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Abstract

T cells protect the body from cancer by recognising tumour-associated antigens. Recognising these antigens de-
pends on multiple factors, one of which is T cell avidity, i.e., the total interaction strength between a T cell and a
cancer cell. While both high- and low-avidity T cells can kill cancer cells, durable anti-cancer immune responses
require the selection of high-avidity T cells. Previous experimentation with anti-cancer vaccines, however, has
shown that most vaccines elicit low-avidity T cells. Optimising vaccine schedules may remedy this by preferen-
tially selecting high-avidity T cells. Here, we use mathematical modelling to develop a simple, phenomenological
model of avidity selection that may identify vaccine schedules that disproportionately favour low-avidity T cells.
We calibrate our model to our prior, more complex model, and then validate it against several experimental data
sets. We find that the sensitivity of the model’s parameters change with vaccine dosage, which allows us to use a
patient’s data and clinical history to screen for suitable vaccine strategies.

1 Introduction1

T cells maintain anti-tumour immunity by recognising and killing cancer cells. T cells recognise these cancerous cells2

through a surface protein—the T cell receptor (TCR)—binding to molecules known as peptide major histocompatibility3

complexes (pMHCs), which reside on the surface of cancer cells (Murphy, 2011). The overall strength of these TCR-4

pMHC interactions is termed avidity (Abbas et al., 2014).5

Several studies have shown that the selection of high-avidity T cells may be a requirement for durable tumour erad-6

ication in certain cancers such as melanoma (Molldrem et al., 2003; Chung et al., 2014). Low-avidity T cells, by7

contrast, are weakly-tumour killing (Stuge et al., 2004) and may even temper anti-tumour activity by selectively in-8

hibiting high-avidity T cells (Chung et al., 2014). Indeed, experimental evidence suggests that certain cancer vaccines9

may promote the expansion of low-avidity T cells (Stuge et al., 2004; Rezvani et al., 2011), which may explain why10

these vaccines cannot maintain durable anti-tumour immunity in clinical trials (Schwartzentruber et al., 2011; Sosman11

et al., 2008).12

To remedy this, multiple techniques have been proposed. These techniques range from searching through peptide li-13

braries to identify peptides that will stimulate high-avidity T cells (McMahan et al., 2006), to harnessing the plasticity14

of naive T cells to promote their differentiation into high-avidity T cells (Kroger and Alexander-Miller, 2007). More15

recently, evolutionary principles have been used to select for high-avidity T cells (Bassan et al., 2019). Complement-16

ing these experimental studies are mathematical models that aim to improve the efficacy of cancer vaccines, namely17

treatment schedules (i.e., vaccine dose and timing), from different perspectives. For example, in Sigal et al. (2019), the18

authors optimise treatment schedules to maximise the clearance of cancer stem cells by killer T cells. Moreover, in Wei19
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et al. (2017) the authors optimise the injection of helper T cells to enhance cytokine-mediated tumour clearance. More20

broadly, in Joshi et al. (2009), the authors examine how vaccine schedules can be leveraged to avoid tumour recur-21

rence. Besides these studies, researchers have also sought to optimise vaccine schedules in the context of combination22

therapies. For example, Lai and Friedman (2017) examine how immune checkpoint blockers can be combined with23

cancer vaccines for enhanced anti-tumour immunity, while Wilson and Levy (2012) look at how a regulatory-protein24

inhibitor can be combined with a cancer vaccine to induce anti-tumour immunity. Indeed, our own previous modelling25

work found that vaccine schedules, when optimised, may elicit high-avidity T cells (Kumbhari et al., 2020b,a). Our26

model, however, is complex, and this complexity makes experimental validation difficult. Moreover, this complexity27

introduces an element of model uncertainty as not all immune pathways and processes are well understood.28

To address this, we develop a simple phenotypic ordinary differential equation (ODE) model that can reproduce the29

results of our prior model. We validate our model against in vivo murine data from Hailemichael et al. (2013), ex vivo30

human data from Rezvani et al. (2011) and in vitro data from Wu et al. (2017) and Cawthon et al. (2001). Notably,31

the model presented here is a reduction of the model developed in Kumbhari et al. (2020a), obtained not via a formal32

model reduction, but rather via a conceptual reduction informed by our sensitivity analysis from Kumbhari et al.33

(2020a) and a review of the biological literature. Specifically, our model is based on the experimental observations that34

(1) mature DCs present antigens at different levels; (2) low DC antigen loads activate only high-avidity T cells, while35

high DC antigen loads activate both low- and high-avidity T cells; and (3) a history of antigen exposure attenuates36

T-cell expansion.37

We find that the sensitivity of the model’s parameters, which are abstractions of different biological processes, vary38

with dosage. We use this sensitivity analysis to eliminate inappropriate vaccine schedules (i.e., a schedule that promotes39

low-avidity T cells) based on a patient’s underlying conditions. This increases the likelihood of electing high-avidity T40

cells and thus, the likelihood of durable anti-tumour responses. While our study still requires experimental validation,41

it nevertheless provides a vital proof-of-concept basis for further development of this approach.42

