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ABSTRACT  

Characterization of genotype-phenotype relationships of genetically encoded molecules (e.g., 
ribozymes) requires accurate quantification of activity for a large set of molecules. Kinetic 

measurement using high-throughput sequencing (e.g., k-Seq) is an emerging assay applicable in 

various domains that potentially scales up measurement throughput to 105 ~ 106 unique sequences. 

However, technical challenges introduced by sequence heterogeneity and DNA sequencing must be 

understood to realize the utility and limitations of such assays. We characterized the k-Seq method in 

terms of model identifiability, effects of sequencing error, accuracy and precision using simulated 

datasets and experimental data from a variant pool constructed from previously identified ribozymes. 

Relative abundance, kinetic coefficients, and measurement noise were found to affect the 
measurement of each sequence. We introduced bootstrapping to robustly quantify the uncertainty in 

estimating model parameters and proposed interpretable metrics to quantify model identifiability. 

These efforts enabled the rigorous reporting of data quality for individual sequences in k-Seq 

experiments. Critical experimental factors were examined, and general guidelines are proposed to 

maximize the number of sequences having precisely estimated and identifiable kinetic coefficients 

from k-Seq data. Practices analogous to those laid out here could be applied to improve the rigor of 

similar sequencing-based assays. 

 

INTRODUCTION 

Determining the genotype-phenotype relationships for any large set of biomolecules requires a high-

throughput method to measure the chemical activity of each sequence in the set. For catalytic nucleic 
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acids, measuring the activity of each unique sequence in a diverse population is an important goal. 

Ideally, methods to accomplish this would: a) yield accurate activity measurements for individual 

sequences, b) achieve high throughput, such as by parallelization, to cover a large number of variants 

in sequence space, and c) be adaptable to different ribozymes (and deoxyribozymes). 
High-throughput sequencing (HTS) provides an opportunity to address these goals. The large 

amount of sequence data should allow high accuracy count data for many sequences in a high 

throughput, parallelized format. In principle, if reacted and unreacted molecules can be separated 

from each other and sequenced independently, HTS could quantify the extent of a reaction for 

millions of different sequences simultaneously. Since nucleic acid sequences act as their own 

‘barcodes’, use of sequencing as the assay would avoid the need to isolate and test each unique 

sequence individually. Such a method can measure the activity of each sequence in a population of 

functional molecules, at multiple time points, substrate concentrations, or other variable conditions. 
HTS-based kinetic measurements have been proposed and demonstrated with nucleic acids, 

including catalytic DNA (1), catalytic RNA (2–5), substrate RNA (“HTS-Kin”) (6), RNA aptamers (7), 

and transcription factors (TF) binding to DNA (8). In these studies, approximately 103 ~ 106 unique 

sequences are measured, depending on the experimental design. Similar approaches have also been 

developed for proteins, notably an assay of ligand binding affinities through mRNA display (9), ‘deep 

mutational scanning’, in which the phenotype of fitness is assayed for many mutants by deep 

sequencing (10), and a large-scale measurement of dose-response curves (11). However, the 

development of these massively parallel measurements also raises important questions about 
experimental design, normalization, sequencing errors, and measurement accuracy and precision. To 

date, there is a relative lack of critical discussion addressing the theoretical and experimental effects 

of such variables on the outcome of high-throughput measurements. The purpose of the present work 

is to examine these issues and develop appropriate methodology to address them in the context of 

assaying ribozymes.  

Here we focus on kinetic sequencing (k-Seq), a recently reported method for quantification of 

kinetics in a mixed pool of sequences (2). Advantages of k-Seq include absolute, rather than relative 
(5, 6) measurements, as well as the lack of requirement for specialized instrumentation (4, 7). A 

general schema of k-Seq is described as follows (Figure 1): an input pool is designed containing 

sequences of interest (e.g., candidate ribozymes). Aliquots of the input pool are reacted under 

different experimental conditions, such as different substrate concentrations or different time points. 

Then, reacted and unreacted molecules are separated. Each pool is converted to a DNA library and 

prepared for sequencing. Absolute measurement of reacted (or unreacted) quantities is also 

performed to allow normalization. Reads generated from HTS are subjected to quality control and de-

replicated to generate a ‘count’ table of the copy number for each sequence detected in a sample. 
Count data are normalized to absolute abundance and fit to the appropriate kinetic model to estimate 

the rate constants and other parameters of interest. 

Multiple issues could potentially limit the applicability of k-Seq and related methods. Kinetic 

measurements require properly chosen experimental conditions (e.g., substrate concentrations or 

time points) for a sufficient dynamic range. For a heterogeneous pool where different sequences have 
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different optimal conditions, the conditions chosen will represent a compromise for some sequences. 

For example, in a single time-point (reacted vs. unreacted) experiment determining enzyme kinetics 

over 4096 RNA substrates (6), the choice of reaction time would be optimal for either highly active 

RNA substrates or less active ones, but not all. Previous work determining kinetics for ribozymes by k-
Seq also showed that characterization of less active ribozymes was limited when the kinetic model 

parameters (rate constant 𝑘 and maximum amplitude of reaction 𝐴) could not be independently 

estimated due to model identifiability problems (2). While the number of experimental conditions could 
be increased to address this problem, with HTS this potential solution would quickly become 

prohibitively expensive in time and resources. Therefore, it is important to rigorously understand how 

the choice of conditions would affect the estimation of kinetic parameters and trustworthiness of 

measurements on each sequence. 

Another consideration unique to HTS-based kinetic measurements derives from the inevitability of 

sequencing errors in the data. Sequencing error might misidentify a molecule as a nearby sequence 

variant, and subsequently change the quantification of both the true and incorrect sequences. This 

could be particularly problematic when one sequence is present in high abundance relative to others, 
and thus creates a relatively large number of misidentified reads that confound the quantitation of 

related sequences. It is important to note that this problem cannot be solved by increasing the number 

of replicates or sequencing depth, since the number of erroneous reads rises in proportion to the 

number of reads (a systematic bias rather than random noise). 

