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Abstract

Gene regulation is highly cell type-specific and understanding the function of non-coding genetic
variants associated with complex traits requires molecular phenotyping at cell type resolution. In
this study we performed single nucleus ATAC-seq (snATAC-seq) and genotyping in peripheral
blood mononuclear cells from 10 individuals. Clustering chromatin accessibility profiles of
66,843 total nuclei identified 14 immune cell types and sub-types. We mapped chromatin
accessibility QTLs (caQTLs) in each immune cell type and sub-type which identified 6,248 total
caQTLs, including those obscured from assays of bulk tissue such as with divergent effects on
different cell types. For 3,379 caQTLs we further annotated putative target genes of variant
activity using single cell co-accessibility, and caQTL variants were significantly correlated with
the accessibility level of linked gene promoters. We fine-mapped loci associated with 16
complex immune traits and identified immune cell caQTLs at 517 candidate causal variants,
including those with cell type-specific effects. At the 6q15 locus associated with type 1 diabetes,
in line with previous reports, variant rs72928038 was a naive CD4+ T cell caQTL linked to
BACH?2 and we validated the allelic effects of this variant on regulatory activity in Jurkat T cells.
These results highlight the utility of snATAC-seq for mapping genetic effects on accessible

chromatin in specific cell types and provide a resource for annotating complex immune trait loci.
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70  Introduction

71

72  Genome-wide association studies have identified thousands of genomic loci associated with
73 complex human traits and disease', but their molecular mechanisms remain largely unknown.
74  Interpreting the mechanisms of trait-associated loci is paramount to an improved understanding
75  of the cell types, genes and pathways involved in complex traits and disease’. Genetic variants
76 at complex trait-associated loci are primarily non-coding and enriched in transcriptional

77  regulatory elements’*®

, implying that the majority affect gene regulatory programs. As gene
78  regulation is highly cell type-specific®’, uncovering the molecular mechanisms of complex trait
79 loci requires determining the function of non-coding variants in the individual cell types that
80 comprise a tissue. While substantial advances have been made in annotating the non-coding
81 genome®® the regulatory effects of genetic variants in specific cell types are still largely
82  unknown.

83

84  Mapping quantitative trait loci (QTLs) for molecular phenotypes such as gene expression levels,
85 histone modifications and chromatin accessibility is an effective strategy to determine the
86  regulatory activity of genetic variants®'®. Molecular QTL studies to date have been primarily
87  performed in ‘bulk’ tissue, cell lines, or individual sorted cell types, however, and therefore have
88 not yet widely annotated the breadth of cell type effects. Single cell technologies have created
89 new avenues to study gene regulation in the specific cell types comprising a heterogeneous

1617 Several recent studies

90 tissue and define relationships to complex traits and disease
91 mapped gene expression QTLs (eQTLs) using cell type-specific expression profiles derived
92 from single cell RNA-seq assays'®?. These studies represented proof-of-concept for using
93  profiles derived from single cell data to map genetic effects on molecular phenotypes in specific
94  cell types and sub-types. Moreover, they enabled additional analyses which leveraged data
95 from across thousands of cells such as the identification of co-expression QTLs'. To date,
96 however, no studies have mapped chromatin accessibility QTLs in specific cell types and sub-
97 types using single cell assays.

98

99 In this study we used single nucleus ATAC-seq (snATAC-seq) to profile human peripheral blood
100 mononuclear cell (PBMC) samples. We derived chromatin accessibility profiles of immune cell
101 types and sub-types and mapped chromatin accessibility QTLs (caQTLs) for these profiles
102  which identified thousands of immune cell type and sub-type caQTLs. We characterized

103 caQTLs for each cell type, including caQTLs whose effects are obscured in bulk assays, and
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104 linked distal caQTLs to putative target gene promoters using single cell co-accessibility. Finally,
105 we fine-mapped causal variants at genomic loci associated with 16 complex immune traits and
106 diseases, annotated fine-mapped variants for these traits with immune cell type caQTLs and
107 validated the molecular effects of high-probability caQTL variants.

108

109 Results

110

111  Chromatin accessibility profiling of peripheral blood mononuclear cells

112

113 We performed snATAC-seq and genotyping of human peripheral blood cell (PBMC) samples in
114  order to map genetic effects on lymphoid and myeloid cell type accessible chromatin (Figure
115 1a). We used droplet-based snATAC-seq (10X Genomics) to assay 10 PBMC samples from
116 individuals of self-reported European descent (Supplementary Table 1, see Methods). The
117  snATAC-seq libraries were sequenced to an average depth of 178M reads, and libraries had
118 consistently high-quality metrics including enrichment at transcription start sites (TSS) and
119 fraction of reads mapping in peaks (Supplementary Table 2). We then performed array
120 genotyping of each sample and imputed genotypes into 39.6M variants in the Haplotype
121  Reference Consortium (HRC) panel?'. Principal components analysis of genotypes mapped
122 onto 1000 Genomes Project data confirmed European ancestry for the majority of samples
123 (Supplementary Figure 1).

124

125  After extensive quality control that removed low quality cells and potential doublet cells (see
126  Methods), we performed clustering of 66,843 snATAC-seq profiles, which revealed 14 clusters
127  (Figure 1b). We then assigned clusters to lymphoid and myeloid cell types and sub-types based
128 on the chromatin accessibility patterns at known marker genes (Figure 1b, Supplementary
129 Figure 2, Supplementary Table 3). For example, among immune cell types, NCR1
130 accessibility marked NK cells, MS4A1 accessibility marked B cells, and PCTRA accessibility
131  marked plasmacytoid dendritic cells. Among cell sub-types, accessibility at FOXP3 differentiated
132 regulatory T cells from other T cell sub-types, and accessibility at TCL71A differentiated naive B
133  cells from memory B cells (Supplementary Figure 2). The proportion of each immune cell type
134  and sub-type was broadly consistent across samples (Figure 1c, Supplementary Figure 3a)
135 and was highly correlated with cell proportions determined from flow cytometry of cell surface
136  markers for each sample (Supplementary Figure 3b-c). Similarly, clusters were composed of

137  similar proportions of cells from different individuals (Supplementary Figure 3d). These results
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138 demonstrate that snATAC of PBMCs resolved lymphoid and myeloid cell types and sub-types
139  with broadly consistent representation across samples.

140

141  Mapping chromatin accessibility QTLs in immune cell types and sub-types

142

143  Within each immune cell type and sub-type cluster, we aggregated reads for all cells in the
144  cluster, generated accessible chromatin read count profiles, and called accessible chromatin
145  sites using MACS2%. Considering all immune cell types and sub-types there were 210,771 total
146  accessible chromatin sites (Supplementary Table 5). Immune cell type and sub-type sites were
147  highly concordant with sites identified in a previous study of FACS-sorted immune cell types®
148 (Supplementary Figure 4). We then performed QTL mapping of chromatin accessibility read
149  counts in these sites using RASQUAL?*, a method which combines population-based and allele-
150 specific mapping. We focused on the 5 immune cell types with appreciable numbers of cells (B,
151 CD4+ T, CD8+ T, monocyte, NK) and mapped QTLs at both cell type and sub-type resolution.
152 For each cell type or sub-type, we retained sites with >5 reads per sample on average and only
153 tested variants that mapped directly in accessible sites and were heterozygous in at least two
154  samples. After applying these filters, on average 67,979 variants per cell type were tested for
155  association with 46,373 peaks (3.8 variants/peak). For comparison, we also performed caQTL
156  mapping after merging all reads for each sample ignoring their cell of origin to mimic a ‘bulk’
157  ATAC-seq experiment.

158

159 In total we identified 6,248 distinct caQTLs in an immune cell type or sub-type (at FDR <0.1),
160 including 5,187 at cell type resolution and 5,398 at sub-type resolution (Figure 2a,
161  Supplementary Table 6). We also identified 5,697 caQTLs at ‘bulk’ resolution (Figure 2a,
162  Supplementary Table 6). There was limited evidence for reference bias in the resulting
163 caQTLs (1.68% with y<.25, annotated in Supplementary Table 6). Excluding the allelic
164  imbalance component from QTL mapping resulted in substantially fewer caQTLs at FDR<.10
165 (168 cell type, 426 sub-type) although the allelic effects were highly concordant
166 (Supplementary Figure 5). The majority of caQTLs were identified at FDR<.10 at different
167 resolutions, although a subset was found only at one resolution (Figure 2a). The number of
168 caQTLs identified in each cell type was proportional to the number of cells for that cell type
169 (Figure 2b), likely due to differences in available read depth leading to reduced power for less
170  common cell types. Most caQTLs were identified at FDR<.10 in only one cell type or sub-type

171 (80% for cell types, 75% for cell sub-types) (Figure 2c). However, when considering caQTLs
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172 significant in at least one cell type, allelic effects (r) were strongly correlated across cell types
173  as well as with ‘bulk’ data (median Spearman correlation r=0.63, Figure 2d), with stronger
174  correlation between more similar cell types.

