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21  ABSTRACT

22 Although the typical genomic and phenotypic changes that characterize the evolution of
23 organisms under the human domestication syndrome represent textbook examples of rapid
24 evolution, the molecular processes that underpin such changes are still poorly understood.
25 Domesticated yeasts for brewing, where short generation times and large phenotypic and
26  genomic plasticity were attained in a few generations under selection, are prime examples.
27  To experimentally emulate the lager yeast domestication process, we created a genetically
28  complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes,
29 one of the parents of lager yeast. Then we imposed a constant selection regime under a
30 high ethanol concentration in 10 replicated populations during 260 generations (six months)
31 and compared them with evolved controls exposed solely to glucose. Evolved populations
32  exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the
33  proliferation of a single lineage (CL248.1) that competitively displaced all other clones.
34 Interestingly, the outcome does not require the entire time course of adaptation, as four
35 lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo
36 genetic variants were produced in all evolved lines, including SNPs, aneuploidies, INDELSs,
37 and translocations. In addition, the evolved populations showed correlated responses
38 resembling the domestication syndrome: genomic rearrangements, faster fermentation
39 rates, lower production of phenolic-off flavors and lower volatile compound complexity.
40  Expression profiling in beer wort revealed altered expression levels of genes related to
41 methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to
42  higher ethanol and fermentation stress tolerance in the evolved populations. Our study
43  shows that experimental evolution can rebuild the brewing domestication process in “fast
44  motion” in wild yeast, and also provides a powerful tool for studying the genetics of the

45  adaptation process in complex populations.
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46  INTRODUCTION

47  Living organisms are continually adapting to changing environments by natural selection,
48 latently harboring the raw genetic variation required for such responses. When new
49  conditions arise, adaptation to almost every environmental scenario is possible (e.g.,
50 temperature, oxygen and nutrients) [1, 2]. In this context, the genomic analysis of human-
51  made populations (i.e., population genomics of domesticated species) is a relatively new
52  matter, and constitutes a promising research approach for the experimental study of
53  evolutionary processes [3]. Nevertheless, studies that search for the causal factors shaping
54 the genetic structure of yeast and fungal populations, such as small nucleotide
55  polymorphisms (SNP), insertions or deletions (INDELS), copy number variation (CNV) and
56  structural variants (SV), are still insufficient to fully characterize the integrated adaptation

57  process to new environments [4].

58  Adaptive evolution in microorganisms is a process that occurs ubiquitously, including in
59 artificial settings where micro-environments are created, and allows the adaptation of
60 populations to defined conditions, driving the evolution process (domestication) [5].
61 Domestication is a stereotyped adaptive process (a “domestication syndrome”, see [6, 7])
62  within a human-created environment, where several characteristics can be tracked and
63 defined as ‘domestication signatures’. These signatures are present in different fungal
64  species, including Aspergillus oryzae in soy sauce [8], Penicillium molds associated with
65 cheese [9] and S. cerevisiae [10, 11] together with S. pastorianus [12], responsible for beer
66  fermentation. In this context, spore production and viability, metabolic remodeling, changes
67 in volatile compound production, transcriptional re-wiring and faster growth rates are
68  considered key traits and goals of microbe domestication. In the case of brewing, the yeast
69 re-utilization process led to new spontaneous mutations generated during cell division,
70  which, together with selective environmental pressures, such as high ethanol

71  concentrations, selected fitter individuals [13]. Genomic analysis in beer yeast domesticated
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72  strains demonstrated the presence of common genetic patterns, such as large genomic
73  rearrangements, aneuploidies, high heterozygosity levels and infertility, all of which are

74  hallmarks of the adaptation process [11, 14-16].

75 Two main types of yeasts suffered domestication under different brewing settings; S.
76  cerevisiae that ferments ale beers at temperatures near 20 °C, and S. pastorianus that
77  produce lager beers fermented at lower temperatures (8-15 °C) [17]. S. pastorianus is an
78 interspecific hybrid from the cross between S. cerevisiae and the cryotolerant wild yeast S.
79  eubayanus [18]. The hybrid nature of S. pastorianus confers a series of competitive
80 advantages in the fermentation environment, likely due to the combination of performance
81  at relatively cold temperatures, efficient sugar uptake and metabolic switching between
82  sugar sources [19]. During an intense domestication process over approximately 500 years,
83 lager beers have evolved reduced organoleptic complexity, mainly characterized by the
84  presence of ester compounds and the absence of phenolic off-flavors [20]. This is reflected
85 in the absence of PAD1 and FDC1 in S. pastorianus, genes which are responsible for the
86 synthesis of such off-flavors [21, 22] and present in S. eubayanus. Lager yeast
87  domestication is characterized by a reduced lag phase in the switch from glucose to maltose,
88 and regulatory cross-talk between S. cerevisiae and S. eubayanus sub-genomes, which
89 complement each other in terms of the genes required for maltose/maltotriose metabolism

90  [23, 24].

91 Given the recent discovery of S. eubayanus, its puzzling origin and apparently co-
92  evolutionary association with Nothofagus trees, several authors have analyzed the
93  worldwide distribution of S. eubayanus, together with its genetic, phenotypic, and
94  fermentative diversity [24-27]. Patagonian isolates of S. eubayanus exhibit the most
95 extensive genetic diversity, and the presence of the most significant number of lineages

96 compared to Northern hemisphere populations, including five different lineages and a large
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97  group of admixed isolates [26, 27]. To date, there is no evidence of S. eubayanus isolates
98 in Europe, where the original S. pastorianus hybrid likely originated. Interestingly,
99 fermentation capacity varies significantly between S. eubayanus isolates, possibly due to
100 differences in maltose consumption and diauxic shift capacity, resulting in two opposite
101  outcomes: successful or stuck fermentations [27]. These isolates produce fruit and floral
102  flavors in beer [28], but high levels of 4-vinyl guaiacol, considered a phenolic off-flavor that

103  provides a clove-like aroma, which is not preferred among consumers [21, 28, 29] [30].

