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26  Abstract

27 Single-cell genomics provides substantial resources for dissecting cellular
28  heterogeneity and cancer evolution, but classical DNA amplification-based methods
29 are low-throughput and introduce coverage bias during sample preamplification. We
30 developed a single-cell DNA library preparation method without preamplification in
31 nanolitre scale (scDPN). The method has a throughput of up to 1,800 cells per run for
32  copy number variation (CNV) detection. Also, it has a lower level of amplification
33 bias and noise than the multiple displacement amplification (MDA) method and
34  showed high sensitivity and accuracy based on evaluation in cell lines and tumour
35 tissues. We used this approach to profile the tumour clones in paired primary and
36 relapsed tumour samples of hepatocellular carcinoma (HCC). We identified 3 clonal
37 subpopulations with a multitude of aneuploid alterations across the genome.
38  Furthermore, we observed that a minor clone of the primary tumour containing
39 additional alterations in chromosomes 1q, 10q, and 14q developed into the dominant
40 clone in the recurrent tumour, indicating clonal selection during recurrence in HCC.
41  Overdl, this approach provides a comprehensive and scalable solution to understand
42  genome heterogeneity and evolution.
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47  Introduction

48 Heterogeneity is pervasive in human cancer [1] and manifests as morphologic,
49 transcriptomic, and genetic differences between cells. However, intercellular genetic
50 heterogeneity in cell populations is often obscured in genome analysis at the bulk
51 level. Single-cell technologies have advanced rapidly in the past decade and can
52  detect variants at the single-cell level [2-4]. Technologies for transcriptome analysis
53 have been used to profile intra-tumour heterogeneity or define immune infiltration in
54 various cancer types [5-13]. Although less widely utilized due to throughput and cost
55  limitations, single-cell genome sequencing is a powerful tool to track clona dynamics
56  and infer evolutionary trgjectories [14-18].

57 Most strategies for single-cell whole-genome sequencing (WGS) require
58  whole-genome amplification (WGA) before library construction, which introduces
59 bias and increases cost. The degenerate oligonucleotide-primed PCR (DOP-PCR)
60 method attempts to amplify the entire single-cell genome by random oligonucleotide
61 priming [19]. However, it preferentially amplifies regions rich in cytosine and
62 guanosine, resulting in lower genomic coverage. Multiple displacement amplification
63 (MDA) is another commonly used avenue utilizing random primers and the high
64 fidelity ¢29 polymerase. This method generates data with good genome coverage and
65 lower error rates. However, due to the polymerase's strand displacement activity [20],
66  compromised uniformity is not suitable for copy number variation (CNV) detection.
67 A hybrid method called multiple annealing and looping based amplification cycles
68 (MALBAC) amplifiesthe genome with random primers and creates looped precursors
69 to prevent continuous amplification before the PCR, achieving a better uniformity
70 [21]. The other category of single-cell genome sequencing approaches is
71  preamplification-free and transposase-based, including linear amplification via
72  transposon insertion (LIANTI) [22], direct library preparation (DLP) [23], and
73 transposon barcoded (TnBC) methods [24]. These approaches transpose single-cell

74 genomic DNA directly and add common sequences to the end of the fragments for
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75  further amplification, reducing biases compared with preamplification-based
76  techniques. These methods are based on a single tube or use complicated
77  microvalve-based microfluidic chips, limiting the throughput.
78 Hepatocellular carcinoma (HCC) is a high-grade malignancy with a high
79  recurrence rate of up to approximately 60% within 5 years [25]. As arisk factor for
80 reduced survival, early recurrence of HCC is ascribed to a residual tumour and
81 intrahepatic micrometastasis, closely related to intra-tumour heterogeneity [26].
82  Next-generation sequencing (NGS) studies based on cell population have reported a
83  high degree of intra-tumour heterogeneity in HCC [27, 28]. A single-cell triple-omics
84  approach applied to 26 tumour cells from HCC identified 2 tumour clones based on
85 their CNV profiles [29]. Also, monoclonal and polyclonal origins have been reported
86 recently based on single-cell WGS of ~ 30 cells in two individual patients [30].
87 However, alarge number of cells are required to more comprehensively understand
88  the heterogeneity in HCC, clonal expansion, and selection during HCC relapse.
89 Here, we developed an unbiased preamplification-free single-cell DNA library
90 preparation in nanolitre scale (scDPN) method using microwell chips and a 72 x 72
91 dua indexing strategy, which is capable of processing up to ~1,800 single cells in
92 pardld. This approach can obtain highly sensitive and accurate single-cell CNV
93  (scCNV) profiles based on evaluations in cell lines and tumour samples. We further
94  applied this approach to paired primary and relapsed HCC tumour samples from the
95 same patient. We identified 3 clonal subpopulations with aneuploid alterations across
96 the genome. Furthermore, we noticed that relapsed tumour cells were originated from
97  aminor subpopulation of the primary tumour, indicating clonal selection during HCC
98  recurrence.
99 Resaults

