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1 ABSTRACT

A key challenge in studying organisms and diseases is to detect rare molecular programs and rare cell
populations (RCPs) that drive development, differentiation, and transformation. Molecular features such
as genes and proteins defining RCPs are often unknown and difficult to detect from unenriched single-cell

data, using conventional dimensionality reduction and clustering-based approaches.

Here, we propose a novel unsupervised approach, named SCMER, which performs UMAP style

dimensionality reduction via selecting a compact set of molecular features with definitive meanings.

We applied SCMER in the context of hematopoiesis, lymphogenesis, tumorigenesis, and drug resistance
and response. We found that SCMER can identify non-redundant features that sensitively delineate both

common cell lineages and rare cellular states ignored by current approaches.

SCMER can be widely used for discovering novel molecular featuresin a high dimensional dataset,
designing targeted, cost-effective assays for clinical applications, and facilitating multi-modality

integration.

2 INTRODUCTION

A tissuein aliving organism often consists of millions to billions of cells. While the terminally
differentiated cells with relatively distinct molecular profiles can be readily distinguished via single-cell
RNA sequencing (scRNA-seq) at current sampling depth, many cells involved in devel opment,
differentiation, and transformation remain difficult to detect™?. For example, afraction of tumor cellsin
renal cell carcinomas can go through sarcomatoid transformation driven by epithelial to mesenchymal
transformation (EMT)>*; tumor cells in pancreatic ductal adenocarcinomas can transiently express

stemness features (e.g., SOX2) at itsinvasion fronts’™. These cells can be relatively rare in the sampled


https://doi.org/10.1101/2020.12.01.407262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.407262; this version posted December 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

populations, transiently expressing certain molecular features and thereby may not form distinct clusters

in high dimensional feature spaces™’.

To detect characteristic features (e.g., genes, proteins) in asingle-cell dataset, studies®'*™**

often employ
unsupervised clustering followed by one-cluster-vs-all differential expression (DE) analysis. These
approaches can detect magjor cell types governed by lineage features that dominate data variance, but are
insensitive to rare but unique features that have relatively small variance and manifest aslevel gradients
within cell-type clusters (a.k.a. cell states)™. They are also clumsy at detecting features affecting multiple
clusters, e.g., transcription factors (TFs) regulating multiple cell types™, as that involves comparison of an
exponentially growing number of cluster combinations. To detect features associated with continuous
developmental processes, many studies perform trajectory inference™ followed by regression analysis to
identify correlated features (e.g., Monocle'’). The selection of features depends on trajectories, which
could be challenging to infer accurately for complex processes. A detailed comparison was performed by

11
I

RankCorr*? across various methods such as statistical tests, logistic regression, MAST, scVI** | and

COMET®.

Most existing approaches regard features as independent variables without exploring their interactions'®.
As aresult, they tend to identify redundant features (e.g. CD3D, CD3E and CD3G for T cells) that are

highly correlated with the inferred clusters or trajectories, but ignore novel, uncorrelated features. Some
recent work such as scHOT'® and SCMarker™ started to exploit correlational patterns among co- or anti-
expressing genes. However, they do not model complex interactions of more than two genes. SCMarker

cannot characterize continuous cell states, and scHOT relies on the accuracy of trgectory inference.

To enhance sensitivity in detecting rare features and RCPs, many studies’®*! had to slice and dice data
spacesin empirical, multifaceted ways® or perform iterative gating’ and re-clustering at variable

resolutions, which may lead to biased, irreproducible results.
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Increasing the number and variety of molecular features™** and improving the fidelity of the
measurements can help discover RCPs. However, they unavoidably increase the already high cost of
experiments. To make assays cost-effective towards clinical applications, it isimportant to select a
compact actionable set of molecular features that unbiasedly represent molecular diversity in high
dimensional data. This ability isimportant for designing and manufacturing customized assays, e.g., 10x
targeted gene expression, MissionBio Tapestri>> and NanoString GeoMx*®, which perform multi-omics

measurements of hundreds of selected DNA, RNA, and proteins.

To address these fundamental challenges, we developed SCMER (Single-Cell Manifold Preserving
Feature Selection), which selects an optimal set of features such as genes or proteins from a single-cell
dataset. Similar to t-Distributed Stochastic Neighbor Embedding (t-SNE)*” and Manifold Approximation
and Projection (UMAP)*, we hypothesize that a manifold defined by pairwise cell similarity scores
sufficiently represents the complexity of the data, encoding both global relationship between cell groups
and local relationship within cell groups™. By preserving such a manifold while performing feature
selection, the most salient features that unbiasedly represent the original molecular diversity will be

selected.