A final concern is assessing the accuracy and precision of k-Seq measurements. Using discrete 

count data (number of reads of a particular sequence) as the approximation of a sequence's relative 

abundance in the sample introduces some complexity in assessing measurement accuracy, 

particularly at low counts where large stochastic variation exists. One approach taken in earlier works 
is to limit the library size to thousands of sequences which are each present in high copy number 

(high coverage of sequences) (1, 6). However, this requirement might unnecessarily restrict the 

applicability of k-Seq and related methods. When extending the approach to larger libraries or 

libraries with uneven coverage (e.g., a ‘doped’ variant pool or pool obtained from in vitro selection), 

high error may be associated with measurements of sequences with low counts (3, 4, 9). While one 

may simply exclude sequences with counts lower than a cutoff value, it is not obvious how to choose 

such cutoffs. Instead, it would be desirable to estimate the uncertainty (e.g., confidence intervals) on 
fitted parameter values for each sequence, given the experimental scenario of a low number of 

replicates. This approach would maximize the return of accurate information from a k-Seq experiment. 

In this work, we performed a k-Seq experiment on a newly designed pool of variants based on 

ribozymes previously isolated from in vitro selection (2). These ribozymes react with an activated 

amino acid substrate (biotinyl-Tyr(Me)-oxazolone, or BYO) to produce aminoacyl-RNA, and are 

characterized by pseudo-first order kinetics. Coupled with theoretical and simulation studies, we 

systematically characterize model identifiability, accuracy, and precision of estimation from HTS data. 

We discuss key factors to consider when optimizing experimental design for k-Seq experiments. 
Lastly, we present a Python package of analysis tools for users undertaking k-Seq experiments. 
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Incorporation of these techniques and lessons into HTS-based kinetic measurements should improve 

rigorous quantitative inference from similar experiments. 

MATERIALS AND METHODS 

Pseudo-first order kinetic model 

As previously described in (2), we used a pseudo-first order rate equation to model the fraction of 

ribozymes reacted with substrate BYO: 

 𝑓!" = 𝐴!%1 − 𝑒#$%&!'") (1) 

where 𝑓!" is the reacted fraction for sequence 𝑖 in sample 𝑗 with initial BYO concentration 𝑐". The 

kinetics for sequence 𝑖 is characterized by 𝐴! (the maximum amplitude of reaction) and 𝑘! (the rate 

constant). BYO is present in vast excess compared to ribozymes in the experiments. A constant  

reaction time 𝑡 = 90	min was used, corresponding to a coefficient 𝛼 = 0.479 that accounts for the 

degradation of BYO during the reaction, as measured in (2). The product 𝑘!𝐴! was used as a 

combined parameter for activity measure and represents the initial rate of the reaction. 

Model identifiability for different 𝒌𝒊 and 𝑨𝒊  

Depending on the BYO concentrations, the pseudo-first order kinetic model may be characterized as 

practically unidentifiable (12) where 𝑘! and 𝐴! are sensitive to noise and cannot be separately 

estimated. We evaluated this effect for each sequence using bootstrapping (resampling data with 
replacement; see below for details). We designed two metrics to score the model identifiability from 

bootstrapping results: 𝜎) and 𝛾 = log*+
,#×.$
,#$

, where 𝜎), 𝜎&, 𝜎&) are the standard deviations for 𝐴, 𝑘, 

and 𝑘𝐴, and 𝜇) is the mean value of 𝐴, from bootstrapped samples for each sequence. The score 𝛾 is 

the ratio of standard deviations for the rate constant 𝑘 over the combined parameter 𝑘𝐴, scaled by 

estimated 𝐴. If 𝑘 and 𝐴 are well-estimated independently, the ratio would be close to 1 and 𝛾 would be 

close to 0; if 𝑘 and 𝐴 are not estimated independently such that 𝑘 has larger variance than 𝑘𝐴 in 

estimation, 𝛾 would be larger than 0. While bootstrapping can capture the noise in the experimental 

measurements through resampling, we also separately examined the convergence of fitting through 

20 independent runs with random initial values of 𝑘 and 𝐴 sampled from Uniform(0, 10)	min#*M#* and 

Uniform(0, 1) respectively, using the original data (no resampling). The convergence of fitting was 

evaluated by the range of fitted 𝐴 values (Δ𝐴 =	𝐴max	–	𝐴min) and used as a third candidate metric for 

model identifiability (higher Δ𝐴 ~ less identifiable).  

To study model identifiability with controlled variables, we created a simulated reacted fraction 

dataset containing 10,201	(1014) sequences with the 𝑙𝑜𝑔*+ of true values of 𝑘 and 𝐴 on a 101-by-101 

grid across the region with log*+ 𝑘 ∈ [−1,  3] and log*+ 𝐴 ∈ [−2,  0]. The true reacted fraction (𝑓!"+) for 

sequence 𝑖	in sample 𝑗	with initial BYO concentration 𝑐" was calculated based on the pseudo-first 

order rate equation (Equation 1). To model the effect of measurement noise, we added a Gaussian 

error term errij on the true reacted fraction 𝑓!"+ with the variance equal to 𝜖𝑓!"+, where the 𝜖 is the 

relative error of the reacted fraction: 
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 𝑓!" = 𝑓!"+ + errij = 𝐴!%1 − 𝑒#67&!'") + errij,  	 errij ∼ Normal%0, ϵf89+)  (2) 

where 𝑓!" is the observed reacted fraction. We chose 𝜖 = 0, 0.2, 0.5, 1.0 to evaluate the effect of 

measurement error. Negative values of 𝑓!" were reassigned to be zero. These simulated reacted 

fractions were then used to estimate 𝑘! and 𝐴! for each simulated sequence using least-squares fitting 

as described below. 

To study whether experimental and sequencing effort would be best spent extending the substrate 

concentration range vs. performing additional replicates, we simulated reacted fraction data for three 

different sets of BYO concentrations: i) standard set: 2, 10, 50, and 250 μM with triplicates, for 12 

samples in total, as done previously to analyze a pool after in vitro selection (2); ii) additional 

replicates: 2, 10, 50, and 250 μM with four replicates each, for 16 samples in total; and iii) extended 

substrate range: 2, 10, 50, 250, and 1250 μM with triplicates, for 15 samples in total, as done in the 

variant pool experiment reported here. 