100  Microwell-based single-cell DNA library preparation wor kflow

101 To increase scCNV detection efficiency, we developed a preamplification-free and

102 unbiased single-cell DNA library preparation approach called scDPN for
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103  high-throughput scCNV detection, which provides a comprehensive, scalable solution
104  for revealing genomic heterogeneity. The workflow of scDPN includes three main
105 parts: cell isolation and single-cell identification, transposase-based (Tn5) library
106  construction, and library pooling and sequencing. The first two steps were carried out
107  in a 5,184 microwell chip (Figure 1). A cell suspension stained with Hoechst and
108  propidium iodide (PI) was dispensed into the microwell chip with a MultiSample
109 NanoDispenser (MSND). Cell suspensions with a range from 0.5 to 2.6 cells/50 nL
110  (10~52 cells/uL) were optimum to obtain more than 1,000 wells with single-cell due
111 to the cell counts per well followed a Poisson distribution. We used automated
112 imaging to identify the number of cells and their viability, using fluorescent Hoechst
113  and PI signals on a fluorescence microscope. Only microwells with single and viable
114  cell (Hoechst'Pl") were selected for cell lysis and transposase fragmentation.
115 Individual single-cell products were discriminated using 72 x 72 paired barcoded
116  primers dispensed in succession with two individual dispensing steps. After several
117  cycles of PCR, the barcodes and sequencing adaptors were added to both ends of the
118 fragmented DNA. The microwell chip was then inverted, and all the barcoded
119 libraries were collected into a pooled library. We determined the size distribution of
120 pooled single-cell libraries by Agilent 2100 analysis (Figure S1). The libraries were
121  then purified and cyclized for single-end 100 bp (SE100) sequencing on BGISEQ-500
122 [31].

123  Assessment of data quality and uniformity under different reaction conditions
124  TheHelLa S3 and YH cell lines, HCC adjacent normal liver tissue (ANT), and tumour
125  tissues were processed and sequenced at 0.02x depth (~600k reads under SE100). To
126  confirm whether our approach can generate enough data for scCNV detection, we
127  draw a CNV saturation curve using three tumour cells with deeper sequencing depths
128 up to 0.15x (Figure 2A, Materials and Methods). The number of detected CNVs
129 increased in proportion to the number of randomly extracted uniquely mapped
130 deduplicated reads (UMDR). When the amount of UMDR reached 300k, with an
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131  average segquencing depth of 0.01x, the detected CNV counts were saturated (Figure
132 2A).

133 We tested a combination of transposase (T1, T2, T3) and proteinase (P1, P2)
134  reaction conditions to optimize the protocol. Single-cell libraries with raw data above
135 30k reads (5% of average reads) were assumed to have a template-based reaction, and
136 148 cells from 5 conditions were qualified (Table S1). Afterward, we selected the
137  cells with oversaturated reads (UMDR > 300k) for further accuracy assessment. It
138 was evident that condition T2_P1 (65%) showed the highest rate of cells passing the
139 filtering criteria; conditions T1 P1, T2 P2, and T3 P2 showed a medium utilization
140 rate between 40%~50%; and T3 P1 showed the lowest utilization rate, below 30%
141  (Table S1). The qualified cells arelisted in Table S2.

142 We datistically evaluated several features of these cells in different conditions,
143  including mapped reads, coverage, duplication rates, and median absolute pairwise
144  difference (MAPD) vaues. As the amount of sequencing reads affects these values,
145 we down-sampled each single-cell library to 400k raw reads for comparison.
146  Single-cell libraries treated with condition T3 _P1 showed significantly fewer mapped
147  reads and lower coverage (Figure S2A). A low duplication ratio reflects high data
148  utilization. Conditions T2_P1, T2 P2, or T3 P2 had a mean duplication rate below
149  20%, which were lower than T1_P1 or T3_P1 (Figure 2B).

150 As a measurement of the bin-to-bin variation in read coverage, MAPD is an
151 indicator of the evenness of WGA. Conditions T2 P1, T3 P1, and T3 P2 exhibited
152  lower MAPD values (0.26 + 0.07, 0.26 £ 0.03, and 0.23 £ 0.04, respectively, under 5k
153  bins) compared with condition T1_P1 (0.37 £ 0.15 under 5k bins, P < 0.05) (Figure
154  2B). All of these conditions showed a much lower MAPD (mean MAPD < 0.4, 0.34
155 M mapping reads under a bin size of 300 kb) than that of normal cells prepared by
156 MDA (MAPD: 0.4-0.6, 1.5 M mapped reads under a bin size of 500 kb [32]). We
157  observed that CNV profiles generated from poor quality libraries had significant noise
158 and larger MAPD values, so we set MAPD < 0.45 as a cut-off for acceptable quality
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159  according to previous reports [32]. Because aberrant chromosomes influence MAPD,
160  we compared the utilization rates from the same HCC tumour tissue under different
161  conditions. The results showed that T2_P1 and T2 _P2 had higher utilization rates up
162  to 100%, by using a selection criterion of MAPD < 0.45 for bin sizes of 600 kb or 300
163 kb (Figure S2B).

