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ABSTRACT

Babesiosis in a tick-borne parasitic disease of humans and livestock, that has dramatically
increased in frequency and geographical range over the past few decades. Infection of cattle
often causes large economic losses, and human infection can be fatal in immunocompromised
patients. Unlike for malaria, another disease caused by hemoprotozoan parasites, limited
treatment options exist for Babesia infections. As epigenetic regulation is a promising target
for new anti-parasitic drugs, we screened 324 epigenetic inhibitors against Babesia divergens
blood stages and identified 75 (23%) and 17 (5%) compounds that displayed =290% inhibition
at 10 uM and 1 uM, respectively, including over a dozen compounds with activity in the low
nanomolar range. We observed differential activity of some inhibitor classes against Babesia
divergens and Plasmodium falciparum parasites and identified pairs of compounds with a high
difference in activity, despite a high similarity in chemical structure, highlighting new insights
into the development of epigenetic inhibitors as anti-parasitic drugs.

INTRODUCTION

Babesiosis is an emerging parasitic disease caused by the intra-erythrocytic Babesia parasite
and has many clinical features similar to malaria infection. Babesia infections in cattle are
widespread and lead to economic losses through death, reduction in meat and milk yield, and
the cost of control measures. More than 100 Babesia species have been identified but only a
few infect humans. However, human babesiosis is an increasing concern worldwide, as the
number of reported cases have increased over the last decades and the geographical rage of
transmission has expanded 2. In Europe, Babesia divergens is responsible for most human
babesiosis cases 3. In the US, the majority of human Babesia infections is caused by Babesia
microti, although cases of B. divergens-like organisms have been reported as well “.
Transmission occurs through the bite of an infected tick or occasionally through blood
transfusion, which has prompted the screening of the blood supply for Babesia parasites in an
increasing number of U.S. states ° . Symptomatic human babesiosis is manifested by malaria-

like symptoms, such as fever and general malaise. Treatment recommendations for human
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babesiosis are a combination of atovaquone and azithromycin for mild to moderate babesiosis
and clindamycin plus quinine for severe infection 6. However, for immunocompromised
patients, cases of treatment failure for both regimens have been reported 78 and babesiosis
can lead to organ failure and death. Asplenic patients, in particular, are at high risk for relapsing
infections and require long antimicrobial treatment °. Recently, tafenoquine, a newly FDA-
approved drug for malaria treatment, showed activity against Babesia microti in mice but
further studies are needed '°. As treatment options for relapsing Babesia infection are limited,

research into new drugs for babesiosis is critical.

In eukaryotes, epigenetic regulation of gene expression, mediated by small modifications of
nucleosomes and on DNA itself, has been found to be critical for cellular homeostasis and
differentiation ''. In a recent screen of 324 commercially available epigenetic inhibitors against
Plasmodium falciparum "2, we showed that 54 compounds exhibited 250% inhibition at 1 uM
in vitro, suggesting that the epigenetic machinery could be a promising novel drug target. Since
Plasmodium and Babesia are related parasite species with similarly complex life cycles that
share much of the epigenetic regulatory machinery, we decided to determine the activity of
these epigenetic inhibitors against Babesia divergens, for which an in vitro culture system and
drug assays are established.

METHODS

Commercially available libraries of 324 epigenetic inhibitors from Selleckchem (Houston, TX)
and Cayman Chemicals (Ann Arbor, MI) were purchased. Libraries were aliquoted and diluted
in DMSO to 2 mM and 0.2 mM in V-bottom 96-well plate and stored at -80°C.

