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Abstract 

Summary 

We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by 

introducing multivariate treatment of thermodynamic variables and leveraging component 

contribution, the state-of-the-art implementation of the group contribution methodology. 

Overall, the method greatly reduces the uncertainty of thermodynamic variables. 

Results 

We present multiTFA, a Python implementation of our framework. We evaluated our 

application using the core E. coli model and achieved a median reduction of 6.8 kJ/mol in 

reaction Gibbs free energy ranges, while three out of 12 reactions in glycolysis changed from 

reversible to irreversible. 

Availability and implementation 

Our framework along with documentation is available on 

https://github.com/biosustain/multitfa. 

 

1 Introduction 

Constraint-based analysis of metabolic network models is used widely to explore metabolic 

phenotypes and guide metabolic designs (O’Brien et al., 2015). Thermodynamic-based flux 

analysis (TFA) imposes thermodynamic constraints on constraint-based models, in order to 

obtain thermodynamically valid metabolic fluxes and metabolite concentration profiles 

(Henry et al., 2007). TFA provides an ideal mechanism for incorporating metabolomics data 

into genome-scale modelling. TFA is also a critical pre-processing step when performing 

sampling based fitting and exploration of large kinetic models (Saa and Nielsen, 2017). 

Thermodynamic constraints rely on the calculation of Gibbs free energies of compounds and 

reactions. The current best method for estimating standard Gibbs free energy of reaction 

(ΔrG
’
i) uses the component contribution method, which combines reactant and group 
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contribution methods while maintaining thermodynamic consistency (Noor et al., 2013; 

Flamholz et al., 2012).  

Accommodating the errors in the estimated ΔrG
’
i presents a challenge. We cannot introduce 

independent slack in each ΔrG
’
i, since this would cause inconsistent thermodynamics with 

non-zero Gibbs energy loops. The original TFA implementation was based solely on the 

group contribution method (Henry et al., 2007). It avoided inconsistency by computing ΔrG
’
i 

within the algorithm from ‘groups’ treated as independent variables allowed to vary within 

their individual 95% confidence intervals, i.e., approximately two standard deviations (SD) 

around the mean (��) (Henry et al., 2007). More recently, the loop issue has been addressed 

by using metabolite formation energies rather than reaction energies in pyTFA (Salvy et al., 

2019). These formation energies can be user defined or calculated as a linear combination of 

respective group Gibbs free energies (from a suitable database). The pyTFA algorithm also 

treats formation energies as independent variables which are allowed to vary in the range 

�� � 2 · �� (Salvy et al., 2019).  

It is not optimal to use the n-box formed from individual 95%-confidence intervals to capture 

the range of feasible values in a multivariate distribution, such as the full set of formation 

energies generated by the component contribution method. Firstly, the n-box does not define 

a 95%-confidence range for the mean vector of formation energies. Secondly, and more 

importantly, it does not capture the correlation in the distribution. This is particularly 

problematic using formation energies for substrates and products linked through a reaction, 

since they will tend to be highly correlated. For illustration consider the multivariate normal 

distribution estimates for ATP and ADP with the following mean vector and covariance (Σ) 

matrix (see details later):  

��	��
��
�2814.24�1945.90� , 
2.32 1.771.77 1.57�� 

Unsurprisingly, the estimates are highly correlated (0.928), which is reflected in the cigar 

shaped 95%-confidence ellipse (Fig. 1A, blue line). While the n-box (red box) almost 

captures the range, it fails to capture the correlation. Since ATP and ADP are commonly 

found on either side of a reaction, the most important value is the difference in free energy. 

The range for the difference is much smaller using the proper confidence region (2.9 kJ/mol) 

compared to using the n-box (10.9 kJ/mol). Using multivariate confidence regions effectively 

ensures that we cancel out common error contributions on either side of a reaction 
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(Haraldsdóttir et al., 2012). We note that the original method from Henry et al. achieved error 

cancellation for common groups but did not address correlation between group estimates. 

multiTFA is an internally consistent TFA framework with multivariate treatment of errors in 

formation energies. Constraining formation energies within the 95% confidence ellipsoid 

rather than the n-box more accurately captures the range of values, while narrowing the likely 

range of free energies of reaction and concentration values. 