Sequence variant pool for aminoacylation assay 

Four DNA libraries were obtained from Keck Biotechnology Laboratory, with the sequence 5′-
GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-[central variable region, length 

21]-TTCACTGCAGACTTGACGAAGCTG-3′ (nucleotides upstream of the transcription start site are 

underlined). For each library, the central region corresponded to a 21-nucleotide variable sequence, 

based on a ribozyme family wild-type sequence (S-1A.1-a, S-1B.1-a, S-2.1-a, or S-3.1-a previously 

identified in (2), see Table S1 for sequences), with partial randomization at each position (specified to 

be 91% of the wild-type nucleotide and 3% of each base substitution at all 21 positions, i.e., a ‘doped’ 

pool). RNA was transcribed using HiScribe T7 RNA polymerase (New England Biolabs) and purified 

by denaturing polyacrylamide gel electrophoresis (PAGE) as previously described (2). An equimolar 
mixture of these four RNA libraries (the variant pool) was prepared for the k-Seq experiment. 

k-Seq experiment on the mixed pool of variants 

Reactions were carried out in triplicates at 2, 10, 50, 250, and 1250 μM BYO for 90 minutes, following 

the incubation, RNA recovery and reverse-transcription protocols used in (2). Briefly, in each 50 µL k-

Seq reaction, 2 µg total RNA was reacted with BYO. The reactions were stopped by desalting and 

placed on ice. Reacted sequences were isolated by pull-down with Streptavidin MagneSphere 

paramagnetic beads (Promega) and eluted with formamide/EDTA. 10 % of eluted RNA was taken to 

measure the total RNA amount using Qubit and qPCR (see below). A ‘spike-in’ RNA was added as an 

alternative quantification method (see below). RNA was prepared for sequencing by reverse 

transcription and PCR (RT-PCR), with primers complementary to the fixed sequences flanking the 
variable region (GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC, forward; 

CAGCTTCGTCAAGTCTGCAGTGAA, reverse). DNA from each of 15 samples was barcoded and 

pooled together in equal proportions. A reverse-transcribed unreacted sample was added at three 

times the total amount of DNA of one reacted sample to have similar total sequencing depth with each 

set of BYO concentration triplicates. Pooled DNA was sequenced on an Illumina NextSeq 500 with 
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150 bp paired-end run (Biological Nanostructures Laboratory, California NanoSystems Institute at 

UCSB), using a high output reagent kit expected to produce > 400 million reads. 

Quantitation of total amount of RNA per sample 

We used two methods to quantify the absolute amount of RNA in k-Seq samples. Method 1 measured 

the amount of RNA in the samples after elution using Qubit or qPCR. For reactions carried out at 250 

and 1250 µM, 10% of the RNA recovered after elution was quantified with an Invitrogen Qubit 3.0 

fluorometer. If the recovered RNA was below the limit of detection by Qubit, quantitation was done by 
reverse-transcription-qPCR (same PCR primers as in the previous section) using a Bio-Rad C1000 

thermal cycler with CFX96 Real-Time PCR block, SuperScript III RTase (Invitrogen), Phusion® High-

Fidelity Polymerase (New England Biolabs), and SYBR Green (0.5x) (Figure S1). Method 2 used an 

internal standard (spike-in sequence) and data were normalized using sequencing results. A control 

spike-in sequence (5′-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-

AAAAACAAAAACAAAAACAAA-TTCACTGCAGACTTGACGAAGCTG-3′, promoter underlined) was 

added to each sample before reverse transcription. 0.04, 0.2, 1, 2, and 2 ng of spike-in RNA was 
added to samples with 2, 10, 50, 250, 1250 μM BYO concentration respectively. 10 ng of spike-in 

RNA was added to the unreacted pool sample. The total RNA recovered (𝑄") in sample 𝑗 was 

calculated as 

 𝑄" =
:"#;%"
;%"

  ×  𝑞<" (3) 

where 𝑁" is the total number of reads in sample 𝑗, 𝑛<" is the total reads of sequences within 2 edit 

distance (i.e., number of substitutions, insertions, or deletions) of the spike-in sequence in sample 𝑗, 

and 𝑞<" is the quantity of spike-in sequence added to sample 𝑗 after the reaction. 

Processing of k-Seq reads  

FASTQ files of de-multiplexed paired-end Illumina reads were processed using EasyDIVER (13) to 

count the number of reads of each unique sequence in each sample. The forward and reverse reads 
were joined using pandaSeq (14) with the options ‘-a’ to join the paired-end reads before trimming 

and ‘completely_miss_the_point:0’ to enforce absolute matching in the overlapped variable region 

(any pairs with a disagreement between forward and reverse reads were discarded), thus minimizing 

sequencing errors. After joining, forward and reverse primers were trimmed by pandaSeq using 

'CTACGAATTC' (forward) and 'CTGCAGTGAA' (reverse) adapter sequences. Next, multiple lanes for 

the same sample were combined and reads were de-replicated to give unique sequences and counts. 

The generated count files were analyzed using the ‘k-seq’ python package (https://github.com/ichen-

lab-ucsb/k-seq). We collected all detected sequences in unreacted and/or reacted samples and 
discarded those that were not 21 nucleotides long as well as those within an edit distance of 2 from 

the spike-in sequence. The absolute amount (ng) for sequence 𝑖 in sample 𝑗 were quantified using 

total RNA recovered 𝑄" and number of reads: 

 𝑞!" =
;!"

:"#;%"
  × 𝑄" (3) 
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The reacted fractions for sequences in reacted samples were further calculated as the ratio to the 

absolute amount in the unreacted pool (𝑞+"): 

  𝑓!" =
=!"
=&"

 (4) 

To be considered analyzable for fitting, a sequence needed at least one non-zero value among 
reacted samples as well as a non-zero count in the unreacted sample; non-analyzable sequences 

were discarded. 

Experimental coverage of mutants in the variant pool 

Coverage of mutants in the variant RNA pool was analyzed from sequencing results of the unreacted 

pool. Unique sequences were classified into family centers (Hamming distance 𝑑 = 0), single mutants 

(𝑑 = 1), double mutants (𝑑 = 2), triple mutants (𝑑 = 3), and others (𝑑 ≥ 4) based on their Hamming 

distance (number of substitutions) to the nearest family center (S-2.1-a, S-1A.1-a, S-1B.1-a, or S-3.1-

a). The coverage fraction for a certain class of mutants was calculated by dividing the number of 

unique sequences detected by the number of possible sequences in each class (4𝐶(𝐿, 𝑑)3> where 𝐶 

is the combination operator to select 𝑑 elements from a set of size 𝐿, where 𝐿 = 21 is the length of the 

variable region, and the factor 4 is the number of families in the pool).  