Babesia divergens (Bd Rouen 1987 strain '3) was grown in vitro in human A+ RBC at low
parasitemia. Cultures were flushed with 90% nitrogen, 5% oxygen and 5% carbon dioxide and
cultured at 37°C. SYBR Green based growth assays were used to determine in vitro activity of
the epigenetic inhibitors against B. divergens 415, Briefly, flat-bottom 96-well plates at a total
of 200 uL per well and 0.5% DMSO, at a final 5% hematocrit, 0.5% parasitemia for B. divergens
were incubated at 37°C for 72 hours and thereafter frozen at -80°C. Upon thawing, 100 uL of
SYBR Green (ThermoFisher) diluted in lysis buffer (0.2 yL 10,000X SYBR Green per mL lysis
buffer) was added to each well and plates were shaken in the dark at room temperature for 1
hour. Fluorescence was then measured using a Molecular Devices SpectraMax ID5 plate
reader. Values were normalized to solvent-treated controls (included in triplicate on each
plate). EC50 values were calculated using the nlImLS function of the minpack.Im package
(v1.2-1) of the R statistical package (v3.6.0).
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Protein sequences of histone modifying enzymes were retrieved from PlasmoDB and
PiroplasmaDB '¢'7. Orthologs were identified using annotated ortholog groups as well as
reciprocal BLAST searches. NCBI Conserved Domain Search '® was used to identify
conserved protein domains. Protein sequences were aligned using MUSCLE '° and visualized
using MView 2°. In cases where two consecutive genes were identified as orthologs, the
genelD for the ortholog containing the catalytic domain was indicated as the ortholog.

Structural feature (SkelSphere) analysis and Activity Cliff Analysis were performed using Osiris
DataWarrior v5.2.1, at 80% chemical structure similarity cut-off. Structure-Activity Landscape
Index (SALI) values 2! were calculated as:

SALI',J = ((|Ai = Ajl)/ (1 = sim(i, j)))

in which Ai and Aj are the activities of compounds i and j, and sim(l,j) is the similarity coefficient

between the two molecules.
RESULTS AND DISCUSSION

Evolutionary conservation of epigenetic modifying enzymes in piroplasmid parasites.
Among eukaryotes, the most common epigenetic modifications are acetylation of histone lysine
residues, methylation of histone lysine and arginine residues, and methylation of deoxycytidine
on DNA. We were able to identify orthologs for most of the enzymes classes that place and
remove these marks in the genomes of piroplasmid parasites, which includes Babesia and
Theileria species (Figure 1, Supplemental Table 1, Supplemental Dataset 1). Orthologs to
seven of the eleven Su(var)3-9/Enhancer of Zeste/Trithorax (SET)-domain-containing lysine-
specific histone methyltransferases (KMT) present in P. falciparum could be identified in at
least one piroplasmid genome. Orthologs of PISET4 and PfSETS were absent in the entire
clade while an ortholog to PfSET6 could only be identified in B. microti. Orthologs to PfSET9
could be identified in all piroplasmida genomes but are missing key residues within the catalytic
SET domain thus making it unlikely that these have retained methyltransferase activity. Most
piroplasmid genomes also retain two additional trithorax-like SET-domain proteins found in
other apicomplexan parasites that were lost in malaria parasites. Histone demethylases were
notably reduced compared to P. falciparum, with B. divergens and B. bovis only encoding a
single member of the Jumonji and LSD demethylase families.

All three the histone arginine methyltransferases (RMTs) in P. falciparum had orthologs in B.
divergens, but the PRTMS3 ortholog was lost outside the Babesia sensu stricto clade

(represented by B. bovis and B. divergens). Histone acetyltransferases (HATs) and
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deacetylases (HDACs) were generally conserved between malaria parasites and the
piroplasmida. Notable is the absence of Sir2A from all piroplasmid genomes and loss of HAT1
from the Babesia sensu stricto clade. An ortholog of a proposed Cytosine-5 DNA
methyltransferase in Plasmodium falciparum 22 is present in Theileria equi but could not be
identified in the other genomes examined.

Activity of epigenetic inhibitors against Babesia divergens.