SCMER does not require clusters or trgjectories, and thereby circumvents the associated biases. It is
sensitive to detect diverse features that delineate common and rare cell types, continuously changing cell
states, and multicellular programs' shared by multiple cell types. It reduces high dimensionality into a
compact set of actionable features with definitive biological meanings. This distinguishes SCMER from
PCA, t-SNE, UMAP, etc., which result in axes (meta-genes) with complex meanings. SCMER is
efficiently implemented in Python using PyTorch®®,and supports multicore and GPU acceleration. A one-
liner interface is provided for easy use. The open-source implementation is available at

https://github.com/K Chen-lab/SCMER.
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3 RESULTS

3.1 THE SCMER APPROACH AND ITS UNIQUE STRENGTH

In anutshell, SCMER (Fig. 1a, M ethods) examines a data matrix X of n cellsand D features and
calculates a pairwise cell similarity matrix P (as defined in UMAP?®) representing the manifold in X. It
defines aweight vector w, which transforms X to Y = Xw. It then calculates another pairwise cell
similarity matrix Q from Y and quantifies the level of agreement between P and Q using Kullback-Leibler
(KL) divergence as defined in t-SNE*’. Finally, it uses elastic net to find a sparse and robust solution of w
that minimizes the KL-divergence with Orthant-Wise Limited Memory Quasi-Newton (OWL-QN)
algorithm®. Features with nonzero weights in w are deemed chosen. Q can also be cal culated from a
different source (e.g., adifferent technology) instead of X, which enables a* supervised” and multi-omics

mode of SCMER.

A manifold encodes both clusters and continuums of cells. While clusters usually reflect distinct cell
types, continuums reflect similar cell types and trgjectory of transitioning/differentiating cell states™.
SCMER selects optimal featuresthat preserve the manifold and retain inter- and intra-cluster diversity
(Fig. 1b). It can be applied to discover rich molecular pathways, identify prognostic genes, and design

customized DNA/RNA/antibody panels of restricted sizes towards clinical applications.

To elucidate the novel cell populations and features that SCMER uniquely identifies, we generated a
synthetic dataset containing a branching trajectory of 4,000 single cells from five mgjor cell types, namely
progenitor (Pro), precursor of A and B (PreA and PreB), and mature A and B (A and B) (Fig. 1c). Four
kinds of features are simulated, those (1) specific to one cell type/cluster, (1) shared by more than one cell
type™, (111) gradually changing over cell states, and (1V) transiently activated (also known as
checkpoints™). We created atotal of 180 features including 20 cell-type specific features for each cell

type (100 in total), 10 gradually changing features for each branch (20 in total), 5 shared features for
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precursors and mature cells (10 in total), 5 transiently expressing features, and 45 random noise features.
Each cell was given a ground-truth pseudo-time in the trgjectory, which parameterizes the expected level
of afeature. In addition to major cell type labeling, the cells transitioning from precursor to mature are
identified as“RCP-A” and “RCP-B”, which overexpress type-1V features. Dispersion was added based on
anegative-binomia distribution. In as few as 45 selected features, SCMER recalled al the four types of
features. In contrast, the top 45 features determined by a DE analysis are all from type | -- none belonged
totypell, I, or IV, while a pseudo-time-based correlation analysis missed type-1V features. As aresult,
SCMER significantly increased the precision and recall of detecting RCPs, while being comparable to
other methods on major cell types (using a k-NN classifier for one cell type at atime; Table 1 and

Supplementary Note 1).

Table 1. Precision/recall of detecting RCPs on the synthetic dataset

RCPs Major cell types
Cdl types RCP-A RCP-B Pro PreA PreB A B
Abundance 2.55% 2.68% 21.23% 22.43% 19.83% 16.73% 15.30%
SCMER 0.82/0.68 | 0.87/0.67 | 097/096 | 0.95/0.96| 094/094 | 0.95/0.96 | 0.94/0.93
DEG 0.61/0.34 | 0.73/040| 094/095| 0.94/0.93| 095/094 | 0.94/0.95| 0.95/0.96
Correlation | 0.48/0.36 | 0.43/0.28 | 0.91/0.96 | 0.76/0.67 | 0.76/0.67 | 0.88/0.95 | 0.88/0.92