2 Model43

In this section, we develop a minimal model of T cell avidity. Our minimal model establishes a framework for sys-44

tematically incorporating additional complexity, which may help in quantifying the extent to which different pathways45

impede tumour clearance. Moreover, in the context of optimising vaccine schedules, our model is amenable to more46

sophisticated optimisation techniques (that are beyond the scope of this study) such as numerical optimal control. Fi-47

nally, we note that while no model is perfect, by using only well understood phenotypes of avidity selection, we are48

able to reduce any model uncertainty in our predictions.49

In developing a minimal model of avidity selection, however, we exclude many aspects of the immune response. For50

example, for example our model does not account for certain cell populations such as natural killer cells, regulatory T51

cells and helper T cells. We also omit signalling pathways such as cytokine secretion. Importantly, our goal here is to52

develop a caricature model with a plausible biological basis, rather than a model that aims to capture all known T cell53

dynamics.54

To this end, we assume immature dendritic cells (iDCs) take up antigen and start maturing upon contact with the55

injected vaccine due to tumour-associated peptides and maturation signals such as vaccine adjuvant, danger signals,56

or tissue derived immunogenic signals Coffman et al. (2010); Gardner and Ruffell (2016). Maturing DCs migrate to57

draining lymph nodes, where they present antigens to antigen-specific naive T cells, resulting in their activation to58

effector T cells (Murphy, 2011; Abbas et al., 2014). Importantly, different DCs present varying levels of antigen on59

their surfaces, affecting the avidity of T cells that are activated. For simplicity, we focus on the dynamics of killer T60

cells that are cytolytic against tumours and are the primary target of anti-cancer vaccines (Lollini et al., 2006; Chung61

et al., 2014; Peng et al., 2019).62

To model these interactions, we consider several populations: P, the concentration of vaccine peptides; I, the concen-63

tration of iDCs; ML and MH , the concentrations of mature DCs expressing low or high levels of vaccine peptide on64

their surfaces; and TL and TH , the concentrations of killer T cells of low and high avidity. A diagram of the different65

interactions between these populations is shown in Figure 1. We model the interactions between these populations with66

an ODE system:67
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Ṗ = u(t)−dPP− kPP(ML +MH)− kPiPI, (1)

İ = sI −dII −α
P

χ +P
I, (2)

ṀL = α
[
1− phigh(P)

] P
χ +P

I −dDML, (3)

ṀH = α phigh(P)
P

χ +P
I −dDMH , (4)

ṪH = kH
ML +MH

X0 +ML +MH
−dKϕ(P)TH , (5)

ṪL = kL
MH

X0 +MH
−dKϕ(P)TL, (6)

where u(t) is the vaccine injection rate.68

In Eq. (1), vaccine peptides are injected at rate u(t), decay at rate dP, and are consumed by mature DCs at rate kp69

and by immature DCs are rate kPi. In Eq. (2), iDCs are replenished at rate sI and turnover at rate dI . The final term70

in Eq. (2), models the maturation of iDCs due to adjuvant. Because adjuvant is usually not antigen-specific (Garcon71

and Di Pasquale, 2017), as a simplifying assumption we assume that all peptides within the periphery of an iDC are72

presented at rate α . It follows that if the concentration of non-vaccine proteins is denoted by χ , then the proportion of73

peptides presented that are vaccine-associated is P/(χ +P). Together, these equate to a net flux of αP/(χ +P).74

In Eq. (3) and Eq. (4), iDCs transition into mature DCs at rate α
P

χ+P I and turnover at rate dD. The specific probability75

of transitioning to a mature DC presenting low levels of surface antigens is 1− phigh(P), while the probability of76

transitioning to a mature DC presenting high levels of surface antigens is phigh(P).77

Finally, in Eq. (5) and (6), killer T cells activate and proliferate as a function of DC concentration, and decay at rate78

dKϕ(P). Here, ϕ(P) is an increasing function of antigen, P, that models T cell hyporesponsiveness (Hailemichael79

et al., 2013). As a simplifying assumption, we do not model the activation of naive T cells explicitly but instead use80

a saturating Hill function with parameters kL, kH and X0 chosen so that we obtain biologically realistic behaviours.81

Furthermore, a key feature of avidity selection is that low levels of antigen expression on DCs stimulate high-avidity82

T cells and high-levels of antigen expression on DCs stimulate both low- and high-avidity T cells (Alexander-Miller83

et al., 1996; Bullock et al., 2001; Kedl et al., 2002; Kroger et al., 2008; Rezvani et al., 2011). As such, the activation84

rate for low-avidity T cells is dependent only on the concentration of DCs with high levels of antigen presentation, MH ,85

whereas the activation rate for high-avidity T cells is dependent on the total concentration of DCs with low and high86

levels of antigen presentation, ML +MH .87

2.1 Parameter estimates88

A list of parameters used in our simulations is given in Table 1. To obtain estimates, we used experimental values for89

a peptide vaccine against melanomas in humans, but stress that our model readily generalises to other forms of anti-90

tumour vaccines. Where possible, we have used experimental data from humans to characterise our model parameters;91

however, specific phenomenological parameters are fit to the results of our previous model.92

2.1.1 Vaccine93

In Eq. (1), we assume that the vaccine is given systemically at a fixed dose of u0 ngmL−1 with a dosing interval of ζ d94

equating to a vaccine injection rate of95

u(t) = u0

∞

∑
a=0

δ (t −ζ a).

The in vitro decay rate of an immunogenic peptide such as HVDGKILFV is estimated to 6.16 d−1, thus, we use a vac-96

cine decay rate, dP, of 6.16 d−1 (Harndahl et al., 2012). We assume that iDCs have an uptake rate of kPi, while mature97

DCs have an uptake rate of kP. Previously (Kumbhari et al., 2020a), we used human data from the literature (Platt98
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Fig. 1. A diagram of the key interactions between injected vaccine peptides, P; immature DCs, I; mature DCs with
different levels of antigen expression, ML (low) and MH (high); and a population of low- and high-avidity killer T
cells, TL and TH

Table 1. Table of parameters for the ODE model and estimated values. Estimates that are characterised by human,
mice and in vitro data are marked with superscripts (·)H, (·)M, and (·)V. Here, d denotes days, and k denotes 103 cells.

