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Abstract
Summary

We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by
introducing multivariate treatment of thermodynamic variables and leveraging component
contribution, the state-of-the-art implementation of the group contribution methodology.

Overall, the method greatly reduces the uncertainty of thermodynamic variables.
Results

We present multiTFA, a Python implementation of our framework. We evaluated our
application using the core E. coli model and achieved a median reduction of 6.8 kJ/mol in
reaction Gibbs free energy ranges, while three out of 12 reactionsin glycolysis changed from

reversibleto irreversible.
Availability and implementation

Our framework along with documentation is available on
https://github.com/bi osustain/multitfa.

1 Introduction

Constraint-based analysis of metabolic network models is used widely to explore metabolic
phenotypes and guide metabolic designs (O’ Brien et al., 2015). Thermodynamic-based flux
analysis (TFA) imposes thermodynamic constraints on constraint-based models, in order to
obtain thermodynamically valid metabolic fluxes and metabolite concentration profiles
(Henry et al., 2007). TFA provides an ideal mechanism for incorporating metabolomics data
into genome-scale modelling. TFA is aso a critical pre-processing step when performing
sampling based fitting and exploration of large kinetic models (Saa and Nielsen, 2017).

Thermodynamic constraints rely on the calculation of Gibbs free energies of compounds and
reactions. The current best method for estimating standard Gibbs free energy of reaction

(AG)) uses the component contribution method, which combines reactant and group
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contribution methods while maintaining thermodynamic consistency (Noor et al., 2013;
Flamholz et al ., 2012).

Accommodating the errors in the estimated A,G; presents a challenge. We cannot introduce
independent slack in each AG}, since this would cause inconsistent thermodynamics with
non-zero Gibbs energy loops. The original TFA implementation was based solely on the
group contribution method (Henry et al., 2007). It avoided inconsistency by computing A.G ;
within the algorithm from ‘groups’ treated as independent variables allowed to vary within
their individual 95% confidence intervals, i.e., approximately two standard deviations (SD)
around the mean (i) (Henry et al., 2007). More recently, the loop issue has been addressed
by using metabolite formation energies rather than reaction energies in pyTFA (Salvy et al.,
2019). These formation energies can be user defined or calculated as a linear combination of
respective group Gibbs free energies (from a suitable database). The pyTFA agorithm also
treats formation energies as independent variables which are allowed to vary in the range
pi+2-SD (Savy et al., 2019).

It is not optimal to use the n-box formed from individual 95%-confidence intervals to capture
the range of feasible values in a multivariate distribution, such as the full set of formation
energies generated by the component contribution method. Firstly, the n-box does not define
a 95%-confidence range for the mean vector of formation energies. Secondly, and more
importantly, it does not capture the correlation in the distribution. This is particularly
problematic using formation energies for substrates and products linked through a reaction,
since they will tend to be highly correlated. For illustration consider the multivariate normal
distribution estimates for ATP and ADP with the following mean vector and covariance (%)

matrix (see details later):

yoen (30343077 1))

Unsurprisingly, the estimates are highly correlated (0.928), which is reflected in the cigar
shaped 95%-confidence ellipse (Fig. 1A, blue line). While the n-box (red box) amost
captures the range, it fails to capture the correlation. Since ATP and ADP are commonly
found on either side of a reaction, the most important value is the difference in free energy.
The range for the difference is much smaller using the proper confidence region (2.9 kJ/moal)
compared to using the n-box (10.9 kJ/mol). Using multivariate confidence regions effectively

ensures that we cancel out common error contributions on either side of a reaction
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(Haraldsdattir et al., 2012). We note that the original method from Henry et al. achieved error

cancellation for common groups but did not address correlation between group estimates.

multiTFA is an internally consistent TFA framework with multivariate treatment of errorsin
formation energies. Constraining formation energies within the 95% confidence ellipsoid
rather than the n-box more accurately captures the range of values, while narrowing the likely

range of free energies of reaction and concentration values.

2 Materials and Methods

The constraintsin TFA are (Salvy et al., 2019)

Sxv=0 «y

0<v; <Y * Unax 2

A,G +K+y, <K (3)

4,6" = ST (4;G" + RTInG) ) + A Goyansport “)
x €, ©)

A:G' € Qg (6)

where S and v are the stoichiometric matrix and flux vector, respectively. Reactions only
progress in the forward direction (i.e., reversible reactions are split in two), and only if the
binary coupling variable, y;, is 1 (2), which can only happen when the Gibbs free energy of

thereaction (4,.G") is negative (3) (K is alarge positive constant).

4,G" is calculated from the formation energies (4,G") and concentrations (x) of the
metabolites (4). For transporters, the Gibbs free energy of transport was calculated as detailed
in (Jol et al., 2010). Our implementation automatically detects transporters and predicts the
Species that is being transported based on the pKa value and the compartment pH. Users are
also able to explicitly define the charged form of the transported metabolite and
transportation mechanism. For the calculation of Gibbs free energies of reaction at non-
standard conditions, users can input the range for each metabolite concentration, 2,.(5).
Where not specified, metabolites can assume pre-defined compartment specific bounds or
otherwise adopt loose bounds (10° — 10 M).

