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Abstract

Background: Flow and mass cytometry are important modern immunology tools for measuring
expression levels of multiple proteins on single cells. The goal is to better understand the mechanisms of
responses on a single cell basis by studying differential expression of proteins. We focus on cell-specific
differential analysis and one fixed cell type. In contrast, most current methods learn cell types and perform
differential analysis jointly. Our narrower field of application allows us to define a more specific statistical
model with easier to control statistical guarantees. Results: Differential analysis of marker expressions
can be difficult due to marker correlations and inter-individual heterogeneity, particularly for studies of
human immunology. We address these challenges with two multiple regression strategies: A bootstrapped
generalized linear model and a generalized linear mixed model. On simulated datasets, we compare the
robustness towards marker correlations and heterogeneity of both strategies. For paired experiments, we
find that both strategies maintain the target false discovery rate under medium correlations and that mixed
models are statistically more powerful under the correct model specification. For unpaired experiments,
our results indicate that much larger patient sample sizes are required to detect differences. We illustrate
the CytoGLMM R package and workflow for both strategies on a pregnancy dataset. Conclusions: Our
approach to find differential proteins in flow and mass cytometry data reduces biases arising from maker
correlations and safeguards against false discoveries induced by patient heterogeneity.

1 Introduction

Flow (Saeys, Van Gassen, and Lambrecht 2016) and mass cytometry (Bendall et al. 2011) allow researchers
to simultaneously assess expression patterns of a large number of proteins on individual cells, allowing deep
interrogation of cellular responses. The goal of such studies is to better understand the mechanisms of
responses on a single cell basis by defining protein expression patterns that are associated with a particular
stimulus or experimental condition. Finding differentially expressed proteins can help identify how cells
function across experimental conditions.

Statistical workflows to analyze data generated by flow and mass cytometry usually begin by clustering cells
into both known and novel cell types. Many cluster algorithms are available (Lo et al. 2009; Finak et al.
2009; Qian et al. 2010; Zare et al. 2010; Aghaeepour et al. 2011; Qiu et al. 2011; Ge and Sealfon 2012;
Shekhar et al. 2014; Becher et al. 2014; Naim et al. 2014; Meehan et al. 2014; Van Gassen et al. 2015;
Sorensen et al. 2015; Levine et al. 2015; Chen et al. 2016; Samusik et al. 2016; Lee et al. 2017; Li et al.
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2017; Theorell, Bryceson, and Theorell 2019; Abdelaal et al. 2019) and Weber and Robinson (2016) provide
an informative benchmark comparison study of most of these algorithms. The cluster step is followed by a
differential expression analysis between and within cell types. The most popular differential analysis tools are:
Citrus (Bruggner et al. 2014), the Bioconductor workflow by Nowicka et al. (2017), cydar (Lun, Richard,
and Marioni 2017), CellCnn (Arvaniti and Claassen 2017), and diffcyt (Weber et al. 2019).

We can classify differential analysis methods into marginal regression—analyses that focus on individual
markers—and multiple regression—analyses that work on multiple markers simultaneously. The Bioconductor
workflow by Nowicka et al. (2017), cydar, and diffcyt are marginal regression methods. The advantage of
marginal regression approaches is that they allow for flexible experimental designs. The main disadvantage of
this approach is the separate testing for differential expression for each protein—when studying a specific
protein marker all the other markers are ignored. Therefore these methods are susceptible to biases induced
by marker correlations.

Citrus and CellCnn are multiple regression methods. The advantage is that they can provide a conditional
interpretation of the effect of a protein onto the outcome, and thus reduce the bias coming from marker
correlations. The disadvantage is that Citrus summarizes protein expressions by taking the median for each
cell type which can lead to a decrease in statistical power. The power decrease comes from the reduction
in cell sample size from thousands of cells to one cell per sample. On the other hand, cydar uses a neural
network for which it is currently unclear how to build confidence intervals, derive p-values, and control the
number of falsely reported markers.

It is helpful to consider an example to further illustrate the differences between the marginal and the multiple
regression method. Consider two intracellular proteins, A and B, that are part of the same signal transduction
pathway. Assume that applying a stimulus to A activates B. Further assume that the stimulus does not
directly activate B. If we performed separate differential analyses on protein A and B, we would observe
differential expressions for both A and B, even though only A had been directly activated. In contrast, a
multiple regression method would report A as differentially expressed given B, and B as not differentially
expressed given A.