Parameter Description Estimate 95% CI Source

dP Vaccine peptide decay rate V 6.16 d−1 Harndahl et al. (2012)
kP Mature DC uptake rate HV 3×10−2 (k/µL)−1/d Sallusto et al. (1995)
kP Immature DC uptake rate MV 6.84×10−2 (k/µL)−1/d Platt et al. (2010); Sallusto et al. (1995)
dI Immature DC decay rate HV 5×10−2 d−1 Kaplan et al. (1987)
Mtotal Total DC population H 5.9976 k/µL Di Girolamo et al. (2008)
dD Mature DC turnover rate H 0.33 d−1 Kaplan et al. (1987)
χ Concentration of non-vaccine peptides H 7×107 ngmL−1 Delamarre et al. (2003)
dK Net killer T cell turnover rate M 0.4 d−1 De Boer et al. (2003)
α DC maturation rate 3×105 d−1 [2.966×105,3.052×105]

Fit to Kumbhari et al. (2020a)

L Transition probability parameter 1×106 ngmL−1 [9.825×105,1.012×106]
kH High-avidity T cell activation rate 2.884 (k/µL)/d [0,10.56]
kL Low-avidity T cell activation rate 3.673 (k/µL)/d [0,20.78]
X0 T cell saturation constant 5139 k/µL [4826,5438]
ϕ0 Antigen saturation constant 1×105 ngmL−1 [99670,1.003×105]

Minimum number of pMHCs required for
a DC to have a high-antigen load

11 pMHCs
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et al., 2010; Sallusto et al., 1995) to estimate a mature DC uptake rate of 3×10−2 (k/µL)−1/d and an immature DC99

uptake rate of 6.84×10−2 (k/µL)−1/d. Notably, data from Sallusto et al. (1995) shows that while the rate of antigen100

capture by DCs saturates for large antigen concentrations, the saturation constant associated with this response is large.101

In other words, even though the rate of antigen capture technically saturates, it effectively behaves as a linear function.102

Thus, as a simplifying assumption, we use mass-action kinetics rather than saturation-type kinetics. Finally, because103

the vaccine is delivered at t = 0, we set P(0) = u(0) = u0.104

2.1.2 Dendritic cells105

In Eq. (2), the rate at which immature DCs turnover, dI , is 1/20 d−1 = 5×10−2 d−1 based on human estimates from Ka-106

plan et al. (1987). To calculate the supply rate, sI , we force the system to be at steady state when there is no antigen,107

i.e., P = 0, equating to sI − dII(0) = 0, or sI = dII(0). The baseline concentration of non-vaccine peptides, χ , is108

7×107 ngmL−1 in humans (Delamarre et al., 2003). In Eq. (3) and Eq. (4), the mature DC turnover rate, dD, is109

estimated to be 1/72 h−1 = 0.33 d−1 in humans (Kaplan et al., 1987).110

While directly obtaining measurements of DC antigen loads over time is challenging, several indirect techniques exists.111

One such technique involves measuring the percentage of activated low-avidity T cells, which leverages the fact that112

low-avidity T cell exclusively require high antigen loads for activation. Because the percentage of low-avidity T cells113

activated (as measured by cytokine secretion and tetramer staining) exhibits a saturation-type response (Bullock et al.,114

2003), we phenomenologically model the probability of transitioning to a mature DC presenting high levels of surface115

antigens, phigh(P), with a first-order Hill function, i.e.,116

phigh(P) =
P

L+P
. (7)

The phenomenological nature of this function means that other sigmoidal functions can be used to model this transition.117

As the goal here is not to develop a fine-grained model of DC pMHC dynamics (which would be beyond the scope118

of this paper), we note that a first-order Hill function is sufficiently simple. The model parameter L, along with the119

maturation rate, α , is fit to the results of our previous model (Kumbhari et al., 2020a). Details of the fitting procedure120

are provided in Section 2.2.121

For our initial conditions, we note that the total DC population at steady-state conditions, Mtotal, is reported to be122

5.9976 k/µL in humans (Di Girolamo et al., 2008). As such, we set I(0) = Mtotal = 5.9976 k/µL. Additionally, we123

assume that initially there are no mature DCs presenting vaccine-associated peptides, i.e., ML,H(0) = 0.124

2.1.3 T cells125

Finally, in Eqs. (5) to (6), both low- and high-avidity T cells decay at rate dK , which De Boer et al. (2003) estimate to126

be 0.4 d−1 in mice. Motivated by De Boer and Perelson (2013), T cell activation and proliferation is modelled with a127

saturation function (i.e., a Hill function) with shape parameter n = 1. The activation rates kH and kL; and saturation128

constant X0 are fit to the results of our previous model.129

Activation induced cell death (AICD) – also known as “exhaustion”, “senesce”, “adapted” etc. (Blank et al., 2019) –130

is a phenomenon whereby chronic antigen exposure tempers T cell expansion and is considered a major reason for131

tumour escape (Hashimoto et al., 2018; June et al., 2018). To model this, we assume our turnover rate, dK , increases132

as antigen accumulates. In particular, antigen accumulation, ϕ(P), is modelled with the following function:133