To comprehensively assess SCMER, we ran it on eight datasets’

4-41

(including Supplementary Results)

that involve avariety of biological and technological challenges, such as unresolved borderline cells that

blur clustering, continuously changing cell states, multicellular and transient cellular programs. For

comparison, we used supervised DE analysis and widely-used unsupervised feature selection methods,

including highly expressed genes (HXG), highly variable genes (HVG), SCMarker'®, Monocle"’, and

RankCorr*2. SCMER robustly demonstrated the best performance on all the experiments.
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3.2 SCMER CHARACTERIZATION OF CELL TYPE AND INTRATUMORAL

HETEROGENEITY IN CANCER

Single-cell datasets derived from cancer samples are often highly complex, containing heterogeneous cell
types and states in not only tumor cells but also stromal and immune cells. Supervised analysis of cancer
datais challenging as cancer cells are highly plastic* and can express novel unknown features, which can
heavily confound clustering and trgjectory-based analysis. We applied SCMER on asingle-cell RNA-seq
melanoma dataset containing 4,645 cells from 19 human melanoma samples™. Most cells were annotated
asmalignant cells, B cells, T cells, macrophages, natural killer (NK) cells, endothelial cells, or cancer
associated fibroblasts (CAFs) by the authors based on clustering and DE analysis. However, there were
unresolved borderline cells presenting between labeled clusters, which resemble more than one cell types
and could be either doublets or RCPs (Fig. 2a). By selecting only 75 genes (T able 2), SCMER clearly
preserved the manifold: the resulting UMAP embedding is very similar to the original and the relations
among most cell types including the unresolved cells are largely preserved (Fig. 2b and Supplementary

Figure2).

To understand the biological meanings of the selected genes, we compared them with the 11 gene sets
described in the original publication that represent important cell types and pathways in the study. The

selected genes compactly covered all the 11 gene sets (Table 2).

Table 2. Melanoma features selected by SCMER

Category Gene set All Highly SCMER | Genes
variable
Resistance / AXL 100 52 2 HAPLN3, CD52
intratumor MITF 100 28 3 TOB1, TYR, PMEL
heterogeneity
Cell types Melanoma 47 19 5 SERPINA3, PRAME, MIA, TYR, PMEL
B cells 31 27 2 IRF8, MHAAL
T cells 38 38 7 TCF7, TIGIT, CD8A, PRDM1, SPOCK2,
NKG7, TOX
Macrophages 92 73 1 TYROBP
Endothelial 95 45 2 CDH5, HAPLN3
Cancer associated 88 46 3 COL1A2, COL1A1, MFAP4
fibroblasts (CAF)
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Pathways Exhaustion (consistent 28 17 3 CD27, TIGIT, CXCL13
across samples)
Exhaustion (variable 272 159 7 HLA-DPA1, HAVCR2, CTLA4, SRGN, IRFS8,
across samples) PDCD1, TOX
Cell cycle 93 54 3 TYMS AURKB, MCM5

None of above | C10orf54, A2M, RGSI0, MIR4461, IFITM1, SYTL3, GZMB, DEDD, RGSL, MAGEC2, PTPRC, NME2,
CCL4, CCR7, HLA-DQA1L, GNLY, OAS2, TXNIP, SELPLG, PAEP, CD69, ELK2AP, GZMH, ANXAL1,
MTRNR2L2, B2M, PTPRCAP, HLA-DQBL, LSP1, Clorf56, TCL1A, GPR183, CXCR4, RPSAY1, APOD,
KIT, GZMA, VIM, LTB, RPS11, TNFAIP3, CD55, UXS1

Interestingly, genes belonging to the known drug resistance AXL program and MITF program were also
selected by SCMER. These genes do not preferentially expressin a specific cluster (e.g. PMEL, TOBL,

etc. in Fig. 2d and Supplementary Figure 1a,b).