164 To further evaluate this approach’s genome-wide uniformity, we drew Lorenz
165 curves for each condition and the data generated by the MDA method [24]. There
166  were no substantial differences between the five conditions, and they al showed
167  better uniformity than the MDA method (Figure 2C). Besides, the Lorenz curves
168 demonstrated that sScDPN had comparable uniformity with DOP-PCR, MALBAC,
169 LIANTI, TnBC, a single-cell sequencing method that combines combinatorial
170  indexing and linear amplification (sci-L3) [33], and the 10x genomics CNV platform
171  (Figure2D). The T2_P1 condition was chosen as optimal for further applications.

172  scDPN providesreliable data for accurate scCNV detection

173  To assess the sensitivity and accuracy of CNV calling with a depth of 300k reads, we
174  first generated analogue data of CNVs of different sizes (1~15 Mb), with 20
175 variations generated for each size (Materials and Methods). Approximately 80% of
176  CNVs above 2 Mb were detected in 5k, 10k, or 20k bins (Figure S3A). The false
177 discovery rate (FDR) was between 0.3~0.4 when detecting CNVs of 1 Mb and
178  decreased to below 0.25 when detecting CNVs> 2 Mb using 5k bins (Figure S3B).
179 To assess the approach’s reliability, we investigated the consistency of CNV
180  profiles between single-cell and bulk populations. We used normal (Y H) and tumour
181 (HelLa S3) cell lines for single-cell copy number analysis and compared the results to
182  the bulk CNVs from published HelLa S3 [34] and YH data [35]. HeLa S3 cells are
183  known to harbour germline CNV's of defined sizes. The CNV profiles of single HeLa
184  S3 cells were similar to the bulk data; however, this analysis did not detect a deletion
185 on chromosome 4 posted in bulk HeLa S3 DNA (Figure 3A and S3C). We aso

186  observed different copy number states in chromosomes 13 and 18, which agreed with
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187 Liu's discovery of substantial heterogeneity between Hela variants from other
188 laboratories [36]. The YH cells were B cells from a heathy donor, who was
189 considered without significant CNVs. As expected, the single-cell YH cell CNV
190 profile only had minor point CNV fluctuations (Figure 3B and S3C).

191 We then applied scDPN to an HCC tumour sample as well as paired ANT. The
192  bulk tumour sample and peripheral blood mononuclear cells from the same patient
193 (HCCO1) were aso subjected to whole-exome sequencing. We obtained 58 cells from
194 HCC tumour tissue and 10 cells from ANT after filtering (> 300k reads, MAPD <
195 0.45). All 10 cells from ANT had no significant CNVs, as expected. One cell in the
196  tumour did not have any CNVs and was considered normal (Figure S3C). The other
197 57 tumour cells had gain in 2p25.3-2p16.2, loss at 10q, and 56 had 8g11.23-8924.3
198 gain (Figure 3C and S3C). This result indicated that there was only one major tumour
199 clone in the HCCOL1 primary tumour. By comparing a representative copy number
200 profile of a HCC tumour cell with a bulk CNV profile inferred from whole exome
201  sequencing data (Materials and Methods), we observed concordant chromosome
202  duplications of chromosomes 2, 8, and 12 and a deletion on chromosome 10,
203  verifying the reliability of our CNV data. For example, the CNV profiles revealed
204  multiple copy dterations, including 2p25.3-2p16.2, and 8q11.23-8924.3, which are
205  aso present in the bulk DNA (Figure 3C).

206  Single-cell CNV detection reveals tumour clonal subtypesin HCC

207  Genetic heterogeneity in HCC has been described in somatic nucleotide variations
208  (SNVs) by NGS or SNP array of multiple regions from the same primary HCC bulk
209  tumour tissue [37], but there are few studies at the single-cell level. Thus, we used
210 scDPN to investigate tumour subclones in patient HCCO02. After quality control
211 (UMDR > 0.30 M, MAPD < 0.45), we obtained 106 cells from the primary tumour
212 for subsequent CNV cdling. Three cells without chromosome copy number
213  dterations were designated as normal cells. The remaining 103 cells showed two

214  distinct CNV patterns, indicating that at least two tumour clones existed in this
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215 primary tumour (Figure 4A). The major subpopulation consisted of 87 cells with
216  high-level amplifications on chromosomes 5p15.33-g35.3, 6p25.3-g12, 7p22.3-936.3,
217 80gl1.1-g24.3, and 15qg11.2-g26.3 and deletions on chromosomes 6q12-g27 and
218 8p23.3-pl1.21. Deletions of chromosomes 6 and 8p and gains in 6p and 8q are
219  known recurrent CNVs in HCC [38]. A minor subpopulation of HCC02 comprised
220  16/103 (15.5%) tumour cells and had additional alterations: chromosome 1g21.1-g44
221 gain, 10911.21-923.31 loss, and 14432.2-932.33 loss (Figure 4B). We also observed
222  common alterations in chromosomes 5, 6, 7, 8, and 15 in the same patient’s bulk
223  tumour. However, the unique aterations in chromosomes 1, 10, and 14 found in the
224  minor population of single cells were not detectable in the bulk tumour,
225  demonstrating the capability of characterizing minor clonesin single cells.