104  Although different reports have provided insights into the genomic and phenotypic changes
105 responsible for the brewing capacity of S. pastorianus, particularly the S. cerevisiae genome
106  portion, we know little about the process of S. eubayanus domestication before or after
107 hybridization. Thus, further evidence is needed to understand the molecular mechanisms
108 underpinning the S. eubayanus fermentative phenotype, which in turn will provide important
109 insights into the inherent evolutionary process represented by directional selection for
110 domestication, and correlated responses. In this study, a genetically complex artificial
111  mixture of 30 different genotypes of S. eubayanus was continually exposed to high ethanol
112 levels, mimicking the domestication process in breweries. We measured their correlated
113  responses including their genomic, transcriptomic and phenotypic changes, and identified
114  candidate genes that confer ethanol tolerance. Our results demonstrate that a single genetic
115  background consistently overcomes the remaining strains, showing greater fermentation
116  performance, but also significantly higher fithess in oxidative and osmotic stress
117 environments. To an extent, we thus recreate the domestication process in the laboratory,
118 showing how this cryotolerant yeast adapted to the competitive beer environment of a
119 human industry and proved that experimental evolution can rebuild the brewing

120 domestication process in S. eubayanus in “fast motion”. This provides a powerful tool for


https://doi.org/10.1101/2020.12.07.415240
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.07.415240; this version posted December 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

121  disentangling the molecular, physiological and biochemical processes that underlie the

122 domestication of domesticated microorganisms.
123

124 MATERIALS AND METHODS

125  Microorganisms and culture media

126 Thirty S. eubayanus strains isolated from bark samples obtained from Nothofagus pumilio
127  trees in south Chile were utilized for the experimental evolution assay, as listed in Table S1.
128 These strains were previously reported and belong to the Patagonia B cluster [27]. S.
129  cerevisiae L299 [31] and MTF2444 (EC1118 hsp12::GFP) [32] strains were used as growth
130 control and in the competition assays, respectively. Additionally, we used the S. pastorianus
131  Saflager W-34/70 (Fermentis, France) strain as a lager fermentation control. All isolates
132 were maintained in YPD agar media (yeast extract 1%, peptone 2%, glucose 2% and agar

133 2%) and stored at -80°C in 20% glycerol stocks.
134  Experimental evolution

135 Initially, one colony from each S. eubayanus strain was cultured in 0.67% yeast nitrogen
136  base (YNB) media (Difco, France) with 2% glucose at 20°C (hereinafter referred to as GLU)
137 and 150 rpm orbital shaking. Later, each pre-inoculum was utilized to prepare a co-culture
138 in a single 250 mL flask to obtain a final concentration of 1x10° cells/mL of each strain. Ten
139  replicates were set up (parallel populations) in 5 mL GLU and ten supplemented with 0.67%
140  YNB media, 2% glucose and 9% ethanol (hereinafter referred to as EtOH). The inoculum
141  was resuspended and transferred to the 20 replicates to obtain a final concentration of 1x10°
142  cells/mL (Figure 1A). The adaptative evolution assays were performed at 20°C at 150 rpm
143  for 72 h. Subsequently, the cultures were used to inoculate fresh 5 mL cultures at an

144  inoculum density of 1 x 10® cell/mL, and this procedure was sequentially repeated. The
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145  number of generations was estimated using the "generations = log (final cells - log initial
146  cells)/log2” formula, summing up the number of cells/mL doublings between every culture

147  transfer during the adaptive evolution process.

148  Phenotyping assay

149  The phenotyping assay was performed as previously described [27]. Briefly, isolates were
150  pre-cultivated in 200 uL 0.67% YNB medium supplemented with glucose 2% for 48 h at
151  25°C. Next, strains were inoculated to an optical density (OD) of 0.03-0.1 (wavelength 630
152 nm)in 200 uL growth media, where the following carbon sources were considered: Glucose
153 2%, Fructose 2%, Maltose 2%, Galactose 2%, Pilsner Beer Wort 12 °Plato (°P) and
154  incubated without agitation at 20°C for 24 h using a Tecan Sunrise absorbance microplate
155 reader. Additionally, several environmental stressors were assessed, including ethanol 9%,
156  Sorbitol 20%, H>-O> 3 mM, SDS 0.001% and high temperature (28 and 34°C) during 48 h.
157  For ethanol 9%, experiments were carried out for 96 h. The OD was measured every 30
158  minutes using a 630 nm filter. Each experiment was performed in triplicate. Maximum growth
159 rate, lag time and OD max parameters were obtained for each strain using the GrowthRates

160  software with default parameters [33].

161  Growth curves incorporating carbon source switching from glucose to maltose and galactose
162  were determined under micro-cultivation conditions in YP (1% yeast extract, 2% peptone)
163  media including either 5% glucose, 5% maltose or 5% galactose at 25°C for 48 h. Pre-
164  cultures were grown in YP with 5% glucose medium at 25°C for 24 h. Cultures were then
165  diluted to an initial OD600nm of 0.1 in fresh YP 5% glucose medium for an extra overnight
166  growth. The next day, cultures were used to inoculate a 96-well plate with a final volume of
167 200 pL YP with the disaccharide source at an initial OD600nm of 0.1. The growth curves

168  were monitored by measuring the OD600nm every 30 min as previously mentioned. All
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169  experiments were performed in triplicate. Lag phase and maximum specific growth rate

170  (Mmax) were estimated as previously described [34] using the R software version 3.6.3.
171  Fermentations in beer wort

172 Fermentations were carried out as previously described [28, 29]. Briefly, fermentations were
173  performed in at least three biological replicates, depending on the experiment, in 12 °P using
174 a BrewFerm Pilsner commercial beer kit (Beringen, Belgium). For this, a colony was
175 transferred to 5 mL 6 °P pilsner beer wort supplemented with 0.3 ppm ZnCl; and incubated
176  at 20°C with orbital shaking at 150 rpm for 24 h. Then, the complete pre-inoculum was
177  transferred to 50 mL 12 °P pilsner beer wort and incubated in similar conditions for 24 h.
178  Cells were utilized to inoculate 50 mL fresh 12 °P pilsner beer wort to a final concentration
179  of 1.8 x 107 cell/mL. Cultures were maintained at 12°C for 14 days without agitation and

180  weighed every day to calculate the CO: released.

