for data analysis*. Springer, 2016.

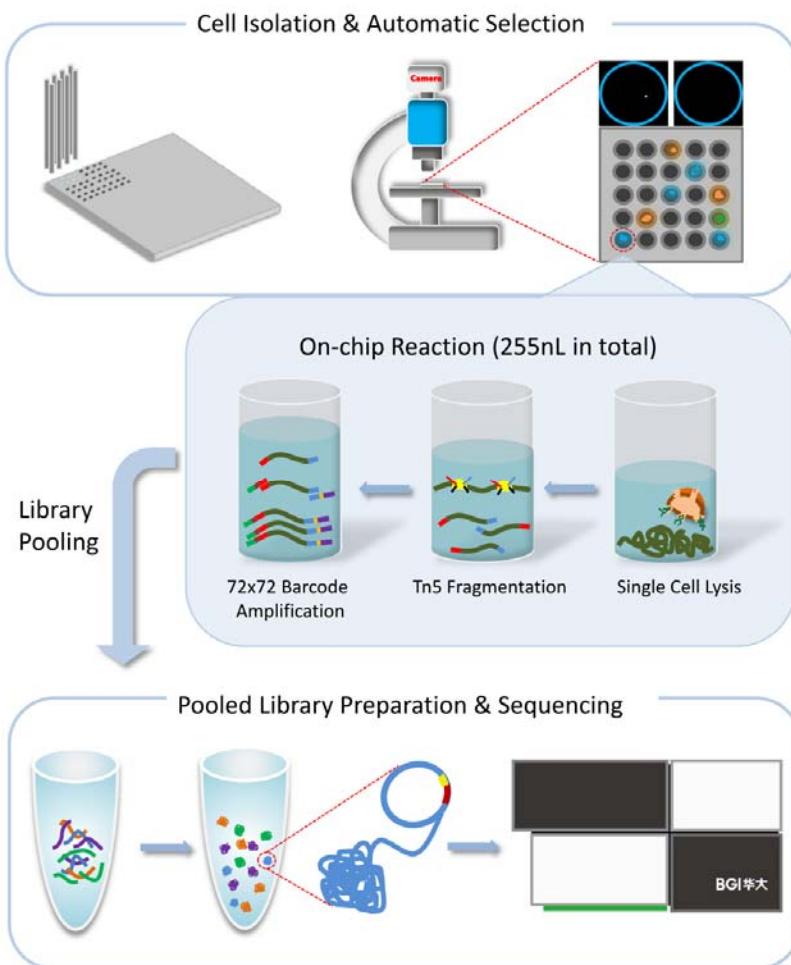
634 [52] Ning L, Li Z, Wang G, Hu W, Hou Q, Tong Y, et al. Quantitative assessment of
635 single-cell whole genome amplification methods for detecting copy number variation
636 using hippocampal neurons. *Sci Rep* 2015;5:1-3.

637 [53] Miller CA, McMichael J, Dang HX, Maher CA, Ding L, Ley TJ, et al.
638 Visualizing tumor evolution with the fishplot package for R. *BMC Genomics*
639 2016;17:880.

640

641 **Figures**

642



643

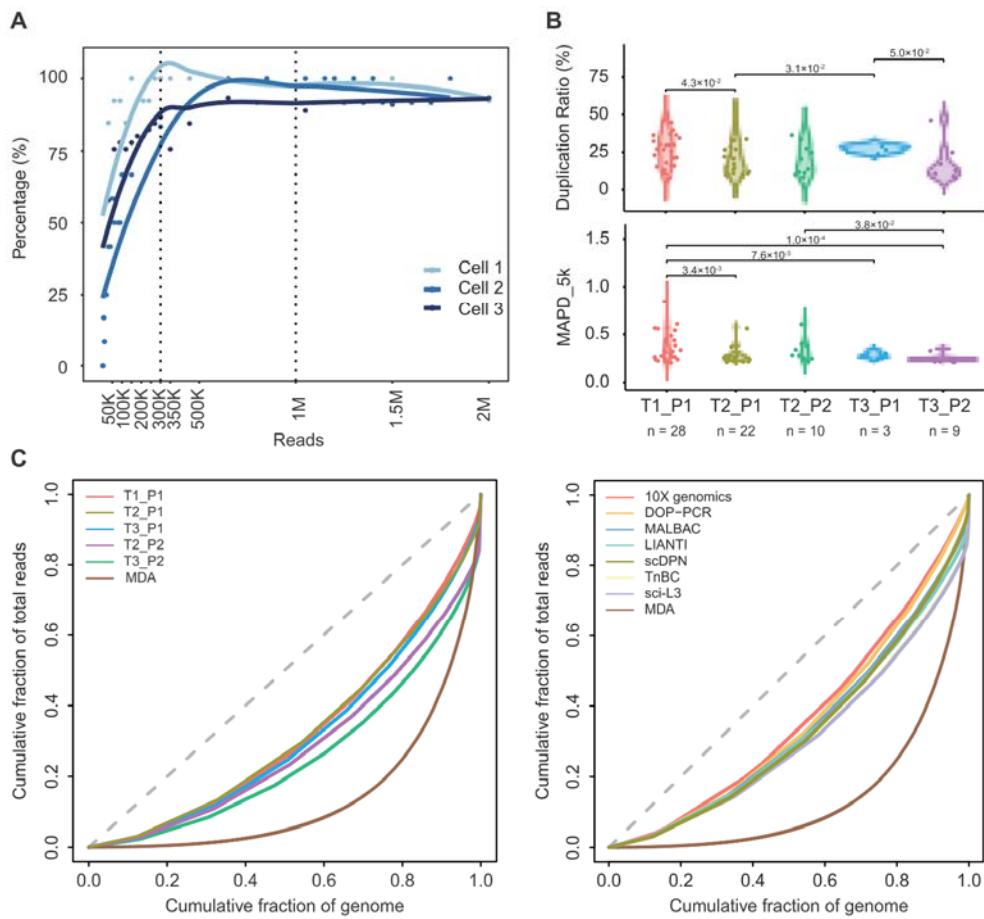
644 **Figure 1 Schematic diagram of microwell-based single-cell genomic DNA**
645 **library preparation**

