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Abstract 26 

Single-cell genomics provides substantial resources for dissecting cellular 27 

heterogeneity and cancer evolution, but classical DNA amplification-based methods 28 

are low-throughput and introduce coverage bias during sample preamplification. We 29 

developed a single-cell DNA library preparation method without preamplification in 30 

nanolitre scale (scDPN). The method has a throughput of up to 1,800 cells per run for 31 

copy number variation (CNV) detection. Also, it has a lower level of amplification 32 

bias and noise than the multiple displacement amplification (MDA) method and 33 

showed high sensitivity and accuracy based on evaluation in cell lines and tumour 34 

tissues. We used this approach to profile the tumour clones in paired primary and 35 

relapsed tumour samples of hepatocellular carcinoma (HCC). We identified 3 clonal 36 

subpopulations with a multitude of aneuploid alterations across the genome. 37 

Furthermore, we observed that a minor clone of the primary tumour containing 38 

additional alterations in chromosomes 1q, 10q, and 14q developed into the dominant 39 

clone in the recurrent tumour, indicating clonal selection during recurrence in HCC. 40 

Overall, this approach provides a comprehensive and scalable solution to understand 41 

genome heterogeneity and evolution. 42 

 43 
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Introduction 47 

Heterogeneity is pervasive in human cancer [1] and manifests as morphologic, 48 

transcriptomic, and genetic differences between cells. However, intercellular genetic 49 

heterogeneity in cell populations is often obscured in genome analysis at the bulk 50 

level. Single-cell technologies have advanced rapidly in the past decade and can 51 

detect variants at the single-cell level [2-4]. Technologies for transcriptome analysis 52 

have been used to profile intra-tumour heterogeneity or define immune infiltration in 53 

various cancer types [5-13]. Although less widely utilized due to throughput and cost 54 

limitations, single-cell genome sequencing is a powerful tool to track clonal dynamics 55 

and infer evolutionary trajectories [14-18]. 56 

Most strategies for single-cell whole-genome sequencing (WGS) require 57 

whole-genome amplification (WGA) before library construction, which introduces 58 

bias and increases cost. The degenerate oligonucleotide-primed PCR (DOP-PCR) 59 

method attempts to amplify the entire single-cell genome by random oligonucleotide 60 

priming [19]. However, it preferentially amplifies regions rich in cytosine and 61 

guanosine, resulting in lower genomic coverage. Multiple displacement amplification 62 

(MDA) is another commonly used avenue utilizing random primers and the high 63 

fidelity φ29 polymerase. This method generates data with good genome coverage and 64 

lower error rates. However, due to the polymerase’s strand displacement activity [20], 65 

compromised uniformity is not suitable for copy number variation (CNV) detection. 66 

A hybrid method called multiple annealing and looping based amplification cycles 67 

(MALBAC) amplifies the genome with random primers and creates looped precursors 68 

to prevent continuous amplification before the PCR, achieving a better uniformity 69 

[21]. The other category of single-cell genome sequencing approaches is 70 

preamplification-free and transposase-based, including linear amplification via 71 

transposon insertion (LIANTI) [22], direct library preparation (DLP) [23], and 72 

transposon barcoded (TnBC) methods [24]. These approaches transpose single-cell 73 

genomic DNA directly and add common sequences to the end of the fragments for 74 
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further amplification, reducing biases compared with preamplification-based 75 

techniques. These methods are based on a single tube or use complicated 76 

microvalve-based microfluidic chips, limiting the throughput. 77 

Hepatocellular carcinoma (HCC) is a high-grade malignancy with a high 78 

recurrence rate of up to approximately 60% within 5 years [25]. As a risk factor for 79 

reduced survival, early recurrence of HCC is ascribed to a residual tumour and 80 

intrahepatic micrometastasis, closely related to intra-tumour heterogeneity [26]. 81 

Next-generation sequencing (NGS) studies based on cell population have reported a 82 

high degree of intra-tumour heterogeneity in HCC [27, 28]. A single-cell triple-omics 83 

approach applied to 26 tumour cells from HCC identified 2 tumour clones based on 84 

their CNV profiles [29]. Also, monoclonal and polyclonal origins have been reported 85 

recently based on single-cell WGS of ~ 30 cells in two individual patients [30]. 86 

However, a large number of cells are required to more comprehensively understand 87 

the heterogeneity in HCC, clonal expansion, and selection during HCC relapse. 88 

Here, we developed an unbiased preamplification-free single-cell DNA library 89 

preparation in nanolitre scale (scDPN) method using microwell chips and a 72 × 72 90 

dual indexing strategy, which is capable of processing up to ~1,800 single cells in 91 

parallel. This approach can obtain highly sensitive and accurate single-cell CNV 92 

