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INTRODUCTION

There are a wide array of technologies for in situ 
visualization of transcripts having various benefits and 
drawbacks(1–3) with many current methods requiring 
specialized microscopes to resolve diffraction limited 
spots(4–7). Although many fluorescent in situ hybridization 
(FISH)-based methods can have very high detection 
efficiency and/or high multiplexing capabilities, the 
upscaling of these technologies are not suited for cell 
typing projects such as the Human Cell Atlas(8) or large 
cohort studies. Wrangling these datasets across large 
areas and samples is essential to gain medically relevant 
knowledge where individual samples don’t suffice.

Our lab has developed in situ sequencing (ISS) as a method 
for multiplex detecting transcripts within tissue based 
on barcoded padlock probes (PLPs) and rolling circle 
amplification (RCA), forming single stranded DNA repeats 
known as rolling circle products (RCPs)(9,10). The latest 
iteration of ISS, hybridization-based in situ sequencing 
(HybISS)(9), RCPs contain combinatorial barcodes that 
can be decoded by hybridizing primary probes then 
fluorescently labelled oligonucleotides over multiple 
cycles and visualized using conventional widefield 
fluorescence microscopes. Although ISS has been shown 
to have good signal detection and throughput, it suffers 
from low transcript detection efficiency(10,11) that can be 
mainly attributed to the inefficiency of cDNA synthesis 
which has been used to improve the specificity for 
hybridization and ligation of PLPs. Direct hybridization 
and probing of mRNA in situ for improved efficiency has 
been attempted with different commercially available 
ligases, including Chlorella virus DNA ligase (PBCV-1 DNA 
ligase), but showed high tolerances of mismatches for 
ligation(12), and consequently worse specificity compared 
to cDNA template DNA ligation using thermophilic DNA 
ligases. Recently, it was reported that T4-RNA Ligase 2 
showed good ligation efficiency with 3’- RNA/5’-DNA 
PLPs (Chimeric PLPs) on RNA templates, and exhibits 

higher ligation fidelity on single nucleotide variations, 
compared to PBCV-DNA ligase(13). Here we evaluate 
such a direct RNA (dRNA) chemistry in situ with HybISS 
(HybRISS: Hybridization-based RNA in situ sequencing) 
that targets RNA with chimeric PLPs while still retaining 
the fundamental benefits of ISS technology.

Combined with sequence-by-hybridization detection 
chemistry of HybISS, we applied a targeted gene panel on 
mouse coronal brain sections for a comparative analysis 
of methods and demonstration of its capabilities and 
potential. We show over five-fold increase in transcript 
detection efficiency when compared to cDNA-based 
ISS, leading to additional data interpretation such as 
de novo cell typing. With this increased efficiency, we 
maintain specificity, multiplexing capabilities and ease 
of implementation. Overall, a dRNA-based approach 
closes the gap between the gold standard of FISH-based 
detection efficiency while maintaining a high level of 
multiplexing and throughput.

RESULTS

Increased targeting efficiency and retained specificity 
of dRNA-HybRISS. The HybRISS method bypasses cDNA 
synthesis step using gene specific chimeric PLPs, before 
they are ligated, amplified by RCA and fluorescently 
labelled for detection (Fig. 1A). In order to make use of 
HybISS detection chemistry(9), customized PLP backbone 
sequences contain 20 nucleotide (nt) long unique ID 
sequences that are assigned to each gene of interest to 
be decoded in a combinatorial manner by first binding ID 
sequence specific bridge probes that are then template 
for fluorophore conjugated detection oligonucleotides 
(DOs) (Fig. S1A and Table S1).

We first compared dRNA-HybRISS to cDNA-HybISS by 
targeting four genes (i.e. 4-plex) selected for their specificity 
in marking different cell types including ependymal 
(Cd24a), oligodendrocytes (Mbp), and excitatory neurons 
(Lamp5 and Slc17a7) (Fig. 1A,B and Fig. S1B). PLPs were 