181  Larger volume fermentations for RNA extraction and metabolite production analysis were
182  carried out in 1.5 L 12 °P beer wort for 14 days at 12°C. At the end of the fermentation,
183  metabolites such as glucose, fructose, maltose, maltotriose, ethanol and glycerol were
184  estimated using HPLC [27]. Volatile compounds were detected using HS-SPME-GC-MS as

185  previously described [28].
186  Competition Assays

187  Atotal of 1 x 10° cells/mL of the evolved and S. cerevisiae MTF2444 (EC1118 hsp12::GFP)
188  strains were separately pre-incubated in 5 mL YNB media supplemented with 2% glucose
189 for 24 h. Evolved individuals were mixed in equal proportions with the S. cerevisiae
190 MTF2444 GFP expressing-mutant strain at a final concentration of 2 x 108 cell/mL in YNB
191 media supplemented with 2% glucose and 6% ethanol. Cultures were incubated in an orbital

192  shaker at 20°C and 150 rpm during 72 h, and 100 uL samples from each culture were
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193  extracted every 24 h. Aliquots were washed twice in PBS and stored in the same buffer.
194  Cultures were then analyzed in a BD FACScanto Il Cytometer (Biosciences, USA). Finally,
195 the proportion of non-fluorescent/GFP-fluorescent cells was estimated. Experiments were

196  performed in triplicate.
197  Sequencing of the evolved lines and identification of mutations

198 DNA extraction was performed as previously described [27, 29]. Sequencing of three parallel
199 populations at final and intermediate stages of the evolution process was performed using
200 the lllumina HiSeq X ten platform (BGI sequencing, China). Overall, approximately 45 million
201  reads (paired-end) were obtained for each evolved line. The raw reads were processed to
202  remove adaptor sequences using the Fastp tool and filtered considering a 20 phred score
203  cut-off [35]. Reads were aligned against the S. eubayanus CBS12357" reference genome
204  [36] using the Burrows-Wheeler Aligner [37]. Overall, 99% of the reads were aligned,
205 obtaining a mean coverage of 980X. Genome sequences of 27 parental strains were
206  previously sequenced [27], from which a list of SNPs that were unique for each of those
207  sequenced strains was obtained, using a custom R script. To estimate the proportion of the
208  parental genetic backgrounds in every evolved line, the alternative genotype coverage at
209  each unique SNP coordinate was obtained using bcftools mpileup [38] [39]. De novo SNP
210 calling in the evolved lines was performed wusing freebayes v 1.3.0

211 (https://github.com/ekgl/freebayes). The total number of SNPs was calculated using

212 Freebayes [40] and the effect of each SNP was predicted with SnpEff [41] and the S.
213  eubayanus CBS123577 reference genome [36]. Reads are available in the Biosample

214  Database Project PRINA666059.

215 Genome reconstruction of the CLEt5.1 mutant
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216  The genome of the CLEt5.1 mutant was reconstructed using Nanopore sequencing coupled
217  with lllumina sequencing. Nanopore sequencing was performed using a minlON system
218  (Oxford Nanopore, Oxford, UK). For this, DNA extraction and sequencing proceeded as
219  previously described [29]. Overall, 26.1 million reads for lllumina and 96,000 reads for
220  Nanopore were obtained (Table S2). The raw fast5 files were transformed to fastq files and
221  debarcoded using Guppy 2.3.5 [42]. Barcode and adapter sequences were trimmed using
222 Porechop (https://github.com/rrwick/Porechop) and filtered with Filtlong
223 (https://github.com/rrwick/Filtlong) using a Phred score of 30. Genome assembly was
224  performed with Canu (https://github.com/marbl/canu) using default settings. Additionally,
225  two rounds of nanopolish (https://github.com/jts/nanopolish) and pilon
226  (https://github.com/broadinstitute/pilon) were carried out. Moreover, the raw assembly was
227  polished using the lllumina reads filtered with a Phred score of 20 (Burrows-Wheeler
228  Aligner). The genome assembly was annotated with the pipeline LRSDAY [43] using the S.
229  eubayanus CBS12357" reference genome as model for training AUGUSTUS [44],
230 supported by the transcriptome assembly produced by TRINITY [45]. The completeness of
231  the genome assembly was evaluated using BUSCO [46]. The assembly was compared with
232 CBS123577 using nucmer (Margais et al, 2018) to evaluate the synteny, whilst specific
233 structural variants (SVs) were identified using MUM&Co [47]. All the parameters of the
234  pipeline were set up as default. The enrichment analysis of Gene Ontology (GO) terms and
235  KEGG pathways was performed using METASCAPE [48]. The identification of transcription
236  factor binding sites in the regulatory region 500 bp upstream of the upregulated genes of the
237  evolved strain was performed using CiiDER [49]. Reads are available in the Biosample

238  Database Project PRINAG666059.

239  RNA-sequencing and differential expression analysis
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240  RNA was extracted using the E.Z.N.A.® Total RNA Kit | (Omega Bio-tek, USA). RNA was
241  DNase | treated (ThermoFisher, USA) and purified using the RNeasy MinElute Cleanup Kit
242 (Qiagen, Germany). The lllumina libraries and sequencing were performed as previously
243  described [29] in the BGI facilities (Hong Kong, China). Briefly, RNA integrity was confirmed
244  using a Fragment Analyzer (Agilent, USA). The RNA-seq libraries were constructed using
245  the TruSeq RNA Sample Prep Kit v2 (lllumina, USA). The sequencing was conducted using
246  paired-end 100-bp reads on an lllumina HiSeq X Ten in a single lane for the six samples.
247 Reads are available in the Biosample Database Project PRIJNA666059. Reads were
248 mapped to the S. eubayanus CBS12357" reference genome using RNAstar ver. 2.7.3 [50]
249  and analyzed using featurecounts in R [51]. Differential expression was analyzed statistically
250 using DESeq2 package in R [52]. Genes showing an adjusted P-value of 0.05 or less were
251  considered as differentially expressed genes (DEGs). Analysis of GO term enrichment was
252  performed with the R package enrichGO

253  (https://www.rdocumentation.org/packages/clusterProfiler/versions/3.0.4/topics/enrichGO).