(scCNV) profiles based on evaluations in cell lines and tumour samples. We further 93 

applied this approach to paired primary and relapsed HCC tumour samples from the 94 

same patient. We identified 3 clonal subpopulations with aneuploid alterations across 95 

the genome. Furthermore, we noticed that relapsed tumour cells were originated from 96 

a minor subpopulation of the primary tumour, indicating clonal selection during HCC 97 

recurrence. 98 

Results 99 

Microwell-based single-cell DNA library preparation workflow 100 

To increase scCNV detection efficiency, we developed a preamplification-free and 101 

unbiased single-cell DNA library preparation approach called scDPN for 102 
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high-throughput scCNV detection, which provides a comprehensive, scalable solution 103 

for revealing genomic heterogeneity. The workflow of scDPN includes three main 104 

parts: cell isolation and single-cell identification, transposase-based (Tn5) library 105 

construction, and library pooling and sequencing. The first two steps were carried out 106 

in a 5,184 microwell chip (Figure 1). A cell suspension stained with Hoechst and 107 

propidium iodide (PI) was dispensed into the microwell chip with a MultiSample 108 

NanoDispenser (MSND). Cell suspensions with a range from 0.5 to 2.6 cells/50 nL 109 

(10~52 cells/μL) were optimum to obtain more than 1,000 wells with single-cell due 110 

to the cell counts per well followed a Poisson distribution. We used automated 111 

imaging to identify the number of cells and their viability, using fluorescent Hoechst 112 

and PI signals on a fluorescence microscope. Only microwells with single and viable 113 

cell (Hoechst+PI-) were selected for cell lysis and transposase fragmentation. 114 

Individual single-cell products were discriminated using 72 × 72 paired barcoded 115 

primers dispensed in succession with two individual dispensing steps. After several 116 

cycles of PCR, the barcodes and sequencing adaptors were added to both ends of the 117 

fragmented DNA. The microwell chip was then inverted, and all the barcoded 118 

libraries were collected into a pooled library. We determined the size distribution of 119 

pooled single-cell libraries by Agilent 2100 analysis (Figure S1). The libraries were 120 

then purified and cyclized for single-end 100 bp (SE100) sequencing on BGISEQ-500 121 

[31]. 122 

Assessment of data quality and uniformity under different reaction conditions 123 

The HeLa S3 and YH cell lines, HCC adjacent normal liver tissue (ANT), and tumour 124 

tissues were processed and sequenced at 0.02× depth (~600k reads under SE100). To 125 

confirm whether our approach can generate enough data for scCNV detection, we 126 

draw a CNV saturation curve using three tumour cells with deeper sequencing depths 127 

up to 0.15× (Figure 2A, Materials and Methods). The number of detected CNVs 128 

increased in proportion to the number of randomly extracted uniquely mapped 129 

deduplicated reads (UMDR). When the amount of UMDR reached 300k, with an 130 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.09.417626doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.417626
http://creativecommons.org/licenses/by-nc-nd/4.0/


average sequencing depth of 0.01×, the detected CNV counts were saturated (Figure 131 

2A). 132 

We tested a combination of transposase (T1, T2, T3) and proteinase (P1, P2) 133 

reaction conditions to optimize the protocol. Single-cell libraries with raw data above 134 

30k reads (5% of average reads) were assumed to have a template-based reaction, and 135 

148 cells from 5 conditions were qualified (Table S1). Afterward, we selected the 136 

cells with oversaturated reads (UMDR > 300k) for further accuracy assessment. It 137 

was evident that condition T2_P1 (65%) showed the highest rate of cells passing the 138 

filtering criteria; conditions T1_P1, T2_P2, and T3_P2 showed a medium utilization 139 

rate between 40%~50%; and T3_P1 showed the lowest utilization rate, below 30% 140 

(Table S1). The qualified cells are listed in Table S2. 141 

We statistically evaluated several features of these cells in different conditions, 142 

including mapped reads, coverage, duplication rates, and median absolute pairwise 143 

difference (MAPD) values. As the amount of sequencing reads affects these values, 144 

we down-sampled each single-cell library to 400k raw reads for comparison. 145 

Single-cell libraries treated with condition T3_P1 showed significantly fewer mapped 146 

reads and lower coverage (Figure S2A). A low duplication ratio reflects high data 147 

utilization. Conditions T2_P1, T2_P2, or T3_P2 had a mean duplication rate below 148 

20%, which were lower than T1_P1 or T3_P1 (Figure 2B). 149 

As a measurement of the bin-to-bin variation in read coverage, MAPD is an 150 

indicator of the evenness of WGA. Conditions T2_P1, T3_P1, and T3_P2 exhibited 151 

lower MAPD values (0.26 ± 0.07, 0.26 ± 0.03, and 0.23 ± 0.04, respectively, under 5k 152 

bins) compared with condition T1_P1 (0.37 ± 0.15 under 5k bins, P < 0.05) (Figure 153 

2B). All of these conditions showed a much lower MAPD (mean MAPD < 0.4, 0.34 154 

M mapping reads under a bin size of 300 kb) than that of normal cells prepared by 155 