CytoGLMM implements multiple regression that accounts for marker correlations without the aforementioned
limitations. The main difference between our method and current methods is that we focus on cell-specific
differential analysis and one fixed cell type, whereas current methods (Citrus, CellCnn, cydar, and diffcyt)
learn cell types and perform differential analysis jointly. The narrower field of application allows us to
define a more specific statistical model with easier to control statistical guarantees. Only the Bioconductor
workflow by Nowicka et al. (2017) focuses on specific cell types, but as mentioned before, they employ
marginal regression which makes comparison to our multiple regression method difficult—as the two methods
have different aims.

We present two versions of multiple regression: (i) A Generalized Linear Model (GLM) for unpaired samples.
A GLM is a regression model that allows for a response and error terms that follow different distributions
than the normal. (ii) A restricted Generalized Linear Mixed Model (GLMM), which is a GLM that allows
for random and fixed effects, for paired samples—when the same donor provides two samples, one for each
condition. GLMs and GLMMs are generalizations of least squares to data from the exponential family. In
our case, we will use logistic regression to model the experimental condition with a Bernoulli distribution and
link it to a linear model of marker expressions with the logit function.

Our models depart from the classic model where the marker expressions are the response variables. In our
GLMs, the experimental condition Y is independent of the jth marker expression X; given the other markers
X_, (all makers X1,..., Xp except the marker X) if and only if the jth regression coefficient is zero (for a
mathematical proof of this statement see Proposition 2.2 in Candes et al. (2018)). In contrast, the usual
marginal regression analysis does not allow for such conditional statements. For instance, it would not allow
us to rule out markers that are merely correlated with other makers but are independent of the experimental
condition—as illustrated with the example earlier.

In summary, our two main contributions are:

1. We present a conditional differential analysis to avoid biases arising from marker correlations by using
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multiple regression instead of marginal regression.

2. We present two multiple regression strategies that work with the unsummarized expression data to
maximize statistical power and account for patient heterogeneity to safeguard against false discoveries:
(i) GLMs with a patient-level bootstrap, and (ii) GLMMs with a patient-level random effect.

In Section 2, we review the statistical background for GLMs and GLMMs. Section 3 evaluates the statistical
properties of both strategies implemented in our R package CytoGLMM on different simulated datasets, and
illustrates the full workflow for real pregnancy data. In Section 4, we discuss our results in terms of biases
and confounders.

2 Methods

2.1 Preprocessing

We recommend that marker expressions be corrected for batch effects (Nowicka et al. 2017; Chevrier et
al. 2018; Schuyler et al. 2019; Van Gassen et al. 2020; Trussart et al. 2020) and transformed using
variance stabilizing transformations to account for heteroskedasticity, for instance with a hyperbolic sine
transformation with the cofactor set to 150 for flow cytometry, and 5 for mass cytometry (Bendall et al.
2011). This transformation assumes a two-component model for the measurement error (Rocke and Lorenzato
1995; Huber et al. 2003) where small counts are less noisy than large counts. Intuitively, this corresponds to
a noise model with additive and multiplicative noise depending on the magnitude of the marker expression;
see (Holmes and Huber 2019) for details.

2.2 Generalized Linear Model (GLM)

The goal of the GLM is to find protein expression patterns that are associated with the condition of interest,
such as a response to a stimulus. We set up the GLM to predict the experimental condition from protein
marker expressions, thus our experimental conditions are response variables and marker expressions are
explanatory variables. The response variable Y; is a binary variable encoding experimental condition as zero
or one. The response variable can be modeled as a Bernoulli random variable with probability 7; for each
cell. Then we use the logit link to relate the linear model to binary responses. The linear model predicts the
logarithm of the odds of the ith cell being Y; = 1 instead of ¥; = 0. The linear model has one coefficient per
protein marker 31,...,8p and an intercept §y. If m; is 0.5 then the cell could have come from either Y; =1 or
Y; = 0 with equal probability. If 7; is either very close to one or zero, then the cell is strongly representative
of a cell observed under Y; = 1 or Y; = 0, respectively. We observe the protein marker expressions x;. For
each cell we measure P protein markers.