Point estimation of model parameters 

Model parameters 𝑘 and 𝐴 for each sequence were estimated using least-squares fitting on reacted 

fractions with different initial BYO concentrations. Least-squares fittings were performed using the 

‘optimize.curve_fit’ function of the ‘SciPy’ package in python with “trust region reflective” (trf) method. 

The initial values of 𝑘 and 𝐴 were sampled from uniform distribution between 0 and 1. The bounds 

[0, 1] were applied on 𝐴 values and [0, +∞) on 𝑘 values. The tolerances for optimization termination 

(ftol, xtol, gtol) were kept as default (10#?). Optimal 𝑘, 𝐴 determined from all sample points for a 

sequence were reported as point estimates. 

Simulated count data based on the experimental pool  

To best resemble the experimental pool and conditions, we simulate the k-Seq pool dataset from 

experimentally measured values. We sampled 𝑀 = 10@ sequences with parameters (𝑝!+, 𝑘!, 𝐴!) 

estimated in the k-Seq experiment on the mixed variant pool, where 𝑝!+ is the relative abundance for 

sequence 𝑖 in the unreacted pool (normalized to 1 after sampling) and 𝑘!, 𝐴! are point estimates from 

fitting. We used the pseudo-first order rate equation (equation 1) to calculate the reacted fraction 𝑓!" 

for each sequence with initial BYO concentrations from the extended substrate range and triplicate 

samples. The relative abundance in the simulated reacted samples was 𝑝!" = 𝑝!+𝑓!"/∑ 𝑝A+B
AC* 𝑓A". We 

then used the multinomial distribution Multinomial%𝑁" , 𝑝*" , 𝑝4" , … , 𝑝B") (where 𝑁" = 40𝑀, yielding a 

similar mean count per sequence to that observed in the experimental pool), to model the process of 

sequencing by sampling 𝑁" reads for each sample (unreacted and reacted). To simulate total RNA 

recovered, we sampled from Normal%µ" , 0.15µ"), where µ" = ∑ 𝑝!+B
!C* 𝑓!" is the total RNA amount 
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reacted in the mixed pool reaction and 0.15 is the relative error. The value of the relative error was 

based on the standard deviation calculated from quantification using the spike-in or by direct RNA 

amount quantification (Figure S2). 

Uncertainty estimation using bootstrapping 

The uncertainty of estimation was assessed using bootstrap sampling of the relative residuals. Let 𝑓!" 

be the reacted fraction for sequence 𝑖 in reacted sample 𝑗, and 𝑓l!" 	be the fitted value from point 

estimation. For each sequence, we calculated the relative residual as 𝑟!" 	=
D!"#DE!"
DE!"

. Each bootstrapping 

process resampled the relative residuals for sequence 𝑖 (with replacement) to the same sample size 

(𝑟̂!*, 𝑟̂!4, ⋯ , 𝑟̂!F), then applied the resampled relative residuals to 𝑓l!" with proper scaling (i.e., 

%1	 +	 𝑟̂!")	𝑓l!") as bootstrapped data points. Least-squares fitting was performed on each set of 

bootstrapped data points for which 𝑘, 𝐴, and 𝑘𝐴 values were recorded. Sample mean, standard 

deviation (s.d.), median, and estimated 95% confidence interval (CI-95, as mean ± 1.96 s.d. or [2.5-

percentile, 97.5-percentile]) on 𝑘, 𝐴 and 𝑘𝐴 were calculated from bootstrapped results for each 

sequence. 

We performed least-squares fitting on data from the mixed pool of variants (reported in this paper), 

data from the previously published selection (2), the simulated reacted fraction dataset (reported in 
this paper), and the simulated pool dataset (reported in this paper). Bootstrapping was performed for 

100 re-samples for each sequence for uncertainty estimation. To compare the performance of 

bootstrapping, we also applied the triplicates method, used previously (2), to the simulated pool 

dataset, with each replicate in a BYO concentration assigned to one of three series. Each of the 

simulated triplicate series was fitted separately to calculate the standard deviation in estimating 𝑘, 𝐴 

and 𝑘𝐴 for each sequence. 

RESULTS 

Model identifiability depends on kinetic coefficients, experimental conditions, and 
measurement error 

We used the simulated reacted fraction dataset to evaluate the effect of kinetic coefficients, 

measurement error, and experimental conditions on model identifiability for pseudo-first order kinetics, 

specifically if k and 𝐴 can be separately estimated. We first evaluated the model identifiability 

qualitatively, for sequences selected from 6 regions over the parameter space of log*+(𝑘) from -1 to 3, 

log*+(𝐴) from -2 to 0, and 𝑘𝐴 > 0.1 min-1M-1 (Figure S3-S9). In each region, sequences fitted in 

repeated fitting or bootstrapping were sampled for visual evaluation of the separability of  𝑘 and 𝐴, 

under various measurement error rates (𝜖). As summarized in Table S2, sequences with higher 𝑘, 𝐴 

values and lower 𝜖 are more likely to be separable. 

To quantify separability for individual sequences, we calculated three metrics: Δ𝐴 or the range of 𝐴 

across repeated fittings (no resampling); 𝜎), or the standard deviation of 𝐴 from bootstrapping 

samples; and 𝛾, a measure of how noisy the separate estimation of 𝑘 and 𝐴 is compared to estimating 
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the combined parameter 𝑘𝐴. Δ𝐴 was able to identify sequences with numerically unstable fitting 

results which have small 𝑘, 𝐴 values, but was not able to identify sequences whose fitting optima 

were sensitive to noise in the data. Almost all the sequences from the 6 selected regions each 
converged to a uniform optimum in repeated fitting, and the convergence was insensitive to the level 

of noise. In contrast, bootstrapping results account for noise in the data, and the optima from fitting 

subsampled data points did not always converge, providing more comprehensive separability 

information than convergence of multiple fittings. By comparing the distribution of each metric for 

sequences in the selected regions, both 𝜎)  and 𝛾 reflected the trend of model identifiability observed 

by examining individual curves: higher metric value corresponded to less separable parameters of a 

sequence (Figure S10). In practice, we found 𝜎) and 𝛾 aligned equally well with human intuitions 

(Figure S11) and with each other (Figure S12) in evaluating model identifiability from variant pool k-

Seq data. 