646 Stained cell suspensions were automatically dispensed into 72×72 microwell chips
647 using MSND. Scanning fluorescence microscopy and cell selection software were
648 used to discriminate wells containing single cells via the fluorescence of Hoechst and
649 PI dyes. In the selected microwells, lysis buffer, Tn5 fragmentation buffer and $72 \times$
650 72 barcode primers were added step by step for single-cell DNA library amplification.
651 The chip was incubated in a thermal cycler after each step. Indexed single-cell
652 libraries were pooled by centrifugation for library purification, cyclized, and

653 sequenced on the BGISEQ500 platform. PI, propidium iodide. MSND, MultiSample

654 NanoDispenser.

655



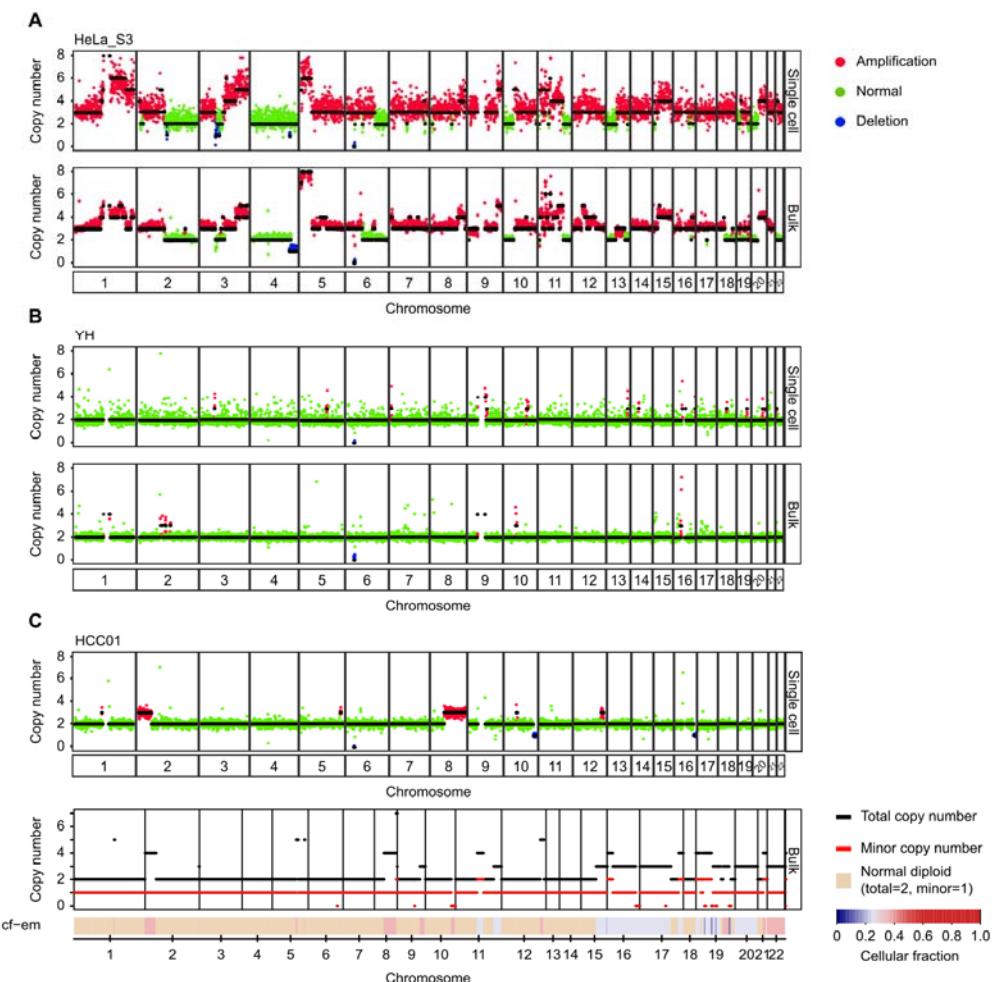
656

657 **Figure 2 Assessment of library quality under different experimental conditions**