Highly multiplexed spatial mapping of multiple transcripts within tissues allows for investigation of 
the transcriptomic and cellular diversity of mammalian organs previously unseen. Here we explore 
the possibilities of a direct RNA (dRNA) detection approach incorporating the use of padlock probes 
and rolling circle amplification in combination with hybridization-based in situ sequencing (HybISS) 
chemistry. We benchmark a dRNA targeting kit that circumvents the standard reverse transcription 
limiting, cDNA-based in situ sequencing (ISS). We found a five-fold increase in transcript detection 
efficiency when compared to cDNA-based ISS and also validated its multiplexing capability by targeting 
a curated panel of 50 genes from previous publications on mouse brain sections, leading to additional 
data interpretation such as de novo cell typing. With this increased efficiency, we maintain specificity, 
multiplexing capabilities and ease of implementation. Overall, the dRNA chemistry shows significant 
improvements in target detection efficiency, closing the gap between the gold standard of fluorescent 
in situ hybridization (FISH) based technologies and opens up possibilities to explore new biological 
questions previously not possible with cDNA-based ISS, nor with FISH.
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Figure 1: HybRISS: dRNA targeting in situ using a 4-plex gene panel (A) Schematic of benchmarking experiment to 
compare cDNA- and dRNA-based HybISS. (B) Expression distribution of 4-plex gene panel (Cd24a/Lamp5/Slc17a7/Mbp) 
across sequential half coronal mouse brain sections. Displayed as output from MATLAB analysis pipeline. Scale bar, 1 
mm. (C) RCP counts per cell of half coronal section and their frequency for each gene in the 4-plex panel. Representative 
raw images of single cells. Dashed lines represent the mean RCPs/Cell count for the respective chemistries. Scale bar, 5 
µm. (D) Representative raw image of 4-plex from one of three ROIs (Fig. S2B,C). Experiments run in parallel and same 
postprocessing intensity level adjustments. ROIs include regions of cortex, hippocampus, and lateral ventricle. Scale bar, 
100 µm, inset 10 µm. (E) Correlation plot of total RCP counts of dRNA against cDNA in three ROIs. x-axis represents cDNA 
and y-axis dRNA. Each spot of same color represents the three ROIs and deviation calculated from consecutive sections. 
(F) Kullback-Leibler divergence plot for the spatial distribution of 4-plex genes across a cortical ROI between cDNA and 
dRNA. x-axis represents spatial differences and y-axis represents frequency differences. (G) Multiplexed distribution of 
4-plex genes in cortical region. Cd24a+ cells indicated by red arrowheads, Mbp+ cells indicated by white arrowheads. 
Scale bar, 20 µm. (H) Colocalization of fluorescent immunohistochemistry with dRNA-HybRISS. Top panels show MBP 
protein detection with Mbp dRNA-HybRISS. Bottom panels show pan-neuronal marker TUBB3 with excitatory neuron 
marker Slc17a7. Scale bar, top 500 µm, bottom 10 µm.

designed to target complementary sequences and the 
four genes could be discriminated from each other in a 
single cycle, but the possibility of combinatorial decoding 
is still feasible (Fig. S1C). To get an overall impression of 
the increased efficiency of dRNA, the total number of 
RCPs counted per segmented cell in the sections showed 

an overall increase in number and frequency for all four 
genes (Fig. 1C). This is visually clear when comparing 
images of single cells expressing the various genes (Fig. 1C 
insets, Fig. S2A). Furthermore, we selected three regions 
of interest (ROIs) encompassing the cortex, hippocampus 
and lateral ventricle for more detailed analysis (Fig. S2B). 
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Comparable images of the ROIs showed clear increased 
detection efficiency where sub-regional localization of 
detection could be seen with various densities in the dRNA 
condition, clear Mbp abundance in the corpus callosum, 
Cd24a surrounding the ventricle and Slc17a7 within the 
cortex (Fig. 1D and Fig. S2C). Total sum of RCPs for each 
gene was quantified in the ROIs in replicate sections for 
each condition and found a correlation with a slope of 
5.13, indicating an over five-fold increase in detection 
efficiency using the dRNA approach (Fig. 1E). Comparing 
RCP intensity showed variable results depending on the 
fluorophore (Fig. S2D,E). Overall, the signal-to-noise ratio 
(SNR) of dRNA-HybRISS were comparable to cDNA-HybISS, 
showing that RCA was not impeded in dRNA-HybRISS (Fig. 
S2F,G), consistent with the observation that the phi29 
DNA polymerase used in RCA is as efficient on RNA/DNA 
chimeric circles as DNA circles(14).