254  Cytoscape was used to visualize transcription factor regulatory networks [53].

255

256 RESULTS

257  S. eubayanus fitness sensitivity under high ethanol conditions

258  We performed a parallel population assay to obtain high ethanol-tolerant S. eubayanus
259 individuals (Figure 1A). For this, thirty S. eubayanus strains belonging to the PB-2 and PB-
260 3 lineages, previously isolated in southern Chile (Villarrica, Coyhaique and Puyehue; [27]),
261  were selected and characterized for microbial growth under different ethanol conditions.
262 Initially, we used micro-cultures to evaluate biomass generation in 8%, 9% and 10% ethanol.

263  Growth under these conditions showed long lag phases and low growth rates for all strains
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264  in concentrations above 9% ethanol (Figure 1B, Table S3). This growth was significantly
265 lower compared to that of the L299 wine S. cerevisiae control strain (p-value < 0.05,
266 ANOVA), demonstrating a greater susceptibility of S. eubayanus to high ethanol
267  concentrations (Table S3). Furthermore, for all tested parameters, micro-culture assays
268  demonstrated significant phenotypic differences between strains (Figure 1B), representing
269 a genetically and phenotypically heterogeneous group of strains, ideal for the parallel
270  population assay. Based on the above, we chose 9% ethanol as our selective environment

271  for the experimental evolution procedure (from now on referred to as EtOH).
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276  Figure 1. Fitness of the individual and evolved lines under ethanol. (A) Experimental
277  evolution strategy in 10 replicated lines under YNB + glucose (GLU, red tubes) and YNB +
278 GLU + ethanol 9% (EtOH, blue tubes). From every line, individuals were isolated and
279  subjected to phenotyping, fermentation and sequencing analysis. (B) The growth rate
280 (umax) of the different parental strains used in this study was estimated under ethanol 8%,
281 9% and 10%. The fitness of the evolved lines under (C) ethanol and (D) glucose.
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282

283  Our population assay began by mixing the thirty strains in equal proportions and subdividing
284  them into ten mock replicates (YNB-glucose media, from now on referred to as GLU) and
285  ten EtOH lines (Figure 1A). The ethanol fitness of each evolved line was evaluated at
286 different time points during the progression of the assay (Figure 1C). After 260 generations
287  (approximately six months), all GLU lines showed a significant decrease in ethanol fitness
288 compared to the ancestral culture (p-value < 0.05, ANOVA, Figure 1C). In contrast, the
289  EtOH-evolved lines showed higher maximum growth rates (umax) in ethanol compared to
290 the original mixed-culture, attaining a 60% greater ymax (p-value < 0.05, ANOVA). These
291  differences were not observed in glucose micro-cultures (Figure 1D). Thus, demonstrating
292  that the evolved lines performed better in their selective environment compared to the
293  control condition. Interestingly, we did not detect major adverse phenotypic effects in beer

294  wort, suggesting a low accumulation of detrimental mutations (Table S3b).
295

296
297
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298 Genome sequencing reveals consistent strain selection in parallel populations

299  Three GLU (GLU-1, 7 and 10) and three EtOH lines (EtOH-2, 5 and 6) were sequenced at
300 the end of the experiment to identify the genomic changes and the pervasiveness of the
301  different genetic backgrounds across the assay. Interestingly, all the EtOH sequenced lines
302 showed a sustained prevalence of strain CL248.1 (belonging to PB-2 and isolated in
303 northern Patagonia), reaching over 95% of the population’s allele frequency by the end of
304 the experimental evolution assay (Figure 2A). That being said, CL248.1 did not show the
305 highest growth rare (umax) under ethanol 9% of the S. eubayanus strains considered in this
306  study, suggesting that selection did not occur solely due to ethanol tolerance (Table S3). In
307 contrast, we did not observe a consistent selection in the GLU lines, where different genetic
308 backgrounds were found depending on the evolved line (Figure 2A). These results likely
309 suggest a milder and different selection pressure in yeast when glucose is used as a
310 selection regime, and a particular competitive fitness advantage of CL248.1 solely under
311  EtOH selection, demonstrating a convergent phenomenon when ethanol and biotic stress

312  are applied together.

313
314
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315  Figure 2. Genomic and phenotypic changes in the evolved lines.
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316  (A) The presence of the prevalent genetic backgrounds in three glucose (GLU) and ethanol
317 (EtOH) evolved lines. (B) Prevalence (frequency) of the most prominent genetic
318  backgrounds during the evolution of line EtOH-2. (C) Ethanol 9% growth rates for the most
319 representative parental strains and evolved lines. (D) Total number of SNPs relative to the
320 CBS12357 reference genome at the beginning and end of the evolution assay for EtOH-5,
321 6 and GLU-1, 7 and 10 lines. In addition, the number of SNPs during the evolution assay is
322 shown for EtOH-2. (E) Chromosome number estimation across EtOH lines. Only the EtOH-
323 2 line showed an aneuploidy by the end of the evolution assay (chromosome 9).

324

325 Line EtOH-2 was sequenced at different time points (0, 60, 120 and 260 generations) to
326 identify the genotypic course of the assay and additional genotypes under selection (Figure
327 2B). We observed a predominance of CL248.1 and CL601.1 genotypes after 60
328 generations, demonstrating a competitive displacement of CL248.1 in the culture, together
329  with higher fitness over the other genetic backgrounds (Figure 2B). Interestingly, after 120
330 generations, four genotypes monopolized the culture, representing 96.6% of the EtOH-2
331 line. Nevertheless, none of these parental genotypes showed high ethanol growth rates
332 compared to the evolved lines (Figure 2C). A second genotype, CL471.1 reached significant
333  frequencies (maxima 29.3%) during intermediate periods of the evolution assay. However,
334 it was almost absent by the end of the experiment, being detected at a frequency of just
335 0.15% in the final population. Moreover, over time, we calculated the total number of SNPs
336 in evolved lines against the reference strain CBS12357". We found a decrease in the
337 number of SNPs over time across all lines relative to the ancestral culture, particularly in