The response probabilities 7; are not observed directly, only Y; = y; and «; are observed. Note that x; is
observed with errors. Here, we make the approximating assumption that the covariates are fixed. Our results
will show that this assumption is conservative and introduces a regularization of the estimated coefficients.
We estimate 7; from the data using maximum likelihood with the function glm in R. Our logistic regression
model, which is part of a general class of GLMs, can be summarized in the following form:

Y; ~ Bernoulli(;),
log< T ) =z B.
1-— w5

For likelihood inference, we use the nonparametric bootstrap and resample entire donors with replacement
to preserve the cluster structure. At the cell-level, we resample cells with replacement within each donor.
We build percentile confidence intervals and compute p-values by inverting the intervals assuming two-sided
intervals with equal tails (Efron and Tibshirani 1994). We use the Benjamini-Hochberg (BH) (Benjamini
and Hochberg 1995) and Benjamini—Yekutieli (BY) (Benjamini and Yekutieli 2001) procedures to control
the False Discovery Rate (FDR). We refer to GLM with BH control as GLM-BH, and with BY control as
GLM-BY.
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2.3 Generalized Linear Mixed Model (GLMM)

We make additional modeling assumptions by adding a random effect term in the standard logistic regression
model to account for the subject effect. The covariates x;; are the same as in the fixed effects GLM, except
now we have an additional index j that indicates from which donor the cell was taken. Each cell i maps to a
donor j. The additional term wu; represents regression coefficients that vary by donor. The statistical model
can be summarized as,
Y;; ~ Bernoulli(m;;),
Tij T T
log (1_1;”) =z;;B + z;;u;,

with a multivariate normal distribution and covariance matrix 3 for the random effect term wu;,

u; | X ~ Normal (0, X) .
Analog to our GLM, we make the approximating assumption that the covariates are fixed.

The mixed effect model is a compromise between two extremes. On the one hand, we could estimate separate
regression coefficients for each donor. This corresponds to random effects modeled with a multivariate
normal distribution with infinite standard deviations and no constraint on how coefficients are related to
each other. On the other hand, we could pool all donors into one group and ignore the donor information.
This corresponds to a GLM with no random effects, with no additional variability besides the fixed effect
term. A compromise between these two extremes is to estimate the standard deviations of the random effects
from data, allowing the regression model to learn from the other donors. Mixed effects procedures are related
to empirical Bayes procedures (Weber et al. 2019). The first step of an empirical Bayes procedure would
estimate the mean and covariance matrix of the random effect term. The second step would fix the random
effect parameters at their estimated values and estimate the fixed effect parameters. In contrast, the mixed
effect procedure estimates the parameters of both steps jointly. This is possible for flow and mass cytometry
data because of the relatively small number of proteins.

We use the method of moments as implemented in the R package mbest to estimate the model parameters 3,
u;, and 3. For likelihood inference, we use the asymptotic theory derived by Perry (2017). The author showed
that the sampling distribution of the estimated parameters can be approximated by a normal distribution.
We use this mathematical alternative to the bootstrap method to create approximate confidence intervals
and p-values. As in the GLM case, we use the Benjamini-Hochberg (BH) and Benjamini—Yekutieli (BY)
procedures to control the FDR. We refer to GLMM with BH control as GLMM-BH, and with BY control as
GLMM-BY.

3 Results

We first evaluate these procedures for both paired and unpaired samples on simulated datasets. We then test
them on a real pregnancy dataset.

3.1 Simulated Datasets

We generate simulated data with both cell and donor level variability. We allow for negative and positive
correlations between markers and a wide range of correlation strengths. We simulate different scenarios
ranging from weak to strong patient/cell variability. To make sure that we generate positive counts we
use a Poisson noise model after transforming the generated expressions to positive real numbers using the
exponential function. This is similar to using the log link function for Poisson GLMs. Overall, there are
four main parameters: correlation pp and standard deviation op at the cell level, and correlation py and
standard deviation oy at the donor level. Additionally, we can regulate the number of cells per sample and
the number of donors per dataset. The differential expression signal is induced by shifting the mean vector
on the logarithmic scale.

We study the differential expression of three out of 10 markers after simulating exposure of cells to an
experimental condition with two levels: stimulated versus unstimulated cells. We consider one underlying
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data generating mechanisms described by a hierarchical model:

Xj ~ Poisson(\;;)
log(Ai;) = Bij + U
B {Normal(ﬁ(o)7 Yp) ifY;; =0, cell unstimulated
“ Normal(6™M), ) if Y;; =1, cell stimulated
U; ~ Normal(0, Xy).