The increased number of detection events could be in part 
a consequence of off-target detection events. To evaluate 
this, we looked into the spatial distribution of the four 
targeted genes. Due to the architectural organization of the 
cortex, we were able to assess the spatial distribution of 
the four genes with a Kullback-Leibler divergence analysis 
along the cortex, observing a change in expression (y-axis) 
but no significant difference in spatial distribution (x-axis) 
between dRNA and cDNA (Fig. 1F). We further looked into 
ROIs to observe the spatial distribution of the four genes 
in more detail. Although cells expressing certain genes 
could be found within the cortex with both methods (Fig. 
1G), it was visually clearer in dRNA approach as indicated 
by Mbp (white arrowheads) and Cd24a (red arrowhead) 
expressing cells. Within the lateral ventricle (Fig. S3A, 
top), a clear delineation of Cd24a+ cells lining the ventricle 
with dRNA, whereas it is sparser in cDNA. Furthermore, 
within the hippocampal formation, a clear separation of 
Cd24a+ and Slc17a7+ cells could be seen that was almost 
indistinguishable in cDNA approach (Fig. S3A, bottom). 
Co-localization of protein detection and RNA expression 
by performing immunohistochemistry (IHC) alongside 
dRNA-HybRISS revealed near identical staining pattern 
and density across the mouse brain tissue section when 
comparing Mbp (Fig. 1H, top). When targeting Slc17a7 
together with pan-neuronal marker Tubulin Beta-III 
(TUBB3) antibody (Fig. 1H, bottom), Slc17a7 expression 
co-localized with most of the cells detected with TUBB3 
within an ROI expressing Slc17a7+ cells and no RCPs 
were observed in cells that were not TUBB3 detected. 
Comparing the 4-plex dRNA approach to the Allen 
Mouse Brain Atlas in a cortical ROI, we see overlapping 
distribution of expression of all genes (Fig. S3B). This also 
applied to other regions as well as overall distribution of 
expression in the entire coronal section (Fig. S3C).

Control experiments to evaluate unspecific binding of the 
dRNA probes was done by switching 4-plex probe sets for 
the different experimental setups, but added an additional 
set of cDNA reference probes (Actb, Gapdh, Pgk1, and 
Polr2a) into the mix of dRNA probes for cDNA protocol 
(Fig. S4A). As expected, no signal was observed in either 
condition, only after stripping and labelling with bridge 
probes for the reference probes, RCPs could be visualized 
(Fig. S4B). A competitive assay using primers of varying 
concentration targeting the Mbp binding sites for the PLPs 

(Fig. S4C) resulted in almost a complete suppression of 
detectable Mbp RCPs (Fig. S4D).

Multiplexing capacity of dRNA-HybRISS for de novo cell 
typing in mouse brain sections. To test the application and 
potential of the dRNA-HybRISS, we targeted a panel of 50 
genes (i.e. 50-plex) curated based on previous publications 
to map cortical and hippocampal cell types: 33 genes from 
Codeluppi et al.(4) and 17 from Qian et al.(11) (Fig. S5A, 
and Table S1). Targets were probed sequentially over 14 
rounds and then merged to create a composite image 
(Fig. S5B and S6A-D). The expression map obtained was 
then segmented to cells based on nuclear DAPI staining. 
Due to the increased RCP count per cell, we could perform 
de novo clustering on the data to resolve 56 clusters (Fig. 
2A,B and Supplementary Note 1). While most of the 
neuronal cell types do not present unique markers in the 
panel, non-neuronal clusters were easily characterized by 
the expression of cell-type specific markers, whereas both 
excitatory and inhibitory clusters had a similar expression 
pattern between them, resulting in difficulties for 
discriminating analogous cell types within excitatory and 
inhibitory cells. These cell clusters can then be mapped 
back to a spatial position in the tissue for further analysis 
(Fig. 2C).

Additionally, due to amplified signals allowing for rapid 
imaging and now increased detection efficiency with 
dRNA, imaging at lower magnification to further increase 
throughput is possible. In parallel, we obtained a dataset 
with 10X imaging as a proof of concept (Fig. 2D). Here we 
produced expression maps based on a density threshold 
and assigned them to segmented cells (Fig. 2E and Fig. 
S7A). Indeed, we could produce expression maps that were 
highly correlated to 20X imaging, both detecting individual 
spots and gene density, but with higher throughput (Fig. 
2F and Fig. S7B). This could be an alternate strategy for 
imaging in a sequential manner and a good candidate for 
compressed sensing(15).