Using metric 𝛾, we further assessed the effects of experimental conditions and measurement error 

on model identifiability (Figure 2). Model identifiability depends on the true 𝑘 and 𝐴 values, choice of 

substrate concentrations, and the level of measurement error. Controlling the experimental design 

and measurement error, 𝑘 and 𝐴 were more separable for sequences with higher 𝑘	and 𝐴 value. 

Comparing the sequences for a given 𝑘𝐴, model identifiability appears to be more dependent on 𝑘 

than 𝐴, especially for cases with lower measurement error (e.g., relative error ≤ 0.5). To assess the 

effect of experimental conditions, we compared the case of adding one more replicate to each 

reaction (4 vs. 3) to adding a higher concentration of BYO (1250 μM) in triplicate. Despite having 

more samples, adding another replicate did not change the region of sequences with identifiable 

models. However, adding a higher concentration of substrate shifted the boundary of separability on 

𝑘𝐴 values by a factor of ~10, effectively increasing the dynamic range of the k-Seq assay (Figure 2A). 

Additionally, the difficulty of separating 𝑘 and 𝐴 increased when the measurements were noisier 

(Figure 2B). Sequences with separable parameters at low measurement error (e.g., 𝑘𝐴 ∼ 10	min-1M-1 

and relative error < 0.2) became non-separable when the measurement error was large (e.g., relative 

error = 1.0). 

While the ability to estimate 𝑘 and 𝐴 separately is of general interest for kinetic measurements, we 

found they could not be estimated separately for most of sequences within a Hamming distance of 2 

to the family centers in the variant pool (Figure S11). Thus, for the purpose of analyzing accuracy and 

uncertainty for k-Seq over a wide range of activities (analysis below), we focus on the estimation of 

the combined parameter 𝑘𝐴. 

k-Seq of ribozyme mutants: data pre-processing 

We conducted the k-Seq experiment on a multiplexed sample containing mixed pools of variants of 

ribozymes S-1A.1-a, S-1B.1-a, S-2.1-a, and S-3.1-a, using the expanded experimental conditions 

evaluated above (2 to 1250 μM substrate). A known amount of an unrelated RNA sequence (the 

‘spike-in’ sequence) was added to each reaction to aid absolute quantitation. After demultiplexing the 

reads, we obtained 39,151,684 paired-end reads in the unreacted sample and a mean of 13,057,929 
(s.d. = 4,359,249) paired-end reads in reacted samples (Figure S13A). Around 90 - 92% of the reads 
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were successfully joined in each sample (Figure S13C). Dereplication, removal of reads with length 

not equal to 21, and removal of the spike-in sequence reads yielded a count table of the number of 

reads for each unique sequence detected in each sample. On average 87.9% (s.d. = 1.1%) of total 

reads were preserved in the samples. 
In principle, in order to calculate the reacted fraction with at least one non-zero value for fitting, a 

sequence must be detected in the unreacted sample (denominator) and in at least one of the reacted 

samples (numerator). Using this initial criterion, 764,756 valid unique sequences were considered to 

be analyzable for least-squares fitting to a pseudo-first order kinetic model, which comprised 77.9% of 

total reads in the unreacted sample and an average of 87.7% (s.d. = 0.6 %) of total reads among 

reacted samples (Figure S13BC). 

Absolute quantitation of sequence concentration 

While the relative abundance of each sequence in a particular reaction sample can be calculated by 

dividing read counts by the total reads in each sample, calculation of the reacted fraction of each 

sequence requires comparing the absolute quantity of each sequence in each sample to the quantity 
of that sequence in the unreacted sample. This can be done by measuring the absolute RNA quantity 

in each sample. We compared two methods: 1) spiking in a sequence at a known concentration into 

each sample, providing a conversion between the number of reads and absolute concentration in 

each sample; or 2) measurement of the total absolute RNA concentration of each sample by Qubit or 

qPCR. Sample quantitation by both methods agreed well with each other (Figure 3), with both having 

comparable standard deviation among triplicates (Figure S2). Further analysis was done based on the 

second method for quantitation, since the first method is disadvantageous in reducing the HTS reads 

available for other sequences and requiring additional bioinformatic steps. 

Distribution of ribozyme mutants in the variant pool 

For each chosen ribozyme (S-1A.1-a, S-1B.1-a, S-2.1-a, S-3.1-a), a variant pool was chemically 

synthesized such that each position had the wild-type identity with 91% probability, with non-wild-type 
residues being equally probable (i.e., 3% each). In theory, each variant pool should contain ~14% 

wild-type (𝑑 = 0), ~0.45% of each single mutant (𝑑 = 1), and ~0.015% of each double mutant (𝑑 = 2), 

or a ratio of ~0.033 for the abundance of a d-th order mutant to a (d-1)-th order mutant (Text S1, S2). 
The wild-type probability was selected to maximize the relative abundance of double mutants (Figure 

S14). We sequenced the unreacted pool and categorized each sequence read according to ribozyme 

families (1A.1, 1B.1, 2.1, 3.1) and the Hamming distance to the family center. Sequencing results 

confirmed that the mixed variant pools followed the design (Figure 4A). The variant pools contained at 

least ~1,000 reads per sequence for 𝑑 ≤ 2 (up to double mutants, see Figure 4A and Table 1), and a 

mean of 39.7 reads per sequence for 𝑑 = 3. Thus, the unreacted pool showed good coverage of 

analyzable sequences for 𝑑 ≤ 3 (Table 1). 