ϕ(P) =
∫ t

0 P(s)ds
ϕ0 +

∫ t
0 P(s)ds

, (8)

where ϕ0 is a saturation constant that is also fitted (details of the fitting procedure are provided in Section 2.2). While134

the mechanisms behind AICD are unclear (Hashimoto et al., 2018; Blank et al., 2019), it is generally understood that135

this dysfunctional state occurs due to a history of antigen exposure (Hashimoto et al., 2018). Thus, to account for this136

history of antigen exposure, we use the integral of P,
∫ t

0 P(s)ds, rather than P alone. Finally, we assume that initially137

there are no vaccine-associated effector T cells, i.e., TL,H(0) = 0.138

2.2 Parameter fitting139

To parametrise our model, we first check for structural identifiability (detailed in Section 2.2.1 below). We then140

simultaneously fit our model to data generated using our previous model (Kumbhari et al., 2020a), which in turn was141
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based on a model was calibrated to ex vivo human data from Chung et al. (2014), and validated against data from142

Rezvani et al. (2011) and Hailemichael et al. (2013).143

2.2.1 Structurally identifiability analysis144

A model is structurally identifiable if, given an infinite amount of noiseless data, all model parameters and initial145

conditions can be uniquely determined from measurements of its output (Bellman and Astrom, 1970). Moreover,146

structural identifiability is prerequisite for both prediction (Villaverde et al., 2016; Heinemann and Raue, 2016; Bandara147

et al., 2009), experimental validation (Villaverde et al., 2016; Walter, 1997; Karr et al., 2015), and importantly practical148

identifiability (i.e., determining parameter values with noisy data).149

To determine if our model is structurally identifiable, we use DAISY (Differential Algebra for Identifiability of SYs-150

tems). This software tool checks ODE models with either polynomial or rational nonlinearities for structural identi-151

fiability (Bellu et al., 2007). Explicitly, DAISY accepts a set of ODEs describing the state equations (initialised with152

either known or unknown initial conditions) and uses Ritt’s pseudodivision algorithm to generate an input-output map153

of the system (i.e., a set of polynomial equations involving only the known variables and their time derivatives). DAISY154

then uses the Grobner basis of this map to determine if our input-output map is finite-to-one, and thus identifiable (Sac-155

comani and Thomaseth, 2018; Meshkat et al., 2009, 2011, 2012).156

A limitation of DAISY is that it only handles rational polynomial nonlinearities and yet Eq. (8) contains an integral.157

We reconcile this by replacing
∫ t

0 P(s)ds with a dummy variable PI (defined such that dPI/dt = P) and thus leverage158

the fact that Eqs. (5) and (6) are decoupled from Eqs. (1) to (4). Since we are fitting our model to data generated by159

our prior model, we assume all state variables are observable.160

Using DAISY, we determine that our model is globally structurally identifiable. Our model also implements several161

first- or second-order Hill functions to model various immunological processes. To assess whether or not structural162

identifiability depends on the order of the Hill function used, we systematically vary the order from 1 to 10. As a163

simplifying assumption, we limit these orders to integers. We find that structural identifiability is maintained regardless164

of which integer-order Hill function is used.165

2.2.2 Fitting procedure166

Structural identifiability establishes that our model can be parametrised via noiseless data. Motivated by this, we167

calibrate our current model to data from our previous study (Kumbhari et al., 2020a). While our previous model168

tracked DCs by the number pMHCs being presented, our current model classifies DC antigen loads as being “high” or169

“low”. To compare the output between the two models, we cluster DC populations as follows. Motivated by reports170

that as few as four pMHCs suffice to trigger T cell stimulation (Deeg et al., 2013; Varma et al., 2006; Manz et al.,171

2011), we classify DCs presenting between 1 to 10 pMHCs, i.e., on the same order of magnitude, as having a low172

antigen density. We then classify DCs presenting over ten pMHCs as having a high antigen load. Our prior work also173

considered 20 avidity classes, with an avidity state of 1 denoting the lowest and 20 the highest avidity state. Thus, to174

compare this to our current work, we consider T cells with avidity states ranging from 1–10 as low and states ranging175

from 11–20 as high.176

We then fit our model to a simulated vaccine dose of 7×105 ngmL−1 given fortnightly. This dosage is chosen as it177

is similar to the protocols of previous clinical trials (Schwartzentruber et al., 2011; Sosman et al., 2008; Smith et al.,178

2003; Rezvani et al., 2011). We generate a time trace for the following four variables: DCs with high antigen loads,179

MH ; DCs with low antigen loads, ML; high-avidity T cells, TH ; and low-avidity T cells, TL. Then, for each variable,180

we calculate the L2-norm of the error between the time trace predicted by our prior work (after being clustered as per181

the previous paragraph) and the time trace predicted by our current model. Finally, we use MATLAB’s optimisation182

routine “fmincon” to find estimates that minimise this aggregate L2-error. 95% confidence intervals were obtained by183

bootstrapping residuals 1000 times.184

We estimate α = 3×105 d−1 (95% CI: [2.966×105,3.052×105]); L = 1×106 ngmL−1 (95% CI: [9.825×105,1.012×106]);185

kH = 2.884 (k/µL)/d (95% CI: [0,10.56]); kL = 3.673 (k/µL)/d (95% CI: [0,20.78]); X0 = 5139 k/µL (95% CI: [4826,5438]);186

and ϕ0 = 1×105 ngmL−1 (95% CI: [99670,1.003×105]). This suggests that, relative to the parameters α,L,X0 and187