Comparison to published osmFISH dataset. In order to 
evaluate how well the unsupervised clustering works with 
the dRNA method, we compared the dataset acquired 
to that published by Codeluppi et al. implementing 
osmFISH(4). We cropped our dataset to a similar region 
of the somatosensory cortex, CA1 of hippocampal 
formation, and lateral ventricle. We then re-clustered our 
dataset using the same 33 genes with the aim of obtaining 
comparable clusters. In this region, we defined 43 clusters 
compared to the 32 clusters found in the osmFISH 
dataset (Fig. 3A and Fig. S8A), that was spatially mapped 
back onto the tissue (Fig. 3B and Fig. S8B). Correlation 
between the mean expression of different clusters shows 
high correspondence for most of the clusters found with 
the two techniques (Fig. 3C). Overall, the agreement 
was best for the more divergent cell-types while for 
subtypes of excitatory and inhibitory neurons did not 
align very well, where HybRISS resolves more excitatory 
cell clusters. The comparison of the clusters found by the 
both methods and published single-cell RNA-sequencing 
(scRNA-seq) shows that, despite having lower detection 
efficiency, dRNA-HybRISS is able to define cell types with 
a similar resolution level as osmFISH (Fig. S9A,B). A more 
elaborate description of this comparison is presented in 
Supplementary Note 2.
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Figure 2: De novo clustering of 50 gene expression in mouse brain coronal section (A) Expression matrix of 
50 targeted genes across annotated cell clusters in segmented cells of the imaged region. (B) UMAP with de novo cell 
clustering based on the expression profile of the 50-plex gene panel. Three genes highlighted for their expression to mark 
pan-excitatory neurons (Slc17a7), inhibitory neurons (Slc32a1), and oligodendrocytes (Plp1). (C) Cell-type map across 
mouse coronal section, highlighting some classes in right panels. (D) Raw image comparison of 20X and 10X objective 
imaging. 200 pixel scale bar, 20X=64.2 µm, 10X=128.4 µm. (E) 20X objective spot-based detection converted to density-
based detection compared to 10X objective density-base detection for Slc17a7. (F) Correlation comparison of 20X spot- 
and density-based detection to 10X-density based detection.
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Figure 3: De novo clustering of somatosensory cortex region and comparison to osmFISH cell type clustering 
(A) UMAP of cell clusters using 33-gene panel within outline ROI. (B) Cell-type map of most cell clusters superimposed 
on DAPI nuclear image. All cell clusters mapped in Fig. S8B. (C) Correlation map of osmFISH cell clusters compared to 
dRNA-HybRISS de novo clusters.

DISCUSSION 

The HybRISS method presents itself as an improved 
alternative to the traditional cDNA-based HybISS 
technology(9) as it demonstrates a five-fold improvement 
in transcript detection efficiency, while maintaining 
specificity, and same degree of throughput and 
multiplexing capabilities. This increase in detection 
efficiency closes the gap in the analytical capabilities to 
that of other FISH-based techniques. Moreover, the high 
SNR achieved from RCA enables the use of a conventional 
epifluorescence microscopes, with low magnification 
objectives (20X-40X) at good resolution for robust spot 
calling and decoding with high throughput. Here we 
show that even lower magnification objectives (10X) can 
be used to identify the level of expression of each cell 
based on signal density and possibly in combination with 
compressed sensing strategies(15) as a solution for optical 
crowding. Being able to scan large areas obtaining enough 
molecular information of each individual cell will be key in 
cell atlas projects or to support to biological questions in 
large tissue samples.

Currently, alternative protocols that involve the direct 
probing of RNA with PLPs and RCA, such as SCRINSHOT(16) 
and targeted ExSeq(17) have also exhibited improved 
transcript detection efficiency. However, PBCV-1 DNA 
ligase used in these protocols have shown high tolerance 
for mismatches in ligation and extensive optimization 

would have to be undertaken for different tissue types 
to prevent off-target detection(13,16). The increased 
efficiency of dRNA has allowed for improved detection 
of lower expressed transcripts, which would otherwise 
be challenging to detect with the cDNA approach. This 
enables more data being generated per cell, providing 
opportunities to reach conclusions to a wider range of 
biological questions. The increased detection efficiency 
has potential drawback of risk to optical crowding where 
individual RCPs can’t be distinguished from each other 
using combinatorial decoding. In order not to confuse 
the comparison with the cDNA-based method due to 
crowding, we performed decoding in a non-combinatorial 
fashion in this work. This is a feasible approach if 
multiplexing levels are relatively low, such as a 50 gene 
panel that can be decoded in 10 rounds of 5-plex imaging 
per round, particularly when using 10X imaging. For 
higher multiplexing, one can group genes for an optimal 
combinatorial experiment without optical crowding by 
using prior knowledge from, for example, scRNA-seq data 
sets. Alternatively, a combination of combinatorial and 
non-combinatorial decoding cycles can be applied which 
adds on experimental and imaging rounds, but enables 
generation of dense, yet not optically crowded data.