The stimulus activates three proteins and induces a difference in marker expression. We define the effect
size to be the difference between expected expression levels of stimulated versus unstimulated cells on the
log-scale. We choose a set C' = 3 of active markers. All markers that belong to the active set, have a non-zero
effect size, whereas, all markers that are not, have a zero effect size:

51(71) — (5;0) > 0 if protein p is in activation set p € C
51(,}) — 5](3(,)) =0 if protein p’ is not in activation set p’ ¢ C.

Both covariance matrices have an autoregressive structure,

Qs = p|7‘78\
¥ = diag(o) 2 diag(o).

We regulate two separate correlation parameters: a cell-level pp and a donor-level py coefficient. Non-zero pp
or py induce a correlation between condition and marker expression even for markers with a zero effect size.

We performed simulations with a variety of different parameters. All simulations have 16 samples. For
paired samples, those 16 samples come from 8 donors. For unpaired samples, those 16 samples come from 16
donors. Each sample has 1,000 cells. We compared the observed FDR and the power. The FDR measures
the statistical type 1 errors, the expected proportion of falsely declared discoveries over the total number of
reported discoveries. The statistical power represents the proportion of correctly reported discoveries over the
total number of true discoveries.

Figures 1 and 2 show a summary averaged over 100 runs for paired sample and unpaired sample experiments
with effect size 51(;1) — 5,5,0) = 1.8 and 51(,1) — (5,(,0) = 15, respectively, and varying standard deviation o and
correlation p parameters. The dashed lines indicate the target FDR of 0.05.

First, let’s consider the paired samples experiment. The plots on the left show results when we vary cell
and donor-level correlations at a fixed amount of cell cp = 1 and donor oy = 1 marker standard deviations.
We observe only small differences across donor correlations py of a small increase of power with increasing
correlation. In contrast, there are large increases of power as a function of cell correlations pg. In the panel of
plots on the right, we set both correlations to zero and vary the marker standard deviations. In this setting, we
again observe major changes with increasing standard deviations at the cell-level og: the larger the cell-level
variability, the lower the power. This is also true for donor-level variability, though to a much lesser extent.
FDR is controlled below its target level under medium cell-level marker correlations (|pp| < 0.4) except when
cell variability is at zero op = 0, and donor variability is at one oy = 1. As expected, the BY procedure
is more conservative than the BH procedure, that is both FDR and power are lower. Interestingly, power
increases with cell-level correlations pp, and is virtually unaffected by donor-level correlations py. Overall,
GLMM methods are more powerful than GLM methods. Figure 3 shows simulations for power and FDR
with varying numbers of paired samples. Both cell and donor standard deviations are set to o = oy = 1,
and correlations are set to pg = py = 0. An efficiency gain is clearly visible when we compare how many
paired samples are needed to achieve 80% power. We observe that for GLMMs we need 7 paired samples to
exceed the 80% power threshold, whereas for GLMs we need 13 paired samples to achieve the same.

In the unpaired samples experiment, we only show GLM results as the GLMM results have zero power, there
is no data to estimate the donor-level random effect term. We observe up to 20% FDR with a target FDR of
5%. To have non-zero power we need to increase the effect size to 15 (in comparison, for paired experiments
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Figure 1: Summary of experiments with 1,000 cells per sample averaged over 100 runs. The horizontal
dashed line represents the target FDR. Postfixes BH and BY stand for the respective FDR control procedure.
Subscripts B and U indicate cell and donor-level standard deviation o and correlation p, respectively.
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Figure 2: Summary of experiments with 1,000 cells per sample averaged over 100 runs. The horizontal
dashed line represents the target FDR. Postfixes BH and BY stand for the respective FDR control procedure.
Subscripts B and U indicate cell and donor-level standard deviation o and correlation p, respectively.


https://doi.org/10.1101/2020.12.09.417584
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.09.417584; this version posted December 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Power
1.00 A 1 1
1 1
__________ v ___L__»—2] method
0.75+ 1 1
! ! GLM-BH
0.50- ! ! GLM-BY
| ! GLMM-BH
0.25-
X ! GLMM-BY
4 8 12 16
n_pairs
FDR
005+ -------------------------1
0.04 - method
0.03- GLM-BH
GLM-BY
0.021 GLMM-BH
0.01+ GLMM-BY
OOO- T T T T
4 8 12 16
n_pairs

Figure 3: Summary of experiments with 1,000 cells per sample averaged over 100 runs. Power: The horizontal
dashed line represents a power of 0.8. FDR: The horizontal dashed line represents the target FDR of 0.05.

the effect size is set to 1.8). Furthermore, FDR is only controlled under medium cell-level marker correlations
using the more conservative BY procedure, with BH exceeding 0.05 in most scenarios except when we have
zero donor-level variability oy = 0. As before, BY comes with a loss of power.