MDA (MAPD: 0.4-0.6, 1.5 M mapped reads under a bin size of 500 kb [32]). We 156 

observed that CNV profiles generated from poor quality libraries had significant noise 157 

and larger MAPD values, so we set MAPD ≤ 0.45 as a cut-off for acceptable quality 158 
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according to previous reports [32]. Because aberrant chromosomes influence MAPD, 159 

we compared the utilization rates from the same HCC tumour tissue under different 160 

conditions. The results showed that T2_P1 and T2_P2 had higher utilization rates up 161 

to 100%, by using a selection criterion of MAPD ≤ 0.45 for bin sizes of 600 kb or 300 162 

kb (Figure S2B). 163 

To further evaluate this approach’s genome-wide uniformity, we drew Lorenz 164 

curves for each condition and the data generated by the MDA method [24]. There 165 

were no substantial differences between the five conditions, and they all showed 166 

better uniformity than the MDA method (Figure 2C). Besides, the Lorenz curves 167 

demonstrated that scDPN had comparable uniformity with DOP-PCR, MALBAC, 168 

LIANTI, TnBC, a single-cell sequencing method that combines combinatorial 169 

indexing and linear amplification (sci-L3) [33], and the 10x genomics CNV platform 170 

(Figure 2D). The T2_P1 condition was chosen as optimal for further applications. 171 

scDPN provides reliable data for accurate scCNV detection 172 

To assess the sensitivity and accuracy of CNV calling with a depth of 300k reads, we 173 

first generated analogue data of CNVs of different sizes (1~15 Mb), with 20 174 

variations generated for each size (Materials and Methods). Approximately 80% of 175 

CNVs above 2 Mb were detected in 5k, 10k, or 20k bins (Figure S3A). The false 176 

discovery rate (FDR) was between 0.3~0.4 when detecting CNVs of 1 Mb and 177 

decreased to below 0.25 when detecting CNVs ≥ 2 Mb using 5k bins (Figure S3B). 178 

To assess the approach’s reliability, we investigated the consistency of CNV 179 

profiles between single-cell and bulk populations. We used normal (YH) and tumour 180 

(HeLa S3) cell lines for single-cell copy number analysis and compared the results to 181 

the bulk CNVs from published HeLa S3 [34] and YH data [35]. HeLa S3 cells are 182 

known to harbour germline CNVs of defined sizes. The CNV profiles of single HeLa 183 

S3 cells were similar to the bulk data; however, this analysis did not detect a deletion 184 

on chromosome 4 posted in bulk HeLa S3 DNA (Figure 3A and S3C). We also 185 

observed different copy number states in chromosomes 13 and 18, which agreed with 186 
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Liu’s discovery of substantial heterogeneity between HeLa variants from other 187 

laboratories [36]. The YH cells were B cells from a healthy donor, who was 188 

considered without significant CNVs. As expected, the single-cell YH cell CNV 189 

profile only had minor point CNV fluctuations (Figure 3B and S3C). 190 

We then applied scDPN to an HCC tumour sample as well as paired ANT. The 191 

bulk tumour sample and peripheral blood mononuclear cells from the same patient 192 

(HCC01) were also subjected to whole-exome sequencing. We obtained 58 cells from 193 

HCC tumour tissue and 10 cells from ANT after filtering (> 300k reads, MAPD < 194 

0.45). All 10 cells from ANT had no significant CNVs, as expected. One cell in the 195 

tumour did not have any CNVs and was considered normal (Figure S3C). The other 196 

57 tumour cells had gain in 2p25.3-2p16.2, loss at 10q, and 56 had 8q11.23-8q24.3 197 

gain (Figure 3C and S3C). This result indicated that there was only one major tumour 198 

clone in the HCC01 primary tumour. By comparing a representative copy number 199 

profile of a HCC tumour cell with a bulk CNV profile inferred from whole exome 200 

sequencing data (Materials and Methods), we observed concordant chromosome 201 

duplications of chromosomes 2, 8, and 12 and a deletion on chromosome 10, 202 

verifying the reliability of our CNV data. For example, the CNV profiles revealed 203 

multiple copy alterations, including 2p25.3-2p16.2, and 8q11.23-8q24.3, which are 204 

also present in the bulk DNA (Figure 3C). 205 

Single-cell CNV detection reveals tumour clonal subtypes in HCC 206 

Genetic heterogeneity in HCC has been described in somatic nucleotide variations 207 

(SNVs) by NGS or SNP array of multiple regions from the same primary HCC bulk 208 

tumour tissue [37], but there are few studies at the single-cell level. Thus, we used 209 

scDPN to investigate tumour subclones in patient HCC02. After quality control 210 

(UMDR ≥ 0.30 M, MAPD ≤ 0.45), we obtained 106 cells from the primary tumour 211 

for subsequent CNV calling. Three cells without chromosome copy number 212 

alterations were designated as normal cells. The remaining 103 cells showed two 213 

distinct CNV patterns, indicating that at least two tumour clones existed in this 214 
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primary tumour (Figure 4A). The major subpopulation consisted of 87 cells with 215 

high-level amplifications on chromosomes 5p15.33-q35.3, 6p25.3-q12, 7p22.3-q36.3, 216 