As with all spatial methods, depending on the biological 
question being asked, the ideal method should be chosen. 
For example, our current cell-typing pipeline, pciSeq, 
does not require high detection efficiency per cell to 
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robustly define cell types(11), making the traditional cDNA-
based HybISS sufficient for cell type mapping. However, 
should one aim to identify low abundant transcripts, or 
for example SNPs and mutations, dRNA-HybRISS would 
be a better option. Additionally, dRNA targeting would 
be a useful method for FFPE tissues where RNA is more 
degraded.

To further evaluate dRNA-HybRISS, in its multiplex 
capability and the data quality that it generates, we were 
able to cluster cell types in a mouse brain section with 
a panel of 50 genes and compare it to published data 
sets from both scRNA-seq and osmFISH. From our 50-
plex experiment data, we were able to robustly decode 
50 genes sequentially to confidently identify cell clusters, 
which have shown good correlation with both scRNA-
seq and osmFISH data set, pointing to the fact that the 
HybISS chemistry is very much compatible with highly 
multiplexed experiments and also generates high quality 
data. The full potential of dRNA-HybRISS has yet to be 
explored. Nonetheless, we believe that dRNA-HybRISS 
can be a powerful tool for cell typing especially when 
combined with scRNA-seq data for gene target selection. 
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METHODS

Probe selection and design. Genes were selected based 
on previous publications to delineate cell types in adult 
mouse brain sections. Subsets of the 50-plex panel were 
taken from (4) and (11). The 4-plex panel is contained 
within the 50-plex panel. Gene lists were sent to CARTANA 
with accompanying customized ID sequences for in-house 
HybISS chemistry detection. For the 4-plex gene assay, 
probes were designed by CARTANA to target matching 
complimentary mRNA and cDNA to suit the different 
chemistries for benchmarking studies. Target sequences 
and PLP design is CARTANA proprietary information 
and are unknown to users and only targeted exons and 
number of probes used are known (Table S1). Mouse 
reference genes for cDNA-HybISS method were designed 
as previously published(9) and sequences found in Table 
S1.

Tissue. Mouse tissue was obtained from the Allen 
Brain Institute under the SpaceTx consortium. Fresh 
whole mouse brain tissue was cryopreserved in optimal 
cutting temperature (OCT) and sectioned with a cryostat 
(CryoStar™ NX70) at 10 μm and collected on SuperFrost 
Plus microscope slides. Slides stored at -80°C were air dried 
for five minutes and the fixed in 3% paraformaldehyde 
solution before respective protocols were performed.

cDNA-HybISS protocol. The protocol was followed as 
published(9) and at <protocols.io> (dx.doi.org/10.17504/
protocols.io.xy4fpyw). As with all dRNA probes, cDNA 
probes for the 4-plex assay were also provided by 
CARTANA to match complementary sequences of the 
dRNA target sequences. 

dRNA-HybRISS protocol. CARTANA provided reagents 
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in kits (High-Sensitivity library preparation kit) with an 
accompanying protocol that was followed. Briefly, after 
tissue fixation, probe mix was incubated on tissue section 
overnight in hybridization buffer followed by stringent 
washes and then incubated in a ligation mix. After washes, 
RCA was performed overnight and labelled for detection. 
Protocols for both RCA and detection are identical to 
cDNA-HybISS.

IHC staining protocol. After HybRISS RNA detection, 
tissue was blocked with PBTA (PBS, 5% normal donkey 
serum (Jackson ImmunoResearch), 0.5% Triton-X 
100) for one hour. Then sections were incubated with 
primary antibodies, either MBP (Abcam, ab7349) or 
TUBB3 (BioLegend, 801213) overnight at +4°C. Sections 
were then washed three times with PBS and incubated 
with secondary antibodies (Alexa Fluor anti-rat 488 and 
anti-mouse 555) for 2 hours at room temperature and 
counterstained with DAPI. 