175

176  We next compared cell type caQTLs in our study to external QTL datasets previously generated
177  in immune cells. We first compared caQTL results from our ‘bulk’ analysis with caQTLs
178  previously mapped in 24 lymphoblastoid cell lines (LCLs)**. Of the 2,694 caQTLs in our data
179 that were tested in the LCL study, 660 (24.4%) were also significant LCL caQTLs (OR=15.9,
180 P<2.2x107'®, Fisher's exact test) of which 164 shared also the same lead variant (OR=4.2,
181  P=1.05x10"° Fisher’s exact test) and were 99.99% concordant in their effect direction (Figure
182  2e). Of note, when considering caQTLs from each individual cell type, B cell caQTLs had the
183  highest overlap with LCL caQTLs, consistent with LCLs being derived from B cells
184  (Supplementary Figure 6). We next compared caQTLs in our study to published histone
185 H3K27ac QTLs (hQTLs) and expression QTLs (eQTLs) from FACS-sorted T cells and
186  Monocytes from the BLUEPRINT project'®. The enrichment for T cell hQTLs was stronger in
187 CD4+ (OR=3.8, P=3.2x10""3, Fisher's exact test) and CD8+ (OR=3.4, P=1.3x10%) T cell
188  caQTLs compared to monocyte caQTLs (OR=1.6, P=9.1x107'°) (Figure 2f). We observed the
189  converse pattern for monocyte hQTLs, which were more enriched for monocyte caQTLs than T
190  cell caQTLs (CD4+ T cell OR=1.65, P=3.8x10%°; CD8+ T cell OR=1.7, P=1.4x10"8; monocyte
191 OR=2.4, P=1.1x10"%%) (Figure 2f). We observed the same cell type enrichment pattern for T
192  cell and monocyte eQTLs (T-cell eQTLs: CD4+T-cell OR=1.51, P=1.2x10*?; CD8+ T cell
193  OR=1.3, P=5.6x10"*; monocyte OR=1.2, P=2.0x10""5; monocyte eQTLs: CD4+ T cell OR=1.2,
194  P=2.4x10"%; CD8+ T cell OR=1.2, P=1.4x10%; monocyte OR=1.3, P=3.9x10%; Figure 2f).

195

196 To identify transcription factors (TFs) mediating immune cell type caQTLs, we identified TF
197 sequence motifs preferentially disrupted by caQTL variants in each cell type. We used
198  MotifBreakR?® to predicted allelic effects of SNPs on TF motifs from the HOCOMOCO v10
199  human database®®, comprising 640 motifs corresponding to 595 unique TFs. We first predicted
200 allelic motif effects for all variants tested for QTL association. Then, for each TF motif, we
201  compared the proportion of motif instances disrupted by caQTLs compared to non-caQTL
202  variants. Thus, we were able to measure the enrichment of predicted TF-disrupting caQTLs for
203 each TF motif. Immune cell type caQTLs were broadly enriched for disrupting any TF motif
204  compared to non-caQTL variants (OR=1.2, P=6.1x10*, Fisher's exact test). When considering

205 caQTLs in each cell type, there were 25 TF motifs significantly enriched for B cell caQTLs, 44
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206  motifs enriched for CD4+ T cell caQTLs, 29 motifs enriched for CD8+ T cell QTLs, 29 motifs
207  enriched for NK cell QTLs and 93 motifs enriched for monocyte QTLs (FDR<0.05, one-tailed
208  binomial test, Figure 2g, Supplementary Table 7). Motifs disrupted by caQTLs included those
209  with broadly shared enrichment across different cell types including ETS1, ETV6 and GABP1,
210 as well as those with highly cell type-specific enrichment such as BCL11A in B cells (FDR=
211  0.012), SPI1 in B cells and monocytes (FDR=3.07x10®, FDR=5.10x10*), and CEBPB in
212  monocytes (FDR=7.8x10").

213

214 At numerous loci, caQTLs mapped at cell type and sub-type resolution provided insight beyond
215 those obtained by mapping caQTLs in bulk tissue. The most straightforward examples consisted
216  of caQTLs for accessible chromatin sites active in only one cell type, where the effects of a
217 caQTL identified in bulk data could be simply ascribed to that cell type (1,776 caQTLs,
218 Supplementary Figure 7a). For example, rs13294415 was a caQTL for a B cell-specific site
219 (allelic effects [n]=.79, g-value=.003), rs11136478 was a caQTL for a CD4+ T cell-specific site
220 (n=.65, q=.013), rs10888395 was a caQTL for a monocyte-specific site (1=.31, qg=2.1x10*) and
221  rs1475159 was a caQTL for a NK cell-specific site (1=.81, q=6.3x10*) (Figure 2h). We also
222  identified caQTLs for immune sub-type-specific sites (1,325 caQTLs), such as rs3014874 which
223  was a caQTL for a classical monocyte-specific site (n=.28, q=.008) and rs7094953 which was a
224  caQTL for a naive CD4+ T cell-specific site (n=.26, q=.008) (Supplementary Figure 7b).
225  Another class of caQTLs were those for sites active in all cell types, yet where the variant
226  effects were specific to only a few cell types (2,362 and 2,704 for cell types and subtypes,
227  respectively). For example, variant rs61943586 mapped in a site active in all immune cell types
228 and had a significant effect in CD8+ T cells (1=.76, q=1.4x10*), but no effect in B cells and
229  monocytes (1=.50, q=.96; ©=.48, q=.76) (Figure 2i). Similarly, variant rs747748 mapped in a
230 site active in all cell types yet only had a significant effect in classical monocytes (n=.43,
231 g=.0018) (Supplementary Figure 7c). In these latter examples, variant effects in bulk data
232 were dampened due to the inclusion of cell types with no effect (rs61943586 bulk ©=.57, q=.04;
233 rs747748 bulk ©=.48, q=.18) (Figure 2i, Supplementary Figure 7c).

234

235 We also observed caQTLs with more complex effects, such as those with divergent effects on
236  different cell types (41 and 60 for cell types and subtypes, respectively). In one example, variant
237 rs1867687 was a significant caQTL in all immune cell types, where the G allele had increased

238  accessibility in B cells and monocytes (B cell 1=.66, g-value=.02; monocyte n=.66, q=4.8x10)
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239  and the A allele had increased accessibility in CD4+ and CD8+ T cells and NK cells (CD4+ T
240 n=.29, g=.002; CD8+ T =n=.20, g=.001; NK cell n=.27, q=.064) (Figure 2j). In comparison,
241 rs1867687 had no effect in ‘bulk’ data (r=.51, q=.78). The alleles of this variant were predicted
242  to bind different TFs, where the G was predicted to bind SPI1 and SPIB motifs and the A allele
243  was predicted to bind IRF TF motifs (Figure 2k). SPI1 and SPIB motifs were specifically
244  enriched in B cells and monocytes, whereas IRF motifs were broadly enriched across cell types
245  (Figure 2k), suggesting a potential mechanism through which this variant has opposing effects
246  on different immune cell types.

247

248  Linking distal caQTLs to effects on target gene promoters

249

250 Among the 6,248 caQTLs identified in our study, a minority (17%) mapped to gene promoter
251 regions. The remaining caQTLs were in chromatin sites distal to promoters, and we therefore
252  sought to define the target genes of these caQTLs. Co-accessibility between pairs of accessible
253  chromatin sites across single cells has been used to annotate putative target genes of distal

254  enhancers'’?’

. We therefore defined co-accessible sites (co-accessibility score >.05) in the 5
255  immune cell types with >1k cells (CD4+ T, CD8+ T, B, monocyte, NK) using Cicero®’. For each
256 cell type we retained co-accessible sites greater than 10kb apart and that also were co-
257  accessible in at least two samples individually. In total we identified 481,963 pairs of co-
258  accessible sites, which included between 75k and 132k per cell type (Figure 3a). We compared
259  co-accessible sites for each cell type to chromatin interactions from promoter capture Hi-C
260 (pCHi-C) data previously generated in 16 immune cell types and sub-types?. We observed
261  strongest enrichment of cell type co-accessible sites for the corresponding cell type in pCHi-C
262 interactions in each case, except for NK cells, which were not assayed by pCHi-C (Figure 3b).
263  When segregating co-accessible sites by distance, there remained strong enrichment for pCHi-
264  Cinteractions even at distances of up to 1MB (Figure 3c).