Sequencing errors of a common sequence can spuriously inflate the apparent counts of a related 

sequence, a particularly acute problem if the pool is uneven and a small number of sequences (e.g., 
wild-type sequences) are very highly represented. Consequently, sequencing errors could potentially 
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confound k-Seq results and lead to incorrect estimation of the kinetic coefficients. This may be a 

particular problem for less abundant or less active sequences that are closely related to more 

abundant and active sequences (e.g., resulting in estimation of parameters being biased toward those 

of the abundant sequence). There are two distinct effects related to this problem. First, the number of 
reads observed for a given sequence is lower than the true number, due to erroneous reads that are 

assigned to other sequences. Second, the number of reads observed for a sequence is inflated by the 

contribution of erroneous reads arising from related sequences. The combination of the two effects 

could change the observed sequence abundances substantially at high sequencing error rate (Figure 

4B). In our variant pool, containing a 9% mutation rate, a sequencing error rate of 1% could cause 

more than 10% of reads for a mutant (𝑑 ≥ 1) to be the result of sequencing error from its neighbors 

(Figure S15). On the other hand, the most abundant sequences in the doped pool, wild-type 

sequences (𝑑 = 0), were least affected by the sequences from its neighbors. This problem can be 

mitigated by decreasing the error rate. If the sequence length is small enough to be covered by 

paired-end sequencing, requiring absolute matching of the overlapped region between the paired-end 

reads of a single sequence during joining should result in compounded fidelity (e.g., from an error 

frequency of 1% to 0.01%). With a sequencing error rate of 0.01%, the fraction of spurious reads from 

neighboring sequences was reduced to < 0.5 % for up to quadruple mutants (𝑑 ≤ 4) without 

significant loss of reads during joining (Figure S13B). 

Accuracy of k-Seq estimation of model parameters and uncertainty: simulated pool count data 
set 

To evaluate the accuracy of k-Seq for estimating kinetic model parameters, sequences with read 

counts in unreacted and reacted pools were simulated using parameters (𝑘 and 𝐴) estimated from the 

variant pool k-Seq experiment as the ‘ground truth’. The data set was constructed to simulate an 

experiment in which ribozymes were reacted with the extended BYO concentration series in triplicate. 

These data were fitted according to the pseudo-first order kinetic model to estimate 𝑘 and 𝐴. We 

expected that sequences having a low number of counts in the data set would show reduced 

estimation accuracy. To characterize this effect, we plotted the ratio of the point estimate of 𝑘𝐴 to the 

true 𝑘𝐴 against the average number of counts across the simulated samples (Figure 5A). We found 

that the relative error in estimation for sequences with high mean counts (> 1,000) was <10% and < 2-

fold for a mean count around 100. However, the error increased substantially as the mean count 

decreased below 100. Thus, sequences with low mean counts (especially <100), either from low 

abundance in the input pool or low abundance in the reacted pool (due to low activity), were 

susceptible to high error in estimation. Meanwhile, very high mean counts (e.g., > 10,000) would not 

substantially benefit the measurement, as other sources of experimental error would likely be greater 

(2, 15). Thus, the results indicate that >1,000 mean count would be favorable for estimation, 

with >100 counts being acceptable if a 2-fold error in estimation is tolerated.  
While the above analysis demonstrated the accuracy of point estimation, a reliable quantification 

of uncertainty is required to assess the precision in estimating from real data when the ground truth is 

unknown. We therefore explored the accuracy of uncertainty quantification using bootstrapping. 
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Bootstrap resampling (n = 100) was used to estimate the 95% confidence intervals (CI-95) in two 

ways: first, using mean and standard deviation of estimated 𝑘𝐴 (mean ± 1.96 s.d., assuming a normal 

distribution), and second, using the 2.5-percentile to 97.5-percentile confidence intervals (normal 

distribution not assumed), for sequences in the simulated pool dataset that were analyzable (602,246 

sequences in total).  A sensible evaluation of CI-95 estimation is the fraction of sequences with true 

𝑘𝐴 value included in the estimated CI-95. If the estimation were correct, the CI-95 would include the 

true value for roughly 95% of sequences. We found bootstrapping gave an accurate CI-95 estimation 

by either method. 96.5% of sequences included the true 𝑘𝐴 within the estimated CI-95 from 2.5-to-

97.5-percentiles, and 96.4% did so when estimating CI-95 from the mean and standard deviation. Of 

note, the fractions of sequences with their true 𝑘𝐴 included in the CI-95 were relatively consistent 

regardless of their mean counts (Figure 5B) or true 𝑘𝐴 values (Figure S16), indicating that these 

methods could be used broadly to quantify uncertainty for sequences across different abundance or 
activity values. For comparison, we also examined uncertainty estimation using the mean and 

standard deviation estimated from triplicates (mean ± 1.96 s.d.). In our simulated pool dataset, 83.5% 

of sequences had the true 𝑘𝐴 value included in the CI-95 estimated from triplicates, indicating that 

uncertainty is underestimated for a substantial fraction of sequences (i.e., over-confident in estimated 

values) (Figure 5B).  

Precision of k-Seq estimation: experimental data set  

The precision of k-Seq measurement for data from the variant pool experiment was evaluated in two 

ways. First, given the reasonable accuracy obtained by the bootstrapping procedure, we calculated 

the fold-range (97.5-percentile divided by 2.5-percentile) estimated from bootstrapping (n = 100). 

While there was a slight tendency for sequences with higher 𝑘𝐴 to have higher estimation precision 

(lower fold-range; Figure S17) in each order of mutants, the precision was more evidently dependent 

on the mean counts value for sequences, both within and across groups (Figure 6A). All wild-type 

sequences and most single and double mutants had CI-95 spanning less than one order of magnitude 

(fold-range < 10). Triple mutants had generally lower precision, consistent with their lower counts. 

Precision as measured above represents variation among replicates done in the same 

experimental batch but does not include variation between different k-Seq experiments. To 
understand the precision of estimates from independently designed and separately executed k-Seq 

experiments, we compared the results from the variant pool k-Seq reported here to a previously 

reported k-Seq assay from a selection pool (2). 2513 unique sequences were found for which the 2.5-

percentile for 𝑘𝐴, estimated from bootstrapping, was greater than the baseline 𝑘𝐴 of 0.124	min-1M-1 

(measured in (2)) in both experimental data sets. Point estimates of 𝑘𝐴 for these sequences from the 

two experiments were compared to each other (Figure 6B). For sequences with sufficient counts (e.g., 

mean counts of at least 1000 in both experiments, corresponding to 39 sequences), the results from 

the two experiments were well correlated (Pearson’s r = 0.896, p-value = 1.20 × 10#*I; Spearman’s ρ 

= 0.864, p-value = 1.38	 × 10#*4), indicating good repeatability of those measurements from different 

experiments. As expected, lowering the count threshold gave a decrease in repeatability: sequences 

with mean counts greater than 100 in both experiments (98 sequences) showed Pearson’s r = 0.710 
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(p-value = 2.73 × 10#*@) and Spearman’s ρ = 0.616 (p-value = 1.53 × 10#**). For analyzable 

sequences with mean counts <100 in either experiment, weak to no correlation was found (Pearson’s 

r = -0.0223, p-value = 2.73 × 10#*; Spearman’s ρ = 0.0517, p-value = 1.10	 × 10#4). 