SCMER also selected novel genes such as TNFAIP3, VIM, COL1A1, and COL1A2, which areinvolved in
EMT. The original publication missed TNFAIP3 and VIM and did not mention EMT. COL1A1 and
COL1A2 were only reported as CAF specific markers. Also found were intra-cluster features for different
kinds of immune cells (Fig. 2e,f and Supplementary Figure 1c) or shared by all cell types
(Supplementary Figure 1d), which correspond to multicellular programs. PDCD1 and TCF7, which are
known to mark different subsets of T cells (exhausted versus memory) were detected, showing anti-
corrdlated (Pearson’s r = —0.24) expressions within the same cluster (Supplementary Figure 1c).
Pathway enrichment analysis™ on the novel genes suggest that these genes are involved in innate immune
response (A2M, CD55, IFITM1, VIM, OA, etc.), adaptive immune response (CD55, CCR7, GPR183,
TNFAIP3, PTPRC, etc.), inflammatory abnormality of the skin (KIT, CXCR4, TCL1A, B2M, etc.), and
other immune pathways (Supplementary Tables 1 and 2). These genes thus may be useful in further
stratifying malignant and immune cell states (e.g., activation, exhaustion, etc.). Some genes such as
PMEL, PDCD1, and OAS2 appeared associated with survival outcome in TCGA SKCM patients™ (Fig.

1g,h,i).
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To comprehensively assess the performance of SCMER, we varied the number of selected features and
recorded the number of recalled gene sets. SCMER consistently recalled more gene sets than other

widely-used methods for any given number of features, demonstrating the best performance (Fig. 2c).

We also applied SCMER to alarge-scale pan-cancer single-cell transcriptomic study consisting of 198
cell lines and patient samples from 22 cancer types®™. SCMER showed the high sensitivity to characterize
intra-cluster heterogeneity, identifying recurrent heterogeneous programs shared by a mgjority of cell

lines and by patient tumor samples (Supplementary Figure 3 and Supplementary Result 1).

3.3 SCMER DEFINING CELL SUBTYPES AND STATES IN ILEUM LAMINA PROPRIA

IMMUNOCYTES

We further examined SCMER in a complex setting involving many cell subtypes and subtle intra-cluster
structure and shared pathways. The dataset contains 39,563 gastrointestinal immune cells collected from
inflamed tissues from ten Crohn’ s disease patients™. As arisk factor to cancer, chronic inflammation
involves extensive interaction among various immune cell types such as helper T cells (Ty) and innate
lymphoid cells (ILCs), which are regulated by both shared and cell-type specific TFs and cytokines and
are difficult to delineate in high dimensional embeddings. The dataset appeared to include 27 cell types
and subtypeg/statesin the original report. Four major cell types, T cells, B cells, phagocytes, and stromal
cells each appeared as a cloud in the original embedding (Fig. 3a) but can be further dissected into

subtypes. For example, T cells were dissected into eight subtypes/states through further clustering.

Circumventing clustering, SCMER selected 250 features from 3,573 highly variable genes
(Supplementary Tables 3 and 4) with the manifold well preserved. The separability among cell types
were comparable with the original embedding, and the manifold of subtypes (RCPs) in each major cell

type were well preserved (Fig. 3b).
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SCMER identified features delineating both clusters and sub-clusters. For example, the well-known
lineage features such as CD79A (B cells) and CD7 (T cells) and immune subtype markers such as FCER2
(naive B cells) and ANKRD28 (TRM) wereidentified (Fig. 3c,d and Supplementary Figure 4a). Less
reported features such as SEPP1 for M2 macrophages were also among the list (Supplementary Figure
4b). The selected features al so included genes that encodes lysozyme (LYZ), complements (C1QA, C1QB,
and C1QQC), granulysin (GLNY), and granzymes (GZMA, GZMB, GZMK, and GZMH) (Fig. 3c and

Supplementary Figure 4c).

NK and ILC1 cells were mixed together in one cluster and can hardly be further dissected based on
unsupervised clustering and DE analysis. However, based on the genes selected by SCMER such as
GNLY CCLA4, etc., which displayed dichotomizing levels within the cluster, we were able to further

separate NK and ILC1 cells and estimate their abundances (Supplementary Figure5).

SCMER also found TFsthat regulate awide range of cellular activities, including JUN and FOS (Fig.
3d), which are important for immune cell interactions. These features changed gradually among al the
cell types, rather than expressing specifically in certain clusters. Other features such as CD69 (known T
cell activation feature) and ODF2L (novel T cell subtype feature) also showed gradua change among
subtypes instead of clear-cut, on-and-off patterns (Fig. 3f). Notably, among our selected features that
were not reported in the original publication, DUSP1, DUSP2, and DUSP4 (Fig. 3g and Supplementary
Figure 4d) were from a nucleus-predominant subfamily of dual-specificity phosphatases (DUSPs) family,
which affect many cellular processes by regulating MAP kinases. DUSP1 has been reported as a key
regulator® of both innate and adaptive immune responses by inactivating p38 and JNK (c-Jun N-terminal
kinase). We found that DUSP2 and DUSP4 showed gradients majorly inthe T cell cloud, while DUSP1
was expressed in al the major cell types. These genes are related to awide range of immune phenotypes
including producing inflammatory cytokines and autoimmune responses, which are highly relevant to

Crohn’s disease.