8q11.1-q24.3, and 15q11.2-q26.3 and deletions on chromosomes 6q12-q27 and 217 

8p23.3-p11.21. Deletions of chromosomes 6q and 8p and gains in 6p and 8q are 218 

known recurrent CNVs in HCC [38]. A minor subpopulation of HCC02 comprised 219 

16/103 (15.5%) tumour cells and had additional alterations: chromosome 1q21.1-q44 220 

gain, 10q11.21-q23.31 loss, and 14q32.2-q32.33 loss (Figure 4B). We also observed 221 

common alterations in chromosomes 5, 6, 7, 8, and 15 in the same patient’s bulk 222 

tumour. However, the unique alterations in chromosomes 1, 10, and 14 found in the 223 

minor population of single cells were not detectable in the bulk tumour, 224 

demonstrating the capability of characterizing minor clones in single cells. 225 

Clonal selection in HCC recurrence 226 

A high recurrence rate is one of the risk factors contributing to the low 5-year survival 227 

rate in HCC. Understanding the clonal evolution and selection that occurs during 228 

relapse could aid in exploring the mechanism of recurrence. To investigate the 229 

correlation between the primary and recurrent tumour, we applied scDPN to the 230 

recurrent tumour from HCC02. We obtained 118 qualified cells from the recurrent 231 

tumour using the same filtering criteria. To our surprise, except for 4 normal cells 232 

without significant CNVs, the remaining 114 tumour cells had unique CNVs detected 233 

in the minor clone of the primary tumour, including 1q21.1-q44 gain, 234 

10q11.21-q23.31, and 14q32.2-q32.33 loss (Figure S4A). This result strongly 235 

demonstrated that the minor clone in the primary tumour repopulated to be the 236 

dominant clone during relapse in this patient.  237 

Furthermore, a hierarchical cluster analysis was conducted on CNVs in 238 

chromosomes 1, 10, and 14, revealing three subpopulations with distinct CNV 239 

patterns (Figure 4C). Clone A comprised 81 primary tumour cells with no CNVs on 240 

these three chromosomes and corresponded to the major clone in the primary tumour. 241 

Both clones B and C showed similar CNVs in these three regions. Clone B was 242 
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composed of 17 primary tumour cells and 12 recurrent tumour cells and was 243 

considered to be a transitional state of clone C. Clone C consisted of 102 relapsed 244 

tumour cells and 5 primary tumour cells, indicating that the minor clone in the 245 

primary tumour developed into a dominant clone during HCC relapse. 246 

To determine which characteristics were associated with clone C selection during 247 

recurrence, we investigated the genes located in these unique CNV regions. We found 248 

several oncogenes and tumour suppressor genes described in the Catalogue Of 249 

Somatic Mutations In Cancer (COSMIC) database (Table S3). Several oncogenes 250 

were located in the amplification regions on chromosome 1q21.1-q44, including 251 

ABL2, BCL9, DDR2, FCGR2B, ELK4, and MDM4, while several tumour suppressor 252 

genes, including PTEN, FAS, and PRF1, were located in the loss region of 253 

10q11.21-q23.31. We further validated that patients with 10q11.21-q23.31 loss or all 254 

the three alterations (1q21.1-q44 gain, 10q11.21-q23.31, and 14q32.2-q32.33 loss) 255 

showed lower disease or progression-free survival rate within two years in the TCGA 256 

dataset for HCC (Figure S4B). However, we did not observe a significant difference 257 

between patients with 1q21.1-q44 gain/14q32.2-q32.33 loss vs. others in disease-free 258 

survival, suggesting that the loss of 10q11.21-q23.31 may make a substantial 259 

contribution to tumour clone selection during relapse in HCC. 260 

 261 

Discussion 262 

Single-cell genomic technologies have greatly aided the analysis of the evolution 263 

of cancer genomes and the study of genetic heterogeneity in cancer. However, the 264 

lack of high-throughput, cost-effective single-cell WGS approaches has limited their 265 

application. Here, we developed a preamplification-free, microwell-based single-cell 266 

DNA library preparation approach named scDPN, which can handle up to 1,800 cells 267 

per run. A fluorescence and imaging system enabled us to select a single and viable 268 

cell accounting for a lower doublet rate. Through a series of experiments, we 269 

determined the optimum on-chip experimental conditions for high data quality. The 270 
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strategy for constructing libraries of scDPN was similar to the DLP and TnBC 271 

approaches. Improved version of LIANTI (sci-L3) and DLP (DLP+) [39] reported 272 

recently also have increased the throughput. 273 

Compared with MDA methods, our platform generated single-cell genome data 274 

with better uniformity and lower noise, which decreases the required sequencing 275 

depth. Low-depth single-cell genome data of the HeLa S3 and YH cell lines and 276 

tumour samples generated by scDPN showed high sensitivity (only 0.02 × depth data 277 

needed) and accuracy compared with bulk tumour analysis. The small reaction 278 

volume substantially reduced the library construction costs to $0.5 per cell. ScDPN 279 

has the advantages of amplification uniformity, throughput, and cost over existing 280 

single-cell CNV detection methods. Additionally, we evaluated the performance of 281 

CNV detection in the cell nuclei from frozen tissues (Figure S5), which extends the 282 

application to additional cell types, including neurons and retrospective studies using 283 

frozen tissues. 284 

However, scDPN is not suitable for SNVs detection due to low genome coverage. 285 

According to Zahn’s study, sequencing reads from all cells can be merged to produce 286 

a ‘pseudo-bulk’ genome with deep coverage accountable to an inference of SNV. 287 

Otherwise, a collection of high-depth ‘clonal genomes’ can be generated by 288 

combining all cells within a clone [23]. Additionally, there is a large difference in the 289 

amount of data among single-cell libraries produced from the same run due to the 290 

differential reaction efficiency during library preparation. Therefore, further condition 291 

optimization is essential to obtain uniform library products from an individual cell. 292 