226  Clonal selection in HCC recurrence

227 A high recurrence rateis one of the risk factors contributing to the low 5-year survival
228 rate in HCC. Understanding the clonal evolution and selection that occurs during
229 relapse could aid in exploring the mechanism of recurrence. To investigate the
230 correlation between the primary and recurrent tumour, we applied scDPN to the
231  recurrent tumour from HCCO2. We obtained 118 qualified cells from the recurrent
232  tumour using the same filtering criteria. To our surprise, except for 4 normal cells
233  without significant CNV's, the remaining 114 tumour cells had unique CNV's detected
234 in the minor clone of the primary tumour, including 1921.1-g44 gain,
235 10011.21-g23.31, and 14g32.2-932.33 loss (Figure $4A). This result strongly
236  demonstrated that the minor clone in the primary tumour repopulated to be the
237  dominant clone during relapse in this patient.

238 Furthermore, a hierarchical cluster analysis was conducted on CNVs in
239 chromosomes 1, 10, and 14, reveding three subpopulations with distinct CNV
240 patterns (Figure 4C). Clone A comprised 81 primary tumour cells with no CNV's on
241  these three chromosomes and corresponded to the major clone in the primary tumour.

242  Both clones B and C showed similar CNVs in these three regions. Clone B was
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243  composed of 17 primary tumour cells and 12 recurrent tumour cells and was
244  considered to be a transitional state of clone C. Clone C consisted of 102 relapsed
245  tumour cells and 5 primary tumour cells, indicating that the minor clone in the
246  primary tumour developed into a dominant clone during HCC relapse.

247 To determine which characteristics were associated with clone C selection during
248  recurrence, we investigated the genes located in these unique CNV regions. We found
249  several oncogenes and tumour suppressor genes described in the Catalogue Of
250 Somatic Mutations In Cancer (COSMIC) database (Table S3). Several oncogenes
251 were located in the amplification regions on chromosome 1¢21.1-g44, including
252 ABL2, BCL9, DDR2, FCGR2B, ELK4, and MDM4, while several tumour suppressor
253 genes, including PTEN, FAS, and PRF1, were located in the loss region of
254  10011.21-g23.31. We further validated that patients with 10911.21-923.31 loss or al
255 the three dterations (1921.1-g44 gain, 10q11.21-g23.31, and 14g32.2-032.33 10ss)
256  showed lower disease or progression-free survival rate within two years in the TCGA
257  dataset for HCC (Figure $4B). However, we did not observe a significant difference
258  between patients with 1g21.1-g44 gain/14g32.2-932.33 loss vs. others in disease-free
259  saurvival, suggesting that the loss of 10g11.21-g23.31 may make a substantial
260  contribution to tumour clone selection during relapsein HCC.

261

262 Discussion

263 Single-cell genomic technologies have greatly aided the analysis of the evolution
264  of cancer genomes and the study of genetic heterogeneity in cancer. However, the
265 lack of high-throughput, cost-effective single-cell WGS approaches has limited their
266  application. Here, we developed a preamplification-free, microwell-based single-cell
267  DNA library preparation approach named scDPN, which can handle up to 1,800 cells
268  per run. A fluorescence and imaging system enabled us to select a single and viable
269  cell accounting for a lower doublet rate. Through a series of experiments, we

270  determined the optimum on-chip experimental conditions for high data quality. The
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271  drategy for constructing libraries of scDPN was similar to the DLP and TnBC
272  approaches. Improved version of LIANTI (sci-L3) and DLP (DLP+) [39] reported
273  recently also have increased the throughput.

274 Compared with MDA methods, our platform generated single-cell genome data
275  with better uniformity and lower noise, which decreases the required seguencing
276  depth. Low-depth single-cell genome data of the HeLa S3 and YH cell lines and
277  tumour samples generated by scDPN showed high sensitivity (only 0.02 x depth data
278 needed) and accuracy compared with bulk tumour analysis. The small reaction
279  volume substantially reduced the library construction costs to $0.5 per cell. ScCDPN
280 has the advantages of amplification uniformity, throughput, and cost over existing
281 single-cell CNV detection methods. Additionally, we evaluated the performance of
282  CNV detection in the cell nuclei from frozen tissues (Figure S5), which extends the
283  application to additional cell types, including neurons and retrospective studies using
284  frozen tissues.