265

266  Using the co-accessible sites identified for each cell type we then annotated caQTLs with their
267  putative target genes. There were 179,347 distal accessible chromatin sites co-accessible with
268  at least one promoter site (30.5k-44.4k per cell type) and 66,571 promoter sites co-accessible
269  with promoter sites of a different gene (13.0k—18.1k per cell type) (Figure 3d-e). Across all
270 6,248 caQTLs, 3,379 were either in a site co-accessible with at least one gene promoter or in a

271 promoter site directly. Among these 3,379 caQTLs, the majority were distal sites co-accessible
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272 with a promoter (54-65% per cell type) (Figure 3f. Among distal caQTLs co-accessible with a
273  gene promoter, 38-53% were linked to just one gene (Figure 3g).

274

275  Previous studies have identified coordinated allelic effects between distal sites and interacting
276  promoters®. We therefore tested caQTL variants for association with chromatin accessibility
277  levels of all promoter sites co-accessible with the caQTL site. There was a positive and highly
278  significant correlation between variant allelic effects on the original site and effects on co-
279  accessible promoter sites (B r=.24, CD4+ T r=.23, CD8+ T r=.16, monocyte r=.21, NK r=.17,
280 Pearson correlation) (Figure 3h). When separating co-accessible sites by distance, the
281  correlations were reduced between more distal sites (Supplementary Figure 8). As we were
282  unable to leverage allelic imbalance in this analysis, our power was more limited, and we only
283  identified 7 linked promoter caQTLs at FDR<.20 (Figure 3i). There was a significant, positive
284  correlation in variant effects on the linked promoter caQTL and the original caQTL (Figure 3i).
285  For example, at the 6p24 locus rs4959438 was a caQTL for a distal site in B cells (n=.65,
286 q=.0066) and was also a caQTL for the DSP promoter linked to the distal site (1=.59, q=.077)
287  (Figure 3j). This variant was also a QTL for the expression of DSP in whole blood in GTEx v8°
288  (NES=.29, P=3.2x10"?), and which was directionally consistent with the C allele having
289 increased activity. Together these results demonstrate how snATAC-seq data can be used to
290 link caQTLs to effects on putative target genes.

291

292 Identifying caQTLs at fine-mapped variants for complex immune trait loci

293

294  Genomic loci affecting complex immune traits and disease are primary non-coding, and the
295 causal variants and molecular mechanisms at these loci are largely unknown. We therefore
296 used immune cell type and sub-type caQTLs to annotate variants associated with complex
297 immune traits and disease. We first collected published genome-wide association summary
298  statistics for 16 blood cell count, autoimmune, inflammatory and allergy traits imputed into
299 reference panels with comprehensive variant coverage such as 1000 Genomes or the
300 Haplotype Reference Consortium (Figure 4a, Supplementary Table 8). At most traits, fine-
301 mapping of causal variant sets at associated loci was either not performed as part of the initial
302 study or not made publicly available. We therefore fine-mapped primary association signals at
303 loci reported for these 16 traits using a Bayesian approach, from which we generated credible
304 sets of variants representing 99% of the total posterior probability for each signal (see Methods,

305 Supplementary Data 1). Across all traits there were 1,275 total credible sets, which contained
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306 a median of 16 variants, where traits with the smallest credible set sizes included monocyte
307 count (median 6.5 variants), basophil count (median 7.5 variants) and rheumatoid arthritis
308 (median 9 variants). At 396 signals fine-mapping resolved credible sets to 5 or fewer variants
309 (Figure 4a).

310

311 A total of 523 credible set variants representing 211 association signals were immune cell type
312  or sub-type caQTLs (Figure 4b). We determined whether fine-mapped variants for each trait
313  were preferentially enriched for caQTLs from specific immune cell sub-types by comparing to a
314  background of non-caQTL sites (see Methods). The majority of traits (12/16) showed nominal
315 enrichment (P<.05) for caQTL peaks in at least one immune cell sub-type, several of which
316 recapitulated known biology of cell types contributing to the trait (Figure 4c). For example, type
317 1 diabetes (T1D)-associated variants were enriched in CD4+ T cell caQTLs (naive CD4+ T
318 logOR=1.9, p=0.024; activated CD4+ T logOR=1.5, p=0.043), where T cells are the critical cell
319 type in the pathogenesis of T1D*°. Lymphocyte count-associated variants were enriched in
320 caQTLs for lymphocyte cell types (memory B logOR=2.9, p=0.024; naive CD4= T logOR=1.7,
321 p=0.012). Strong enrichments for other traits may similarly point to cell types involved in trait
322  biology. For example, child onset asthma-associated variants were enriched in activated CD4+
323 T cells (logOR=2.5, p=0.001) and memory B cells caQTLs (logOR=4.1, p=0.001) (Figure 4c),
324  and ulcerative colitis-associated variants were strongly enriched in classical monocyte caQTLs
325 (logOR=2.6, p=0.001).

326

327 Among fine-mapped variants that were immune cell caQTLs, 185 had a posterior probability
328 >1% and were either in a distal site linked to a gene promoter or in a promoter site directly
329 (Figure 4d, Supplementary Table 9). Among these, at multiple loci fine-mapped variant
330 caQTLs replicated cell type-specific effects observed in previous studies®*?. For example, at
331 the 5911.2 locus associated with rheumatoid arthritis (RA), among the two candidate variants
332 with highest causal probability rs28722705 (PPA=.70) and rs7731626 (PPA=0.28) only
333 rs7731626 mapped in an accessible chromatin site (Supplementary Figure 9a). This variant
334 was a caQTL in naive CD4+ T cells (r=0.38, q=0.06), and was co-accessible with the IL6ST and
335 ANKRD55 promoters (Supplementary Figure 9b-e). A previous study identified rs7731626 as
336 likely causal for multiple sclerosis and RA and was also a T cell-specific eQTL for both IL6ST
337 and ANKRD55%. At the 15g22.33 locus, rs17293632 was fine mapped in multiple traits
338 including Crohn’s disease (PPA=.28) and asthma (PPA=.16), and was a monocyte caQTL
339 (n=.40, q=.0138) which was co-accessible with the promoter of multiple SMAD3 isoforms
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340 (Supplementary Figure 9f-i). The high effect C allele of rs17293632 was also predicted to
341 have allele-specific binding to a JUN/FOS TF family motif, which were specifically enriched in
342  monocyte caQTLs (Supplementary Figure 9j, Figure 2g).

343

344  In another example, at the 6q15 locus associated with type 1 diabetes (T1D) and multiple other
345 traits, rs72928038 (PPA=.07) was a caQTL in naive CD4+ T cells (7=0.26, q=4.9x10) where
346 the reference and T1D-protective allele G had increased accessibility (Figure 4e-f). The site
347  harboring rs72928038 was specific to naive CD4+ T cells and was co-accessible with multiple
348  gene promoters including BACHZ2 (Figure 4e, Supplementary Table 9). The G allele was also
349 predicted to have allele-specific binding to ETS family motifs, which were broadly enriched
350 among T cell caQTLs (Figure 4g. We validated the allelic effects of this variant on regulatory
351  activity using reporter assays in Jurkat T cells. There were significant effects on enhancer
352  activity in luciferase gene reporter assays where the G allele had increased activity (Two-sided
353 t-test, P=.015), and allele-specific transcription factor binding to the G allele in electrophoretic
354  mobility shift assays (Figure 4h). Previous studies have shown that this variant is a QTL in
355 CD4+ T cells®!, and this site was linked to the BACH2 promoter in promoter-capture Hi-C data in
356  naive CD4+ T cells®.