338  EtOH-2, which exhibited the greatest decay compared to other lines (Figure 2D).

339  Toidentify de novo genetic variants with a potential effect on ethanol tolerance, we used the
340 EtOH-2 line and compared polymorphisms (SNPs and short INDELs identified using
341 freebayes) before and after selection. We chose this line because it showed the highest
342 homology to a single genetic background (CL248.1), allowing the identification of novel
343  genetic variants over the raw population’s genetic variation. In this way, we arbitrarily

344  selected for polymorphisms with a putative moderate/high impact on the gene function and
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345 found 34 impacted genes under these criteria (Table S$4). Among others, we found
346  mutations in genes such as YPS6 and IMA1, encoding for a putative GPIl-anchored aspartic
347  protease [54] and a isomaltase [55], respectively. We also found a single aneuploidy in the
348 EtOH-2line in chromosome IX, where an extra copy was found (Figure 2E). Altogether, our
349 results demonstrate how ethanol promotes a significant decrease in genetic variability due
350 to genotype selection coupled with the emergence of new adaptive mutations vital for

351  ethanol survival in biological processes such as stress damage and sugar metabolism.

352

353
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354  Ethanol-evolved individuals have greater fermentation capacity and maltotriose

355 consumption

356 We determined the fitness cost of ethanol adaptation in 24 different environmental
357  conditions for those EtOH adapted individuals isolated after 260 generations of selection.
358  For this, we randomly isolated two clones from each EtOH line and estimated growth rates
359 in micro-cultures considering diverse phenotypic growth conditions, including high
360 temperature, different carbon sources, and oxidative and osmotic stress (Table S5). To
361 control for adaptive mutations in YNB laboratory media, we also isolated two colonies from
362 three GLU lines. In general, individuals from EtOH-evolved lines showed higher ymax in
363  ethanol (Figure 3A), and also for a greater number of conditions, compared to GLU-evolved
364 individuals and the ancestral culture (p-value < 0.05, ANOVA, Table S5). These conditions
365 included greater growth rates in sources such as glucose, maltose and fructose, together
366  with resistance to oxidative (H202) and osmotic stresses (sorbitol 20%) (Figure 3B),
367 suggesting that selection improved general stress tolerance in these evolved strains.
368 Interestingly, we found that one EtOH evolved individual (CLEt5.1, isolate n°1 from the
369 EtOH-5 line) exhibited greater ethanol tolerance, but a lower growth rate under high
370 temperature (34°C) and an ionic detergent (SDS 0.001%, Figure 3B), indicating the

371 existence of a trade-off.

372 To determine the relative fitness of EtOH and GLU evolved individuals, we carried out a
373  competition assay in YNB-glucose supplemented with 6% ethanol, against a recombinant
374  S. cerevisiae that constitutively expresses GFP (Figure S1). We observed that all tested
375 strains were unable to outcompete S. cerevisiae; however, significant differences were
376  found in the final proportion of the tested strains at the end of the experiment (p-value <
377  0.05, ANOVA). For example, strain CLEt9.1 was almost absent at the end of the competition

378  assay (relative frequency < 0.1), while CLEt2.2 was found to represent 31% of the cells
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379 quantified in the final culture (Figure 3C). These results demonstrate fitness differences

380 between EtOH and GLU isolated individuals.
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384  Figure 3. Phenotypic profiling of evolved individuals. (A) Growth rates under YNB-
385  glucose-ethanol 9% of different evolved individuals. (B) Phenotypic heatmap based on
386  micro-culture growth rates of EtOH and GLU-evolved individuals, evaluated in 11 different
387 conditions. (C) The evolved strains were challenged using a GFP-mutant S. cerevisiae in
388 YNB media supplemented with ethanol at 9%. The strain frequency of the evolved
389 individuals was evaluated using flow cytometry. (D) Fermentation in 12 °P beer wort of
390 different evolved individuals. The fermentative capacity was estimated from the CO- lost at
391  different time-points. The statistical differences were calculated after 216 h of fermentation
392  using ANOVA. (E) Maltotriose consumption in YNB maltotriose 2% micro-cultures.

393

394  Additionally, we evaluated the fermentative capacity in small-scale lager wort fermentations
395 at low temperature (12 °C) of three EtOH and two GLU evolved individuals. The selected
396 strains were monitored for 15 days, and their fermentative capacity was estimated by
397 measuring CO: loss and sugar consumption throughout the fermentative process (Figure
398  3D). Surprisingly, all the EtOH-evolved individuals showed a similar fermentative profile
399 compared to the commercial strain, where no significant differences were found in terms of
400 total CO;z loss (p-value < 0.05, ANOVA). Furthermore, the best-evolved isolate (CLEt5.1)
401 showed a 22.6% increase in loss of CO, compared with the ancestral culture after 14 days
402  of fermentation (Figure 3D and Figure S2A, p-value > 0.05, ANOVA), and also exceeded
403 the fermentative performance, in terms of fermentation rate, of its parental genetic
404  background CL248.1 (Figure 3D, S2B, and S2C). Moreover, sugar consumption differed
405  between the W34/70 commercial strain and the evolved individuals. Although the isolates
406  were able to consume all the glucose, maltose, and fructose found in the wort (Figure S2D),
407 no maltotriose consumption was observed (p-value < 0.05, ANOVA, Table S6) in the
408  evolved strains. We only detected maltotriose consumption under fermentation conditions
409 in the lager commercial strain, in agreement with the inability of S. eubayanus to use this
410 carbon source (Figure S2D, [23]). To further analyze maltotriose consumption, we
411 quantified the remaining maltotriose concentration after a 5-day incubation period of the
412  evolved individuals in YNB synthetic media supplemented with 2% maltotriose as the sole

413  carbon source (Figure 3E). Interestingly, we detected 19.1% maltotriose consumption in the
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414  evolved strain CLEt5.1, while no consumption was found in CL248.1 (Figure 3E). These
415  results suggest genomic and molecular changes leading to maltotriose metabolization in this

416  genetic background that only arise when maltotriose is used as the sole carbon source.