285 However, scDPN is not suitable for SNV s detection due to low genome coverage.
286  According to Zahn's study, sequencing reads from all cells can be merged to produce
287 a ‘pseudo-bulk’ genome with deep coverage accountable to an inference of SNV.
288 Otherwise, a collection of high-depth ‘clonal genomes’ can be generated by
289  combining all cells within a clone [23]. Additionaly, there is alarge difference in the
290 amount of data among single-cell libraries produced from the same run due to the
291 differential reaction efficiency during library preparation. Therefore, further condition
292  optimization is essential to obtain uniform library products from an individual cell.
293 We used scDPN to identify subgroups of HCC tumour cells that were not detected
294 inthe bulk population (Figure 4A). This analysis indicates that important information
295 ismissing from bulk level-based sequencing studies. A large cohort based on sScCNV
296 in HCC may be needed to understand the genetic variance and heterogeneity more
297  comprehensively. Understanding the clonal selection mechanisms in HCC recurrence

298 could guide treatment and reduce relapse in HCC. Scaling our single-cell DNA
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299  preparation approach with paired primary and relapsed tumour samples could address
300 essentia questions concerning subclonal dynamics, such as how specific subclones
301 evolve, evade immune surveillance, and metastasize.

302 In the profiling of CNVs in paired primary tumour cells (n = 103) and relapsed
303 HCC tumour cells (n = 114), we observed a subpopulation (clone C) as the minor
304 clone (5/103, 4.8%) in the primary tumour. This minor clone had additional CNV's of
305 1g21.1-g44 gain, 10911.21-923.31 loss, and 14g32.2-932.33 loss, which developed
306 into the dominant clone (102/114, 90%) in the recurrent tumour (Figure 4C). This a
307 solid evidence to support the tumour clona selection during HCC relapse (Figure
308 4D). We vadlidated in TCGA data that the loss of 10g11.21-g23.31, a region
309 containing several tumour suppressor genes, is frequent in HCC and may play a
310 crucid role in tumour clone selection during relapse. A chromosome 8p deletion has
311  been correlated with HCC metastasis [40] and exists 3 clones in this tumour. The loss
312  of 6p25.3-q12 presented in all clones would result in loss of heterozygosity (LOH)
313  across the major histocompatibility complex (MHC), which is also reported to be
314  associated with cancer metastasis [41]. Immune pressure has been proposed to shape
315 the clonal evolution of metastasis [42]. However, the drivers or critical factors
316  contributing to clonal selection during recurrence or metastasis in HCC and other
317 cancers remain unclear. High-throughput single-cell omics from a large set of cancer
318 patients, may potentially address these questions and simultaneously dissect the
319 tumour environment, as well as the genetic and transcriptome characteristics of
320  tumour cells.

321

322 Materialsand methods

323 Cell lineand patient tissue samples

324  The lymphoblastic cell line (YH cell line) was established from an Asian genome
325 donor [35]. We purchased the HeLa S3 cell line from the American Type Culture
326 Callection (CCL-2.2, ATCC, Manassas, VA, USA). The tumour sample used for
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327  on-chip reaction determination was a resected sample of a 45-year-old male patient
328 (HCCO01) with a primary HCC tumour. Paired primary and relapsed HCC tumour
329 samples were obtained from a 63-year-old male patient (HCCO02). Periphera white
330 blood cells and paired tumour sample and adjacent normal liver tissue were aso
331 obtained for bulk whole-exome sequencing or whole-genome sequencing.

332 Preparation of the single-cell suspension

333  Cell suspension of cell lines were harvested and centrifuged at 500 g for 5 min,
334  washed by phosphate buffer solution (PBS) buffer twice, and resuspended in PBS.
335 The resected tumour samples were processed to a single-cell suspension using the
336 commercial Tumour Dissociation Kit (30095929, Miltenyi Biotec, Bergisch
337  Gladbach, Germany). Briefly, fresh tumour and adjacent normal liver tissues were cut
338 into approximately 2-4 mm pieces and transferred into the gentleMACS C Tube
339 containing the enzyme mix. Subsequently, the suspended cells were centrifuged at
340 300 g for 7 min after passing through cell strainers. The suspended cells were passed
341 through cell strainers and centrifuged at 300 g for 7 min. The cell pellets were
342  resuspended in 90% fetal bovine serum (FBS; 10270106, ThermoFisher Scientific,
343 Wadtham, MA, USA) with 10% dimethyl sulfoxide (DMSO; D8418-50ML,
344  Sigma-Aldrich, St. Louis, MO, USA) and collected in a freezing container for -80 °C
345  storage.

346  Single-cell DNA library preparation and sequencing

347 We used the ReadyProbes Cell Viability Imaging Kit (R37609, ThermoFisher
348  Scientific, Waltham, MA, USA) that contained Hoechst and Pl to identify living cells.
349 This staining process was at 37 °C for 20 min, then washed in cold 0.5x PBS twice.
350 For cells from tumour tissue, we added fluorescent antibody CD45 (55548, BD
351 Pharmingen™, San Jose, CA, USA) in the staining step. Based on FACS, CD45
352 Hoechst™ PI" cells from the single-cell suspension were sorted into single tubes for
353  tumour cell enrichment. Counted cells were dispensed into microwells using the

