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Abstract

T cells protect the body from cancer by recognising tumour-associated antigens. Recognising these antigens de-
pends on multiple factors, one of which is T cell avidity, i.e., the total interaction strength between a T cell and a
cancer cell. While both high- and low-avidity T cells can kill cancer cells, durable anti-cancer immune responses
require the selection of high-avidity T cells. Previous experimentation with anti-cancer vaccines, however, has
shown that most vaccines elicit low-avidity T cells. Optimising vaccine schedules may remedy this by preferen-
tially selecting high-avidity T cells. Here, we use mathematical modelling to develop a simple, phenomenological
model of avidity selection that may identify vaccine schedules that disproportionately favour low-avidity T cells.
We calibrate our model to our prior, more complex model, and then validate it against several experimental data
sets. We find that the sensitivity of the model’s parameters change with vaccine dosage, which allows us to use a
patient’s data and clinical history to screen for suitable vaccine strategies.

. 1 Introduction

T cells maintain anti-tumour immunity by recognising and killing cancer cells. T cells recognise these cancerous cells
through a surface protein—the T cell receptor (TCR)—binding to molecules known as peptide major histocompatibility
complexes (pMHCs), which reside on the surface of cancer cells (Murphy, 2011). The overall strength of these TCR-
pMHC interactions is termed avidity (Abbas et al., 2014).

s Several studies have shown that the selection of high-avidity T cells may be a requirement for durable tumour erad-
7 ication in certain cancers such as melanoma (Molldrem et al., 2003; Chung et al., 2014). Low-avidity T cells, by
s contrast, are weakly-tumour killing (Stuge et al., 2004) and may even temper anti-tumour activity by selectively in-
s hibiting high-avidity T cells (Chung et al., 2014). Indeed, experimental evidence suggests that certain cancer vaccines
10 may promote the expansion of low-avidity T cells (Stuge et al., 2004; Rezvani et al., 2011), which may explain why
11 these vaccines cannot maintain durable anti-tumour immunity in clinical trials (Schwartzentruber et al., 2011; Sosman
12 etal., 2008).

13 To remedy this, multiple techniques have been proposed. These techniques range from searching through peptide li-
14 braries to identify peptides that will stimulate high-avidity T cells (McMahan et al., 2006), to harnessing the plasticity
15 of naive T cells to promote their differentiation into high-avidity T cells (Kroger and Alexander-Miller, 2007). More
16 recently, evolutionary principles have been used to select for high-avidity T cells (Bassan et al., 2019). Complement-
17 ing these experimental studies are mathematical models that aim to improve the efficacy of cancer vaccines, namely
18 treatment schedules (i.e., vaccine dose and timing), from different perspectives. For example, in Sigal et al. (2019), the
19 authors optimise treatment schedules to maximise the clearance of cancer stem cells by killer T cells. Moreover, in Wei
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20 et al. (2017) the authors optimise the injection of helper T cells to enhance cytokine-mediated tumour clearance. More
21 broadly, in Joshi et al. (2009), the authors examine how vaccine schedules can be leveraged to avoid tumour recur-
22 rence. Besides these studies, researchers have also sought to optimise vaccine schedules in the context of combination
23 therapies. For example, Lai and Friedman (2017) examine how immune checkpoint blockers can be combined with
24 cancer vaccines for enhanced anti-tumour immunity, while Wilson and Levy (2012) look at how a regulatory-protein
25 inhibitor can be combined with a cancer vaccine to induce anti-tumour immunity. Indeed, our own previous modelling
26 work found that vaccine schedules, when optimised, may elicit high-avidity T cells (Kumbhari et al., 2020b,a). Our
27 model, however, is complex, and this complexity makes experimental validation difficult. Moreover, this complexity
28 introduces an element of model uncertainty as not all immune pathways and processes are well understood.

20 To address this, we develop a simple phenotypic ordinary differential equation (ODE) model that can reproduce the
30 results of our prior model. We validate our model against in vivo murine data from Hailemichael et al. (2013), ex vivo
31 human data from Rezvani et al. (2011) and in vitro data from Wu et al. (2017) and Cawthon et al. (2001). Notably,
32 the model presented here is a reduction of the model developed in Kumbhari et al. (2020a), obtained not via a formal
a3 model reduction, but rather via a conceptual reduction informed by our sensitivity analysis from Kumbhari et al.
s (2020a) and a review of the biological literature. Specifically, our model is based on the experimental observations that
s (1) mature DCs present antigens at different levels; (2) low DC antigen loads activate only high-avidity T cells, while
s high DC antigen loads activate both low- and high-avidity T cells; and (3) a history of antigen exposure attenuates
a7 T-cell expansion.

s We find that the sensitivity of the model’s parameters, which are abstractions of different biological processes, vary
s with dosage. We use this sensitivity analysis to eliminate inappropriate vaccine schedules (i.e., a schedule that promotes
40 low-avidity T cells) based on a patient’s underlying conditions. This increases the likelihood of electing high-avidity T
41 cells and thus, the likelihood of durable anti-tumour responses. While our study still requires experimental validation,
4«2 it nevertheless provides a vital proof-of-concept basis for further development of this approach.