We used scDPN to identify subgroups of HCC tumour cells that were not detected 293 

in the bulk population (Figure 4A). This analysis indicates that important information 294 

is missing from bulk level-based sequencing studies. A large cohort based on scCNV 295 

in HCC may be needed to understand the genetic variance and heterogeneity more 296 

comprehensively. Understanding the clonal selection mechanisms in HCC recurrence 297 

could guide treatment and reduce relapse in HCC. Scaling our single-cell DNA 298 
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preparation approach with paired primary and relapsed tumour samples could address 299 

essential questions concerning subclonal dynamics, such as how specific subclones 300 

evolve, evade immune surveillance, and metastasize. 301 

In the profiling of CNVs in paired primary tumour cells (n = 103) and relapsed 302 

HCC tumour cells (n = 114), we observed a subpopulation (clone C) as the minor 303 

clone (5/103, 4.8%) in the primary tumour. This minor clone had additional CNVs of 304 

1q21.1-q44 gain, 10q11.21-q23.31 loss, and 14q32.2-q32.33 loss, which developed 305 

into the dominant clone (102/114, 90%) in the recurrent tumour (Figure 4C). This a 306 

solid evidence to support the tumour clonal selection during HCC relapse (Figure 307 

4D). We validated in TCGA data that the loss of 10q11.21-q23.31, a region 308 

containing several tumour suppressor genes, is frequent in HCC and may play a 309 

crucial role in tumour clone selection during relapse. A chromosome 8p deletion has 310 

been correlated with HCC metastasis [40] and exists 3 clones in this tumour. The loss 311 

of 6p25.3-q12 presented in all clones would result in loss of heterozygosity (LOH) 312 

across the major histocompatibility complex (MHC), which is also reported to be 313 

associated with cancer metastasis [41]. Immune pressure has been proposed to shape 314 

the clonal evolution of metastasis [42]. However, the drivers or critical factors 315 

contributing to clonal selection during recurrence or metastasis in HCC and other 316 

cancers remain unclear. High-throughput single-cell omics from a large set of cancer 317 

patients, may potentially address these questions and simultaneously dissect the 318 

tumour environment, as well as the genetic and transcriptome characteristics of 319 

tumour cells. 320 

 321 

Materials and methods 322 

Cell line and patient tissue samples 323 

The lymphoblastic cell line (YH cell line) was established from an Asian genome 324 

donor [35]. We purchased the HeLa S3 cell line from the American Type Culture 325 

Collection (CCL-2.2, ATCC, Manassas, VA, USA). The tumour sample used for 326 
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on-chip reaction determination was a resected sample of a 45-year-old male patient 327 

(HCC01) with a primary HCC tumour. Paired primary and relapsed HCC tumour 328 

samples were obtained from a 63-year-old male patient (HCC02). Peripheral white 329 

blood cells and paired tumour sample and adjacent normal liver tissue were also 330 

obtained for bulk whole-exome sequencing or whole-genome sequencing. 331 

Preparation of the single-cell suspension 332 

Cell suspension of cell lines were harvested and centrifuged at 500 g for 5 min, 333 

washed by phosphate buffer solution (PBS) buffer twice, and resuspended in PBS. 334 

The resected tumour samples were processed to a single-cell suspension using the 335 

commercial Tumour Dissociation Kit (30095929, Miltenyi Biotec, Bergisch 336 

Gladbach, Germany). Briefly, fresh tumour and adjacent normal liver tissues were cut 337 

into approximately 2-4 mm pieces and transferred into the gentleMACS C Tube 338 

containing the enzyme mix. Subsequently, the suspended cells were centrifuged at 339 

300 g for 7 min after passing through cell strainers. The suspended cells were passed 340 

through cell strainers and centrifuged at 300 g for 7 min. The cell pellets were 341 

resuspended in 90% fetal bovine serum (FBS; 10270106, ThermoFisher Scientific, 342 

Waltham, MA, USA) with 10% dimethyl sulfoxide (DMSO; D8418-50ML, 343 

Sigma-Aldrich, St. Louis, MO, USA) and collected in a freezing container for -80 °C 344 

storage. 345 

Single-cell DNA library preparation and sequencing 346 

We used the ReadyProbes Cell Viability Imaging Kit (R37609, ThermoFisher 347 

Scientific, Waltham, MA, USA) that contained Hoechst and PI to identify living cells. 348 

This staining process was at 37 °C for 20 min, then washed in cold 0.5× PBS twice. 349 

For cells from tumour tissue, we added fluorescent antibody CD45 (55548, BD 350 

Pharmingen™, San Jose, CA, USA) in the staining step. Based on FACS, CD45- 351 

Hoechst+ PI- cells from the single-cell suspension were sorted into single tubes for 352 

tumour cell enrichment. Counted cells were dispensed into microwells using the 353 

ICELL8 MSND (640000, Takara Bio USA, Mountain View, CA, USA) at the 354 
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concentration of 25 cells/µl in 0.5× PBS and 1× Second Diluent (640202, Takara Bio 355 