357

358 We next identified caQTLs for high-probability fine-mapped variants at loci without established
359  molecular mechanisms. At the 11923 locus associated with child-onset asthma, we fine-mapped
360 a single variant rs12365699 to near-causality (PPA=.98) (Figure 4i, Supplementary Table 9).
361 This variant was a caQTL in activated CD4+ T cells, effector CD8+ T cells and memory B cells,
362 where the reference and risk-increasing allele G had higher accessibility (CD4+ T 7=0.36,
363 g=5.4x10*, CD8+ T n=0.33, q=6.5x107, B 1=0.35, q=0.073, respectively) and was linked to the
364 promoter regions of multiple genes including CXCR5 and NLRX1, the latter of which is ~300kb
365 distal to the variant (Figure 4i,j). The G allele of rs12365699 was also predicted to have allele-
366  specific binding for ZSCAN16 (Figure 4k). At the 12p13.33 locus associated with lymphocyte
367 count, we also fine mapped a likely causal variant rs34038797 (PPA =.94), which had the same
368 effect in all cell sub-types (strongest association in classical monocytes 1=0.26, g=9.2x10*) and
369 was co-accessible with multiple genes (Supplementary Figure 10a-c). The C allele had higher
370 accessibility and higher predicted affinity with ETS transcription factors, which were ubiquitously
371  enriched in immune cell caQTLs (Supplementary Figure 10d).

372

373
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374 DISCUSSION

375

376 In this study we demonstrated that profiles derived from single nucleus ATAC-seq assays can
377  be used to map chromatin accessibility QTLs in individual cell types, even with modest sample
378  sizes. While we profiled only a small number of samples in our study, we identified thousands of
379 immune cell type and sub-type caQTLs. A likely contributor to the large number of caQTLs we
380 identified despite the small sample is the high depth at which samples were sequenced, which
381  provides greater power for allelic imbalance mapping. Supporting this, we identified few caQTLs
382  when performing population-based QTL mapping only. As the number of unique reads covering
383  avariant can in theory be much higher for snATAC-seq compared to bulk ATAC-seq due to the
384 thousands of unique libraries per assay, the value of snATAC-seq compared to bulk ATAC-seq
385 in mapping allelic imbalance is even more pronounced. Deeply sequenced snATAC-seq assays
386 even in few samples therefore represent an effective approach to map genetic effects on
387  chromatin profiles from multiple cell types in a heterogeneous tissue.

388

389 Mapping caQTLs at cell type resolution enabled insights into cell type-specific regulation that
390 are obscured from assays of bulk tissue chromatin. For example, we identified variants mapping
391 in sites active in all cell types but with allelic effects on only a few cell types. We also identified
392 examples of variants with opposite effects on different cell types resulting in no net effect in
393  bulk. In both of these scenarios, simply annotating bulk caQTLs using reference maps of cell
394 type-specific chromatin sites would not be sufficient to uncover these effects, and therefore
395 requires mapping accessible chromatin profiles in each cell type directly. Single cell data also
396 enabled additional cell type-specific analyses such as linking distal sites to putative target gene
397 promoters using co-accessibility?”. While high-resolution maps of distal 3D interactions exist for
398 many immune cell types in promoter-capture Hi-C%, most other tissues do not currently have
399 such cell type-resolved interaction maps and therefore cell type co-accessibility data will be
400 particularly valuable in annotating distal caQTLs in these tissues.

401

402  Although we mapped thousands of immune cell type caQTLs from few snATAC-seq samples,
403  our study design also has several notable limitations. Most importantly, there was a large
404  difference in the number of caQTLs per cell type or sub-type dependent on the number of cells
405 assayed. For example, we identified few significant caQTLs for the less common sub-types
406 identified in our data such as adaptive NK cells and memory B cells. There are even further sub-

407  divisions of immune cell types that we were not able to identify due to the resolution of shATAC-
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408 seq profiles. As identifying caQTLs from rarer cell types and sub-types will therefore require
409 many additional snATAC-seq assays to sufficiently define their profiles, cell sorting may
410 represent a more efficient and cost-effective strategy at present for QTL mapping in these cell
411 types. An additional limitation of our study was that, due to the small number of samples
412  profiled, we focused only on variants mapping in accessible chromatin sites directly in order to
413 leverage allelic imbalance. As we did not test all variants at a locus for association to each site,
414  we had limited ability to formally compare caQTL association and disease association signals,
415  for example using colocalization techniques®. Moving forward studies profiling larger sample
416  sizes and cell numbers will help circumvent these limitations. Furthermore, data from mutiomic
417  assays of joint gene expression and accessible chromatin will help resolve cell types and sub-
418 types and facilitate joint caQTL and eQTL mapping*.

419

420 In summary, we identified thousands of caQTLs in immune cell type and sub-types from
421  peripheral blood samples using single cell chromatin accessibility assays. Immune cell caQTLs
422  mapped to hundreds of loci associated with complex immune traits and disease and therefore
423  represent a valuable resource for interpreting the molecular mechanisms of these loci. Given
424  the ability to deconvolute individual cells into their sample-of-origin®°, one promising strategy
425  moving forward will be to pool samples prior to running snATAC-seq assays, which will reduce
426 the per-sample cost and facilitate studies of greater genotype diversity. Mapping cell type-
427  specific chromatin exposed to disease-relevant conditions and stimuli will also help uncover the

23,35

428 breadth of genetic effects®°°. Together these efforts will enable more comprehensive
429  annotation of variant function in human cell types and their contribution to complex disease.

430

431 METHODS

432

433  Single nuclei ATAC-Seq

434  Peripheral blood mononuclear cells (PBMCs) from 10 individuals (4 females and 6 males) were
435  purchased from HemaCare (Northridge, CA) and profiled for snATAC using 10x Genomics
436  Chromium Single Cell ATAC Solution, following manufacturer’'s instructions (Chromium
437  SingleCell ATAC ReagentKits UserGuide CG000209, Rev A) as described previously'’. Briefly,
438  cryopreserved PBMC samples were thawed, resuspended in 1 mL PBS (with 0.04% FBS) and
439 filtered with 50 uym CellTrics. Cells were centrifuged and permeabilized with 100 pl of chilled
440 lysis buffer (10 mM Tris-HCI pH 7.4, 10 mM NaCl, 3 mM MgCI2, 0.1% Tween-20, 0.1%
441 IGEPAL-CA630, 0.01% digitonin and 1% BSA) for 3 min on ice and then washed with 1mL
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442  chilled wash buffer (10 mM Tris-HCI pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween- 20 and
443 1% BSA). After centrifugation, pellets were resuspended in 100 pyL of chilled Nuclei buffer
444 (2000153, 10x Genomics) in a final concentration of 3,000 to 7,000 of nuclei per ul. 15,300
445  nuclei (targeting 10,000) were used for each sample. Tagmentation was performed using nuclei
446  diluted to 5 pl with 1X Nuclei buffer, 10x ATAC buffer and ATAC enzyme from 10x Genomics,
447  for 60 min at 37°C. Single cell ATAC-seq libraries were generated using the Chromium Chip E
448  Single Cell ATAC kit (10x Genomics, 1000086) and indexes (Chromium i7 Multiplex Kit N, Set
449 A, 10x Genomics, 1000084) following manufacturer instructions. Samples were sequenced to
450 an average depth of 178 million 50-nt read pairs each, using an illumina HiSeq4000 instrument
451 at the UCSD Institute for Genomic Medicine. Alignment to the hg19 genome and initial
452  processing were performed using the 10x Genomics Cell Ranger ATAC v1.1 pipeline. We
453  filtered reads with MAPQ<30, secondary or unmapped reads, and duplicate reads from the
454  resulting bam files using samtools®*. Sample information and a summary of the Cell Ranger
455  ATAC-seq quality metrics are provided in Supplementary Table 1.

456

457  Quality control, clustering and cell type assignment

458  For each sample we performed multiplet removal (Nceis=1,311) using Cell Ranger’'s custom
459  multiplet removal script (version 1.1). The genome was split into 5 kb windows and windows
460 overlapping blacklisted regions from ENCODE (version 2) were removed. For each sample, a
461 sparse m x n matrix containing read depth for m cells (identified using the snATAC-seq
462  barcodes) passing read depth thresholds at n windows was then generated.