s 2 Model

4 In this section, we develop a minimal model of T cell avidity. Our minimal model establishes a framework for sys-
45 tematically incorporating additional complexity, which may help in quantifying the extent to which different pathways
4 1mpede tumour clearance. Moreover, in the context of optimising vaccine schedules, our model is amenable to more
47 sophisticated optimisation techniques (that are beyond the scope of this study) such as numerical optimal control. Fi-
4 nally, we note that while no model is perfect, by using only well understood phenotypes of avidity selection, we are
49 able to reduce any model uncertainty in our predictions.

so In developing a minimal model of avidity selection, however, we exclude many aspects of the immune response. For
st example, for example our model does not account for certain cell populations such as natural killer cells, regulatory T
s2 cells and helper T cells. We also omit signalling pathways such as cytokine secretion. Importantly, our goal here is to
s3 develop a caricature model with a plausible biological basis, rather than a model that aims to capture all known T cell
s« dynamics.

ss To this end, we assume immature dendritic cells (iDCs) take up antigen and start maturing upon contact with the
s injected vaccine due to tumour-associated peptides and maturation signals such as vaccine adjuvant, danger signals,
57 or tissue derived immunogenic signals Coffman et al. (2010); Gardner and Ruffell (2016). Maturing DCs migrate to
s draining lymph nodes, where they present antigens to antigen-specific naive T cells, resulting in their activation to
so effector T cells (Murphy, 2011; Abbas et al., 2014). Importantly, different DCs present varying levels of antigen on
eo their surfaces, affecting the avidity of T cells that are activated. For simplicity, we focus on the dynamics of killer T
et cells that are cytolytic against tumours and are the primary target of anti-cancer vaccines (Lollini et al., 2006; Chung
e2 etal, 2014; Peng et al., 2019).

ss To model these interactions, we consider several populations: P, the concentration of vaccine peptides; /, the concen-
e+ tration of iDCs; My and My, the concentrations of mature DCs expressing low or high levels of vaccine peptide on
s their surfaces; and Ty and Ty, the concentrations of killer T cells of low and high avidity. A diagram of the different
es interactions between these populations is shown in Figure 1. We model the interactions between these populations with
e an ODE system:
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s where u(t) is the vaccine injection rate.

o In Eq. (1), vaccine peptides are injected at rate u(t), decay at rate dp, and are consumed by mature DCs at rate k),
70 and by immature DCs are rate kp;. In Eq. (2), iDCs are replenished at rate s; and turnover at rate d;. The final term
71 in Eq. (2), models the maturation of iDCs due to adjuvant. Because adjuvant is usually not antigen-specific (Garcon
72 and Di Pasquale, 2017), as a simplifying assumption we assume that all peptides within the periphery of an iDC are
73 presented at rate . It follows that if the concentration of non-vaccine proteins is denoted by y, then the proportion of
74+ peptides presented that are vaccine-associated is P/ () + P). Together, these equate to a net flux of aP/ (x + P).

75 In Eq. (3) and Eq. (4), iDCs transition into mature DCs at rate aﬁ[ and turnover at rate dp. The specific probability
76 of transitioning to a mature DC presenting low levels of surface antigens is 1 — pyigh(P), while the probability of

77 transitioning to a mature DC presenting high levels of surface antigens is ppign (P).

78 Finally, in Eq. (5) and (6), killer T cells activate and proliferate as a function of DC concentration, and decay at rate
79 dg@(P). Here, @(P) is an increasing function of antigen, P, that models T cell hyporesponsiveness (Hailemichael
s etal, 2013). As a simplifying assumption, we do not model the activation of naive T cells explicitly but instead use
st a saturating Hill function with parameters k7, kg and X, chosen so that we obtain biologically realistic behaviours.
e Furthermore, a key feature of avidity selection is that low levels of antigen expression on DCs stimulate high-avidity
s T cells and high-levels of antigen expression on DCs stimulate both low- and high-avidity T cells (Alexander-Miller
s etal., 1996; Bullock et al., 2001; Kedl et al., 2002; Kroger et al., 2008; Rezvani et al., 2011). As such, the activation
ss rate for low-avidity T cells is dependent only on the concentration of DCs with high levels of antigen presentation, My,
s whereas the activation rate for high-avidity T cells is dependent on the total concentration of DCs with low and high
&7 levels of antigen presentation, My + M.

& 2.1 Parameter estimates

s A list of parameters used in our simulations is given in Table 1. To obtain estimates, we used experimental values for
90 a peptide vaccine against melanomas in humans, but stress that our model readily generalises to other forms of anti-
91 tumour vaccines. Where possible, we have used experimental data from humans to characterise our model parameters;
92 however, specific phenomenological parameters are fit to the results of our previous model.

e 2.1.1 Vaccine

o InEq. (1), we assume that the vaccine is given systemically at a fixed dose of ug ngmL~! with a dosing interval of { d
95 equating to a vaccine injection rate of

=

u(t) = ug Z 0(t—Ca).

a=0

o The in vitro decay rate of an immunogenic peptide such as HVDGKILFV is estimated to 6.16 d~!, thus, we use a vac-
o7 cine decay rate, dp, of 6.16 d-! (Harndahl et al., 2012). We assume that iDCs have an uptake rate of kp;, while mature
s DCs have an uptake rate of kp. Previously (Kumbhari et al., 2020a), we used human data from the literature (Platt
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Fig. 1. A diagram of the key interactions between injected vaccine peptides, P; immature DCs, /; mature DCs with
different levels of antigen expression, My (low) and My (high); and a population of low- and high-avidity killer T
cells, Ty, and Ty

Table 1. Table of parameters for the ODE model and estimated values. Estimates that are characterised by human,
mice and in vitro data are marked with superscripts (-)!, ()M, and (-)¥. Here, d denotes days, and k denotes 10> cells.