354 ICELL8 MSND (640000, Takara Bio USA, Mountain View, CA, USA) at the
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355  concentration of 25 cells/ul in 0.5x PBS and 1x Second Diluent (640202, Takara Bio
356 USA, Mountain View, CA, USA) into the ICELL8® 350v Chip (640019, Takara Bio
357 USA, Mountain View, CA, USA). We used the mixed buffer of PBS and fiducial mix
358 (640202, Takara Bio USA, Mountain View, CA, USA) as the negative control wells.
359 The MSND precisely dispensed 50 nL volumes into the microwells. Following cell
360 dispensing, the chip was sealed with imaging film and centrifuged for 5 min at 500 g
361 at 4 °C, and imaged with a 4x objective using Hoechst and PI. Following imaging, 35
362 nL cell lysis buffer was added to each microwell (P1: 2.89 AU/L Protease K (19155,
363 Qiagen, Germany) and 728 mM pH 7.5 TrisHCl (15567027, ThermoFisher
364  Scientific, Waltham, MA USA ); P2: 8.67 AU/L Protease K and 72.8 mM pH 7.5
365 Tris:-HCI). The sealed chip was centrifuged for 3 min at 3,000 g and room temperature,
366 thenincubated at 50 °C for 1 h, followed by 75 °C for 20 min and finally 80 °C for 5
367 min to inactivate the protease. The chip was centrifuged for 3 min at 3,000 g again
368 before 50 nL Tn5 transposition mix (T1: 0.06 U/uL Tn5 transposase (1000007867,
369 MGI, China) and 2.4x TAG buffer (1000013442, MGI, China); T2: 2.4x TAG buffer,
370 0.14 U/uL Tn5 transposase; T3: 2.4x TAG buffer and 0.22 U/uL Tn5 transposase)
371  were dispensed. After sealed, the chip was centrifuged at the same condition with the
372  last step and incubated at 55 °C for 30 min. To stop transposase activity, 31 nL 5x NT
373  buffer (0.25% SDS solution), 1.45 nL ddH.O, and 2.55 nL of Ad153-forward-tag
374  (1~72) primer [1 uM] were dispensed, centrifuged and incubated for 5 min at room
375 temperature. Another barcode primer was added to 50 nL PCR mix1 (29.6 nL 5x
376  KAPA Fidelity Buffer, 7.69 nL 10 mM each dNTP, 5.1 nL PhoAd153 forward primer
377 [10 uM], 5.1 nL Ad153 reverse primer [10 uM], and 2.55 nL of 72 Ad153-reverse-tag
378  (1~72) primer [1 pM] made by KAPA HiFi HotStart PCR Kit (KK2500, Kapa
379  Biosystems, Cape Town, South Africa). Finally, 50 nL PCR mix2 containing 21.4 nL
380 5x KAPA Fidelity Buffer, 5.1 nL 1 U/uL KAPA HiFi DNA polymerase, and 23.5 nL
381  ddH-0O was dispensed. We used the following conditions to perform PCR: 72 °C for 5
382  min; 95 °C for 3 min; 25 cycles of 98 °C for 3 min for 20 sec, 60 °C for 15 sec, and
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383 72 °C for 25 sec; 72 °C for 5 min; and finally 4 °C. The final extraction of PCR
384  products was carried out by centrifuging at 3,000 g for 3 min with an extraction kit.
385 Product purification was performed using a 1.0x Agencourt Ampure XP bead
386 (A63881, Beckman Coulter, Indianapolis, IN, USA) to sample ratio. Following
387 ssDNA cyclization, digestion, and PEG32 bead purification (1000005259, MG,
388  China), the libraries were sequenced in SE100 on the BGISEQ-500 sequencer.

389 Preprocessing of sequencing data

390 The raw reads derived from BGISEQ-500 were assessed by SOAPnuke (v1.5.6) [43]
391 using the parameters “-Q 2 -G”. Afterward, we mapped the qualified reads to the
392  human reference genome (hgl9) by Burrows-Wheeler Aligner (BWA, v0.7.16a) [44]
393 with BWA-MEM agorithms using arguments “-t 2 -k 32 -M /path/to/ref.fa’. The
394  output SAM files were compressed and sorted by reference coordinates and then
395 indexed with SAMtools (v1.1.19) [45]. Subsequently, uniquely mapped reads were
396 extracted. Reads considered “PCR duplications” were removed by “samtools rmdup”
397  from the downstream analysis.

398 Detection of copy number variations

399 We calculated the copy number of each cell with an optimized method developed by
400 the Baslan et.al. [35, 46, 47]. Based on the coverage suggestion of 30-180 reads per
401 window for CNV calling from Gusnanto et al., we estimated the number of bins
402  according to the average sequencing depth ( < 1 Mbp) by the R package NGSoptwin
403  [48]. The “bin boundaries” files for 5,000 bins in hgl9 that suited the read length of
404 100 bp were generated. After GC content normalization, DNAcopy was employed for
405  segmentation and copy number calculation, which points to gains and losses in
406  chromosomes.