463

464 Initial cell clustering was performed separately for each snATAC-seq sample sparse matrix
465  using scanpy (version 1.5). Highly variable windows were extracted using mean read depths
466 and dispersion was normalized. Read depth was normalized, and the log-transformed read
467  depth was regressed out for each cell. Principal component analysis was then performed, and
468 the top 50 principal components were used to calculate the nearest 30 neighbors using the
469  cosine metric. This cosine metric was then used to perform UMAP dimensionality reduction
470 clustering with the parameters ‘min_dist=0.3’, along with further sub-clustering using the
471  Louvain clustering algorithm with the parameters ‘resolution=1.25". Clusters with a low fraction
472  of reads in promoter, a low log usable read count, and/or a low fraction of reads in peaks were
473  iteratively removed for each sample (Nceis=6,333). The samples filtered for low quality cells were
474  then merged, and PCs and UMAP dimensions were obtained as above and Harmony was used

475  to correct for donor batch effects®’. Manual doublet removal was then performed by removing
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476  Louvain-defined sub-clusters that had higher than average useable read counts, mapped
477  between clusters and/or expressed multiple marker genes. Clusters that did not have uniform
478  representation across samples were also removed. A total of 14,268 cells were removed during
479  all of the quality control steps. UMAP dimensionality reduction was performed again using the
480 same parameters on the remaining cells in order to re-cluster a final time.

481

482 In order to assign cell type and sub-type identity to each cluster, we determined chromatin
483  accessibility at 5 kb windows around promoter regions of known marker genes (see
484  Supplementary Table 3).

485

486 Peak Calling

487 For each cluster mapped reads were extracted from all cells within the cluster. Reads
488 aligning to the positive strand were shifted by +4 bp and reads aligned to the negative
489 strand were shifted by -5 bp. Reads were extended to 200 bp and then centered, and bed
490 files were created from the resulting read coordinates. We then called peaks with MACS2% from
491 the bed files using the parameters ‘-q 0.05’, ‘-nomodel’, ‘-keep-dup all’, *-g hs’, and ‘-B’. The
492  read count pileup bedgraph was sorted and normalized to counts per million (CPM), converted
493  to bigwig and visualized using the UCSC Genome Browser. We created a merged peak set by
494  combining narrow peak files across all cell type and sub-type clusters into a single bed file.

495

496 Comparison with bulk immune cell ATAC-seq data

497  We obtained published data of FACS-sorted immune cell types (GSE118189)%, mapped reads
498  to hg19 using bwa mem?*® and removed duplicate reads. We merged replicate samples and
499 performed peak calling for each cell type as described above. Mapped reads from immune cell
500 types and sub-types derived from snATAC-seq in this study and from the bulk immune cell
501 ATAC-seq profiles were used to generate bedgraph files using bedtools®. Read counts were
502 normalized to CPM and bigwig files were generated using ENCODE ‘bedgraphToBigWig™®. We
503 created a bed file of the union of peak calls from snATAC-seq and bulk ATAC-seq using
504  bedtools. We then compared bulk ATAC-seq cell type and snATAC-seq cell type normalized
505 read count profiles within the union peak set using deeptools ‘multiBigWigSummary'. A
506 heatmap of the clusters of Spearman rank correlation coefficients indicating similarity between
507  bigwig files was generated using deeptools ‘plotCorrelation’ and the summary comparison from
508  ‘multiBigWigSummary’.

509
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510 Sample genotyping and imputation

511 Genomic DNA form PBMC samples was extracted using the PureLink genomic DNA kit
512  (Invitrogen). Genotyping was performed using Infinium Omni2.5-8 arrays (lllumina) at the UCSD
513 Institute for Genomic Medicine. Genotypes were assigned with GenomeStudio (v.2.0.4) with
514  default settings. Variants with minor allele frequency (MAF) < 0.01 or with ambiguous alleles
515 (G/C, or A/T) and MAF > 0.4 were filtered out using PLINK. For the remaining variants, we
516 imputed genotypes into the Haplotype Reference Consortium (HRC) r1.1 panel using the
517  Michigan Imputation Server with minimac4. We then retained variants with imputation quality
518 R2>0.7

519

520 Identification of chromatin accessibility QTLs

521  For each sample, we split reads in the snATAC .bam files according to cluster label. For each
522  cell type and sub-type cluster, we generated peak count matrices (peak x sample) using merged
523 peak site coordinates and the split .bam files using featureCounts*?. We then obtained VCF
524  files of SNPs located within peaks and annotated allelic read counts using RASQUAL tools®.
525  We filtered for variants heterozygous in at least 2 samples. For the ‘bulk’ experiment we
526 ignored cell type labels and used all reads.

527

528 For each cell type and sub-type, we retained only accessible sites with at least 5 reads on
529 average across samples. To perform caQTL analysis we used RASQUAL and tested for
530 association between each peak and variants contained in the peak itself or in other peaks within
531 a 10Kb window. We included the library size of each sample calculated using the
532  rasqualCalculateSampleOffsets() function and read count covariates using make_covariates()
533  function in each model. The number of ATAC-seq read count covariates were dynamically
534  calculated for each cell type and sub-type and therefore different cell types/sub-types had
535 different numbers of covariates. We also included the first four principal components derived
536 from genotype data together with major 1KG populations as covariates in each model.

537

538 For each peak, we calculated adjusted p-values accounting for the number of variants tested
539 per peak, and the variant with the minimum adjusted p-value was marked as the lead variant.
540 To correct for multiple testing genome-wide, we performed permutations of labels across
541 samples and counts across alleles of heterozygous variants. For the permutations across

542  samples, we required that the labels were swapped within the samples of European and
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543  American ancestry separately. We then repeated the association tests and calculated an
544  empirical FDR (10%) by comparing the g-values of the real and permuted association results.
545

546 To estimate the correlation of effect sizes of caQTLs across cell types and ‘bulk’ data we
547  calculated the spearman correlation coefficient of effect sizes (r) in each pair of cell types and
548  “bulk”. For each comparison we selected lead SNP-peak pairs that were significant caQTLs in at
549 least one of the two cell types. Correlation coefficients were tabulated in a matrix and
550 hierarchically clustered using ‘pheatmap’. Bulk-like caQTLs were compared with caQTLs from
551 24 LCLs also calculated using RASQUAL?*. Of 172,241 peaks tested in PBMCs, 65,787
552 intersected with a peak tested in LCLs, and 660 were caQTLs in both dataset (FDR 10%).
553  Enrichment was estimated using Fisher’s exact test. To calculate coordination of caQTLs effects
554  we restricted the analysis to those peaks having the same lead variants (589), 164 of which
555  were caQTLs in both datasets. Monocyte and CD4+ and CD8+ T-cells single-cell caQTLs were
556 compared with H3K27ac QTLs and eQTLs from FACS sorted Monocytes and T-cells from the
557 BLUEPRINT project, calculated using WASP and the Combined Haplotype Test at FDR 10%,
558  which similarly to RASQUAL takes into account both allelic and population effects. For each
559 comparison we selected variants tested in both datasets and calculated enrichment for shared
560 variant QTLs (lead variants only) using Fisher’s exact test.

561

562  Transcription factor motif analysis

563  To identify enriched motifs that were altered by caQTLs we used the package MotifBreakR®.
564  First, we selected 109,554 SNPs that were tested in any of the cell types for caQTLs and
565 imported them using the function snps.from.file(), using hg19 as reference genome. Then we
566 determined if they disrupted TF motifs from the HOCOMOCO v10 human database®,
567 comprising 640 motifs corresponding to 595 unique TFs, and accessed via MotifDb. The
568 following motifbreakR() function parameters were used: filterp = TRUE, method="ic", = 5e-4,
569 BPPARAM = BiocParallel::bpparam("SerialParam"). SNPs that resulted in disruption of any TF
570 motif with a strong effect (defined by motifboreakR) were considered as motif altering
571 (n=107,280). To calculate enrichment for alteration of specific TF in caQTLs of individual cell
572  types (B-cell, CD4_T-cell, CD8_T-cell, NK_cell, Monocyte), we performed a one-tailed exact
573  binomial test (binom.test(alternative= “greater)) comparing the frequency of alteration of a motif
574 by caQTLs to the total frequency of motif alteration in the tested SNPs for each cell type.

575  Significant enrichment was considered at a Benjamini & Hochberg corrected P-value<0.05. To
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576 display enriched motifs we used the packages MotlV and motifPiles, selecting the top motifs in
577  each cell type ranked by p-value.

578

579  Single cell co-accessibility

580 Peak-to-peak co-accessibility was calculated using Cicero (version 1.1.5)%" for B-cells, CD4+ T-
581 cells, CD8+ T-cells, NK cells, and Monocytes. We created a sparse binary matrix encoding the
582  snATAC-seq barcodes for each cell in a given cell type and the superset of ATAC-seq peaks for
583  all cell types, indicating which cells were accessible in which peaks. For each cell type, the
584  cicero function ‘make_cicero_cds’ was used to aggregate cells into bins of 30 nearest neighbors
585  (parameter k=30) from the UMAP reduced dimensions obtained from clustering. We then
586 calculated co-accessibility scores using a window size of 1 Mb. Once co-accessibility scores
587  were calculated, a threshold of 0.05 and a minimum distance of 10 kb were used to define pairs
588  co-accessible for a given cell type. We also generated cell type co-accessibility for each sample
589 individually and only retained sites co-accessible at .05 in at least two individual samples. A
590 peak was categorized as ‘promoter’ if it fell within a 2 kb window of a transcription start site
591 based on GENCODE (version 19) promoter annotations*’, and otherwise was categorized as
592  ‘distal'.