ϕ0, kL and kH are somewhat poorly identifiable.188

As Figure 2 shows, our reduced model underestimates the amplitude of the initial peak for T cells and overestimates189

the amplitude of secondary T cell peaks. This occurs due to the omission of negative feedback mechanisms such as190
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induced regulatory T cells in our model. Moreover, while other high-low set points could be used, we note that using191

ten pMHCs provides good qualitative agreement with our prior results (see Figure 2).192

3 Results193

3.1 The model is consistent with experimental data194

Individualised mathematical models for personalised medicine often necessitate simplicity because of the sparsity of195

patient data (Andre et al., 2013; Kronik et al., 2010; Gevertz and Wares, 2018). Simple models, however, may be196

perceived by some to trade mechanistic complexity for abstractions that cannot capture the full scope of experimental197

data. Here, we validate our reduced model against in vivo murine data from Hailemichael et al. (2013), ex vivo human198

data from Rezvani et al. (2011) and in vitro data from Wu et al. (2017) and Cawthon et al. (2001).199

In Hailemichael et al. (2013), the authors show that repeated vaccination with the gp100 vaccine induces T cell hypore-200

sponsiveness, whereby repeated exposure to an antigen inhibits T cell expansion. To emulate this study, we use a dosage201

identical to that used in Hailemichael et al. (2013), namely, 100 µg in a 100 µL injection every 42 days, or equivalently202

106 ngmL−1 every 42 days. Simulating this protocol we find that our model also predicts T cell hyporesponsiveness203

(see Figure 3A), but the decrease is predicted by our model (20%) is less dramatic than that reported by Hailemichael204

et al. (2013) (approximately 50%). Since an implicit goal of this study is to develop a minimal model of T cell avidity,205

we do not include several cell populations (such as myeloid-derived suppressor cells or pro-tumour macrophages) that206

inhabit the tumour niche and temper T cell expansion. We expect including these factors will produce better agreement207

with the data from Hailemichael et al. (2013).208

Next, in Rezvani et al. (2011), the authors conduct a small-scale clinical trial with a peptide vaccine, and in doing so209

observe the depletion of high-avidity T cell (quantified by decreasing ratio of high-avidity to-low-avidity T cell). To210

test if we also observe a similar depletion in our model, we simulate a dosage of 7×105 ngmL−1 given every two211

weeks. We find that after vaccinating at this dosage (see Figure 3B), high-avidity T cells become depleted as observed212

by Rezvani et al. (2011).213

Programmed cell death protein 1 (PD1) is a protein that inhibits T cell activity and is overexpressed on T cells in214

cancer. In our model, this is implicitly modelled via an increased rate of T-cell turnover (see Eq. (8)). To validate this215

component of our model, we compare the average value of Eq. (8) against data from Wu et al. (2017) (see Figure 3C), in216

which the authors show that PD1 expression, quantified via mean fluorescence intensity (MFI), increases with vaccine217

dosages in vitro (Wu et al., 2017). To simulate Wu et al. (2017)’s in vitro set up, we use a 2-hour dosing frequency and a218

timespan of 4 days. To simulate the doses reported by Wu et al. (2017), we first note that antigen was distributed across219

a 24-well plate, which assuming a well working volume of 0.475 mL (Sigma-Aldrich, 2020) and a control volume of220

1 mL, implies that 1 µgmL−1 of vaccine in vitro equates to a simulated dose of221

1µgmL−1 ×well volume×number of wells
control volume

=
1µgmL−1 ×0.475mL×24

1mL
= 11.4µgmL−1.

Given that MFI readouts are instrument specific, to compare PD1 MFI readouts, we normalise Wu et al.’s data so that222

the maximum MFI is mapped to a value of 100%, and the minimum value is mapped to a value of 0%. We then223

compared this against the average value of Eq. (8), which we similarly normalise. We find that our reduced model224

agrees well with data from Wu et al. (2017) (see Figure 3C).225

Finally, T-cell activation is modelled explicitly via a saturation function (see Eqs. (5) and (6)) and implicitly via a DC226

pMHC transition probability (see Eqs. (3) and (4)). To validate these components of our model, we compare the average227

net high- and low-avidity activation rates, kH(ML+MH)/(X0+ML+MH) and kLMH/(X0 +MH), against in vitro T-cell228

activation data (quantified via interferon-gamma readouts) from Cawthon et al. (2001). To emulate Cawthon et al.’s229

in vitro set up, we use a 2-hour dosing frequency and a timespan of 1 day. And finally, as data from Cawthon et al.230

(2001) is normalised to be between 0% and 100%, we similarly normalise our data. We find that our reduced model231

agrees well with data from Cawthon et al. (2001) (see Figure 3D). Together, these findings show that our model predicts232

behaviours consistent with the biological literature.233

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.06.413864doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413864
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 20 40 60
0

2×105

4×105

6×105

8×105

Time (days)

Pe
pt

id
e 

(n
g/

m
L)

Peptide

0 20 40 60
0

1

2

3

4

Time (days)

C
el

l c
on

ce
nt

ra
tio

n 
(k

/µ
L)

 

Mature DCs with low antigen expression

0 20 40 60
0

1×10-3

2×10-3

3×10-3

Time (days)

C
el

l c
on

ce
nt

ra
tio

n 
(k

/µ
L)

 

Low-avidity killer T cells

0 20 40 60
0

2

4

6

Time (days)

C
el

l c
on

ce
nt

ra
tio

n 
(k

/µ
L)

 

Immature DCs

0 20 40 60
0

2

4

6

8

Mature DCs with high antigen expression

Time (days)