The formation energies are estimated using the component contribution method (Noor et al.,
2013) and adjusted for compartment specific pH and ionic strength (Alberty, 2005;
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Haraldsdéttir et al., 2012). It is assumed that the estimate follows a multivariate normal
distribution, 4,G"eN(u, 2). TFA alows for noiseinthe 4,G" estimate by defining a region,
N, (6). A common approach is to use as 2, the n-box defined by the individual 95%-

confidence intervals for each formation Gibbs energy, i.e. ji + u97_5%(diag(f))1/ ? Thisis
not a true 95% confidence region for the multivariate estimate: it greatly underestimates the
range of individual variables and ignores the correlation between related compounds such as
ADP and ATP. A more appropriate region, 2., would be the 95%-confidence ellipsoid
defined by:

(E—wT 2 (@ —p) < xlosw (7)
Introducing this constraint converts the problem from a Mixed Integer Linear Problem
(MILP) to aMixed Integer Quadratic Constraint Problem (MIQCP).

In general, 2 does not have full rank and (7) cannot be used directly. 4,6 is calculated using

the component contribution method as

ApG' = VoA G0 + AAG (8)
Where Vis the metabolite component composition vector, 4..G'° is a vector of component
and group standard Gibbs energies, and AAG is a (deterministic) adjustment for compartment
pH, pl and Mg concentration. This estimate is the fit of the component contribution model to
the thermodynamic reference data and is assumed to follow a multivariate normal

distribution, 4,.G'°€eN (i, 2..). We can express this distribution as

A G0 = pee + Cu 9)
where CC' = X, and ueN(0,I). Allowing for X.. not having full rank, we use LDL
decomposition to achieve pivoted Cholesky decomposition finding Cr,,;; = LV/D. Cryy has
n = rank(Z,.) non-zero columns and we obtain C by removing the remaining columns.
Finaly, we define a 95%-confidence circle for the n-dimensional standard normal
distribution

uTu < X7 059 (10)
Using (10), we still need to solve an MIQCP, but this is numerically more robust.
We compared multiTFA with the n-box approach using an E. coli core model (e_coli_core)

(Orth et al., 2010). We determined the Gibbs free energy ranges using either (a) the

“conventional” i+ 1.96 - SD n-box or (b) a multivariate treatment of the errors in the
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formation energy estimate used in multiTFA. Despite the n-box covering far less than the
95%-confidence range for individual formation energies, the estimated ranges for the Gibbs
free energy of reaction were broader than using the confidence ellipsoid. The median
reduction in Gibbs free energy ranges was 6.8 kJmol (Figure 1b; Supplementary Data),
highlighting the significant potential for error cancellation between compounds captured in
the correlation matrix. The reduction in Gibbs free energy ranges is reflected in areduction in

the reaction flux ranges (Supplementary Data).
2.1 Usage & I mplementation

The Python package comes with example scripts to demonstrate the usage of different
functionalities. The software takes a typical COBRA model as input and generates a MILP
Optlang object (Jensen et al., 2017) for the n-box approach that can be directly solved with
COBRApy (Ebrahim et al., 2013). If the user has Gurobi or CPLEX solver installed, the
software will generate solver specific MIQCP objects to solve the multiTFA problem. For
users without Gurobi or CPLEX, an aternative implementation of multiTFA is provided that
uses random sampling of the surface of the confidence ellipsoid and a MILP solver to
determine the maximum range. The exit criterion of the sampler can be chosen as either (1)
the number of samples since last improvement or (2) a fixed number of samples followed by

use of a generalized extreme value distribution to infer the maximum value.

The implementation is available at https://github.com/biosustain/multitfa. The framework is
currently compatible with models that use different identifiers (SEED, KEGG, BIGG among
others) for matching metabolite information against the thermodynamic database. We use the
eQuilibrator API to retrieve data matrices for calculating the formation energies and

covariance matrix (Noor et al., 2013).
3 Conclusion

Using a multivariate confidence ellipsoid to describe the feasible range in the Gibbs free
energy of formation estimate, multiTFA is able to account for a more realistic (and broader)
range in individual estimates of formation energy, while simultaneously using correlation to

reduce the ranges for the derived Gibbs free energies of reactions.
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Figure Legends

Figure 1. A) Comparing the 95% confidence ellipse (blue) to the n-box (orange) for the
eQuilibrator estimates of ATP and ADP formation energies. B) Comparison of the Gibbs free
energy of reaction ranges across the glycolytic pathway estimated using the n-box
(univariate) and the multiTFA (multivariate) methods. Three reactions change from

reversible to irreversible when using a multivariate treatment (ENO, GAPD, and PGM).
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Figure 1. A) Comparing the 95% confidence ellipse (blue) to the n-box (orange)
for the eQuilibrator estimates of ATP and ADP formation energies. B) Comparison
of the Gibbs free energy of reaction ranges across the glycolytic pathway
estimated using the n-box (univariate) and the multiTFA (multivariate) methods.
Three reactions change from reversible to irreversible when using a multivariate
treatment (ENO, GAPD, and PGM).
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