 

2 Materials and Methods 

The constraints in TFA are (Salvy et al., 2019) 

 � � � � 0 (1) 

 0 � �� � �� � ����  (2)  

 ��	��  ! � �� " ! (3)  

 ��	� � �	 
��	�  #$%&'()�  ∆�	
����
��
 (4) 

 ( + ,� (5)  

 ��	� + ,� (6)  

where S and v are the stoichiometric matrix and flux vector, respectively. Reactions only 

progress in the forward direction (i.e., reversible reactions are split in two), and only if the 

binary coupling variable, yi, is 1 (2), which can only happen when the Gibbs free energy of 

the reaction (��	�) is negative (3) (K is a large positive constant).  

��	� is calculated from the formation energies (��	�) and concentrations (x) of the 

metabolites (4). For transporters, the Gibbs free energy of transport was calculated as detailed 

in (Jol et al., 2010). Our implementation automatically detects transporters and predicts the 

species that is being transported based on the pKa value and the compartment pH. Users are 

also able to explicitly define the charged form of the transported metabolite and 

transportation mechanism. For the calculation of Gibbs free energies of reaction at non-

standard conditions, users can input the range for each metabolite concentration, ,�(5). 

Where not specified, metabolites can assume pre-defined compartment specific bounds or 

otherwise adopt loose bounds (10-5 – 10-2 M). 

The formation energies are estimated using the component contribution method (Noor et al., 

2013) and adjusted for compartment specific pH and ionic strength (Alberty, 2005; 
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Haraldsdóttir et al., 2012). It is assumed that the estimate follows a multivariate normal 

distribution, ��������, �	.  TFA allows for noise in the ���� estimate by defining a region, 


� (6). A common approach is to use as 
� the n-box defined by the individual 95%-

confidence intervals for each formation Gibbs energy, i.e. �� � 
��.�%��������	�
	 
⁄

. This is 

not a true 95% confidence region for the multivariate estimate: it greatly underestimates the 

range of individual variables and ignores the correlation between related compounds such as 

ADP and ATP. A more appropriate region, 
� , would be the 95%-confidence ellipsoid 

defined by:  

 ��� � �	���
	��� � �	 � ��,��%

  (7)  

Introducing this constraint converts the problem from a Mixed Integer Linear Problem 

(MILP) to a Mixed Integer Quadratic Constraint Problem (MIQCP).  

In general, � does not have full rank and (7) cannot be used directly. ��� � is calculated using 

the component contribution method as 

 ���� � ������� �� � ∆∆� (8)  

Where ���is the metabolite component composition vector, ������ is a vector of component 

and group standard Gibbs energies, and ∆∆� is a (deterministic) adjustment for compartment 

pH, pI and Mg concentration. This estimate is the fit of the component contribution model to 

the thermodynamic reference data and is assumed to follow a multivariate normal 

distribution, ������������ , ���	. We can express this distribution as  

 ���� �� � ��� � �
 (9) 

where ��� � ���  and 
���0, �	. Allowing for ���  not having full rank, we use LDL 

decomposition to achieve pivoted Cholesky decomposition finding ����� � �√!. ����� has 

" � #�"$����	 non-zero columns and we obtain C by removing the remaining columns. 

Finally, we define a 95%-confidence circle for the n-dimensional standard normal 

distribution 

 
�
 � ��,��%

  (10) 

Using (10), we still need to solve an MIQCP, but this is numerically more robust.  

We compared multiTFA with the n-box approach using an E. coli core model (e_coli_core) 

(Orth et al., 2010). We determined the Gibbs free energy ranges using either (a) the 

“conventional” �� � 1.96 · *! n-box or (b) a multivariate treatment of the errors in the 
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formation energy estimate used in multiTFA. Despite the n-box covering far less than the 

95%-confidence range for individual formation energies, the estimated ranges for the Gibbs 

free energy of reaction were broader than using the confidence ellipsoid. The median 

reduction in Gibbs free energy ranges was 6.8 kJ/mol (Figure 1b; Supplementary Data), 

highlighting the significant potential for error cancellation between compounds captured in 

the correlation matrix. The reduction in Gibbs free energy ranges is reflected in a reduction in 

the reaction flux ranges (Supplementary Data). 