Parameter  Description Estimate 95% CI Source

dp Vaccine peptide decay rate ¥ 6.16d7! Harndahl et al. (2012)

kp Mature DC uptake rate 1V 3% 1072 (k/uL) "' /d Sallusto et al. (1995)

kp Immature DC uptake rate MV 6.84x 1072 (k/uL) "' /d Platt et al. (2010); Sallusto et al. (1995)
d; Immature DC decay rate 1 5% 1072d"! Kaplan et al. (1987)

Miotal Total DC population H 5.9976 k/uL Di Girolamo et al. (2008)

dp Mature DC turnover rate 0.33d7! Kaplan et al. (1987)

X Concentration of non-vaccine peptides ¥ 7 x 107 ngmL~! Delamarre et al. (2003)

di Net killer T cell turnover rate M 0.4d! De Boer et al. (2003)

a DC maturation rate 3x10°d7! [2.966 x 10°,3.052 x 10°]

L Transition probability parameter 1% 10® ngmL~! [9.825 x 10°,1.012 x 10°]

kg High-avidity T cell activation rate 2.884 (k/uL)/d [0,10.56] . e

ke Lo%v-avidityy T cell activation rate 3.673 Ek?ﬁL%d [0.20.78] Fitto Kumbhari et al. (20202)
Xo T cell saturation constant 5139k/uL [4826,5438]

1oy Antigen saturation constant 1 x 10° ngmL~! [99670,1.003 x 10]

Minimum number of pMHCs required for 11 pMHCs
a DC to have a high-antigen load
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e etal., 2010; Sallusto et al., 1995) to estimate a mature DC uptake rate of 3 x 1072 (k/uL) "' /d and an immature DC
w0 uptake rate of 6.84 x 102 (k/uL) ' /d. Notably, data from Sallusto et al. (1995) shows that while the rate of antigen
101 capture by DCs saturates for large antigen concentrations, the saturation constant associated with this response is large.
102 In other words, even though the rate of antigen capture technically saturates, it effectively behaves as a linear function.
1s  Thus, as a simplifying assumption, we use mass-action kinetics rather than saturation-type kinetics. Finally, because
104 the vaccine is delivered at ¢ = 0, we set P(0) = u(0) = up.

105 2.1.2 Dendritic cells

w6 In Eq. (2), the rate at which immature DCs turnover, dj, is 1/20 d1=5x10"2d ! based on human estimates from Ka-
107 plan et al. (1987). To calculate the supply rate, s;, we force the system to be at steady state when there is no antigen,
w08 i.e., P =0, equating to s; — d;I(0) = 0, or s; = d;I(0). The baseline concentration of non-vaccine peptides, ¥, is
w09 7% 107 ngmL*1 in humans (Delamarre et al., 2003). In Eq. (3) and Eq. (4), the mature DC turnover rate, dp, is
1o estimated to be 1/72h~! =0.33d~! in humans (Kaplan et al., 1987).

11 While directly obtaining measurements of DC antigen loads over time is challenging, several indirect techniques exists.
12 One such technique involves measuring the percentage of activated low-avidity T cells, which leverages the fact that
s low-avidity T cell exclusively require high antigen loads for activation. Because the percentage of low-avidity T cells
1a  activated (as measured by cytokine secretion and tetramer staining) exhibits a saturation-type response (Bullock et al.,
1s  2003), we phenomenologically model the probability of transitioning to a mature DC presenting high levels of surface
116 antigens, phigh(P), with a first-order Hill function, i.e.,

P
CL+P
17 The phenomenological nature of this function means that other sigmoidal functions can be used to model this transition.
1 As the goal here is not to develop a fine-grained model of DC pMHC dynamics (which would be beyond the scope
1e  of this paper), we note that a first-order Hill function is sufficiently simple. The model parameter L, along with the
120 maturation rate, ¢, is fit to the results of our previous model (Kumbhari et al., 2020a). Details of the fitting procedure
121 are provided in Section 2.2.

Phigh(P) (7

122 For our initial conditions, we note that the total DC population at steady-state conditions, M,, is reported to be
123 5.9976k/pL in humans (Di Girolamo et al., 2008). As such, we set 1(0) = Mo = 5.9976k/uL. Additionally, we
12+ assume that initially there are no mature DCs presenting vaccine-associated peptides, i.e., My 5 (0) = 0.

125 2.1.3 T cells

126 Finally, in Egs. (5) to (6), both low- and high-avidity T cells decay at rate dg, which De Boer et al. (2003) estimate to
127 be 0.4d~! in mice. Motivated by De Boer and Perelson (2013), T cell activation and proliferation is modelled with a
128 saturation function (i.e., a Hill function) with shape parameter n = 1. The activation rates ky and kz; and saturation
129 constant Xy are fit to the results of our previous model.