417
418

419 Identification of de novo genetic variants in the EtOH evolved strain CLEt5.1

420 The genome of the EtOH-evolved individual CLEt5.1 was sequenced by coupling Nanopore
421 and lllumina technologies to elucidate the genetic origin of the phenotypic changes acquired
422  through the evolution process. We obtained a high-quality assembly and identified 5,946
423  genes in the final genome annotation, organized in 37 scaffolds (Figure 4, Table S2 and
424  Table S7a). The completeness analysis using BUSCO showed that the de novo assembly
425  contained almost all the expected set of genes for a member of the Saccharomyces genus
426  (97.5%). By comparing the scaffolds of the assembly against the CBS12357T reference
427  genome, high synteny between genomes was observed, except for an evident translocation
428  between chromosomes IV-R and XVI-L (Figure 4). Therefore, we proceeded to identify
429  structural variants between CLEt5.1 and its parental background (CL248.1) using MUM&Co
430 [47]. In this way, we identified 100 structural variants (Deletions: 47, Insertions: 41,
431  Duplications: 10, Inversions: 0 and Translocations: 2, Table S7b), primordially INDELs and
432 confirming the translocation between chromosomes IV-R and XVI-L of 980 kb. Additionally,
433  we found a 47 kb deletion in chromosome Xll, and two 24 kb and 39 kb duplications in
434  chromosomes VIl and IV, respectively. Among the genes present in the chromosome VI
435  duplication, we found VID30, which is involved in the regulation of carbohydrate metabolism
436 and the balance of nitrogen metabolism towards glutamate production, and HAP2, a
437  transcription factor which is predicted to regulate many of the proteins induced during the

438  diauxic shift [56](Table S7c). SNP calling using freebayes detected 1,006 high quality SNPs.
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439 To better understand the molecular basis of ethanol adaptation, we searched for
440  polymorphisms across the CLEt5.1 genome that could generate moderate or high impact
441  mutations on the gene function (based on snpeff predictions). We found 11 genes with
442  significant polymorphisms between CLEt5.1 and the native CL248.1 strain (Table S7d). For
443  example, we found a missense variant in PUT4, which encodes for a proline permease
444  essential in proline assimilation during fermentation [57]. Similarly, we found a frameshift in
445 |RA2, which encodes for a GTPase-activating protein, and previously related to high-
446  temperature fermentation [58] and low glucose-growth defect rescue [59]. These results
447  demonstrate that this relatively short period of ethanol adaptation promoted punctual, small
448 and large rearrangements, which, taken together may be responsible for the phenotypic

449 differences between the CLEt5.1 and CL248.1 strains.
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451  Figure 4. Genome synteny analysis of the EtOH evolved CLEt5.1 strain. Dot plot
452  representation of DNA sequence identity between the S. eubayanus CBS12357" strain and
453  the EtOH evolved CLEt5.1 strain. A single translocation was found between chromosome
454 |V and XVI.

455

456  Transcriptome and organoleptic analysis of the CLEt5.1 evolved strain under beer

457  fermentation

458  Todetermine the impact of genetic changes in metabolic processes during wort fermentation
459  in EtOH adapted individuals, we used a transcriptome approach. This allowed us to identify
460  differentially expressed genes (DEGs) between the CLEt5.1 and the CL248.1 parental strain
461  after 24 h of fermentation in a 1.5 L fermenter. Overall, we observed 92 DEGs (Fold change
462 > 0.7 and FDR < 0.05, Figure 5A and Table S8), of which 59 and 33 were up- and down-
463  regulated in the CLEt5.1 strain, respectively. Enrichment analysis of GO terms in up-
464  regulated genes revealed that diverse biological and molecular pathways, including sulfur
465  compounds, methionine metabolism, and several cellular amino acid metabolic processes
466  were enriched in the evolved strain (Table S8). In contrast, down-regulated genes were
467  significantly enriched in alpha-amino acid metabolism and pheromone response
468  metabolism, together with cofactor and vitamin binding molecular functions (Table S8).
469  Similarly, KEGG enrichment analysis highlighted that genes within several pathways were
470 differentially expressed between genotypes. For example, assimilatory sulfate reduction,
471  cysteine and methionine metabolism, seleno-compound metabolism and biosynthesis of
472  antibiotics pathways were enriched in the up-regulated genes set (Table S8). In contrast,
473  we found a significant enrichment of the amino acid biosynthesis pathway among down-
474  regulated genes (p-value < 0.01, hypergeometric test). Interestingly, these two analyses
475  highlight that several DEGs were related to nitrogen and amino acid uptake, stress
476  tolerance, and faster diauxic shift, suggesting that nitrogen uptake and a rapid stress

477  response play essential roles during fermentation in this evolved strain.
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479

480 Figure 5. Differential gene expression analysis between the EtOH evolved CLEt5.1
481 strain and its native parental strain under beer wort fermentation conditions. The
482  transcriptome of the CLEt5.1 EtOH evolved strain was evaluated and compared against the
483  CL248.1 native strain under beer wort fermentation conditions. (A) The volcano plot depicts
484  differentially expressed genes between CLEt5.1 and CL248.1 (B) Relative growth rates of
485 CLEt5.1 and CL248.1 strains shifted from two 24 hours 5% glucose pre-cultures to 5%
486 maltose and 5% galactose media. (C) Network analysis in upregulated genes in CLEt5.1
487  depicting the most relevant hubs differently regulating genes between CLEt5.1 and CL248.1.
488  Transcription factors are shown in red triangles, while TF-gene connections are shown in
489  red lines.

490

491  To evaluate the fast diauxic shift and the capacity of these two strains to switch from glucose
492  to other disaccharides, we estimated their growth capacity under maltose and galactose
493  after two 24 h pre-cultures in 5% glucose. In agreement with our transcriptome results, the
494  evolved strain showed a significantly greater growth rate compared to CL248.1 under 6%

495  maltose and 6% galactose concentrations after long glucose incubation periods (Figure 5B).