2.1 Usage & Implementation 

The Python package comes with example scripts to demonstrate the usage of different 

functionalities.  The software takes a typical COBRA model as input and generates a MILP 

Optlang object (Jensen et al., 2017) for the n-box approach that can be directly solved with 

COBRApy (Ebrahim et al., 2013). If the user has Gurobi or CPLEX solver installed, the 

software will generate solver specific MIQCP objects to solve the multiTFA problem. For 

users without Gurobi or CPLEX, an alternative implementation of multiTFA is provided that 

uses random sampling of the surface of the confidence ellipsoid and a MILP solver to 

determine the maximum range. The exit criterion of the sampler can be chosen as either (1) 

the number of samples since last improvement or (2) a fixed number of samples followed by 

use of a generalized extreme value distribution to infer the maximum value. 

The implementation is available at https://github.com/biosustain/multitfa. The framework is 

currently compatible with models that use different identifiers (SEED, KEGG, BIGG among 

others) for matching metabolite information against the thermodynamic database. We use the 

eQuilibrator API to retrieve data matrices for calculating the formation energies and 

covariance matrix (Noor et al., 2013).  

3 Conclusion 

Using a multivariate confidence ellipsoid to describe the feasible range in the Gibbs free 

energy of formation estimate, multiTFA is able to account for a more realistic (and broader) 

range in individual estimates of formation energy, while simultaneously using correlation to 

reduce the ranges for the derived Gibbs free energies of reactions. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.407387doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407387
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

Alberty,R.A. (2005) Thermodynamics of Biochemical Reactions at Specified pH. 

Thermodyn. Biochem. React., 57–88. 

Ebrahim,A. et al. (2013) COBRApy: Constraints-Based Reconstruction and Analysis for 

Python. BMC Syst. Biol., 7, 74. 

Flamholz,A. et al. (2012) eQuilibrator—the biochemical thermodynamics calculator. Nucleic 

Acids Res., 40, D770–D775. 

Haraldsdóttir,H.S. et al. (2012) Quantitative assignment of reaction directionality in a 

multicompartmental human metabolic reconstruction. Biophys. J., 102, 1703–1711. 

Henry,C.S. et al. (2007) Thermodynamics-Based Metabolic Flux Analysis. Biophys. J., 92, 

1792–1805. 

Jensen,K. et al. (2017) Optlang: An algebraic modeling language for mathematical 

optimization. J. Open Source Softw., 2, 139. 

Jol,S.J. et al. (2010) Thermodynamic calculations for biochemical transport and reaction 

processes in metabolic networks. Biophys. J., 99, 3139–3144. 

Noor,E. et al. (2013) Consistent Estimation of Gibbs Energy Using Component 

Contributions. PLoS Comput. Biol., 9. 

O’Brien,E.J. et al. (2015) Using genome-scale models to predict biological capabilities. Cell, 

161, 971–987. 

Orth,J.D. et al. (2010) Reconstruction and Use of Microbial Metabolic Networks: the Core 

Escherichia coli Metabolic Model as an Educational Guide. EcoSal Plus, 4. 

Saa,P.A. and Nielsen,L.K. (2017) Formulation, construction and analysis of kinetic models of 

metabolism: A review of modelling frameworks. Biotechnol. Adv., 0–1. 

Salvy,P. et al. (2019) pyTFA and matTFA: a Python package and a Matlab toolbox for 

Thermodynamics-based Flux Analysis. Bioinformatics, 35, 167–169. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.407387doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure Legends 

Figure 1. A) Comparing the 95% confidence ellipse (blue) to the n-box (orange) for the 

eQuilibrator estimates of ATP and ADP formation energies. B) Comparison of the Gibbs free 

energy of reaction ranges across the glycolytic pathway estimated using the n-box 

(univariate) and the multiTFA (multivariate) methods. Three reactions change from 

reversible to irreversible when using a multivariate treatment (ENO, GAPD, and PGM). 
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