Given these differences in histone modifying enzymes between P. falciparum and the
piroplasms, we decided to test the susceptibility of B. divergens to a library of epigenetic
inhibitors previously screened against P. falciparum 2. Of the 324 compounds tested, 125
(39%) showed 250% inhibition at 10 uM against B. divergens blood stages, of which 46 (14%)
retained greater than half-maximal activity at 1 uM (Figure 2A, Supplemental Figure 1 and
Table 2, Supplemental Dataset 2). 75 (23%) and 17 (5%) of compounds exhibited greater than
90% inhibition at 10 yM and 1 uM, respectively. Dose-response curves were performed for 17
compounds with sub-micromolar EC90 values (Figure 2B). Of these, the HDAC inhibitors
quisinostat and apicidin were the most potent compounds, with EC50 values as low as 5 - 6
nM. These top hits included two FDA-approved drugs mitomycin C and panobinostat with
ECS50 values of 63 nM and 27 nM, respectively. Peak plasma concentration of panobinostat
dosage indicated for treatment of multiple myeloma only correspond to EC75 for Babesia
making it an unlikely candidate for treatment 2324, Mitomycin C is a CpG DNA crosslinking
agent indicated, indicated for gastric and pancreatic adenocarcinoma treatment and was
recently also approved for low-grade upper tract urothelial cancer.?®. Intravenous
administration during chemotherapy leads to plasma concentration of 5 uM 2, around 20-fold
higher than its EC90 value against B. divergens. We previously determined toxicity of selected
compounds against human HepG2 cells 2. Several compounds displayed only moderate
toxicity against HepG2 cells even at 1 uM (Figure 2B). This drug screen identifies promising
compounds for additional SAR studies for possible use as a new class of anti-Babesia drugs.

Differential activity of epigenetic inhibitors against B. divergens and P. falciparum.
Next, we compared these results to our recently completed screen of this library against P.
falciparum blood stages '2. A similar number of compounds had >50% inhibition at 1 uM
against both species (46 against B. divergens compared to 54 against P. falciparum). For both
species, compounds targeting histone methylation, deacteylation, demethylation or
phosphorylation were the most active, while compounds targeting histone acetylation,
PARPylation, histone reader domains, DNA methylation or other pathways had little to no
activity (Supplemental Table 1).
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Twenty-five compounds with >50% inhibition at 1 uM against one species exhibited greater
than two-fold difference in activity in the other (Figure 3). HDAC inhibitors were generally less
active against B. divergens than against P. falciparum, with 18% of the 85 HDAC inhibitors in
the library showing 290% inhibition at 1 yM against P. falciparum versus only 8% for B.
divergens (Supplemental Table) 2. Interestingly, several HDAC inhibitors with high differential
activity target the human HDAC1 (class |) or HDACG (class llb), suggesting that the HDACs
may be more divergent from the human enzymes in B. divergens than in P. falciparum. An
additional 25 compounds exhibited greater than 75% inhibition against both P. falciparum and
B. divergens. Thirteen of these were HDAC inhibitors many of which have activity against
multiple HDAC classes. Surprisingly, of the 15 HMT inhibitors in Figure 3B, the four compounds
with greater activity against B. divergens target either ethery the H3K79 HMT DOT1L or the
H3K27 HMT EZH1/2 in humans, orthologs to which are absent from both species. As in our
previous study, the DNMT inhibitor SGI-1027 was also among the most active compounds
against B. divergens, despite no identifiable DNMT ortholog in Babesia species and PfDNMT
being dispensable for asexual growth 27, suggesting that SGI-1027 likely has one or more

alternative targets.

Similarity and activity cliff analysis of activity against B. divergens and P. falciparum.
Structural feature analysis of all 324 unique compounds revealed five clusters of four
compounds or more with >80% structural similarity (Supplemental Figure 2), including seven
HDAC inhibitors with a common hydroxamate-based scaffold, seven HMT inhibitors sharing a
common diaminoquinazoline backbone (Figure 5) and three HMT inhibitors an 1H-indazole-4-
carboxamide scaffold (Figure 4B). Activity Cliff analysis identifies pairs with high differential
activity, despite high structural similarity. Delta activity and SALI values are plotted for all pairs
of the library in Supplemental Figure 3. Compound pairs of interest have >50% delta activity
and >80% structural similarity (Figure 4A). Twelve pairs were activity cliffs in both P. falciparum
and B. divergens, while three only had more than 50% delta activity in B. divergens and 4 only

in P. falciparum.