Imaging. All images were obtained with a Leica DMi8 
epifluorescence microscope equipped with an external 
LED light source (Lumencor® SPECTRA X light engine), 
automatic multi-slide stage (LMT200-HS), sCMOS camera 
(Leica DFC9000 GTC), and objectives (HC PL APO 10X/0.45; 
HC PL APO 20X/0.80; HCX PL APO 40X/1.10 W CORR). 
Multispectral images were captured with microscope 
equipped with filter cubes for 6 dye separation and an 
external filter wheel (DFT51011). Image scanning was 
performed by outlining ROIs that could be saved for multi-
cycle imaging tiled imaging with 10% overlap. Z-stack 
imaging of 10 µm at 0.5 µm steps to cover the depth of 
the tissue. 

Image processing. Imaging data was processed and 
analyzed with an in-house pipeline based on the 
programming language MATLAB. All associated software 
can be found in a repository (https://github.com/Moldia/
HybrISS).

Maximum intensity projection was performed on each field 
of view in order to obtain a 2-dimensional representation 
of each tile. Then, stitching of tiles was performed using a 
MATLAB implementation of MIST(18) algorithm, obtaining, 
after exporting, different tiff images corresponding to 
each channel and round. After aligning the images and 
top-hat filtering them, signals were identified by manually 
defining an intensity and size threshold on each channel. 
For experiments including multiplexing, a spot-associated 
quality score was calculated by dividing the intensity 
score of the channel where the signal was detected by the 
sum of the intensities of all the other channels, excluding 
DAPI. Assuming a perfect alignment between images, 
each signal in the 1st cycle was associated with its closer 
signal in the 2nd cycle generating a possible barcode. A 
quality score was given to each union, being the distance 
between signals expressed in number of pixels. For each 
of these barcodes, a final quality score (Q) was calculated 
as:

where n=2, since 2 cycles have been used in the 
combinatorial experiment. di(i+1) represents the distance 

between two signals in different rounds and is modulated 
by the parameter k, which can be tuned. The variables 
qi and qi+1 represent the quality of a signal in the first 
cycle and the second respectively. Barcodes were filtered 
based on their final quality score ( Q ) , keeping only those 
multiplexed signals presenting a high quality (Q>0).

Cell segmentation. DAPI staining was used to identify 
cell nuclei by filtering its signal based on a manually 
set intensity threshold. Watershed segmentation was 
performed on top of that in order to identify approximate 
cell boundaries. Signals detected within the cell 
boundaries of a cell were assigned to it, capturing the 
expression profiles of individual cells.

Data analysis. Segmented cells were filtered depending 
on their gene expression, selecting only cells containing 
more than 7 reads/cell and less than 150 reads/cell. 
The expression of each gene was normalized by dividing 
the number of reads by the standard deviation of each 
gene’s expression. Then, density-based spatial (DBSCAN) 
clustering was performed on the normalized gene/cell 
matrix and resulting clusters were manually annotated.
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Pre-processed images or raw tile images (several 
terabytes) are available from the corresponding author 
upon request.

CODE AVAILABILITY

All code is available online at https://github.com/Moldia/
HybrISS.

ACKNOWLEDGEMENTS

This work was supported by Eurostars Project; The Chan 
Zuckerberg Initiative, an advised fund of Silicon Valley 
Community Foundation; Swedish Brain Foundation 
(Hjärnfonden) [PS2018-0012]; EASI Genomics (H2020); 
Vetenskapsrådet; Knut and Alice Wallenberg Foundation; 
Erling Persson Family Foundation. We thank Gonçalo 
Castelo-Branco and Ernest Arenas for donation of primary 
and secondary antibodies and SpaceTx consortium for 
tissue. Imaging performed on Leica DMi8 is thanks to Jens 
Hjerling-Leffler with support from ERC grant (#819540). 
We thank all members of the Mats Nilsson lab for their 
insight and comments.

AUTHOR CONTRIBUTIONS

HL performed all experiments and analyzed data. SMS and 
DG analyzed data. HL, DG and MN conceived the study. 
DG and MN supervised the study. All authors contributed 
to the writing of manuscript.

CONFLICT OF INTEREST

MN is co-founder of the company CARTANA AB from 
which reagent kits were obtained for this research study. 
All reagents used from CARTANA are listed in the Methods 
section.

SUPPLEMENTARY INFORMATION

Supplementary information contains 2 Notes, 9 Figures, 
and 2 Tables.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.02.408781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.408781
http://creativecommons.org/licenses/by-nd/4.0/