658 A. CNV saturation curve. The detected CNVs increased with increasing numbers of
659 unique mapped reads. At 300k reads, the CNV counts reach saturation. B. Sequencing
660 data overview of 5 different single-cell lysis and transposase fragmentation conditions
661 (T1_P1, n = 28; T2_P1, n = 22; T2_P2, n = 10; T3_P1, n = 3; T3_P2, n = 9). Violin
662 charts showing the distribution of MAPD_5k and duplication ratio in different
663 conditions with 400k raw reads. The Student's T test was performed. C. Comparison
664 of different library preparation conditions and the MDA method using Lorenz curves
665 shows genome-wide coverage uniformity. The dotted straight black line indicates a

666 perfectly uniform genome. **D.** Comparison of different library preparation methods
667 (DOP-PCR, MALBAC, LIANTI, TnBC, sci-L3, and the 10x genomics) using Lorenz
668 curves shows genome-wide coverage uniformity. The dotted straight black line
669 indicates a perfectly uniform genome. CNV, copy number variation; MDA, multiple
670 displacement amplification; DOP-PCR, degenerate oligonucleotide-primed PCR;
671 MALBAC, multiple annealing, and looping-based amplification cycles; LIANTI,
672 linear amplification via transposon insertion; TnBC, transposon barcoded; sci-L3, a
673 single-cell sequencing method that combines combinatorial indexing and linear
674 amplification.