593
594  To validate the cell-type specificity of promoter-distal sites connections calculated using co-

595  accessibility, we compared them to chromatin interactions from promoter capture Hi-C (pCHi-C)
596 data previously generated in 16 immune cell types and sub-types®®. We obtained the list of
597  promoter baits and the matrix containing CHICAGO scores for all interactions in all immune cell
598 type. First, for each pair of peaks that we analyzed in each cell type, we filter those where at
599 least one peak intersected (+/- 1kb) a pCHi-C bait using pgltools**. Then, we identified
600 overlapping connection between the filtered pairs of sites in each of our 5 cell type (B-cells,
601 CDA4+ T-cells, CD8+ T-cells, NK cells, and Monocytes) and the pCHi-C connection (CHICAGO
602  score >= 5) from each of the 16 blueprint adult cell types (Mon, Mac0, Mac1, 'Mac2', Neu, MK,
603 EP, Ery, nCD4, tCD4, aCD4, naCD4, nCD8, tCD8, nB, tB) using the function
604  compare_connections() from the Cicero package. For each celltype-celltype comparison we
605 then estimated the enrichment for the co-accessible sites in pCHi-C connection using Fisher’s
606 exact test. Odds ratios for each comparison were tabulated and displayed using heatmap. For
607 each of the matching cell types (B-cells-tB, CD4+T-cells-tCD4, CD8+T-cells-'tCD8', and
608  Monocytes-Mon) we also calculated enrichment at different peak distances (10-50, 50-100, 100-
609 200, 200-350, 350-1000 kb).


https://doi.org/10.1101/2020.12.03.387894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.387894; this version posted December 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

610

611 Distal effect of caQTL variants on coaccessible-promoters

612 To examine the effect of caQTLs on co-accessible sites, for each of the 5 major cell types we
613 took the lead caQTL variant and tested for association with accessibility level of the co-
614  accessible site using RASQUAL?*. We used the same method as above for caQTLs with the
615 exception of adopting a more relaxed FDR threshold of 20% instead of 10%. caQTLs-
616  coaccessible peaks were then filtered to retain only enhancer-promoters and promoter-promoter
617  co-accessible peaks (B-cells n=828, CD4+ T-cells n=2,323, CD8+ T-cells n=1,909, NK cells
618 n=1,489, Monocytes n=2,243, with an average number of 3.45 co-accessible promoters for
619 each caQTL). Pearson correlation of effect sizes was calculated between variant effect on the
620 original caQTL peak and on one of the co-accessible promoters (with lowest RASQUAL p-value
621  of association), and only considering co-accessible peaks at >10kb of distance.

622

623  Genetic fine mapping analysis

624  We obtained genome-wide summary statistics for immune-related phenotypes including blood

4650 and inflammatory diseases®'*%. For each study,

625  cell type counts*®, autoimmune diseases
626  we obtained lists of index variants for each independent signal from the supplement. We used
627  PLINK®* to estimate linkage disequilibrium (LD) between these index variants and all variants
628  within #2.5 Mb using samples of European ancestry from the 1000 Genomes Project™. For
629  each signal, we first pre-filtered variants in at least low LD (r>>0.1) with the index variants. We
630 calculated approximate Bayes factors®® (aBF) for each variant using the effect estimates (B) and
631 standard errors (SE), assuming prior variance w=0.04. We calculated the posterior probability of
632  association (PPA) by dividing the aBF for each variant by the sum of aBFs for all variants
633  included in the signal. We then defined the 99% credible set as the smallest set of variants that
634 added up to 99% PPA. Fine-mapped variants were annotated using cell type and sub-type
635 caQTLs, considering each lead variant as well as variants with the same g-value of the lead
636 variant for each caQTL. Fine-mapped caQTL variants with PPA>1% were then further
637  annotated with co-accessible promoters (Supplementary Table 8).

638

639 To test for enrichment of caQTLs for complex immune traits we calculated the cumulative PPA
640  of variants overlapping immune cell sub-type caQTL peaks across all credible sets for each trait.
641  For each cell sub-type, we defined a background set of peaks tested for association but did not
642  have significant caQTLs. We estimated an empirical distribution for the total PPA using 1,000

643 random draws of peaks from the background equal in number to the caQTL sites. For each test
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644  (trait vs cell sub-type) a p-value was calculated by comparing the total PPA within caQTL peaks
645  to the empirical distribution.
646

647 Luciferase gene reporter assays

648 Human DNA sequences (Coriell) with reference allele for rs72928038 (BACH2 intron) were
649 cloned in forward orientation in the luciferase reporter vector pGL4.23 (Promega) using the
650  primers: forward, AGCTAGGTACCACACTCAGTGGTTGGGGTTT, and reverse,
651 TACCAGAGCTCCTGGATAGAGGTCCCAGTCG and the enzymes Sacl and Kpnl. Alternate
652 allele plasmids were generated via site directed mutagenesis (Q5 SDM kit, New England
653 Biolabs) using the following primers: forward, CGGATTTCCTaTAAGCTGATC, reverse,
654 TCCCTATTTGTGTGTAATG.

655

656 Jurkat cells were maintained in culture at a concentration of 1x10%/mL-1x10%/mL.
657  Approximately 0.5x10% cells per replicate (3 replicates) were co-transfected with 500 ng of
658 firefly luciferase vector containing either the reference or alternate allele or an empty pGL4.23
659 vector as a control, and 50 ng pRL-SV40 Renilla luciferase vector (Promega), using the
660 Lipofectamine LTX reagent. Cells were collected 48 hours post transfection and assayed using
661 the Dual-Luciferase Reporter system (Promega). Firefly activity was normalized to the Renilla
662  activity and expressed as fold change compared to the luciferase activity of the empty vector

663  (RLU). A two-sided t-test was used to compare the luciferase activity between the two alleles.

664
665 Electrophoretic mobility shift assays

666 EMSAs were performed according to manufacturer's instruction, with changes indicated below,
667  using the LightShift™ Chemiluminescent EMSA Kit (Thermo Scientific, 20148). Biotinylated and
668  non-biotinylated single-stranded oligonucleotides harboring the rs72928038 variant (5'-
669 TAGGGACGGATTTCCTGTAAGCTGATCTTGAAG-3, 5’-
670 TAGGGACGGATTTCCTATAAGCTGATCTTGAAG-3’) were purchased from Integrated DNA
671  Technologies. Nuclear extract from E6-1 Jurkat T cells (ATCC TIB-152), cultured as described
672  above, was obtained using the NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo
673  Scientific, 78833). Binding reactions were carried in a total volume of 20 pl, with 10X Binding
674  Buffer (100 mM Tris pH 7.5, 500 mM KCI and 10 mM DTT), 2.5% glycerol, 5 mM MgCI2, 0.05%
675 NP40, 50 ng Poly(dl:dC), 100 fmole of biotin-labeled probe, and 5.1 ug nuclear extract. For

676  competition experiments, 20 pmol of unlabeled probe was added. Competition reactions were
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677 incubated at room temperature for 10 mins before the addition of the biotin-labeled probe. At the
678 addition of the biotin-labeled probe, all reactions were incubated at room temperature for 20
679 min. Reactions were loaded onto a 6% polyacrylamide 0.5X TBE Gel (Invitrogen,
680 EC62655BOX) for electrophoresis and transferred for 45 mins to a Biodyne™ B Pre-Cut
681 Modified Nylon Membrane, 0.45um (Thermo Scientific, 77016). Transferred DNA was UV-
682  crosslinked for 15 mins, and the biotinylated probes were detected using Chemiluminescent
683  Nucleic Acid Detection Module (Thermo Scientific, 89880) following the manufacturers
684 instruction, with initial blocking increased to 60 mins. The image was acquired using C-DiGit
685  Blot scanner (LI-COR Biosciences, Model 3600).