DISCUSSION 

In this work, we addressed several issues related to the rigor of inferring kinetic model parameters 

from k-Seq analysis, namely model identifiability, sequencing error, and estimation of uncertainty. 

A model is not identifiable when the optimal set of parameters fitting the model cannot be uniquely 

determined due to noise in the data (12, 16). For the ribozymes exhibiting pseudo-first order kinetics 

studied here, the parameters 𝑘 (rate constant) and 𝐴 (maximum reaction amplitude) could not be 

separately estimated when the data collected did not show saturation behavior, i.e., the data fell into 

the initial linear region of the curve. While it would be possible to adjust the substrate concentrations 

to mitigate the problem for individual sequences, it is impossible in k-Seq experiments to apply 
optimal conditions for each sequence due to pool heterogeneity. We previously reported the 

combined parameter 𝑘𝐴 as the measure of chemical activity (2). However, separate estimation of 𝑘 

and 𝐴 is still an important goal. In general, we found that higher values of 𝑘 or 𝐴 and lower noise level 

yield better separability. Of the metrics (σ) and γ) we calculated from bootstrapping results, both 

showed good performance scoring the separability of 𝑘 and 𝐴. These metrics allows one to semi-

quantitatively assess separability, in combination with experimental intuition, to determine which 

results can be reasonably reported as 𝑘 and 𝐴 separately vs. reported as the combined activity 

parameter 𝑘𝐴. 

Using a simulated data set, we studied how an experiment might be designed to increase the 

number of sequences in the separable region. Extending the substrate concentration range (to 1250 

μM) expands the region of separable sequences by pushing the lower bound on 𝑘 or 𝐴 down by 

roughly one order of magnitude. By contrast, adding another replicate to each substrate concentration 

did not substantially change the separability map. Thus, we used the extended substrate range in the 

present k-Seq experiment to provide a wider dynamic range. Even so, a substantial fraction of 

sequences exhibited non-separable 𝑘𝐴, so in practice the choice of parameters to be reported 

depends on the goals of the experiment (e.g., for maximum exploitation of the data, all of 𝑘, 𝐴, and 𝑘𝐴 

could be reported along with σ) or γ). 

Using DNA sequencing counts to quantify the abundance of sequences has two consequences 

that need consideration: sequencing error that mis-identifies a sequence as a related sequence, and 

stochastic noise in measurement for sequences associated with lower counts. The first is a particular 

problem when sequences are close in the sequence space (e.g., mutational analysis on a variant 

pool) and the pool is quite uneven. In this case, sequencing errors can contribute a non-trivial portion 

of reads to less abundant neighbor sequences, effectively mixing the k-Seq measurement for these 
less abundant sequences with those of their neighbors. While model-based sequencing error 

correction could be attempted (17, 18), this problem can also be circumvented by paired-end reads. 

By enforcing absolute matching during the joining process, the error rate of sequencing (e.g., 

approximately 1% per base) can be substantially decreased (e.g., to 0.01% per base) if the entire 
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sequence was read in both directions. While this decreases the number of reads that passed quality 

control, the benefit is important as misidentification from this level of sequencing error was essentially 

negligible for observed abundances (Figure 4A). 

Low counts had a major effect on the accuracy of estimation of kinetic coefficients. In practice, we 
found that the average counts for a sequence across samples (i.e., mean counts) was a better guide 

for estimation accuracy compared to counts in the input pool (Figure 5A, Figure S18). Accuracy was 

good for sequences above a certain threshold of mean counts (e.g., 100 reads per sample) but 

decreased markedly below this. At the same time, the benefit from large counts (e.g., 10,000 reads 

per sample) was marginal and other experimental factors likely contribute greater error. 

Estimating uncertainty is important for k-Seq experiments, but replicates are likely to be limited due 

to the expense associated with HTS. Bootstrapping simulates virtual replicates by resampling data (in 

this case, the relative residuals from fitting) with replacement to its original size. The results can be 
used to estimate population characteristics, such as confidence intervals for estimated model 

parameters. Indeed, bootstrapping results reflected the true 95% uncertainty level more appropriately 

than the standard deviation estimated from triplicate experiments, as the latter tended to 

underestimate the uncertainty. As seen for the accuracy of low count sequences, precision showed a 

steep drop-off when mean counts dropped below 100 (Figure 6A), while large counts also did not 

significantly improve precision. Using bootstrapping instead of replicates also provided resampling 

data to calculate σJ and γ for model identifiability analysis. As modern computational resources 

become cheaper and easier to access, bootstrapping, despite its higher computation cost, becomes 

more affordable. Therefore, while experimental replicates are valuable for controlling for some 

sources of error, we suggest that bootstrapping analysis is an excellent method for properly 

estimating errors and understanding model identifiability. 
To maximize coverage, or the number of sequences with estimated model parameters having 

acceptable accuracy and precision, it is desirable to maximize the number of sequences satisfying a 

minimal count requirement without spending excessive sequencing resources on abundant 

sequences. In the present experiment, we had approximately full coverage for single and double 

mutants in each family, for which the measurement precision may be considered reasonable (fold-

range < 10; mean counts > 10) (Figure 6A). While HTS technology enabled the kinetic measurement 

for large pools with high richness (number of unique sequences), the practical coverage for k-Seq is 
affected by pool evenness, as highly uneven pools may have many sequences with insufficient counts 

for precise estimation. Such pools may result from enrichment after selections or from variant pool 

synthesis of ribozyme variants exploring many mutants of a given wild type. For enriched pools from 

selection experiments, the pool evenness usually decreases during the selection. For doped pools, 

evenness is tuned by the ratio of wild-type nucleotides at each position. In the analysis of BYO-

aminoacylation ribozymes presented here, the designed variant pool was more even than the 

selection pool from which these ribozymes were derived (Figure S19); thus k-Seq analysis of selected 

ribozymes may be improved by designing a new pool rather than directly analyzing the selected pool 
itself. 
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Greater evenness in the samples may be achieved in the near future by emerging technologies for 

synthesizing uniform oligo pools with very high richness (19), as well as by improvements in 

sequencing technology to achieve greater total sequencing depth. With bootstrapping, data with low 

counts can be assessed with estimated uncertainty rather than discarded. On the other hand, 
systematic errors due to sequencing errors cannot be assessed by replicates or bootstrapping 

analysis; instead, effort would be well-spent reducing sequencing errors, and the degree to which 

results might be biased by the resulting error rate should be kept in mind when interpreting the data. 