3.2 Experimental Dataset

We reanalyze a recently published dataset on the maternal immune system during pregnancy (Aghaeepour et
al. 2017). The study provides a rich mass cytometry dataset collected at four time points during pregnancy
in two cohorts. The authors isolated cells from blood samples and stimulated them with several activation
factors. The goal was to explain how immune cells react to these stimuli, and how these reactions change
throughout pregnancy. Findings from such experiments might identify immunological deviations implicated
in pregnancy-related pathologies.

The authors collected data at early, mid, late pregnancy, and six weeks postpartum. Samples were left
unstimulated or stimulated. Stimulation conditions included: interferon-a2A (IFNea), lipopolysaccharide,
and a cocktail of interleukins (ILs) containing IL-2 and IL-6. They processed the samples on a CyTOF 2.0
mass cytometer instrument, and bead normalized the data to account for signal variation over time from
changes in instrument performance (Finck et al. 2013).

In our analysis, we focus on comparing early (first trimester, ¥; = 0) with late (third trimester, ¥; = 1)
pregnancy samples stimulated with IFNa in the first cohort of 16 women. We gate cells into cell types and
organize them in a data frame. We follow the gating scheme detailed in (Aghaeepour et al. 2017) and define
12 cell types using the R package openCyto (Finak et al. 2014): memory CD4 positive T cells (CD44Tmem),
naive CD4 positive T cells (CD4+Tnaive), memory CD8 positive T cells (CD8+Tmem), naive CD8 positive
T cells (CD8+Thaive), 70T cells (gdT), regulatory T memory cells (Tregsmem), regulatory T naive cells
(Tregsnaive), B cells, classical monocytes (cMC), intermediate monocytes (intMC), non-classical monocytes
(ncMC), and Natural Killer cells (NK). Out of the 32 protein markers measured on each cell, the authors
defined 22 markers as gating markers, and 10 as functional markers. The functional markers are pSTATI,
pSTAT3, pSTATS5, pNF&B, total IkB, pMAPKAPK2, pP38, prpS6, pERK1/2, and pCREB (in plots Greek
symbols are replaced by Latin symbols).

We plot the maximum likelihood (GLM) and the method of moments estimates (GLMM) with 95% confidence
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intervals for the fixed effects B (Figure 4). The estimates are on the log-odds scale. We see that pSTAT1
is a strong predictor of the third trimester. This means that one unit increase in the transformed marker
expression makes it between exp(1) = 2.7 to exp(1.5) = 4.5 (95% confidence interval for GLMM) more likely
to be a cell from the third trimester, while holding the other markers constant. pSTAT3 and pSTATS have
negative coefficients. This means pSTAT3 and pSTATS5 predict the first trimester, while holding the other
markers constant. Only pSTAT1, pSTAT3, and pSTATS5 are below an FDR of 0.05. Our results corroborate
previous findings by Aghaeepour et al. (2017) reporting an increase of pSTAT1 during the third trimester for
IFNa stimulated samples.

cytoglm cytoglmm

PSTATS ! pSTATS{ |-
pSTAT3 |-e- pSTAT3{ e
PSTATL+ —o— pSTATL+ —e—

prpS6 - |-0-| prpS6 |-0-|
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1st trimester <—> 3rd trimester 1st trimester <—> 3rd trimester

Figure 4: Methods comparison between bootstrap GLM (cytoglm) and GLMM (cytoglmm). The horizontal
axes are on the log-odds scale. The vertical axes are the protein markers.

4 Discussion

Our new R package CytoGLMM is applicable to a wide range of cytometry studies. Besides comparisons on
paired samples, where samples are available for the same subject under different experimental conditions,
our CytoGLMM is applicable to unpaired samples, where samples are collected on two separate groups of
individuals.