The HMT inhibitor UNC1999 displays an activity cliff for activity against B. divergens when
paired with GK343 and GSK503, despite the former having 91% structural similarity (Figure
4B). Interestingly, the IC50 values for mammalian EZH2 enzyme inhibition are similar for all
three compounds, while UNC1999 is the only compound with potent EZH1 inhibition as well.
Kinase inhibitors belinostat and oxamflatin show activity cliffs for both species (Figure 4C).

Additional structural comparisons of the remaining activity cliff pairs can be found in
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Supplemental Figure 4. These activity cliff pairs provide insight into the structural features that
confer activity against P. falciparum and B. divergens.

Differential HMT inhibitors with a diaminoquinazoline backbone.

Seven HMT inhibitors of the SET3 HMT G9a share a diaminoquinazoline backbone 28-33,
Figure 5A shows pairs with >60% similarity and >50% delta activity at 1 yM in both species.
For Babesia divergens, the side group on position 4 of the diaminoquinazoline scaffold seemed
to have the most effect on compound activity (Figure 5B). A cyclohexylmethyl-4-piperidylamine
side group (UNC0631) showed the highest activity, while the EC50 value increased 5-6 times
when changing to a cyclohexyl-4-piperidylamine (UNC0646) or 1-benzyl-4-piperidylamine
(BIX01294) side group. Substituting the ring structure with an isopropyl group (UNC0638 and
UNCO0642) further decreased the remaining activity by half. Activity is completely lost when the
side group consists of a lone 4-piperidylamine (UNC0224).

Previous SAR studies of diaminoquinazolines methyltransferase inhibitors have been
performed for P. falciparum, 343%. We confirmed that substituting the 1-benzyl-4-piperidylamine
of BIX01294 on position 4 of the diaminoquinazoline scaffold with a cyclohexylmethyl-4-
piperidylamine (UNC0631) or a cyclohexyl-4-piperidylamine (UNC0646) reduced the activity
against P. falciparum (Supplemental Figure 5). However, in disagreement with previous
findings, the substitution with a 1-isopropyl-4-piperidylamine (UNC0642 and UNCO0638) did not
impact the activity against P. falciparum.

It was previously reported that a lysine mimetic side group on position 7 of the
diaminoquinazoline scaffold lacks activity against P. falciparum, despite exhibiting potent
activity against G9a due to interactions in the lysine binding channel of this enzyme. We
confirmed that a dimethylpropylamine side group (UNC0224) loses activity as previously
reported, but interestingly, we found the lysine mimetic side groups 1-propylpyrrolidine
(UNCO0642 and UNCO0638) and 1-propylpiperidine (UNC0631 and UNC0646) retained most of
their activity. This suggests that compounds with a lysine mimetic side group on position 7 of
the diaminoquinazoline scaffold can inhibit P. falciparum only if combined with certain side
groups on position 2 and 4 of the scaffold.

Three of the diaminoquinazoline compounds have a high differential activity against both
species, showing 17-24 times more activity against P. falciparum (Figure 5C). As two of these
compounds (UNC0642 and UNCO0638) share a 1-isopropyl-4-piperidylamine group on position
4 and a 1-propylpyrrolidine group on position 7, these might contribute to this difference in
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activity. As the closest related P. falciparum HMT to HsG9a is PfSETS3, it is possible that the
binding site on the HMT enzyme for these three compounds is more divergent from HsG9a in
BASET3 than in PfSETS.