686

687 FIGURE LEGENDS

688

689 Figure 1. Single nucleus ATAC-seq in a population of PBMC samples. a) Schematic
690 overview of the study. b) Clustering of single cell accessible chromatin profiles of 66,843
691 PBMCs from 10 individuals. Cells are plotted based on the first two UMAP components.
692  Fourteen distinct clusters, indicated by different colors, were identified and assigned to a cell
693 type based on known marker genes. The number of cells for each cell type is indicated in
694  parenthesis. c) Barplot showing the relative proportions of each cell type in each sample. Color
695 scheme is the same as in 1b.

696

697  Figure 2. Identification and characterization of immune cell type chromatin accessibility
698 QTLs. a) Venn diagram showing the total number of caQTLs from single-cell ATAC-seq across
699 immune cell types (red), cell sub-types (blue); and in ‘bulk’ (gray). b) Number of caQTLs
700 identified in each cell type (red for cell types, blue for sub-types) and the subset found in ‘bulk’
701  data (gray). c) Number of caQTLs unique or common to different cell types. d) Heatmap of
702  pairwise correlation (Spearman) between effect sizes of caQTLs, where association is
703  significant in at least one of the two cell types in the pair. e€) Comparison between caQTLs from
704  PBMC bulk-like data and published caQTLs from 24 LCLs. Venn diagram on top indicates the
705  number of significant caQTLs in each dataset and their overlap. Scatter plot of effect sizes for
706 caQTLs found in both studies and having the same lead variant. f) Overlap between cell type
707 caQTLs and H3K27ac QTLs (top) or gene expression QTLs (bottom) in either Monocytes (gray)
708 or T cells (black). g) Top transcription factor motifs disrupted by caQTL variants across different
709  cell types. Clustering is based on motif similarity. The heatmap shows the enrichment ranking of

710 each TFs in each cell type. h) Examples of caQTLs in peaks specific to a single cell type
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711  including rs13294415 (B cell-specific), rs1475159 (CD4+ T cell-specific), rs10888395
712 (Monocyte-specific) and rs11136478 (NK cell-specific). Top panels: colored-coded box-plots
713  show association in the different cell types, white box-plots show caQTL in ‘bulk’ PBMCs.
714  Association g-values are shown on the top and variant genomic location (hg19) is shown at the
715  bottom. Bottom panels: genome-browser screenshot of cell type chromatin profiles. i) Variant
716 rs61943586 was in peaks active in all cell types but was a significant caQTL in CD8+ T cells
717  only. Left: genome-browser screenshot of cell type chromatin signal. Right: boxplots as in H. )
718 Variant rs1867687 was a significant caQTL in all cell types but had opposite effects in different
719  cell types. Top-left: genome-browser screenshot of cell type chromatin signal. Top-right: boxplot
720  of signal split by genotype in bulk and each cell type. Boxplots are color-coded as in |. Bottom-
721  left: TF motifs altered by the rs1867687 variant and their respective score differences are
722  shown. Positive scores indicate preference for alternate allele. Bottom-right: UMAP plot showing
723  accessibility of the SPI1 gene in Monocytes and B-cells and ubiquitous accessibility of IRF1.
724

725  Figure 3. Linking distal immune cell caQTLs to putative target genes. a) Number of co-
726  accessible links in each immune cell type. b) Enrichment of cell type co-accessible links for
727  overlap with promoter-capture Hi-C (pcHi-C) interactions in immune cell types. c¢) Enrichment of
728  cell type co-accessible links for pcHi-C interactions separated by distance between linked sites.
729  d) Number of co-accessible links between a promoter site (+/- 1kb) and a distal (non-promoter)
730  site in each cell type. €) Number of co-accessible links between promoter sites. f) Breakdown of
731 caQTLs linked to promoters in each cell type, including caQTLs directly in promoter sites,
732 caQTLs in distal sites co-accessible with a promoter site, caQTLs in promoter sites co-
733 accessible with a different promoter site, and more complex cases involving multiple linked
734  caQTLs. g) Breakdown of caQTLs in each cell type by the number of promoter sites they were
735 linked to. h) Correlation in the effects of caQTL variants on the primary site and co-accessible
736  promoter sites in each cell type. Pearson correlation coefficient and number of co-accessible
737  pairs of peaks are indicated. i) Correlation in caQTL variant effects on the primary site and co-
738  accessible promoter site for variants significant (FDR 20%) for the latter. j) A caQTL in B cells
739  rs4959438 was also a QTL for a co-accessible site at the DSP promoter and an eQTL for DSP
740  in GTEXx.

741

742  Figure 4. Immune cell type caQTLs at fine-mapped complex immune trait loci. a) Fine-
743  mapping of causal variants at association signals for 16 complex immune traits and diseases.

744  Bar plots represent the number of variants in credible sets for each trait. b) Posterior
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745  probabilities of caQTLs at fine-mapped variants for each immune trait and disease. c). d)
746  Breakdown of caQTLs for fine-mapped variants that were linked to promoter sites. e) Regional
747  plot of the locus on chr6 near BACHZ2 associated with type 1 diabetes (T1D). (top) T1D variant
748  association, with credible set variants highlighted in red, (bottom) chromatin signal in naive
749  CDA4+ T cells and the co-accessible link between the site harboring rs72928038 and the BACH?2
750  promoter. f) Cell type-specific effects of rs72928038 on naive CD4+ T cell chromatin. (top)
751  Chromatin signal grouped by rs72928038 genotype in bulk PBMCs and naive CD4+ cells on
752  top, (bottom) genome browser of chromatin signal in each cell type. g) Predicted TF sequence
753  motifs at rs72928038, where the variant base is highlighted. h) Validation of allelic activity for
754  rs72928038 in T cells. (top left) Luciferase gene reporter of sequence surrounding the G and A
755  allele of rs72928038 in Jurkat T cells. The G allele had significantly higher reporter activity. (top
756  right) Electrophoretic mobility shift assay of oligonucleotides containing the G and A allele of
757  rs72928038 in Jurkat T cells, where the G allele had protein binding. i) Regional plot of the
758  chr11 locus near CXCRS5 associated child asthma. (top) Asthma association statistics, with the
759  two credible set variants highlighted in red, (bottom) chromatin signal in activated CD4+ T cells
760 and the co-accessible links between the site harboring rs12365699 and the CXCR5, BCLIL,
761  NLRX1 MCAM, and MPZL3 promoters. j) Cell type-specific effects of rs12365699. (top)
762  Chromatin signal grouped by rs12365699 genotype in bulk PBMCs and activated CD4+ cells on
763  top, (bottom) genome browser of chromatin signal in each cell type. k) Predicted TF sequence
764  motifs at rs12365699, where the variant base is highlighted.

765

766 SUPPLEMENTARY FIGURE LEGENDS

767

768  Supplementary Figure 1. Population structure of PBMC samples. The first four principal
769  components derived from joint analysis of genotype data from the 1000 Genomes Project and
770  PBMC samples. Samples in 1000 Genomes are colored by major population group, and the
771  PBMC samples are colored in pink.

772

773  Supplementary Figure 2. Defining immune cell types and sub-types from snATAC-seq
774  profiles. a) UMAP plots showing promoter accessibility in a 1 kb window around the TSS for
775  selected cell type marker genes (see Supplementary Table 3). b) Genome browser plots
776  showing aggregate read density (scaled to uniform 1x10° read depth, range: 5-35, shown on
777  vertical axis for each plot) for cells within each cell type for selected cell type marker genes.

778
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779  Supplementary Figure 3. Immune cell type snATAC-seq profiles in individual PBMC
780 samples. a) UMAP plot showing cells clustering in each of the 10 PBMC samples assayed in
781  this study. b) Scatter plot comparing cell type proportions obtained from cluster analysis versus
782  those obtained from flow cytometry, excluding leukocytes. Proportions represent the fraction of
783  all cells in each sample (see Supplementary Table 4 for individual sample proportions). Each
784  dot represents an individual sample. c) Barplot showing the number of cells assigned to 14
785  distinct immune cell types and sub-types in each sample. d) Barplot showing the relative
786  proportion of cells from each sample in each immune cell type and sub-type.

787

788  Supplementary Figure 4. Comparison of ATAC-seq peaks from PBMC snATAC and FACS
789 sorted PBMCs. Heatmaps and hierarchical clustering of Spearman correlation coefficients for
790  pairwise comparisons of genome-wide ATAC-seq profiles across (a) cell-types or (b) sub-types
791  from PBMC snATAC from this study (in blue) and from a published bulk ATAC-Seq study using
792  FACS sorted immune cells (in black).