496  Additionally, to identify possible common regulatory elements of the up-regulated genes, we
497  analyzed their promoter sequences (500 bp upstream of the transcription start site), and
498  found a significant enrichment of transcription factor binding sites (p-value < 0.05, Fisher's
499  exact test) for transcription co-activators of the Cbf1-Met4-Met28p complex (methionine
500 metabolism), Dal80p and Uga3p (activators of nitrogen metabolism), Tye7p (glycolytic
501 genes activator) and Sfl1p (repression of flocculation-related genes, and activation of stress
502 responsive genes, Table S9). Additionally, we used Cytoscape to visualize the resulting
503 network predicting regulatory interactions from the set of upregulating genes (Figure 5C).
504  According to our network model, we found four transcription factors: Met28p, Met32p, Gatp
505 and Yap5p modulating the expression of these up-regulated genes in CLEt5.1. Interestingly,
506 Yapb5p is known to be involved in the diauxic shift [60]. These results highlight a

507 transcriptional rewiring in CLEt5.1 for genes related with nutrient acquisition, stress
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508 tolerance and methionine metabolism during the evolution of tolerance to fermentation

509 stress.

510 During the fermentation process, we subjectively perceived that the organoleptic properties
511  of the beers produced by the evolved strain differed from those of the parental native strain.
512  Therefore, to determine how the transcriptional rewiring and genomic changes impacted the
513  production of volatile compounds and the beer profile in the CLEt5.1 evolved strain, we
514  quantified volatile compound production using HS-SPME-GC/MS at the end of fermentation
515 (day 15). As expected, we found significant differences in the composition of volatile
516 compounds produced in beer between the evolved and parental strains (p-value < 0.05,
517  paired t-test, Figure 6A, Table $10). In general, the evolved clone showed lower levels of
518 ester compounds, such as isoamyl acetate and ethyl octanoate (p-value < 0.05, ANOVA).
519 Additionally, we detected high levels of benzaldehyde 4-methyl (aromatic aldehyde) and
520 ethyl hexadecanoate in the evolved strain compared to the native genetic background, which
521  could confer a fruity aroma to the beer similar to those found in lager beers. The most
522 interesting differences were found in terms of off-flavors. We detected a significantly lower
523  production of 2-Methoxy—-4-vinylphenol (4-vinyl guaiacol) in the evolved strain, likely
524  reducing its clove-like flavor, which is typically found in fermented beverages by wild strains
525  (p-value < 0.05, ANOVA, Figure 6A). Interestingly, we did not find mutations in the FDC1
526 and PAD1 coding regions, or a significant difference in gene expression for FDC1 (log2FC
527 =-0.038, p-value adjusted = 0.838) and PAD1 (log2FC = -0.0095, p-value adjusted = 0.965)
528  between both strains. However, a series of mutations in the regulatory regions of both genes
529  were found in CLEt5.1, which could alter expression levels in later fermentation stages.
530 These results suggest that the evolution process significantly impacted the volatile
531  compound profile of beers produced by CLEt5.1, emulating the domestication process that

532  modified several commercial yeasts.
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533  Figure 6

534

535  Figure 6. Volatile compound production on beer wort. The final beer from EtOH evolved
536  CLEt5.1 and its parental strain CL248.1 was analyzed using HS-SPME-GC/MS. The relative
537 abundance of each compound detected was evaluated and a heatmap was constructed.
538  The compounds were grouped in accordance to their relative abundance.

539

540 DISCUSSION

541  Human-driven selection associated with yeast domestication in fermentative environments
542  has been extensively reported in S. cerevisiae and related hybrids [14, 15]. However, the
543  genetic basis and molecular changes in other Saccharomyces genomes associated with

544  alcoholic beverages is still unclear. In our study, we have reconstructed the putative
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545 domestication history of the yeast S. eubayanus under biotic and abiotic stresses, using a
546  panmictic founding population that simulated the natural process of adaptive evolution, and
547  using an ethanol environment as the selective agent. We used dozens of wild genotypes in
548  a single culture, in order to replicate the natural genetic variability of these organisms. We
549 observed that a single genetic background, CL248.1, systematically outcompetes the
550 others, acquiring de novo mutations and improving basal ethanol tolerance. Interestingly,
551  the time-course of this competitive displacement was complex, involving genotype selection
552  and innovations throughout the assay (key adaptive mutations) that were constantly
553  replaced by others during the "fast-motion" evolution time-course. Thus, the evolved
554  lineages derived from our founding genetic background exhibited higher ethanol growth
555 rates compared to their ancestors, demonstrating a rapid response to selection, and so
556  adapted successfully to their new environment. However, CL248.1 was not the best ethanol-
557 tolerant strain, suggesting that pre-existing variants, together with de novo mutations,
558 combined to positively-affect fitness in this strain. In this sense, it has been demonstrated
559 that pre-existing and de novo genetic variants can both drive long term adaptation to
560 environmental changes in yeast [61]. This indicates that not only a fithess advantage related
561 to a given environmental selection pressure is essential for directional selection to occur in
562  populations [62], but also that a combination of standing genetic variation with some
563  genomic plasticity for beneficial mutations are essential [63]. In this way, the success of an
564 individual is established in such a competitive environment [64]. Our results show that both
565  pre-existing genetic variation and de novo mutations of a range of effects were important in
566  explaining rapid evolution in this ecological context [65, 66]. Importantly, the Saccharomyces
567 “make-accumulate-consume (ethanol)” life strategy is fundamental for withstanding the
568 antimicrobial effects of ethanol in a complex population [67, 68]. Thanks to this, multiple
569  Saccharomyces genotypes were selected, domesticated, and used over centuries in the

570  beer industries, including the S. pastorianus hybrid [14, 15].
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571  Domestication signatures in yeast, as a result of the human-domestication syndrome,
572  included genomic changes in the S. cerevisiae and S. eubayanus genomic portions leading
573 to faster fermentation rates under low temperatures, a more moderate organoleptic
574  complexity, and the absence of off-flavors in beers [14, 20]. Under the premise that
575  evolutionary experiments can lead to unexpected and somewhat counterintuitive results
576  [69], we evaluated the beer fermentation performance of S. eubayanus evolved individuals.
577 Interestingly, evolved individuals exhibited a similar fermentation performance compared to
578 lager yeast, suggesting in turn that ethanol, together with competitive displacement, could
579 be the leading drivers of yeast domestication in brewing environments. This persistent
580 directional selection involved correlated selection of other traits, such as osmotic stress
581 tolerance and efficient nitrogen uptake [70]. In general, domesticated fungi used in
582 fermented foods exhibit genomic rearrangements, fewer spores and produce desirable
583  volatile compounds [9]. These domestication signatures have been reported in other
584  systems, such as Aspergillus and Penicillium, where a transition to environments rich in
585  carbon and nitrogen sources led to extensive metabolism remodeling when used to produce

586 cheese [8, 9].