Our simulation experiments compare multiple regression GLM and GLMM, as implemented in cytoglm and
cytoglmm in our R package. In simulated paired samples experiments, both GLMM-BH and GLMM-BY
procedures control the FDR below the target FDR under cell-level marker correlations with an autoregressive
structure with correlations up to £0.4. GLMM methods are more powerful than GLM methods for paired
samples. GLMM methods can account for the patient-to-patient variation in the model, whereas GLM
methods treat this variation as noise, which results in noisier and thus less powerful estimates. For unpaired
samples, we are forced to use the nonparametric bootstrap method for GLMs because there are no paired
samples available to estimate the random effect term. In simulated unpaired experiments, only BY controls
the target FDR. In practice, this means that we need a much higher donor samples size to detect a differential
expression compared to paired experiments.

Overall, larger cell-level and donor-level correlations increase power and reduce the observed FDR. Hypothesis
testing under arbitrary dependency structure is still an active research topic (Barber, Candés, and others
2015; Candes et al. 2018; Fithian and Lei 2020). What is easier to explain is the reduction in power
and FDR as a function of increased cell-level variance. Research in measurement error models shows that
increased uncertainty in measured covariates is linked to biased estimates. The coefficient estimates are
regularized—shrinking them towards zero—which translates into more conservative p-values; for extensive
literature on this topic see Fuller (1987) and Carroll et al. (2006). In GLMMSs, donor-level correlations have
only a weak impact on power and observed FDR because we explicitly model correlations with a random
effect term.

In general, biases in coefficient estimates of GLMs and GLMMSs can occur when we leave out proteins from
the analysis. Assume that we would like to relate variable protein X to experimental condition Y. If there
exists a second protein Z both related to X and Y, then Z is called a confounder, and not including it in
the analysis can change the coefficients estimates. In the pregnancy data, if we removed pSTAT1 from the
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analysis, the confidence intervals of pSTAT3 and pSTATS could change. Such a difference is expected if
pSTAT1 is a confounder. If pSTAT1 is not a confounder, the coefficient estimates for pSTAT3 and pSTATS
will be the same whether pSTAT1 is included or not. The change of coefficients depending on what markers
are included in the model can have strong effects. We have observed that in some real datasets that one
marker can make other markers change their sign depending on whether we include them or not. In such
cases, we recommend keeping all markers in the analysis to avoid introducing confounding biases.

Our simulations are limited to a Poisson mixed effect model for protein marker expression. Our conclusions
are only valid with respect to this model. The real data generating process might be different. Two main
caveats are to be noted. First, we can only encode an experimental design comparing two groups. Second, we
require gated cell types. To reduce the person-to-person bias of manual gating, we employed the R package
openCyto (Finak et al. 2014). The curse of dimensionality makes it challenging to scale this approach to
very high dimensional gating schemes.

A possible alternative to GLMMs are Generalized Estimating Equations (GEEs). GEEs are statistically more
efficient when the covariance structure of the residuals are known. In our case, the covariance structure is
unknown and needs to be estimated from the data. In most immunology studies, we only have a few donors
without a given covariance structure (e.g. no time dependency), resulting in a hard and possibly unstable
covariance estimation problem, which could result in an overall loss of efficiency (Wakefield 2013).

We applied CytoGLMM in wide range of immunology studies: comparison between influenza strains (Kronstad
et al. 2018), comparison between pregnant and non-pregnant women (Le Gars et al. 2019), comparison
between healthy controls and HIV+ individuals (Vendrame et al. 2020), comparison between multiple sclerosis
patients treated with daclizumab beta or placebo (Ranganath et al. 2020), and comparison between Beninese
sex workers and healthy controls (Zhao et al. 2020). Our next step is extending CytoGLMM to include more
complicated experimental designs; e.g. twin studies (Brodin et al. 2015).
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Supplementary Material

CytoGLMM R Package
Our R package is available on GitHub:

o https://github.com/christofseiler/CytoGLMM/
A vignette is available on our R package website:

o https://christofseiler.github.io/CytoGLMM/

CytoGLMM Workflow

Here we illustrate a complete CytoGLMM workflow in R. Prepare data frame marker counts and sample
information.

str(df)

## tibble [2,503,107 x 13] (83: tbl_df/tbl/data.frame)


https://github.com/christofseiler/CytoGLMM/
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## $ donor : Factor w/ 16 levels "PTLGOO1","PTLGOO2",..: 1 111111111
## $ condition: Factor w/ 2 levels "l1st trimester",..: 2 222222222 ...
## § celltype : Factor w/ 12 levels "B","CD4+Tmem",..: 10 10 10 10 10 10 10 10 10 10 ...
## $ pCREB : num [1:2503107] 4 14 7 4 7 4 14 4 3 6 ...