10 Activation induced cell death (AICD) — also known as “exhaustion”, “senesce”, “adapted” etc. (Blank et al., 2019) —
131 is a phenomenon whereby chronic antigen exposure tempers T cell expansion and is considered a major reason for
132 tumour escape (Hashimoto et al., 2018; June et al., 2018). To model this, we assume our turnover rate, dg, increases
133 as antigen accumulates. In particular, antigen accumulation, ¢ (P), is modelled with the following function:

!

p(p) = NTOIE
Po+ Jo P(s)ds
13« where @ is a saturation constant that is also fitted (details of the fitting procedure are provided in Section 2.2). While
135 the mechanisms behind AICD are unclear (Hashimoto et al., 2018; Blank et al., 2019), it is generally understood that
13 this dysfunctional state occurs due to a history of antigen exposure (Hashimoto et al., 2018). Thus, to account for this
137 history of antigen exposure, we use the integral of P, fé P(s)ds, rather than P alone. Finally, we assume that initially
138 there are no vaccine-associated effector T cells, i.e., T 5 (0) = 0.

®

w 2.2 Parameter fitting

140 To parametrise our model, we first check for structural identifiability (detailed in Section 2.2.1 below). We then
141 simultaneously fit our model to data generated using our previous model (Kumbhari et al., 2020a), which in turn was
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122 based on a model was calibrated to ex vivo human data from Chung et al. (2014), and validated against data from
13 Rezvani et al. (2011) and Hailemichael et al. (2013).

1aa - 2.2.1 Structurally identifiability analysis

15 A model is structurally identifiable if, given an infinite amount of noiseless data, all model parameters and initial
1s conditions can be uniquely determined from measurements of its output (Bellman and Astrom, 1970). Moreover,
147 structural identifiability is prerequisite for both prediction (Villaverde et al., 2016; Heinemann and Raue, 2016; Bandara
s etal., 2009), experimental validation (Villaverde et al., 2016; Walter, 1997; Karr et al., 2015), and importantly practical
149 identifiability (i.e., determining parameter values with noisy data).

150 To determine if our model is structurally identifiable, we use DAISY (Differential Algebra for Identifiability of SYs-
151 tems). This software tool checks ODE models with either polynomial or rational nonlinearities for structural identi-
12 flability (Bellu et al., 2007). Explicitly, DAISY accepts a set of ODEs describing the state equations (initialised with
153 either known or unknown initial conditions) and uses Ritt’s pseudodivision algorithm to generate an input-output map
15« of the system (i.e., a set of polynomial equations involving only the known variables and their time derivatives). DAISY
155 then uses the Grobner basis of this map to determine if our input-output map is finite-to-one, and thus identifiable (Sac-
156 comani and Thomaseth, 2018; Meshkat et al., 2009, 2011, 2012).

157 A limitation of DAISY is that it only handles rational polynomial nonlinearities and yet Eq. (8) contains an integral.
18 We reconcile this by replacing [j P(s)ds with a dummy variable P; (defined such that dP;/dt = P) and thus leverage
150 the fact that Egs. (5) and (6) are decoupled from Egs. (1) to (4). Since we are fitting our model to data generated by
10 our prior model, we assume all state variables are observable.

11 Using DAISY, we determine that our model is globally structurally identifiable. Our model also implements several
12 first- or second-order Hill functions to model various immunological processes. To assess whether or not structural
s identifiability depends on the order of the Hill function used, we systematically vary the order from 1 to 10. As a
1« simplifying assumption, we limit these orders to integers. We find that structural identifiability is maintained regardless
165 of which integer-order Hill function is used.

s 2.2.2 Fitting procedure

17 Structural identifiability establishes that our model can be parametrised via noiseless data. Motivated by this, we
18 calibrate our current model to data from our previous study (Kumbhari et al., 2020a). While our previous model
10 tracked DCs by the number pMHC:s being presented, our current model classifies DC antigen loads as being “high” or
170 “low”. To compare the output between the two models, we cluster DC populations as follows. Motivated by reports
171 that as few as four pMHC:s suffice to trigger T cell stimulation (Deeg et al., 2013; Varma et al., 2006; Manz et al.,
172 2011), we classify DCs presenting between 1 to 10 pMHCs, i.e., on the same order of magnitude, as having a low
172 antigen density. We then classify DCs presenting over ten pMHCs as having a high antigen load. Our prior work also
174 considered 20 avidity classes, with an avidity state of 1 denoting the lowest and 20 the highest avidity state. Thus, to
175 compare this to our current work, we consider T cells with avidity states ranging from 1-10 as low and states ranging
176 from 11-20 as high.

177 We then fit our model to a simulated vaccine dose of 7 x 10° ngmL~! given fortnightly. This dosage is chosen as it
178 1s similar to the protocols of previous clinical trials (Schwartzentruber et al., 2011; Sosman et al., 2008; Smith et al.,
179 2003; Rezvani et al., 2011). We generate a time trace for the following four variables: DCs with high antigen loads,
180 Mp; DCs with low antigen loads, My ; high-avidity T cells, Ty; and low-avidity T cells, 7;. Then, for each variable,
1 we calculate the L?>-norm of the error between the time trace predicted by our prior work (after being clustered as per
12 the previous paragraph) and the time trace predicted by our current model. Finally, we use MATLAB’s optimisation
s routine “fmincon” to find estimates that minimise this aggregate L-error. 95% confidence intervals were obtained by
184 bootstrapping residuals 1000 times.

s Weestimate e =3 x 10° d~! (95% CI: [2.966 x 10°,3.052 x 10°]); L=1 x 10® ngmL~" (95% CI: [9.825 x 10°,1.012 x 10°]);
186 ky =2.884 (k/uL)/d (95% CI: [0,10.56]); kz, =3.673 (k/uL)/d (95% CI: [0,20.78]); Xo = 5139k /uL (95% CI: [4826,5438]);
w7 and @y = 1 x 10° ngmL~" (95% CI: [99670,1.003 x 103]). This suggests that, relative to the parameters a, L, X, and

188 (@, kr and ky are somewhat poorly identifiable.