Overall, we show that epigenetic enzymes may be a promising novel target in Babesia
divergens. Our library of 324 epigenetic inhibitors includes 19 pairs of compounds with high
delta activity despite high structural similarity, which provide insight into the structural features
that confer activity against P. falciparum and B. divergens. Multiple diaminoquinazoline
backbone HMT inhibitors show highly active against both species tested, with UNC0631
displaying a low nanomolar range ECS50 value against both P. falciparum and B. divergens,
while UNC0224 is inactive against both species despite minor structural differences with the

active diaminoquinazoline compounds.
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FIGURE LEGENDS

Figure 1. Conservation of epigenetic writer and eraser enzymes orthologs among the
Piroplasmida with P. falciparum as an outgroup.

Figure 2. Activity of epigenetic inhibitors against Babesia divergens. (A) 125 compounds
with 250% inhibition at 10 yM. Heatmap of mean percent inhibition at 10 and 1 yM compared
to solvent-treated controls (n=3). Compounds are grouped based on the reported epigenetic
process affected in higher eukaryotes: Histone deacetylation (HDAC), histone acetylation
(HAT), histone methylation (HMT), Histone Demethylases (HDM), DNA methylation (DNMT),
and “Other”. (B) Dose response analysis for 17 compounds with sub-micromolar EC50 values
(n=2), with corresponding HepG2 inhibition at 1 uM.

Figure 3. Differential activity of epigenetic inhibitors against B. divergens and P.
falciparum. (A) Scatterplot comparing %inhibition at 1 uM against B. divergens and P.
falciparum. Dotted lines indicate more than 2-fold difference in activity. Compound names are
for compounds with more than 2-fold difference in activity and more than 50% inhibition at 1
MM against one species. An enlarged scatterplot with labelled compound names is displayed
for compounds with 275% at 1 uM against both species. (B) Heatmap of compounds with at
least 50% inhibition at 1 uM against one species, ordered by the delta activity (% Pfinhibition
- % Bd inhibition) and grouped by target category.

Figure 4. Activity cliff analysis. (A) Scatterplot of activity cliff pairs with >50% delta activity
and >80% structural similarity (SALI), grouped by species. (B-C) Examples of activity cliff pairs
with chemical structures and activity.

Figure 5. Compounds with diaminoquinazoline backbone. (A) Compounds with >60%
similarity and >50% delta activity at 1 yM. (B) Activity of compounds with diaminoquinazoline
backbone against Babesia divergens. (C) Changes in chemical structure that confer differential

activity against both species.
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SUPPLEMENTARY FIGURE LEGENDS

Supplemental Figure 1: Mean percent inhibition of all 324 compounds against B. divergens
at 10 yM and 1 uyM. The dotted and dashed lines indicate 50% and 90% inhibition, respectively.
Compounds are ordered by increasing activity at 10 uM. Error bars are standard error of n=3.

Supplemental Figure 2: Structural feature similarity landscape. Compounds with >80%
structural similarity were grouped in Datawarrior (SkelSphere). Color indicates reported
epigenetic process targeted in higher eukaryotes.

Supplemental Figure 3: Activity cliff analysis for Babesia divergens at 1 yM. Scatterplot with
each dot representing a pair of compounds in the library. Compound pairs of interest have
>50% delta activity (dashed line) and >80% structural similarity (dotted line).

Supplemental Figure 4: Structural representation of the remaining activity cliff pairs that are
displayed in figure 4A.

Supplemental Figure 5: Activity of compounds with diaminoquinazoline backbone against P.

falciparum.

Supplemental Table 1: EC50 Activity of epigenetic inhibitors tested grouped by target

category. Percentage of active compounds is indicated in brackets (n=2-3).

Supplemental Table 2: EC90 Activity of epigenetic inhibitors tested grouped by target
category. Percentage of active compounds is indicated in brackets (n=2-3).

Supplemental Dataset 1: Gene identifiers of epigenetic writer and reader enzyme orthologs
in Figure 1.