C
el

l c
on

ce
nt

ra
tio

n 
(k

/µ
L)

 

0 20 40 60
0

2×10-3

4×10-3

6×10-3

Time (days)

C
el

l c
on

ce
nt

ra
tio

n 
(k

/µ
L)

 

High-avidity killer T cells

Fig. 2. Comparison between the reduced model and our prior work from Kumbhari et al. (2020a) for a dosage of
7×105 ngmL−1 fortnightly. Here, solid lines correspond to predictions made by our current model and dashed lines
to predictions made by our previous model. Simulated cell concentrations are in thousands per micro-litre. Here, we
classify a DC presenting between 1 to 10 pMHCs as having a low-antigen load, while anything greater than 10
pMHCs as having a high-antigen load.
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Fig. 3. (A) The model predicts T cell hyporesponsiveness as reported by Hailemichael et al. (2013). (B) The model
predicts the depletion of high-avidity T cells as reported by Rezvani et al. (2011). (C) Here, we use PD1 expression as
an ad-hoc measure of inhibition, which in our model is governed by Eq. (8). PD1 data from Wu et al. (2017) is
normalised by mapping the largest MFI to 100% and the lowest MFI to 0%. The average value of Eq. (8), labelled
“simulation data”, is similarly normalised. (D) Comparison of activation rates against normalised activation data,
quantified via interferon-gamma expression, from Cawthon et al. (2001).
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Fig. 4. The model predicts a frequent low-dose strategy maximises the selection of high-avidity T cells, which is
consistent with prior work. Here, the selection of high-avidity T cells is quantified via the mean-avidity difference,
which though correlated with tumour clearance is not a direct measure of tumour clearance.

3.2 The selection of high-avidity T cells depends synergistically on the schedule rather than234

the dose or dosing frequency alone235

Since our reduced model reproduces key dynamics from the literature, we can leverage our model to identify vaccine236

schedules that preferentially select for high-avidity T cells. To quantify the selection of high-avidity T cells, we use237

the mean avidity difference238

mean avidity difference =
1

60

∫ 60

0
[TH(t)−TL(t)]dt, (9)

which, unlike the ratio of low- to high-avidity T cells, also accounts for the total T cell concentration. We then perform239

a global dosage sweep, i.e., simulate combinations of doses ranging from 1 ngmL−1 to 1×109 ngmL−1 with dosing240

intervals that range from 1 day to 30 days and track the average selection of high-avidity T cells over 60 days (quantified241

via the mean avidity difference).242

We find that a dosage of 1×103 ngmL−1 given every two days maximises the mean avidity difference. A more243

strategic dosage of 5×103 ngmL−1 given weekly (see Figure 4) is also comparably effective. Moreover, in Figure 4,244

for doses between 5×103 ngmL−1 to 1×104 ngmL−1, we notice the formation of a characteristic “ridge”, along245

which the selection of high-avidity of T cells is robust to the dosing interval. More generally, our simulations suggest246

that the selection of high-avidity of T cells, as quantified by the avidity difference, is overall more sensitive to dose247

than to the dosing interval (see Figure 4). This may explain why previous experiments with the gp100 vaccine, which248

focused primarily on modulating the dosing interval of a high dose vaccine, were unsuccessful in eliciting high-avidity249

T cells (Schwartzentruber et al., 2011; Sosman et al., 2008; Smith et al., 2003; Rezvani et al., 2011). However, using a250

low dose alone is also unlikely to induce a significant high-avidity response as T cell expansion is usually proportional251

to antigen load (Berzofsky et al., 2001). Together, these results suggest that the selection of high-avidity T cells252

depends synergistically on the dose and the dosing frequency (or schedule), rather than the dosing frequency or dose253

alone, which is consistent with our previous work.254

3.3 Parameter sensitivity changes with dose255

In this section, we perform a global sensitivity analysis on several dosages and find that the selection of high-avidity T256

cells is sensitive to different parameters for different dosages. These sensitivities can be used to eliminate inappropriate257

(i.e., those that promote low-avidity T cells) dosages. As in Section 2.2, we consider nine dosages, specifically, doses258

of 103 ngmL−1, 7×105 ngmL−1, or 108 ngmL−1; with either weekly, fortnightly, or monthly dosing intervals.259

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.06.413864doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413864
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Sensitivity of model parameters for different hypothetical dosages.

Dosing interval Dose of 103 ngmL−1 Dose of 7×105 ngmL−1 Dose of 108 ngmL−1

Parameter SRCC p-value Parameter SRCC p-value Parameter SRCC p-value

Weekly

α 0.4068 <10−12 kH 0.4318 <10−12 kH 0.6452 <10−12

kH 0.3593 <10−12 Mtotal 0.4247 <10−12 L 0.2074 3.0485×10−6

Mtotal 0.1357 0.0024 α 0.1714 1.1948×10−4 kPi 0.0615 0.1695
kp 0.0242 0.5884 ϕ0 0.1263 0.0047 χ 0.0090 0.8415
L 0.0012 0.9794 dP 0.1177 0.0084 Mtotal 0.0083 0.8537
kL -0.0039 0.9304 L 0.0311 0.4872 dP 0.0047 0.9170
dK -0.0082 0.8543 kp -0.0042 0.9248 ϕ0 -0.0032 0.9424
ϕ0 -0.0385 0.3899 kPi -0.0203 0.6506 dD -0.0101 0.8209
dP -0.0428 0.3389 dI -0.0402 0.3699 X0 -0.0169 0.7055
dI -0.0478 0.2863 kL -0.0447 0.3183 dK -0.0338 0.4511
kPi -0.2461 2.7460×10−8 dK -0.1006 0.0245 kp -0.0338 0.4510
dD -0.3788 <10−12 χ -0.1143 0.0106 dI -0.0424 0.3434
X0 -0.3907 <10−12 dD -0.3933 <10−12 α -0.0514 0.2508
χ -0.4017 <10−12 X0 -0.3994 <10−12 kL -0.5424 <10−12