180 As Figure 2 shows, our reduced model underestimates the amplitude of the initial peak for T cells and overestimates
10 the amplitude of secondary T cell peaks. This occurs due to the omission of negative feedback mechanisms such as
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191 induced regulatory T cells in our model. Moreover, while other high-low set points could be used, we note that using
12 ten pMHCs provides good qualitative agreement with our prior results (see Figure 2).

w 3 Results

w 3.1 The model is consistent with experimental data

15 Individualised mathematical models for personalised medicine often necessitate simplicity because of the sparsity of
196 patient data (Andre et al., 2013; Kronik et al., 2010; Gevertz and Wares, 2018). Simple models, however, may be
197 perceived by some to trade mechanistic complexity for abstractions that cannot capture the full scope of experimental
198 data. Here, we validate our reduced model against in vivo murine data from Hailemichael et al. (2013), ex vivo human
199 data from Rezvani et al. (2011) and in vitro data from Wu et al. (2017) and Cawthon et al. (2001).

200 In Hailemichael et al. (2013), the authors show that repeated vaccination with the gp100 vaccine induces T cell hypore-
201 sponsiveness, whereby repeated exposure to an antigen inhibits T cell expansion. To emulate this study, we use a dosage
202 identical to that used in Hailemichael et al. (2013), namely, 100 ug in a 100 uL injection every 42 days, or equivalently
20 10°ngmL~! every 42 days. Simulating this protocol we find that our model also predicts T cell hyporesponsiveness
204 (see Figure 3A), but the decrease is predicted by our model (20%) is less dramatic than that reported by Hailemichael
205 et al. (2013) (approximately 50%). Since an implicit goal of this study is to develop a minimal model of T cell avidity,
206 we do not include several cell populations (such as myeloid-derived suppressor cells or pro-tumour macrophages) that
207 inhabit the tumour niche and temper T cell expansion. We expect including these factors will produce better agreement
208 with the data from Hailemichael et al. (2013).

200 Next, in Rezvani et al. (2011), the authors conduct a small-scale clinical trial with a peptide vaccine, and in doing so
210 observe the depletion of high-avidity T cell (quantified by decreasing ratio of high-avidity to-low-avidity T cell). To
211 test if we also observe a similar depletion in our model, we simulate a dosage of 7 x 10° ngmL ™! given every two
212 weeks. We find that after vaccinating at this dosage (see Figure 3B), high-avidity T cells become depleted as observed
213 by Rezvani et al. (2011).

214 Programmed cell death protein 1 (PD1) is a protein that inhibits T cell activity and is overexpressed on T cells in
215 cancer. In our model, this is implicitly modelled via an increased rate of T-cell turnover (see Eq. (8)). To validate this
216 component of our model, we compare the average value of Eq. (8) against data from Wu et al. (2017) (see Figure 3C), in
217 which the authors show that PD1 expression, quantified via mean fluorescence intensity (MFI), increases with vaccine
218 dosages in vitro (Wu et al., 2017). To simulate Wu et al. (2017)’s in vitro set up, we use a 2-hour dosing frequency and a
219 timespan of 4 days. To simulate the doses reported by Wu et al. (2017), we first note that antigen was distributed across
20 a 24-well plate, which assuming a well working volume of 0.475 mL (Sigma-Aldrich, 2020) and a control volume of
221 1 mL, implies that 1 ugmL~" of vaccine in vitro equates to a simulated dose of

1ugmL~! x well volume x number of wells _ lugmL~" x 0.475mL x 24
control volume B ImL

= 11.4pgmL’1.

222 Given that MFI readouts are instrument specific, to compare PD1 MFI readouts, we normalise Wu et al.’s data so that
223 the maximum MFI is mapped to a value of 100%, and the minimum value is mapped to a value of 0%. We then
224 compared this against the average value of Eq. (8), which we similarly normalise. We find that our reduced model
25 agrees well with data from Wu et al. (2017) (see Figure 3C).

226 Finally, T-cell activation is modelled explicitly via a saturation function (see Eqgs. (5) and (6)) and implicitly via a DC
22z pMHC transition probability (see Egs. (3) and (4)). To validate these components of our model, we compare the average
22s  net high- and low-avidity activation rates, kg (M, +Mpy) /(Xo + M+ Mpy) and k My /(Xo + My ), against in vitro T-cell
229 activation data (quantified via interferon-gamma readouts) from Cawthon et al. (2001). To emulate Cawthon et al.’s
230 1In vitro set up, we use a 2-hour dosing frequency and a timespan of 1 day. And finally, as data from Cawthon et al.
231 (2001) is normalised to be between 0% and 100%, we similarly normalise our data. We find that our reduced model
232 agrees well with data from Cawthon et al. (2001) (see Figure 3D). Together, these findings show that our model predicts
233 behaviours consistent with the biological literature.
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Fig. 2. Comparison between the reduced model and our prior work from Kumbbhari et al. (2020a) for a dosage of
7 x 10° ngmL~! fortnightly. Here, solid lines correspond to predictions made by our current model and dashed lines
to predictions made by our previous model. Simulated cell concentrations are in thousands per micro-litre. Here, we