USA, Mountain View, CA, USA) into the ICELL8® 350v Chip (640019, Takara Bio 356 

USA, Mountain View, CA, USA). We used the mixed buffer of PBS and fiducial mix 357 

(640202, Takara Bio USA, Mountain View, CA, USA) as the negative control wells. 358 

The MSND precisely dispensed 50 nL volumes into the microwells. Following cell 359 

dispensing, the chip was sealed with imaging film and centrifuged for 5 min at 500 g 360 

at 4 °C, and imaged with a 4× objective using Hoechst and PI. Following imaging, 35 361 

nL cell lysis buffer was added to each microwell (P1: 2.89 AU/L Protease K (19155, 362 

Qiagen, Germany) and 72.8 mM pH 7.5 Tris·HCl (15567027, ThermoFisher 363 

Scientific, Waltham, MA USA ); P2: 8.67 AU/L Protease K and 72.8 mM pH 7.5 364 

Tris·HCl). The sealed chip was centrifuged for 3 min at 3,000 g and room temperature, 365 

then incubated at 50 °C for 1 h, followed by 75 °C for 20 min and finally 80 °C for 5 366 

min to inactivate the protease. The chip was centrifuged for 3 min at 3,000 g again 367 

before 50 nL Tn5 transposition mix (T1: 0.06 U/μL Tn5 transposase (1000007867, 368 

MGI, China) and 2.4× TAG buffer (1000013442, MGI, China); T2: 2.4× TAG buffer, 369 

0.14 U/μL Tn5 transposase; T3: 2.4× TAG buffer and 0.22 U/μL Tn5 transposase) 370 

were dispensed. After sealed, the chip was centrifuged at the same condition with the 371 

last step and incubated at 55 °C for 30 min. To stop transposase activity, 31 nL 5× NT 372 

buffer (0.25% SDS solution), 1.45 nL ddH2O, and 2.55 nL of Ad153-forward-tag 373 

(1~72) primer [1 μM] were dispensed, centrifuged and incubated for 5 min at room 374 

temperature. Another barcode primer was added to 50 nL PCR mix1 (29.6 nL 5× 375 

KAPA Fidelity Buffer, 7.69 nL 10 mM each dNTP, 5.1 nL PhoAd153 forward primer 376 

[10 μM], 5.1 nL Ad153 reverse primer [10 μM], and 2.55 nL of 72 Ad153-reverse-tag 377 

(1~72) primer [1 μM] made by KAPA HiFi HotStart PCR Kit (KK2500, Kapa 378 

Biosystems, Cape Town, South Africa). Finally, 50 nL PCR mix2 containing 21.4 nL 379 

5× KAPA Fidelity Buffer, 5.1 nL 1 U/μL KAPA HiFi DNA polymerase, and 23.5 nL 380 

ddH2O was dispensed. We used the following conditions to perform PCR: 72 °C for 5 381 

min; 95 °C for 3 min; 25 cycles of 98 °C for 3 min for 20 sec, 60 °C for 15 sec, and 382 
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72 °C for 25 sec; 72 °C for 5 min; and finally 4 °C. The final extraction of PCR 383 

products was carried out by centrifuging at 3,000 g for 3 min with an extraction kit. 384 

Product purification was performed using a 1.0× Agencourt Ampure XP bead 385 

(A63881, Beckman Coulter, Indianapolis, IN, USA) to sample ratio. Following 386 

ssDNA cyclization, digestion, and PEG32 bead purification (1000005259, MGI, 387 

China), the libraries were sequenced in SE100 on the BGISEQ-500 sequencer. 388 

Preprocessing of sequencing data 389 

The raw reads derived from BGISEQ-500 were assessed by SOAPnuke (v1.5.6) [43] 390 

using the parameters “-Q 2 -G”. Afterward, we mapped the qualified reads to the 391 

human reference genome (hg19) by Burrows-Wheeler Aligner (BWA, v0.7.16a) [44] 392 

with BWA-MEM algorithms using arguments “-t 2 -k 32 -M /path/to/ref.fa”. The 393 

output SAM files were compressed and sorted by reference coordinates and then 394 

indexed with SAMtools (v1.1.19) [45]. Subsequently, uniquely mapped reads were 395 

extracted. Reads considered “PCR duplications” were removed by “samtools rmdup” 396 

from the downstream analysis. 397 

Detection of copy number variations 398 

We calculated the copy number of each cell with an optimized method developed by 399 

the Baslan et.al. [35, 46, 47]. Based on the coverage suggestion of 30-180 reads per 400 

window for CNV calling from Gusnanto et al., we estimated the number of bins 401 

according to the average sequencing depth ( < 1 Mbp) by the R package NGSoptwin 402 

[48]. The “bin boundaries” files for 5,000 bins in hg19 that suited the read length of 403 

100 bp were generated. After GC content normalization, DNAcopy was employed for 404 

segmentation and copy number calculation, which points to gains and losses in 405 

chromosomes. 406 

The FASTQ files of bulk HeLa S3 were downloaded from the NCBI Sequence 407 

Read Archive repository (SRP028541). The YH dataset was available in the 408 

GigaScience repository, GigaDB (http://gigadb.org/dataset/100115) [35]. 409 
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For the matched bulk WES dataset, snp-pileup from htstools was first employed 410 

for processing BAM files using parameters “/path/to/dbsnp_150.common.hg38.vcf.gz 411 