407 The FASTQ files of bulk HeLa S3 were downloaded from the NCBI Sequence
408 Read Archive repository (SRP028541). The YH dataset was available in the
409  GigaScience repository, GigaDB (http://gigadb.org/dataset/100115) [35].
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410 For the matched bulk WES dataset, snp-pileup from htstools was first employed
411  for processing BAM files using parameters “/path/to/dbsnp_150.common.hg38.vcf.gz
412  -g -g15 -Q20 -P100 -r25,0". We then used facets [49] for copy number estimation
413  from the paired (normal/tumour) samples.

414  Accuracy of CNV detection from the low coverage single-cell WGS data

415 The accuracies of CNV calling in the paper were assessed by sensitivity and FDR
416 gainfrom the simulated dataset. A series of rearranged genomes with a defined size of
417 CNVswas randomly generated by SimulateCNV's [50]. In each of the 10 outputs, 0.1
418 x WGS datasets with 20 CNVs of a specific size (1, 2, 3, 5, 10, 15 Mbp) were used to
419 randomly extract 3 x 10° uniquely mapped reads after duplicate remova with 5
420 replicates. A detected CNV was assumed to be true when it overlapped with at least
421  50% of the simulated CNV's. The sensitivity was defined as TP/(TP + FN), where the
422  numerator was the true positive CNV mentioned above, while the total number of
423  CNVssimulated served as the denominator. FDR was defined as FP/(FP+TP), where
424 the numerator was the false positive CNV, and the denominator was the total number
425  of CNVs detected by the algorithm.

426  Estimation of sequencing saturations

427  The uniquely mapped reads after duplicate removal were randomly down-sampled to
428 3 x10% 6x10% 9x10% 1.2 x 10°, 1.5 x 10°, 1.8 x 10° 2.1 x 10°, 2.4 x 10°, 2.7 x
429 10° 3 x 10° 4.5 x 10°, 6.5 x 10°, 1.05 x 10°% 1.5 x 10°% and 2 x 10° reads. We used
430 the down-sampled reads to estimate the sequencing saturation for our low-coverage
431 WGS method. After calculating the copy number of each bin in the down-sampled
432  datasets, the boundaries of the bins with copy number unequal to 2 were compared to
433 that of samples with the highest read depth. The percentages of bins with abnormal
434  copy number in samples with the highest coverage found in the down-sampled
435 datasets were recorded. The saturation curves were fitted with locally weighted
436  (LOESS) regression in geom_smooth function in the R package ggplot2 [51]. The

437  inflection point of the curves was considered as the saturation point.
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438 Evaluation of the uniformity

439 The FASTQ files of MDA, DOP-PCR, MALBAC, LIANTI, TnBC, and sci-L3
440 datasets were downloaded from the NCBI Segquence Read Archive repository
441  (SRR504711 for single-cell MDA, SRR1006146 for DOP-PCR, SRR975229 for
442 MALBAC, SRX2660685 for LIANTI, SRX2847396 for TnBC, SRX5179905 for
443  sci-L3) respectively. The sequence generated by 10x genomics platform was derived

444  from https://support.10xgenomics.com/single-cell-dna/datasets/1.1.0/bj cells 1k.

445 The uniquely mapped reads after duplicate removal from all samples were
446  randomly down-sampled to 10° reads for uniformity evaluation. To better indicate the
447  bias of amplification methods, we binned reads into 60kb intervals across the genome
448  with an average of 20 reads per bin according to the results from Xi et al. [24]. Reads
449  in each bin were counted by bedtools2 (v2.20.1) and then applied for Lorenz model
450  estimation.

451  CNV profiling and tumor evolution visualization

452  MAPD is used for noise assessment in CNV calling [47, 52]. Since higher MAPD
453  values reflect the poorer quality of a cell, we excluded single-cell samples with
454 MAPD > 0.45. Segment ratios of samples were presented and clustered by hclust
455  using ‘ward.D2'. Fishplot [53] was employed for fishplot construction.

456
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643
644 Figure 1 Schematic diagram of microwel-based single-cell genomic DNA

645 library preparation

646  Stained cell suspensions were automatically dispensed into 72 x 72 microwell chips
647 using MSND. Scanning fluorescence microscopy and cell selection software were
648  used to discriminate wells containing single cells via the fluorescence of Hoechst and
649 Pl dyes. In the selected microwells, lysis buffer, Tn5 fragmentation buffer and 72 x
650 72 barcode primers were added step by step for single-cell DNA library amplification.
651 The chip was incubated in a thermal cycler after each step. Indexed single-cell

652 libraries were pooled by centrifugation for library purification, cyclized, and
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653  sequenced on the BGISEQ500 platform. PI, propidium iodide. MSND, MultiSample
654  NanoDispenser.
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657 Figure2 Assessment of library quality under different experimental conditions
658 A. CNV saturation curve. The detected CNV's increased with increasing numbers of
659  unique mapped reads. At 300k reads, the CNV counts reach saturation. B. Sequencing
660 dataoverview of 5 different single-cell lysis and transposase fragmentation conditions
661 (T1 Pl,n=28 T2 P1,n=22T2 P2, n=10; T3 P1,n=3; T3 P2, n=9). Vidlin
662 charts showing the distribution of MAPD_5k and duplication ratio in different
663  conditions with 400k raw reads. The Student’s T test was performed. C. Comparison
664  of different library preparation conditions and the MDA method using Lorenz curves