classify a DC presenting between 1 to 10 pMHCs as having a low-antigen load, while anything greater than 10
pMHC:s as having a high-antigen load.
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Fig. 3. (A) The model predicts T cell hyporesponsiveness as reported by Hailemichael et al. (2013). (B) The model
predicts the depletion of high-avidity T cells as reported by Rezvani et al. (2011). (C) Here, we use PD1 expression as
an ad-hoc measure of inhibition, which in our model is governed by Eq. (8). PD1 data from Wu et al. (2017) is
normalised by mapping the largest MFI to 100% and the lowest MFI to 0%. The average value of Eq. (8), labelled
“simulation data”, is similarly normalised. (D) Comparison of activation rates against normalised activation data,
quantified via interferon-gamma expression, from Cawthon et al. (2001).
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Fig. 4. The model predicts a frequent low-dose strategy maximises the selection of high-avidity T cells, which is
consistent with prior work. Here, the selection of high-avidity T cells is quantified via the mean-avidity difference,
which though correlated with tumour clearance is not a direct measure of tumour clearance.

3.2 The selection of high-avidity T cells depends synergistically on the schedule rather than
the dose or dosing frequency alone

Since our reduced model reproduces key dynamics from the literature, we can leverage our model to identify vaccine
schedules that preferentially select for high-avidity T cells. To quantify the selection of high-avidity T cells, we use

the mean avidity difference
60

1
mean avidity difference = & [Ty (1) — Tp.(2)] dt, 9)
0

which, unlike the ratio of low- to high-avidity T cells, also accounts for the total T cell concentration. We then perform
a global dosage sweep, i.e., simulate combinations of doses ranging from 1 ngmL~! to 1 x 10° ngmL~" with dosing
intervals that range from 1 day to 30 days and track the average selection of high-avidity T cells over 60 days (quantified
via the mean avidity difference).

We find that a dosage of 1 x 103 ngmL~! given every two days maximises the mean avidity difference. A more
strategic dosage of 5 x 103 ngmL~! given weekly (see Figure 4) is also comparably effective. Moreover, in Figure 4,
for doses between 5 x 103 ngmL~! to 1 x 10*ngmL~!, we notice the formation of a characteristic “ridge”, along
which the selection of high-avidity of T cells is robust to the dosing interval. More generally, our simulations suggest
that the selection of high-avidity of T cells, as quantified by the avidity difference, is overall more sensitive to dose
than to the dosing interval (see Figure 4). This may explain why previous experiments with the gp100 vaccine, which
focused primarily on modulating the dosing interval of a high dose vaccine, were unsuccessful in eliciting high-avidity
T cells (Schwartzentruber et al., 2011; Sosman et al., 2008; Smith et al., 2003; Rezvani et al., 2011). However, using a
low dose alone is also unlikely to induce a significant high-avidity response as T cell expansion is usually proportional
to antigen load (Berzofsky et al., 2001). Together, these results suggest that the selection of high-avidity T cells
depends synergistically on the dose and the dosing frequency (or schedule), rather than the dosing frequency or dose
alone, which is consistent with our previous work.

3.3 Parameter sensitivity changes with dose

In this section, we perform a global sensitivity analysis on several dosages and find that the selection of high-avidity T
cells is sensitive to different parameters for different dosages. These sensitivities can be used to eliminate inappropriate
(i.e., those that promote low-avidity T cells) dosages. As in Section 2.2, we consider nine dosages, specifically, doses
of 10> ngmL~"!, 7 x 10° ngmL~!, or 108 ngmL~'; with either weekly, fortnightly, or monthly dosing intervals.
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Table 2. Sensitivity of model parameters for different hypothetical dosages.