Supplemental Dataset 2: Mean percent inhibition of all compounds against B. divergens at
10 yM and 1 uM.
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Figure 1. Evolutionary conservation of epigenetic modifying enzymes in piroplasmid parasites. Comparison
of epigenetic modifying enzyme orthologs between P falciparum, B. microti, T. equi, T. annulata, C. felix, B. bovis
and B. microti, with a representation of the evolutionary relationship between these species.
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Figure 2. Activity of epigenetic inhibitors against Babesia divergens. (A) 125 compounds with 250%
inhibition at 10 yM. Heatmap of mean percent inhibition at 10 and 1 pM compared to solvent-treated controls
(n=3). Compounds are grouped based on the reported epigenetic process affected in higher eukaryotes:
Histone deacetylation (HDAC), histone acetylation (HAT), histone methylation (HMT), Histone Demethylases

(HDM), DNA methylation (DNMT), and “Other”. (B) Dose response analysis for 17 compounds with sub-
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Figure 3. Differential activity of epigenetic inhibitors against B. divergens and P. falciparum.
(A) Scatterplot comparing %inhibition at 1 uM against B. divergens and P. falciparum. Compound
names are indicated for compounds with more than 2-fold difference in activity (dotted lines) and
more than 50% inhibition at 1 uM against one species (dashed lines). An enlarged scatterplot with
labelled compound names is displayed for compounds with 275% at 1 yM against both species. (B)
Heatmap of compounds with at least 50% inhibition at 1 yM against one species, ordered by the
delta activity (% Pfinhibition - % Bd inhibition) and grouped by proposed targetcategory.
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>50% inhibition at 10 uM

>50% inhibition at 1 uM

Target Class Compounds | B. divergens |P. falciparum B. divergens \ P. falciparum
Histone Acetylation 10 0 (0%) 1(10%) 0 (0%) 0 (0%)
Histone Deacetylation 85 34 (40%)§ 43 (51%) 20 (24%)§ 25 (29%)
Histone Methylation 51 28 (55%) 32 (63%) 10 (20%) 11 (22%)
Histone Demethylation 18 4(22%) 9 (50%) 1(6%) 1(6%)
Histone Phosphorylation 66 38 (58%)§ 41 (62%) 11 (17%)§ 13 (20%)
Histone PARPylation 22 3 (14%) 5 (23%) 0 (0%) 0 (0%)
Histone Reader Domains 28 12 (43%) 6 (21%) 0 (0%) 0 (0%)
DNA Methylation 14 2 (14%) 3 (21%) 2 (14%) 1(7%)
Other 30 4 (13%) 6 (20%) 2(7%) 3 (10%)
Total 324 125 (39%)| 146 (45%)| 46 (14%)| 54 (17%)

Table ST1. EC50 Activity of epigenetic inhibitors tested grouped by target

category. Percentage of active compounds is indicated in brackets (n=2-3).

>90% inhibition at 10 uM >90% inhibition at 1 uM

Target Class Compounds | B. divergens |P. falciparum B. divergens ‘ P. falciparum
Histone Acetylation 10 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Histone Deacetylation 85 25(29%) 34 (40%) 7 (8%) 15 (18%)
Histone Methylation 51 15(29%) 19 (37%) 6 (12%) 9 (18%)
Histone Demethylation 18 4(22%) 4 (22%) 0 (0%) 1(6%)
Histone Phosphorylation 66 25(38%) 25 (38%) 2 (3%) 5 (8%)
Histone PARPylation 22 1(5%) 4 (18%) 0 (0%) 0 (0%)
Histone Reader Domains 28 1(4%) 1 (4%) 0 (0%) 0 (0%)
DNA Methylation 14 1(7%) 1(7%) 1(7%) 1(7%)
Other 30 3 (10%) 4 (13%) 1(3%) 1(3%)
Total 324 75(23%)| 92 (28%) 17 (5%)] 32 (10%)

Table ST2. EC90 Activity of epigenetic inhibitors tested grouped by target

category. Percentage of active compounds is indicated in brackets (n=2-3).