Fortnightly

α 0.4070 <10−12 kH 0.4437 <10−12 kH 0.6441 <10−12

kH 0.3592 <10−12 Mtotal 0.4064 <10−12 L 0.2074 3.0610×10−6

Mtotal 0.1357 0.0024 α 0.1819 4.3965×10−5 kPi 0.0613 0.1707
kp 0.0244 0.5859 dP 0.1047 0.0193 χ 0.0090 0.8413
L 0.0013 0.9776 ϕ0 0.0982 0.0282 Mtotal 0.0071 0.8737
kL -0.0040 0.9293 L 0.0266 0.5522 dP 0.0070 0.8762
dK -0.0080 0.8580 kp -0.0126 0.7789 ϕ0 -0.0015 0.9737
ϕ0 -0.0392 0.3817 kPi -0.0312 0.4869 dD -0.0095 0.8316
dP -0.0429 0.3386 kL -0.0484 0.2803 X0 -0.0173 0.6988
dI -0.0475 0.2888 dI -0.0581 0.1943 dK -0.0326 0.4665
kPi -0.2464 2.6398×10−8 dK -0.0731 0.1026 kp -0.0353 0.4311
dD -0.3787 <10−12 χ -0.1183 0.0081 dI -0.0432 0.3351
X0 -0.3906 <10−12 dD -0.4031 <10−12 α -0.0503 0.2619
χ -0.4015 <10−12 X0 -0.4097 <10−12 kL -0.5418 <10−12

Monthly

α 0.4069 <10−12 kH 0.4495 <10−12 kH 0.6430 <10−12

kH 0.3591 <10−12 Mtotal 0.3952 <10−12 L 0.2070 3.1920×10−6

Mtotal 0.1356 0.0024 α 0.1868 2.7250×10−5 kPi 0.0617 0.1684
kp 0.0244 0.5867 dP 0.0953 0.0332 χ 0.0096 0.8306
L 0.0010 0.9819 ϕ0 0.0823 0.0658 dP 0.0091 0.8383
kL -0.0040 0.9297 L 0.0239 0.5930 Mtotal 0.0063 0.8877
dK -0.0080 0.8588 kp -0.0181 0.6870 ϕ0 -8.2176×10−5 0.9985
ϕ0 -0.0393 0.3798 kPi -0.0369 0.4097 dD -0.0092 0.8376
dP -0.0428 0.3394 kL -0.0496 0.2684 X0 -0.0174 0.6977
dI -0.0475 0.2889 dK -0.0586 0.1911 dK -0.0312 0.4866
kPi -0.2464 2.6587×10−8 dI -0.0681 0.1281 kp -0.0363 0.4178
dD -0.3789 <10−12 χ -0.1225 0.0061 dI -0.0423 0.3452
X0 -0.3906 <10−12 dD -0.4100 <10−12 α -0.0511 0.2543
χ -0.4015 <10−12 X0 -0.4134 <10−12 kL -0.5412 <10−12

The complexity of individualised immune responses in humans, coupled with a highly heterogeneous tumour microen-260

vironment means that patient data is intrinsically nonlinear (Brodin and Davis, 2017; Zi, 2011). To account for these261

nonlinear interactions in our sensitivity analysis, we simultaneously vary our parameters over a 100-fold range from262

their basal values (given in Table 1). Moreover, we generate our samples (N = 500) using Latin Hypercube Sampling.263

To estimate our sensitivity values, we calculate the Spearman Rank Correlation Coefficient (SRCC), ρ , between each264

parameter and the mean avidity difference (defined in Eq. (9)). Table 2 shows the SRCC along with the corresponding265

p-value for several dosages.266

We find that for large doses, the sensitivity of DC maturation rate to antigen, L, and the total DC concentration, Mtotal267

are parameters that are positively correlated with the promotion of high-avidity T cells. By contrast, the DC antigen268

consumption rates, kP and kPi, and the T cell saturation constant (a measure of how sensitivity T cell activation is269

to mature DC concentrations), X0, are parameters that are negatively correlated with the promotion of high-avidity T270

cells, i.e., they are positively correlated with the selection of low-avidity T cells. This suggests that the presentation of271

antigen on mature DCs may be driving the selection of high-avidity T cells in our model, which is consistent with the272

literature (Gerner et al., 2017; van Stipdonk et al., 2001). We also find that as the vaccine dose increases, the sensitivity273

of α , the DC maturation rate decreases in our simulations. Again, this suggests that both antigen presentation and DC274
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activation dynamics drive the promotion of high-avidity T cells.275

By estimating the parameter sensitivity of these candidate dosages, we can use a patient’s history and clinical presenta-276

tion to screen for suitable dosages. For example, a common co-morbidity for melanoma patients is diabetes (Lee et al.,277

2015). Diabetes is known to decrease phagocytosis by immune cells (Geerlings and Hoepelman, 1999), which in our278

model would correspond to a decreased rates of antigen uptake, kP and kPi. The goal here is to identify dosages where279

the selection of high-avidity T cells is negatively correlated with both kP and kPi. Referring to Table 2, we identify280