- Dose of 10> ngmL~! Dose of 7 x 10° ngmL ™! Dose of 108 ngmL ™!
Dosing interval
Parameter SRCC  p-value Parameter SRCC  p-value Parameter SRCC p-value
o 0.4068 <1012 ky 04318 <1012 ky 0.6452 <10~12
kn 03593 <1012 Miotal 0.4247 <1012 L 0.2074 3.0485x 107°
Miotal 0.1357  0.0024 o 0.1714 1.1948 x 10~*  kp; 0.0615 0.1695
ky 0.0242  0.5884 @ 0.1263  0.0047 x 0.0090 0.8415
L 0.0012  0.9794 dp 0.1177  0.0084 Miotal 0.0083 0.8537
kr -0.0039  0.9304 L 0.0311 0.4872 dp 0.0047 0.9170
Weekly dg -0.0082  0.8543 ky -0.0042  0.9248 o -0.0032 0.9424
® -0.0385  0.3899 kp; -0.0203  0.6506 dp -0.0101 0.8209
dp -0.0428  0.3389 d; -0.0402  0.3699 Xo -0.0169 0.7055
d; -0.0478  0.2863 kr -0.0447 0.3183 dy -0.0338 0.4511
kpi -0.2461 27460 x 1078 dg -0.1006  0.0245 ky -0.0338 0.4510
dp -0.3788 <1012 x -0.1143  0.0106 d; -0.0424 0.3434
Xo -0.3907 <1012 dp -0.3933 <1012 o -0.0514 0.2508
x -0.4017 <1072 Xo -0.3994 <1072 kp -0.5424 <10~12
o 0.4070 <1012 ky 0.4437 <1072 ky 0.6441 <1072
kn 03592 <10712 Miotal 0.4064 <1012 L 0.2074 3.0610 x 1076
Mgl 0.1357  0.0024 a 0.1819  4.3965x 1075 kp; 0.0613 0.1707
ky 0.0244  0.5859 dp 0.1047  0.0193 x 0.0090 0.8413
L 0.0013  0.9776 o 0.0982  0.0282 Miotal 0.0071 0.8737
kL -0.0040  0.9293 L 0.0266 0.5522 dp 0.0070 0.8762
. dg -0.0080  0.8580 k -0.0126 0.7789 o -0.0015 0.9737
Fortnightly 20.0392  0.3817 ki 200312 0.4869 dp -0.0095 0.8316
dp -0.0429  0.3386 kL -0.0484  0.2803 Xo -0.0173 0.6988
d; -0.0475 0.2888 d; -0.0581 0.1943 dx -0.0326 0.4665
kp; -0.2464 2.6398x 1078  dg -0.0731  0.1026 ky -0.0353 0.4311
dp -0.3787 <1072 x -0.1183  0.0081 d; -0.0432 0.3351
Xo -0.3906 <1012 dp -0.4031 <1012 o -0.0503 0.2619
x -0.4015 <1072 Xo -0.4097 <1072 kr -0.5418 <10~12
o 04069 <10~12 ky 0.4495 <1072 ky 0.6430 <10712
ky 0.3591 <1012 Mol 0.3952 <1012 L 0.2070 3.1920 x 107
Mol 0.1356  0.0024 o 0.1868 2.7250 x 107 kp; 0.0617 0.1684
ky 0.0244  0.5867 dp 0.0953  0.0332 x 0.0096 0.8306
L 0.0010  0.9819 @0 0.0823  0.0658 dp 0.0091 0.8383
kp -0.0040  0.9297 L 0.0239  0.5930 Miotal 0.0063 0.8877
Monthly dg -0.0080 0.8588 k, -0.0181  0.6870 o -8.2176 x 107> 0.9985
-0.0393  0.3798 kp; -0.0369  0.4097 dp -0.0092 0.8376
dp -0.0428  0.3394 kr -0.0496  0.2684 Xo -0.0174 0.6977
d -0.0475  0.2889 dy -0.0586 0.1911 dx -0.0312 0.4866
kp; -0.2464 2.6587x 1078 4 -0.0681 0.1281 kp -0.0363 0.4178
dp -0.3789 <1012 x -0.1225  0.0061 d; -0.0423 0.3452
Xo -0.3906 <1012 dp -0.4100 <1072 o -0.0511 0.2543
x -0.4015 <1012 Xo -0.4134 <1072 k. -0.5412 <10~12

The complexity of individualised immune responses in humans, coupled with a highly heterogeneous tumour microen-
vironment means that patient data is intrinsically nonlinear (Brodin and Davis, 2017; Zi, 2011). To account for these
nonlinear interactions in our sensitivity analysis, we simultaneously vary our parameters over a 100-fold range from
their basal values (given in Table 1). Moreover, we generate our samples (N = 500) using Latin Hypercube Sampling.
To estimate our sensitivity values, we calculate the Spearman Rank Correlation Coefficient (SRCC), p, between each
parameter and the mean avidity difference (defined in Eq. (9)). Table 2 shows the SRCC along with the corresponding
p-value for several dosages.

We find that for large doses, the sensitivity of DC maturation rate to antigen, L, and the total DC concentration, Mo,
are parameters that are positively correlated with the promotion of high-avidity T cells. By contrast, the DC antigen
consumption rates, kp and kp;, and the T cell saturation constant (a measure of how sensitivity T cell activation is
to mature DC concentrations), X, are parameters that are negatively correlated with the promotion of high-avidity T
cells, i.e., they are positively correlated with the selection of low-avidity T cells. This suggests that the presentation of
antigen on mature DCs may be driving the selection of high-avidity T cells in our model, which is consistent with the
literature (Gerner et al., 2017; van Stipdonk et al., 2001). We also find that as the vaccine dose increases, the sensitivity
of o, the DC maturation rate decreases in our simulations. Again, this suggests that both antigen presentation and DC
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275 activation dynamics drive the promotion of high-avidity T cells.

276 By estimating the parameter sensitivity of these candidate dosages, we can use a patient’s history and clinical presenta-
277 tion to screen for suitable dosages. For example, a common co-morbidity for melanoma patients is diabetes (Lee et al.,
278 2015). Diabetes is known to decrease phagocytosis by immune cells (Geerlings and Hoepelman, 1999), which in our
279 model would correspond to a decreased rates of antigen uptake, kp and kp;. The goal here is to identify dosages where
250 the selection of high-avidity T cells is negatively correlated with both kp and kp;. Referring to Table 2, we identify
21 7 x 107 ngmL~! given either weekly, fortnightly or monthly as suitable candidate dosages.