675

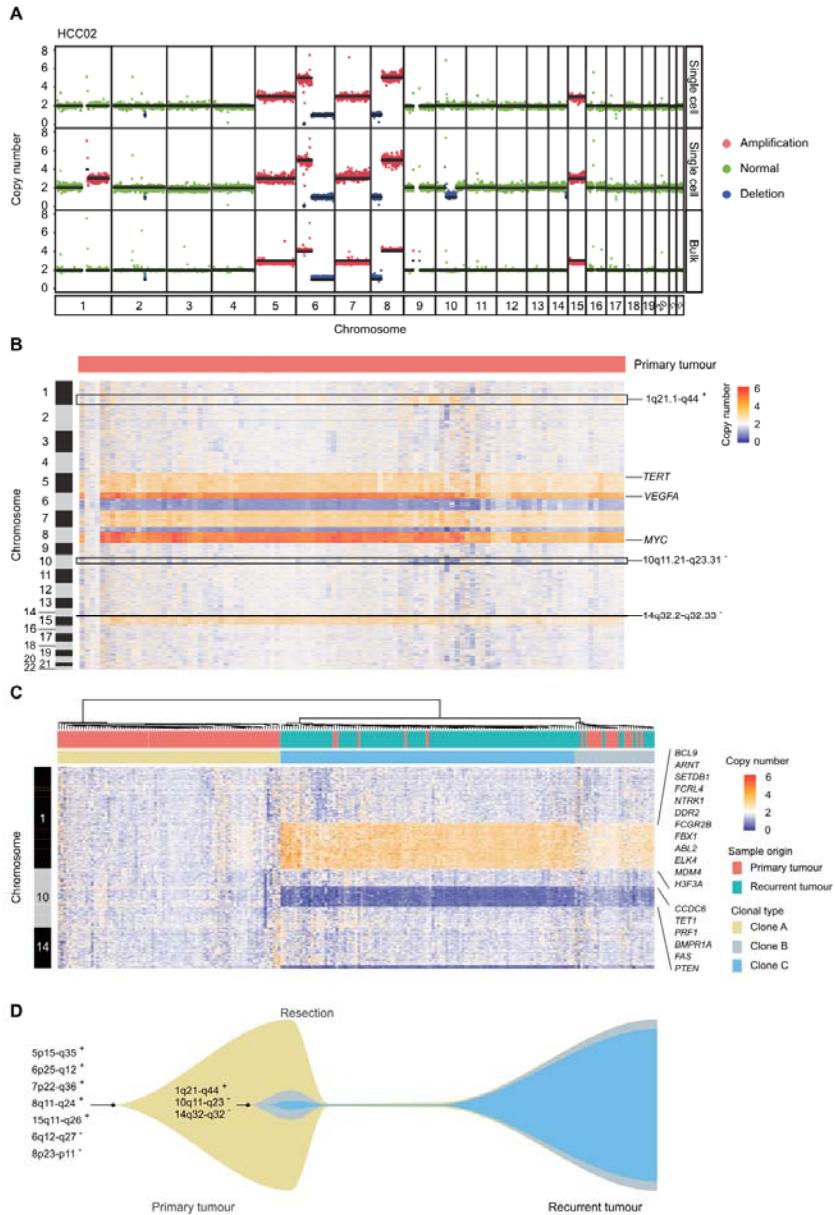


676

677 **Figure 3** scDPN provides reliable data for accurate scCNV detection

678 **A.** Single-cell CNV profiles of HeLa S3 cells obtained using the T2_P1 condition and
679 the corresponding bulk level HeLa S3 profile from published data. **B.** Single-cell
680 resolution CNV profiles of the YH cell line obtained from the T2_P1 condition and
681 the corresponding bulk level YH profile from published data. **C.** Representative single
682 tumour cell copy number profile and corresponding bulk tumour CNV profile from
683 FACETS analysis of whole-exome sequencing data in HCC01. The second panel
684 plots the corresponding integer (total, minor) copy number calls. The estimated
685 cellular fraction profile is plotted at the bottom, revealing both clonal and sub-clonal
686 copy number events. HCC, hepatocellular carcinoma.

687



688

689 **Figure 4** Single-cell CNV profiles reveal tumour clonal selection during HCC
690 recurrence

691 **A.** Two CNV patterns observed in single-cell and CNV profiles detected by bulk
692 WGS of the primary tumour in HCC02. Colours correspond to inferred copy-number
693 states; black lines indicate segment medians. **B.** Heatmap showing the copy number
694 states of all 106 cells from the primary tumour. Columns correspond to cells, and
695 rows correspond to a ~600 kb genomic bin for each chromosome. Reported
696 HCC-related genes *TERT*, *VEGFA*, and *MYC* are indicated. **C.** Heatmap showing the

697 unsupervised clustering of all tumour cells from primary (n = 103) and relapsed
698 tumours (n = 114) based on the CNVs on chr 1, 10, and 14. **D.** Schematic diagram of
699 HCC tumour clonal selection during recurrence in patient HCC02.
700

701 **Supplementary materials**

702 **Figure S1 Quality control of the library construction**

703 The length distribution of the library was determined using an Agilent 2100
704 bioanalyzer.

705 **Figure S2 Assessment for scDNP under different conditions**

706 **A.** Boxplots showing the distribution of mapped reads and genome coverage, in
707 different conditions. The Student's T test was performed. **B.** The proportions of HCC
708 cells (UMDR > 300K) sampled from the same patient with MAPD $\leq/ > 0.45$ in
709 different numbers of bins among various lysis and transposase fragmentation
710 conditions (T1_P1, n = 22; T2_P1, n = 15; T2_P2, n = 5; T3_P1, n = 2, excluded;
711 T3_P2, n = 4).

712 **Figure S3 scDPN provides reliable data for accurate scCNV detection**

713 Sensitivities (**A**) and FDRs (**B**) of the CNV detection algorithm at defined resolutions.
714 The points and error bars represent the means and standard deviations, respectively.
715 FDR, false discovery rate. **C.** Single-cell CNVs of different samples using low
716 coverage. Heatmap showing the CNV profiling of HeLa S3 cells (red), YH cells
717 (yellow), cells from adjacent liver tissue (blue), and tumour tissue (green) of HCC01.
718 Columns correspond to cells, and rows correspond to 600 kb genomic bins for each
719 chromosome. FDR, the false discovery rate.

720 **Figure S4 Tumour clonal selection during HCC recurrence**

721 **A.** Single-cell CNV profiling of HCC02 recurrent tumour samples. Heatmap showing
722 the CNV profiles of all 118 cells from relapsed tumours. Columns correspond to cells,
723 and rows correspond to 600 kb genomic bins for each chromosome. **B-C.**
724 Kaplan-Meier analysis showing the disease/progression-free survival for patients with
725 chr10q11.21-q23.31 deletion (**B**) and the three alterations (**C**) in the TCGA dataset for
726 HCC.

727 **Figure S5 Evaluation of our CNV detection method with cell nuclei**

728 The distribution of mapped reads, used reads, genome coverage, and MAPD_5k of
729 either the nucleus or cells are shown by box plots, and dots indicate individual
730 samples. The Student's T test was performed.

731 **Table S1 Statistics of cells used in the adjustment of reaction parameters**

732 **Table S2 Single-cell resource for scDPN assessment and tumour clone analyse**

733 **Table S3 Oncogenes and tumour suppressor genes with copy number
734 alterations in our study**

735