587 Ethanol-evolved individuals presented a series of genomic changes related to yeast
588 domestication, such as aneuploidy and chromosomal rearrangements [16]. Furthermore,
589  signatures of trait domestication are evident in evolved individuals showing improved stress
590 resistance, fast fermentation rates, lower organoleptic complexity and a lower production of
591 phenolic off-flavors [14]. S. cerevisiae beer strains are characterized by strong
592  domestication signatures in their genomes, including polyploidies, the decay of sexual
593  reproduction, and maltotriose consumption [16]. Interestingly, one of our strains was able to
594  consume maltotriose, which is another key domestication hallmark. In terms of the molecular

595 mechanisms that explain their increased fermentative capacity, we observed that some
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596  stress response genes were either mutated or up-regulated in the ethanol-evolved line
597 compared to its parental genetic background. In this way, the mutations and genomic
598 rearrangements found in the CLEt5.1 evolved individual could explain the transcriptional
599 rewiring and improved fermentative profile. Indeed, ethanol exposure leads to the
600 recruitment of error-prone DNA polymerases, causing DNA replication stress and increased
601  mutation rates [71]. Accordingly, we found that RAD59 (involved in DNA double-strand break
602  repair) was overexpressed in the evolved strain CLEt5.1, likely indicative of a mechanism
603  that counteracts the mutagenic effect of ethanol [72]. Other overexpressed genes could also
604  be directly related to an increased fermentative capacity, such as SUC2, YAP5 and MET,
605  which could promote glucose uptake, a dynamic diauxic shift, and the accumulation of S-
606  Adenosylmethionine, respectively [73, 74 2013]. In this context, genomic rearrangements,
607 such as the duplication found in chromosome VIl containing HAP2, which is involved in
608  promoting the diauxic shift, are in agreement with these findings. Furthermore, previous
609 reports in lager yeast demonstrated that the accumulation and exogenous supplementation
610 of S-Adenosylmethionine promotes an increase in the fermentative capacity of yeast under

611  high-gravity wort [75].

612  Concluding remarks

613  In summary, the results found in our study could be applied to determine the domestication
614  dynamics of the S. eubayanus genomic portion in the lager strain, given the occurrence of
615  similar desirable traits for beer. Based on multiple analyses, we provide evidence of the
616  intermediate evolutionary changes in S. eubayanus, which have direct implications in the
617  generation of novel yeasts for the industry. In this way, genomic changes promote a
618 transcriptional rewiring that induces a favorable response in a fermentative environment. For

619 the first time, these findings provide novel insights into the genomic and phenomic changes
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620 in wild S. eubayanus leading to faster wort fermentation rates and desirable organoleptic

621  complexity, demonstrating its broad feasible use in the beer industry.

622
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633 SUPPLEMENTARY MATERIAL

634 SUPPLEMENTARY FIGURES

635 Figure S1. Competition assay of evolved individual in ethanol 9%.

636 Figure S2. Fermentative capacity of the evolved individuals. (A) The fermentative
637 capacity is indicated as a percentage of the capacity of the S. pastorianus control strain
638 (W34/70) at 7 days. The fermentative capacity was estimated from the loss of CO, over
639 time. All assays were performed in ftriplicate. (B) The fermentative capacity was also
640 determined at 14 days. (C) The velocity of the fermentation was estimated and (D) the

641  residual sugars and metabolites in the wort were evaluated using HPLC.

642
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643 SUPPLEMENTARY TABLE LEGENDS

644 Table S1. Native S. eubayanus strains used in the experimental evolution assay. The

645 strain ID and the location of isolation site are indicated.

646 Table S2. Bioinformatics Summary statistics

647 Table S3. Growth kinetic parameters in glucose and ethanol of the native parental
648  strains used for the ancestral culture. Growth parameters pmax (OD/hr), OD max (OD)

649  and lag phase (1/hr).

650 Table S4. SNPeffect analysis of the novel polymorphisms in EtOH-2. Snpeffect analysis

651  of the novel/fixed polymorphisms in EtOH-2 after 260 generations

652 Table S5. Phenotype data of evolved individuals. The data shows the average pmax
653  across three replicates and the standard deviation (SD) for diverse growth conditions,
654 including high temperature (28°C and 34°C), different carbon sources (glucose, fructose,
655 maltose, galactose, xylose), and oxidative (ethanol 9%, 3 mM H>0O,) and osmotic stress

656  (beer wort, SDS 0.001%, Sorbitol 20%).

657 Table S6. Sugar consumption and metabolite production of the evolved individuals
658 from fermentations in beer wort. Sugar consumption (g/L) and metabolite production (g/L)

659 are informed.

660 Table S7. Structural variants identified in CLEt5.1 using MUM&Co. A. CLEt5.1 genome
661 assembly and annotation statistics. The genome assembly of CLEt5.1 using Nanopore and
662 lllumina sequencing technology was used to calculate several assembly statistics. B. All
663  structural variants. C. Duplicated genes present in the chromosome IV — chromosome XVI
664  duplication in CLEt5.1. D. High/moderate SNPeff prediction of SNPs and short INDELSs in

665 CLEt5.1
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Table S8. Differential gene expression between CL248.1 and CLEt5.1 under beer wort.
A. Gene expression results. B. Upregulated and C. Downregulated genes in CLEt5.1. R1,

R2 and R3 represent the three biological replicates for each genotype.

Table S9. Enrichment analysis of Transcription Factor binding sites in regulatory

regions of upregulated genes using CiiDER.

Table S10. Volatile compound production in CL248.1 and CLEt5.1 in beer wort.
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