252 As an additional example, consider a patient presenting with a history of heart disease another common co-morbidity in
253 skin cancer patients. Coronary artery disease results in a have a lower number of circulating DCs in patients (Van Vre
284 et al., 2011). In our model, this corresponds to a decreased DC concentration, M. The goal here is to identify
255 dosages where the selection of high-avidity T cells is weakly correlated with M,y,. Referring to Table 2, we identify
26 1 x 108 ngmL~! given either weekly, fortnightly or monthly possible candidate dosages. Together, these examples il-
257 lustrate how our model can be leveraged to personalise dosages based on a patient’s history and other conditions.

= 4 Discussion

289 Personalising treatment schedules to induce high-avidity T cells is a promising new approach to maintaining immunity
200 against certain cancers such as melanoma. Here we develop a simple ODE model of T cell avidity that is validated
201 against several experimental datasets. We then use our model to suggest therapy schedules based on a table of sensi-
202 tivities. This method involves first using a patient’s history and clinical presentation to determine which parameters
203 are expected to have changed, and then referring to a table of parameter sensitivities to eliminate inappropriate vaccine
294 schedules. Importantly, our study is a proof-of-concept study and still requires experimental validation.

205 Since this study aims to develop a minimal model of avidity selection, our model makes several simplifying biological
206 assumptions. For example, we do not account for certain immunological processes such as the induction of regulatory
207 T cells, lymphocyte trafficking, and cytokine secretion. These processes were, however, modelled in our prior work,
208 against which we calibrated our model. Additionally, we only considered two avidity states, low or high, despite
299 avidity likely existing on a continuous spectrum. Since most experimental studies only report on low- and high-avidity
a0 populations, using a system of ODEs (rather than a similar system of PDEs) makes the model more amenable to
st experimental validation.

a2 As an additional simplification, we assumed the probability of an immature DC transitioning to a mature DC pre-
s0s  senting high levels of surface antigens, ppign(P), was dependent only on the concentration of antigen. Biologically,
s« this probability depends on additional, more dynamic factors, such as co-signalling pathways (Chen and Flies, 2013).
ss Importantly, our model is not specific to peptide vaccines, and we expect that our model can also apply to newer,
as neo-antigen-based T cell vaccines.

a7 As an alternative to parametrising and then optimising a model to patient data (which may be difficult), we propose
a8 using a table of sensitivities to screen to suitable dosages. This table of sensitivities involves performing a sensitivity
a9 analysis on model parameters for a set of different simulated dosages. Of these dosages, some, when clinically trialled,
a0 were found to promote the low-avidity T cells over high-avidity T cells (Hailemichael et al., 2013; Rezvani et al., 2011;
a1 Schwartzentruber et al., 2011). Nonetheless, we included these dosages as we could not rule out the possibility that
sz these dosages are optimised to elicit anti-tumour immunity by additional, non-avidity-based mechanisms not consid-
a3 ered in our model. Indeed, we argue that, under the right conditions (i.e., those identified via our table of sensitivities),
a4 these dosages may enhance the selection of high-avidity T cells. To ensure our schedules are also practical, we limit
a5 our simulated dosing intervals to weekly, fortnightly or monthly intervals. Consequently, we did not include the op-
a6 timal dosage of 1 x 10 ngmL~! given every two days in our table of candidate schedules. Moreover, while these
a7 dosing intervals were chosen for their practicality, an alternative approach not explored in this study involves using
ais control theory to identify an optimal vaccine strategy. Indeed, using a control-theoretic approach may identify dosages
a9 that maximise the selection of high-avidity T cells beyond what we identified. Finally, while our findings still require
a0 preclinical validation, we anticipate that our simulated dosages are safe. This is based on studies in which limited
a1 adverse side effects are reported (Hailemichael et al., 2013; Rezvani et al., 2011; Schwartzentruber et al., 2011). As
a2 such, we predict that under the right circumstances (such as those suggested by Table 2), these dosages can safely elicit
a3 high-avidity T cells.

s« Notably, the schedules identified here all aim to maximise the mean avidity difference over 60 days. We used the
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a5 avidity difference rather than the ratio of high- to low-avidity T cells, as it not only penalises the selection of low-
a6 avidity T cells but also accounts for the total concentration of T cells induced, which is an important predictor of
a7 treatment efficacy (Kittlesen et al., 1998). However, as a metric for the selection of high-avidity T cells, the mean
a8 avidity difference has limitations. For example, optimising the mean avidity difference results in all-or-nothing control,
a0 whereby a response that elicits a low total T cell count has a higher payoff than one that promotes low-avidity T cells
a0 at a higher concentration. While this allows us to account implicitly for the inhibition of high-avidity T cells by low-
ss1  avidity T cells (Chung et al., 2014), this also results in parameter sensitivities that suggest T cell hyporesponsiveness is
sz preferable over the stimulation of low-avidity T cells. This could be addressed by using a metric that penalises both the
a3 selection of low-avidity T cells and low total T cell concentrations. Vaccine protocols also need to account for factors
s« other than T cell avidity, such as toxicity constraints and off-target reactions (Tigue et al., 2007), which are factors that
s our model does not include. Developing a selection metric that accounts for these factors will be the subject of future
a6 investigations.

a7 Overall, our findings still require substantial experimental validation, which is a priority for future work. Nonethe-
s less, they provide a vital proof-of-concept link between a phenotypic model of avidity selection and identifying and
a9 eliminating sub-therapeutic vaccine schedules, which may help in inducing durable anti-tumour immunity.
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