7×105 ngmL−1 given either weekly, fortnightly or monthly as suitable candidate dosages.281

As an additional example, consider a patient presenting with a history of heart disease another common co-morbidity in282

skin cancer patients. Coronary artery disease results in a have a lower number of circulating DCs in patients (Van Vre283

et al., 2011). In our model, this corresponds to a decreased DC concentration, Mtotal. The goal here is to identify284

dosages where the selection of high-avidity T cells is weakly correlated with Mtotal. Referring to Table 2, we identify285

1×108 ngmL−1 given either weekly, fortnightly or monthly possible candidate dosages. Together, these examples il-286

lustrate how our model can be leveraged to personalise dosages based on a patient’s history and other conditions.287

4 Discussion288

Personalising treatment schedules to induce high-avidity T cells is a promising new approach to maintaining immunity289

against certain cancers such as melanoma. Here we develop a simple ODE model of T cell avidity that is validated290

against several experimental datasets. We then use our model to suggest therapy schedules based on a table of sensi-291

tivities. This method involves first using a patient’s history and clinical presentation to determine which parameters292

are expected to have changed, and then referring to a table of parameter sensitivities to eliminate inappropriate vaccine293

schedules. Importantly, our study is a proof-of-concept study and still requires experimental validation.294

Since this study aims to develop a minimal model of avidity selection, our model makes several simplifying biological295

assumptions. For example, we do not account for certain immunological processes such as the induction of regulatory296

T cells, lymphocyte trafficking, and cytokine secretion. These processes were, however, modelled in our prior work,297

against which we calibrated our model. Additionally, we only considered two avidity states, low or high, despite298

avidity likely existing on a continuous spectrum. Since most experimental studies only report on low- and high-avidity299

populations, using a system of ODEs (rather than a similar system of PDEs) makes the model more amenable to300

experimental validation.301

As an additional simplification, we assumed the probability of an immature DC transitioning to a mature DC pre-302

senting high levels of surface antigens, phigh(P), was dependent only on the concentration of antigen. Biologically,303

this probability depends on additional, more dynamic factors, such as co-signalling pathways (Chen and Flies, 2013).304

Importantly, our model is not specific to peptide vaccines, and we expect that our model can also apply to newer,305

neo-antigen-based T cell vaccines.306

As an alternative to parametrising and then optimising a model to patient data (which may be difficult), we propose307

using a table of sensitivities to screen to suitable dosages. This table of sensitivities involves performing a sensitivity308

analysis on model parameters for a set of different simulated dosages. Of these dosages, some, when clinically trialled,309

were found to promote the low-avidity T cells over high-avidity T cells (Hailemichael et al., 2013; Rezvani et al., 2011;310

Schwartzentruber et al., 2011). Nonetheless, we included these dosages as we could not rule out the possibility that311

these dosages are optimised to elicit anti-tumour immunity by additional, non-avidity-based mechanisms not consid-312

ered in our model. Indeed, we argue that, under the right conditions (i.e., those identified via our table of sensitivities),313

these dosages may enhance the selection of high-avidity T cells. To ensure our schedules are also practical, we limit314

our simulated dosing intervals to weekly, fortnightly or monthly intervals. Consequently, we did not include the op-315

timal dosage of 1×103 ngmL−1 given every two days in our table of candidate schedules. Moreover, while these316

dosing intervals were chosen for their practicality, an alternative approach not explored in this study involves using317

control theory to identify an optimal vaccine strategy. Indeed, using a control-theoretic approach may identify dosages318

that maximise the selection of high-avidity T cells beyond what we identified. Finally, while our findings still require319

preclinical validation, we anticipate that our simulated dosages are safe. This is based on studies in which limited320

adverse side effects are reported (Hailemichael et al., 2013; Rezvani et al., 2011; Schwartzentruber et al., 2011). As321

such, we predict that under the right circumstances (such as those suggested by Table 2), these dosages can safely elicit322

high-avidity T cells.323

Notably, the schedules identified here all aim to maximise the mean avidity difference over 60 days. We used the324
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avidity difference rather than the ratio of high- to low-avidity T cells, as it not only penalises the selection of low-325

avidity T cells but also accounts for the total concentration of T cells induced, which is an important predictor of326

treatment efficacy (Kittlesen et al., 1998). However, as a metric for the selection of high-avidity T cells, the mean327

avidity difference has limitations. For example, optimising the mean avidity difference results in all-or-nothing control,328

whereby a response that elicits a low total T cell count has a higher payoff than one that promotes low-avidity T cells329

at a higher concentration. While this allows us to account implicitly for the inhibition of high-avidity T cells by low-330

avidity T cells (Chung et al., 2014), this also results in parameter sensitivities that suggest T cell hyporesponsiveness is331

preferable over the stimulation of low-avidity T cells. This could be addressed by using a metric that penalises both the332

selection of low-avidity T cells and low total T cell concentrations. Vaccine protocols also need to account for factors333

other than T cell avidity, such as toxicity constraints and off-target reactions (Tigue et al., 2007), which are factors that334

our model does not include. Developing a selection metric that accounts for these factors will be the subject of future335

investigations.336

Overall, our findings still require substantial experimental validation, which is a priority for future work. Nonethe-337

less, they provide a vital proof-of-concept link between a phenotypic model of avidity selection and identifying and338

eliminating sub-therapeutic vaccine schedules, which may help in inducing durable anti-tumour immunity.339
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