665 shows genome-wide coverage uniformity. The dotted straight black line indicates a
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666 perfectly uniform genome. D. Comparison of different library preparation methods
667 (DOP-PCR, MALBAC, LIANTI, TnBC, sci-L3, and the 10x genomics) using Lorenz
668 curves shows genome-wide coverage uniformity. The dotted straight black line
669 indicates a perfectly uniform genome. CNV, copy number variation; MDA, multiple
670 displacement amplification; DOP-PCR, degenerate oligonucleotide-primed PCR,;
671 MALBAC, multiple annealing, and looping-based amplification cycles;, LIANTI,
672 linear amplification via transposon insertion; TnBC, transposon barcoded; sci-L3, a
673 single-cell sequencing method that combines combinatorial indexing and linear

674  amplification.
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677 Figure3 scDPN providesreliable datafor accurate scCNV detection
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678 A. Single-cell CNV profiles of HeLa S3 cells obtained using the T2_P1 condition and
679 the corresponding bulk level HeLa S3 profile from published data. B. Single-cell
680 resolution CNV profiles of the YH cell line obtained from the T2_P1 condition and
681 the corresponding bulk level YH profile from published data. C. Representative single
682  tumour cell copy number profile and corresponding bulk tumour CNV profile from
683 FACETS anaysis of whole-exome sequencing data in HCCO1. The second panel
684 plots the corresponding integer (total, minor) copy number calls. The estimated
685 cellular fraction profile is plotted at the bottom, revealing both clonal and sub-clonal
686  copy number events. HCC, hepatocellular carcinoma.

687
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689 Figure4 Single-cel CNV profiles reveal tumour clonal selection during HCC
690 recurrence

691 A. Two CNV patterns observed in single-cell and CNV profiles detected by bulk
692 WGS of the primary tumour in HCCO02. Colours correspond to inferred copy-number
693  dtates; black lines indicate segment medians. B. Heatmap showing the copy number
694  ates of all 106 cells from the primary tumour. Columns correspond to cells, and
695 rows correspond to a ~600 kb genomic bin for each chromosome. Reported

696 HCC-related genes TERT, VEGFA, and MYC are indicated. C. Heatmap showing the
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697  unsupervised clustering of al tumour cells from primary (n = 103) and relapsed
698  tumours (n = 114) based on the CNVs on chr 1, 10, and 14. D. Schematic diagram of
699 HCC tumour clonal selection during recurrencein patient HCCO2.

700
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701  Supplementary materials

702  FigureS1 Quality control of the library construction

703 The length distribution of the library was determined using an Agilent 2100
704 bioanalyzer.

705 FigureS2 Assessment for sScDNP under different conditions

706 A. Boxplots showing the distribution of mapped reads and genome coverage, in
707  different conditions. The Student’s T test was performed. B. The proportions of HCC
708 cells (UMDR > 300K) sampled from the same patient with MAPD </> 0.45 in
709 different numbers of bins among various lysis and transposase fragmentation
710  conditions (T1_P1, n =22; T2 P1, n=15; T2 P2, n=5; T3 P1, n = 2, excluded;
711 T3 P2,n=4).

712 FigureS3 scDPN providesreliable data for accurate sScCNV detection

713  Sendtivities (A) and FDRs (B) of the CNV detection algorithm at defined resolutions.
714  The points and error bars represent the means and standard deviations, respectively.
715 FDR, fase discovery rate. C. Single-cell CNVs of different samples using low
716  coverage. Heatmap showing the CNV profiling of HeLa S3 cells (red), YH cells
717  (yellow), cells from adjacent liver tissue (blue), and tumour tissue (green) of HCCOL.
718  Columns correspond to cells, and rows correspond to 600 kb genomic bins for each
719 chromosome. FDR, the false discovery rate.

720 FigureA Tumour clonal selection during HCC recurrence

721  A. Single-cell CNV profiling of HCCO2 recurrent tumour samples. Heatmap showing
722  the CNV profiles of al 118 cells from relapsed tumours. Columns correspond to cells,
723 and rows correspond to 600 kb genomic bins for each chromosome. B-C.
724  Kaplan-Meier analysis showing the disease/progression-free survival for patients with
725  chr10g11.21-g23.31 deletion (B) and the three alterations (C) in the TCGA dataset for
726  HCC.

727 FigureS5 Evaluation of our CNV detection method with cell nuclei
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728  Thedistribution of mapped reads, used reads, genome coverage, and MAPD_5k of
729  either the nucleus or cells are shown by box plots, and dots indicate individual

730 samples. The Student’s T test was performed.

731 TableSl Statisticsof cellsused inthe adjustment of reaction parameters

732 TableS2 Single-cell resourcefor scDPN assessment and tumour clone analyse
733 Table S3 Oncogenes and tumour suppressor genes with copy number

734  alterationsin our study
735
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