Attention to these issues is important for fulfilling the promise of kinetic sequencing and related 

techniques for providing unprecedented insights into genotype-phenotype relationships.  
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See Supplementary Information. 
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TABLE AND FIGURES LEGENDS 
 
Table 1: Coverage of local sequence space in the variant pool containing four ribozyme families. N/A 

= not applicable. The calculation of expected counts in the unreacted pool does not include effects of 
sequencing error. 

 

Order of 
mutants (𝑑) 

# of unique 
sequences 

# of 
analyzable 
sequences 

Fraction of 
possible 
unique 
sequences 
that were 
analyzable 

Mean counts 
in the 
unreacted 
pool (std. 
dev.) 

Expected 
counts in the 
unreacted 
pool  

0 4 4 1.000 1,243,500 
(151,356) 1,136,125 

1 252 252 1.000 37,599.9 
(10,607.1) 37,455 

2 7,560 7,560 1.000 1,198.3 
(454.8) 1,234 

3 143,640 143,482 0.999 39.7 (18.9) 40.7 

4 1,939,140 590,115 0.304 2.1 (1.3) 1.34 

≥ 5 N/A 23,343 N/A 1.1 (1.3) N/A 
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Figure 1: General scheme of k-Seq experiment and analysis. A heterogeneous input pool containing 

nucleic acids is reacted at different experimental conditions (e.g., different substrate concentrations or 

different reaction time). Reacted and unreacted molecules are separated and either (or both) of these 

fractions is prepared for high-throughput sequencing. The reads from DNA sequencing are processed 
to obtain a count table for each unique sequence across samples, normalized by a standard, and 

abundances across samples are fit into a kinetic model to estimate parameters (e.g., rate constants). 

react. frac. = reacted fraction. 
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Figure 2. Effect of experimental factors on model identifiability to separately estimate 𝑘 and 𝐴. 

Identifiability was evaluated using metric 𝛾, based on the simulated effects of (A) choice of BYO 

samples (with relative error = 0.2) and (B) relative error (using the BYO series of the extended 

substrate range). Reacted fractions for 10,201 (1014) simulated sequences with true 𝑘, 𝐴 in the 

parameter space shown in the figure were fit to the pseudo-first order model, and 𝛾 values for each 

sequence were calculated from 100 bootstrapped samples. Higher values of 𝛾 indicate that 𝑘 and 𝐴 

are less separable. (A) Choosing a wider range of BYO concentration is more effective in improving 

the region of identifiable data compared to adding more replicates of the same BYO concentrations. 

(B) With higher measurement error, 𝑘 and 𝐴 become increasingly difficult to estimate separately. 
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Figure 3. Comparison of RNA quantitation methods for k-Seq. Total RNA amount quantified for 

samples incubated with different BYO concentrations, determined by spike-in method vs. direct 

quantification using Qubit or qPCR, correlates well (Pearson’s r = 0.999, p-value = 4.78 × 10#4*) and 

with comparable standard deviation (Figure S2). Error bars show standard deviations calculated from 

triplicates for reacted samples. 
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Figure 4. Distribution of mutants in the pool and the effect of sequencing error. (A) Relative 

abundance (counts) of sequences in the unreacted pool (four ribozyme families, total number of reads 

= 32,931,917), categorized by Hamming distance to its nearest family center. Observed abundance of 

different classes was similar to the expected number of counts (black dashed line). (B) The effect of 

different levels of sequencing error (𝜉) to the expected observed abundance as the ratio to the true 

abundance for mutants with different orders (𝑑) in a variant pool with 9% mutation rate. Due to the 

mixed effects of losing counts from being misidentified to a neighboring sequence and gaining counts 

from the misidentification of a neighboring sequence, the observed abundance for a sequence would 

either decrease (𝑑 = 0, 1) or first increase then decrease (𝑑 = 2, 3, 4) as the sequencing error 

increases. See Text S2 for calculation details.  
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Figure 5. Accuracy of parameter estimation by k-Seq. (A) Dependence of accuracy (ratio of estimated 

𝑘𝐴 to true 𝑘𝐴) on mean counts across all simulated samples (including the unreacted pool sample). 

The dashed lines correspond to ratios as labeled. Ratios above 100-fold or below 0.01-fold are shown 

at the borders of the plot. (B) Fraction of sequences for which the CI-95, estimated using 

bootstrapping or using triplicates, includes the true 𝑘𝐴 values, for sequences with different mean 

counts across all samples. Sequences were ranked by mean counts (from highest to lowest) and 

binned in sets of 25,000 sequences. Each data point indicates the fraction of CI-95 that includes the 

true values in each bin. 
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Figure 6: Precision of estimation by k-Seq. (A) Fold-range (97.5-percentile / 2.5-percentile) of 𝑘𝐴 

estimation depended on the mean counts. Increasing mean counts increases precision, as shown by 

the relationship of fold-range with mean counts across different orders of mutants. For 𝑑 ≥ 2, only 

1000 sequences were randomly selected for visualization. (B) Alignment between estimated 𝑘𝐴 from 

two independently conducted experiments (experiment from (2), and the k-Seq experiment reported 

here). Only sequences with 2.5-percentile higher than baseline catalytic coefficient (𝑘𝐴 =

0.124	min-1M-1, reported in (2)) were included. Each point represents a sequence whose color reflects 

the minimum of mean counts (between two experiments).  
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