793

794  Supplementary Figure 5. Comparison of caQTL effects with and without the allelic
795 imbalance component. For each cell type (first 5 plots) and cell sub-type (remaining 10 plots),
796 a scatter plot show the consistency between caQTL effect considering both allelic and
797  population effect (x-axis) and the effect for the same variant-peak pair using only the population
798 component (y-axis) obtained running RASQUAL using the --population-only option. The
799  percentage of discordant effect are indicated.

800

801 Supplementary Figure 6. Comparison of snATAC-seq caQTLs with LCL caQTLs from 24
802 individuals. a-e) Significant PBMC caQTLs in a) B-cells, b) CD4+ T-cells, c) CD8+ T-cells, d)
803 Monocytes and e) NK-cells and their overlap with caQTLs from LCLs (Venn diagram,
804  considering only peaks tested in both datasets. For each shared caQTLs between each cell
805 type and LCLs, a scatter plot shows effect sizes for caQTLs found in both studies and having
806 the same lead variant. f) Table with p-values and odds ratio from two-tailed Fisher’s exact test
807  for enrichment of cell-type caQTLs in LCLs caQTLs.

808

809 Supplementary Figure 7. Examples of caQTLs specific to immune sub-types. a) Examples
810 of cell-type specific caQTLs due to presence of the peak in a single cell type. From left to right,
811 rs1957554 is a caQTL for a naive B cell-specific site, rs7094953 is a caQTL for a naive CD4+ T

812  cell-specific site, rs3014874 is a caQTL for a classical monocyte-specific site, and rs59176853
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813 is a caQTL for a cytotoxic NK cell-specific site. Top panels: colored-coded box-plots show
814  association in the different cell types, white box-plots show corresponding caQTL in bulk
815 PBMCs. Association g-values are shown on the top and variant genomic location (hg19) is
816 shown at the bottom. Bottom panels: genome-browser screenshot of snATAC-seq in different
817  cell types. b) Example of caQTL specific to classical monocytes (rs747748) although the peak is
818 active in all immune cell types. Box-plots show association with the same variant in 10 immune
819 sub-types and the bulk PBMCs. Right: genome-browser screenshot of cell-type color-coded
820 snATAC-seq peaks and position of the variant. c) Example of a caQTL specific to effector CD8+
821 T cells (rs61943586) although the peak is active in all cell types.

822

823  Supplementary Figure 8. Correlation of caQTL effects with effects at distal promoters
824  across different distances. Correlation in the effects of caQTL variants on the QTL site and
825  co-accessible promoter sites in each cell type, grouped by distance between the QTL site and
826  co-accessible promoter site. Pearson correlation coefficient and number of co-accessible pairs
827  of peaks are indicated.

828

829 Supplementary Figure 9. Additional examples of immune cell type caQTLs at fine-
830 mapped complex immune trait loci with cell-specific effect. a) Regional plot of a locus on
831 chrb associated with rheumatoid arthritis, with the four credible set variants highlighted in red.
832 The candidate causal variant rs7731626 is indicated with a triangle and PPA. b) Chromatin
833  signal in naive CD4+ T cells in the region and co-accessible link between the site harboring
834 rs7731626 and the IL6ST (aka GP130) promoter. The other three peaks co-accessible with
835 rs7731626 map to the promoter of a non-coding isoform of ANKRD55 (in green). c) Zoomed-in
836 chromatin signals at the rs7731626 and the IL6ST promoter sites in all cell subtypes, showing
837  specificity for naive CD4+ T cells. d) Chromatin signal at the rs7731626 variant grouped by
838 rs7731626 genotype in bulk PBMCs and naive CD4+ cells and g-values of association. e) Top
839 four predicted TF sequence motifs rs7731626, where the variant base is highlighted. Twelve
840 other motifs predicted to be altered are not shown. f) Regional plot of the locus on chr15
841 associated with Crohn’s disease, with the five credible set variants highlighted in red. The
842  candidate causal variant rs17293632 is indicated with a triangle and PPA. g) Chromatin signal
843 in classical monocytes in the region and co-accessible link between the intronic enhancer
844  harboring rs17293632 and three alternative SMAD3 promoters. h) Zoomed-in chromatin signals
845  at the rs17293632 (right) and SMADS3 promoter sites in all cell subtypes, showing specificity for

846 monocytes at the enhancer site and the two closest promoters. i) Chromatin signal at the
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847  enhancer site grouped by rs17293632 genotype in bulk PBMCs, monocytes (including all
848  subtypes), classical monocytes and non-classical monocytes, with g-values of association
849 (RASQUAL). j) Four predicted TF sequence motifs rs7731626, where the variant base is
850 highlighted. Ten other similar motifs (ETS family) predicted to be altered are not shown.

851

852  Supplementary Figure 10. Additional examples of immune cell type caQTLs at fine-
853 mapped complex immune trait loci with high causal probability. a) Regional plot of the
854  locus on chr12 in the NINJ2 gene showing association with Lymphocyte count, with the eight
855 credible set variants highlighted in red. The candidate causal variant rs34038797 is indicated
856  with a triangle and its PPA is shown. b) Chromatin signal in memory CD8+ T cells and Classical
857 Monocytes in the same region and the co-accessible link between the site harboring
858 rs34038797 and promoters of CCDC77, WNK1, RAD52 (CD8+ T), NINJ2 and SLC6A12
859  (Monocyte). ¢) Chromatin signal at the rs34038797 variant grouped by rs34038797 genotype in
860 all cell sub-types and g-values of association (RASQUAL) and zoomed-in genome browser
861 track. d) Top five predicted TF sequence motifs altered by rs34038797, where the variant base
862 s highlighted.

863

864 SUPPLEMENTARY TABLES

865

866 Supplementary Table 1. Summary of PBMC samples information. For each of the 10
867 samples analyzed, sample name, lot number, donor ID, donor age, gender, ethnicity, blood
868 type, and flow cytometry markers percentages are indicated.

869

870 Supplementary Table 2. Summary of snATAC-seq cell ranger statistics. For each of the 10
871 samples analyzed, we indicate snATAC-seq sequencing and mapping statistics.

872

873  Supplementary Table 3. Marker genes references. List of marker genes used to assign
874  clusters to PBMC cell types and sub-types and corresponding reference papers.

875

876  Supplementary Table 4. Clustering vs. flow cytometry cell type proportions. Comparison
877  between cell type proportions in each sample as estimated by flow cytometry and snATAC.

878
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879 Supplementary Table 5. Immune cell type and sub-type accessible chromatin sites.
880 Merged bed file of all ATAC peaks sites called in each cell type and sub-type, used for all
881 analyses.

882

883  Supplementary Table 6. Inmune cell type and sub-type caQTLs. RASQUAL results for all
884  caQTLs significant at FDR 10% in each cell type (5 cell types and 10 sub-types) and pseudo-
885  bulk analyses. The first 25 columns are outputs from RASQUAL, and p-values and g-values
886  were calculated from columns 11 and 10, respectively.

887

888  Supplementary Table 7. Transcription factor motifs enriched in immune cell type caQTLs.
889  List of TF motifs from the HOCOMOCO v.10 human database that were tested for enrichment in
890 caQTLs and results of binomial test.

891

892  Supplementary Table 8. Complex immune traits and diseases included in fine-mapping.
893  List of traits and corresponding GWAS study used for fine mapping.

894

895 Supplementary Table 9. Immune cell type and sub-type QTLs at fine-mapped variants.
896 List of SNPs in credible sets for blood and auto-immune traits that are caQTLs in one or more
897  cell types, have PPA >0.01 and are located either in gene promoters or in enhancers that are
898  co-accessible with distal promoters. For each fine-mapped variant we report caQTL results and
899 co-accessible promoters (multiple entries) in each of the cell types with significant caQTLs.

900

901 SUPPLEMENTARY DATA FILES

902

903 Supplementary Data 1. Summary statistics of caQTLs in PBMC cell types, subtypes, and
904 bulk like data. RASQUAL results for all peaks tested in each cell type (5 cell types and 10 sub-
905 types) and pseudo-bulk analyses. The first 25 columns are outputs from RASQUAL, and p-
906 values and g-values were calculated from columns 11 and 10, respectively.

907

908 Supplementary Data 2. Fine-mapping credible sets for loci associated with 16 complex
909 immune traits. The 99% credible sets derived from fine-mapping of loci associated with 16
910 complex immune traits and disease.

911

912
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