-g -q15 -Q20 -P100 -r25,0”. We then used facets [49] for copy number estimation 412 

from the paired (normal/tumour) samples. 413 

Accuracy of CNV detection from the low coverage single-cell WGS data 414 

The accuracies of CNV calling in the paper were assessed by sensitivity and FDR 415 

gain from the simulated dataset. A series of rearranged genomes with a defined size of 416 

CNVs was randomly generated by SimulateCNVs [50]. In each of the 10 outputs, 0.1 417 

× WGS datasets with 20 CNVs of a specific size (1, 2, 3, 5, 10, 15 Mbp) were used to 418 

randomly extract 3 × 105 uniquely mapped reads after duplicate removal with 5 419 

replicates. A detected CNV was assumed to be true when it overlapped with at least 420 

50% of the simulated CNVs. The sensitivity was defined as TP/(TP + FN), where the 421 

numerator was the true positive CNV mentioned above, while the total number of 422 

CNVs simulated served as the denominator. FDR was defined as FP/(FP+TP), where 423 

the numerator was the false positive CNV, and the denominator was the total number 424 

of CNVs detected by the algorithm. 425 

Estimation of sequencing saturations 426 

The uniquely mapped reads after duplicate removal were randomly down-sampled to 427 

3 × 104, 6 × 104, 9 × 104, 1.2 × 105, 1.5 × 105, 1.8 × 105, 2.1 × 105, 2.4 × 105, 2.7 × 428 

105, 3 × 105, 4.5 × 105, 6.5 × 105, 1.05 × 106, 1.5 × 106, and 2 × 106 reads. We used 429 

the down-sampled reads to estimate the sequencing saturation for our low-coverage 430 

WGS method. After calculating the copy number of each bin in the down-sampled 431 

datasets, the boundaries of the bins with copy number unequal to 2 were compared to 432 

that of samples with the highest read depth. The percentages of bins with abnormal 433 

copy number in samples with the highest coverage found in the down-sampled 434 

datasets were recorded. The saturation curves were fitted with locally weighted 435 

(LOESS) regression in geom_smooth function in the R package ggplot2 [51]. The 436 

inflection point of the curves was considered as the saturation point. 437 
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Evaluation of the uniformity 438 

The FASTQ files of MDA, DOP-PCR, MALBAC, LIANTI, TnBC, and sci-L3 439 

datasets were downloaded from the NCBI Sequence Read Archive repository 440 

(SRR504711 for single-cell MDA, SRR1006146 for DOP-PCR, SRR975229 for 441 

MALBAC,  SRX2660685 for LIANTI, SRX2847396 for TnBC, SRX5179905 for 442 

sci-L3) respectively. The sequence generated by 10x genomics platform was derived 443 

from https://support.10xgenomics.com/single-cell-dna/datasets/1.1.0/bj_cells_1k. 444 

The uniquely mapped reads after duplicate removal from all samples were 445 

randomly down-sampled to 105 reads for uniformity evaluation. To better indicate the 446 

bias of amplification methods, we binned reads into 60kb intervals across the genome 447 

with an average of 20 reads per bin according to the results from Xi et al. [24]. Reads 448 

in each bin were counted by bedtools2 (v2.20.1) and then applied for Lorenz model 449 

estimation. 450 

CNV profiling and tumor evolution visualization 451 

MAPD is used for noise assessment in CNV calling [47, 52]. Since higher MAPD 452 

values reflect the poorer quality of a cell, we excluded single-cell samples with 453 

MAPD > 0.45. Segment ratios of samples were presented and clustered by hclust 454 

using ‘ward.D2’. Fishplot [53] was employed for fishplot construction. 455 

456 
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Figures 641 

 642 

 643 

Figure 1  Schematic diagram of microwell-based single-cell genomic DNA 644 

library preparation 645 

Stained cell suspensions were automatically dispensed into 72 × 72 microwell chips 646 

using MSND. Scanning fluorescence microscopy and cell selection software were 647 

used to discriminate wells containing single cells via the fluorescence of Hoechst and 648 

PI dyes. In the selected microwells, lysis buffer, Tn5 fragmentation buffer and 72 × 649 

72 barcode primers were added step by step for single-cell DNA library amplification. 650 

The chip was incubated in a thermal cycler after each step. Indexed single-cell 651 

libraries were pooled by centrifugation for library purification, cyclized, and 652 
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sequenced on the BGISEQ500 platform. PI, propidium iodide. MSND, MultiSample 653 

NanoDispenser. 654 

 655 

 656 

Figure 2  Assessment of library quality under different experimental conditions 657 

A. CNV saturation curve. The detected CNVs increased with increasing numbers of 658 

unique mapped reads. At 300k reads, the CNV counts reach saturation. B. Sequencing 659 

data overview of 5 different single-cell lysis and transposase fragmentation conditions 660 