## § pSTATS : num [1:2503107] 9 12 3 1328 1137 7 ...

## $ pP38 : num [1:2503107] 6 4 1 76 16 432 ...

## $ pSTAT1 : num [1:2503107] 35 82 7 48 32 30 57 37 23 85 ...

## $ pSTAT3 : num [1:2503107] 15 33 7 23 11 3 17 16 14 29 ...

## $ prpsSé6 : num [1:2503107] 13 13 95 124 27 11 6 ...

## $ pMAPKAPK : num [1:2503107] 20 36 8 22 30 38 12 20 25 20 ...

## $ IkB : num [1:2503107] 6 311330222 ...

## $ pNFkB : num [1:2503107] 13 7 2 4 16 4 16 8 9 12 ...

## ¢ pERK1_2 : num [1:2503107] 200101000 2 ...

Select functional marker of interest.

protein_names

## [1] "pCREB" "pSTAT5" "pP38" "pSTAT1" "pSTAT3" "prpS6"
## [7] "pMAPKAPK" "IkB" "pNFkB" "pERK1_2"

Transform counts.

df <>}, dplyr: :mutate_at(protein_names, function(x) asinh(x/5))

Subset to one celltype.
df %<>%, dplyr::filter(celltype == "NK")

Fit the cytoglm model with 1000 bootstrap samples.

glm_fit = CytoGLMM: :cytoglm(df,
protein_names = protein_names,
condition = "condition",
group = "donor",
num_boot = 1000)

Fit the cytoglmm model.

glmm_fit = CytoGLMM::cytoglmm(df,
protein_names = protein_names,
condition = "condition",
group = "donor")

Use print (glm_fit) or print(glmm_fit) on the fitted object to obtain some additional details of the model
that we just fitted.

Plot differential analysis results.

plot(glm_fit)
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Extract p-values.

summary (glm_fit)

## # A tibble: 10 x 3

## protein_name pvalues_unadj pvalues_adj
#i# <chr> <dbl> <dbl>
## 1 pSTAT1 0.002 0.00667
## 2 pSTAT3 0.002 0.00667
## 3 pSTATS 0.002 0.00667
## 4 pNFkB 0.028 0.07

## 5 pERK1_2 0.068 0.136
## 6 IkB 0.088 0.147
## 7 pCREB 0.106 0.151
## 8 pP38 0.142 0.178
## 9 prpS6 0.49 0.544
## 10 pMAPKAPK 0.592 0.592
summary (glmm_fit)

## # A tibble: 10 x 3

## protein_name pvalues_unadj pvalues_adj
#i# <chr> <dbl> <dbl>
## 1 pSTAT3 4.73e-21 4.73e-20
## 2 pSTAT1 8.21e-19 4.11e-18
## 3 pSTATS 8.46e- 9 2.82e- 8
## 4 pNFkB 2.53e- 2 6.31e- 2
## 5 IkB 3.26e- 2 6.50e- 2
## 6 pERK1_2 3.90e- 2 6.50e- 2
## 7 pP38 6.15e- 2 8.78e- 2
## 8 pCREB 1.02e- 1 1.28e- 1
## 9 prpS6 2.86e- 1 3.18e- 1
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## 10 pMAPKAPK 6.0le- 1 6.0le- 1

Filter adjusted p-values at some threshold.

summary (glm_fit) %>%
dplyr::filter(pvalues_adj < 0.05)

## # A tibble: 3 x 3
##  protein_name pvalues_unadj pvalues_adj

##  <chr> <dbl> <dbl>
## 1 pSTAT1 0.002 0.00667
## 2 pSTAT3 0.002 0.00667
## 3 pSTATS 0.002 0.00667

summary (glmm_fit) %>%
dplyr::filter(pvalues_adj < 0.05)

## # A tibble: 3 x 3
##  protein_name pvalues_unadj pvalues_adj

##  <chr> <dbl> <dbl>
## 1 pSTAT3 4.73e-21  4.73e-20
## 2 pSTATl 8.21e-19 4.11e-18
## 3 pSTATS 8.46e- 9  2.82- 8
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