(T1_P1, n = 28; T2_P1, n = 22; T2_P2, n = 10; T3_P1, n = 3; T3_P2, n = 9). Violin 661 

charts showing the distribution of MAPD_5k and duplication ratio in different 662 

conditions with 400k raw reads. The Student’s T test was performed. C. Comparison 663 

of different library preparation conditions and the MDA method using Lorenz curves 664 

shows genome-wide coverage uniformity. The dotted straight black line indicates a 665 
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perfectly uniform genome. D. Comparison of different library preparation methods 666 

(DOP-PCR, MALBAC, LIANTI, TnBC, sci-L3, and the 10x genomics) using Lorenz 667 

curves shows genome-wide coverage uniformity. The dotted straight black line 668 

indicates a perfectly uniform genome. CNV, copy number variation; MDA, multiple 669 

displacement amplification; DOP-PCR, degenerate oligonucleotide-primed PCR; 670 

MALBAC, multiple annealing, and looping-based amplification cycles; LIANTI, 671 

linear amplification via transposon insertion; TnBC, transposon barcoded; sci-L3, a 672 

single-cell sequencing method that combines combinatorial indexing and linear 673 

amplification. 674 

 675 

 676 

Figure 3  scDPN provides reliable data for accurate scCNV detection 677 
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A. Single-cell CNV profiles of HeLa S3 cells obtained using the T2_P1 condition and 678 

the corresponding bulk level HeLa S3 profile from published data. B. Single-cell 679 

resolution CNV profiles of the YH cell line obtained from the T2_P1 condition and 680 

the corresponding bulk level YH profile from published data. C. Representative single 681 

tumour cell copy number profile and corresponding bulk tumour CNV profile from 682 

FACETS analysis of whole-exome sequencing data in HCC01. The second panel 683 

plots the corresponding integer (total, minor) copy number calls. The estimated 684 

cellular fraction profile is plotted at the bottom, revealing both clonal and sub-clonal 685 

copy number events. HCC, hepatocellular carcinoma. 686 

 687 
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 688 

Figure 4  Single-cell CNV profiles reveal tumour clonal selection during HCC 689 

recurrence 690 

A. Two CNV patterns observed in single-cell and CNV profiles detected by bulk 691 

WGS of the primary tumour in HCC02. Colours correspond to inferred copy-number 692 

states; black lines indicate segment medians. B. Heatmap showing the copy number 693 

states of all 106 cells from the primary tumour. Columns correspond to cells, and 694 

rows correspond to a ~600 kb genomic bin for each chromosome. Reported 695 

HCC-related genes TERT, VEGFA, and MYC are indicated. C. Heatmap showing the 696 
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unsupervised clustering of all tumour cells from primary (n = 103) and relapsed 697 

tumours (n = 114) based on the CNVs on chr 1, 10, and 14. D. Schematic diagram of 698 

HCC tumour clonal selection during recurrence in patient HCC02. 699 

700 
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Supplementary materials 701 

Figure S1  Quality control of the library construction 702 

The length distribution of the library was determined using an Agilent 2100 703 

bioanalyzer.  704 

Figure S2  Assessment for scDNP under different conditions 705 

A. Boxplots showing the distribution of mapped reads and genome coverage, in 706 

different conditions. The Student’s T test was performed. B. The proportions of HCC 707 

cells (UMDR > 300K) sampled from the same patient with MAPD ≤/> 0.45 in 708 

different numbers of bins among various lysis and transposase fragmentation 709 

conditions (T1_P1, n = 22; T2_P1, n = 15; T2_P2, n = 5; T3_P1, n = 2, excluded; 710 

T3_P2, n = 4). 711 

Figure S3  scDPN provides reliable data for accurate scCNV detection 712 

Sensitivities (A) and FDRs (B) of the CNV detection algorithm at defined resolutions. 713 

The points and error bars represent the means and standard deviations, respectively. 714 

FDR, false discovery rate. C. Single-cell CNVs of different samples using low 715 

coverage. Heatmap showing the CNV profiling of HeLa S3 cells (red), YH cells 716 

(yellow), cells from adjacent liver tissue (blue), and tumour tissue (green) of HCC01. 717 

Columns correspond to cells, and rows correspond to 600 kb genomic bins for each 718 

chromosome. FDR, the false discovery rate. 719 

Figure S4  Tumour clonal selection during HCC recurrence 720 

A. Single-cell CNV profiling of HCC02 recurrent tumour samples. Heatmap showing 721 

the CNV profiles of all 118 cells from relapsed tumours. Columns correspond to cells, 722 

and rows correspond to 600 kb genomic bins for each chromosome. B-C. 723 

Kaplan-Meier analysis showing the disease/progression-free survival for patients with 724 

chr10q11.21-q23.31 deletion (B) and the three alterations (C) in the TCGA dataset for 725 

HCC. 726 

Figure S5  Evaluation of our CNV detection method with cell nuclei 727 
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The distribution of mapped reads, used reads, genome coverage, and MAPD_5k of 728 

either the nucleus or cells are shown by box plots, and dots indicate individual 729 

samples. The Student’s T test was performed. 730 

Table S1  Statistics of cells used in the adjustment of reaction parameters 731 

Table S2  Single-cell resource for scDPN assessment and tumour clone analyse 732 

Table S3  Oncogenes and tumour suppressor genes with copy number 733 

alterations in our study 734 

 735 
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