10
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SCMER again compared favorably to the other methods that selected various numbers of features (Fig.
3i, Supplementary Result 2). It was evident that the other methods tended to ignore features associated
with intra-cluster heterogeneity and multicellular programs. The novel genes selected by SCMER were
also highly enriched in multiple immune pathways* (humoral immune response, |eukocyte migration,
complement activation, etc.; Supplementary Table 5). Overall, SCMER sensitively preserved different

types and levels of heterogeneity in the original data.

3.4 SCMER DISSECTS CONTINUOUS CELL LINEAGE DIFFERENTIATION

Cdll differentiation involves many unique patterns of gene expressions, including those gradually
changing, shared among cell types, or transiently activating during the process. None of these patterns can
be characterized through clustering. Having shown that SCMER identifies both inter- and intra-cluster
features, here, we examineif it can identify key differentiation features in hematopoiesisin human bone
marrow (BM). A recent study®’ sequenced 6,915 BM cells from four healthy donors. The transcriptomes
of the cells formed a continuum instead of discrete clustersin the UMAP, reflecting the continuous

differentiation process (Fig. 4a).

From this dataset, SCMER selected 100 features, which clearly preserved the tragjectory of differentiation
(Fig. 4b). The original publication reported 57 established features belonging to 12 sets (T able 3).
SCMER recalled all the 12 sets as well as other well-known immune features (e.g. GNLY and CD74).
SCMER also picked up features for less abundant cells that were not reported in the origina publication
(Supplementary Table 6), for example, CLC and PRG2 for granulocyte and macrophage progenitor
(GMP) cells (Supplementary Figure 7a). Neither of them was prioritized by DE analysis or Monocle" .
Similarly, increasing GPR183 expression was found in a subgroup of T cells, B cells, and Monocytes
(Fig. 4d). The function of GPR183 is not fully known, but emerging evidence showsthat it may be a

regulator of immune cell migration™.

Table 3. Bone Marrow features Recalled by SCMER

11
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Category Gene set All Highly variable | SCMER | Recalled genes

Undifferentiated (HSC/Prog) | Undifferentiated 7 3 3 MEISL, MS 2, EGR1
GMP-Promono 4 4 2 MPO, ELANE
Promono- 6 4 1 MNDA

. differentiated

Myeloid Mono 3 |3 2 FCNL, C5ARL
cDC 2 1 1 FCER1A
pDC 6 6 4 TCF4, IRF8, JCHAIN, GZMB

Erythroid Ery 5 3 2 HBD, HBB
Pro-B 7 7 1 VPREB1
B 2 2 1 MSAAL

Lymphoid Plasma 3 3 2 MzB1, JCHAIN
T/CLT 5 5 2 CD3D, IL7TR
CLT/NK 7 7 2 CCL5, GZmMB

None of above ETSL, HIST1IHIC, ATP2B1, HIST1HA4C, SOX4, NPR3, HLA-DPA1, GPR183, CTSS,
NEAT1, RNASE2, KIAA0087, DUSPL, JUN, EREG, HLF, AREG, CDK6, HSP90B1, FYBL1,
HBA1, HLA-B, PRTN3, VCAN, HMGN2, CD52, NUSAP1, PRKG2, S.C40A1, TOP2A,
HIST1H1B, AHSP, STK17B, S100A6, IGLL1, THBSL, HLA-DRA, CA1, APOOL, HOPX,
CALR, KLF6, HMGB2, TXNDC5, PDZD8, FGL2, BCL11A, IQGAPL, PRS2, HLA-E,
CYBB, S100A12, NRIP1, GNLY, SAMSN1, PTPRC, CENPF, PIK3R1, SAMHD1, CENPU,
HIST1H2AJ, MT-ND5, PRG2, PSAP, ANXA1, CD74, ASPM, STMNL, CLC, DNTT,
S100A10, NAMPT, CSTA, CST3, TXNIP, ZFASL, SPINK2, SAT1, MKI67

SCMER identified many genesthat displayed gradient along the developmental trajectories, for example,
AHSP and CAL for Erythroid cells, and VPREBI for B cells (Supplementary Figure 7b). It dso
identified genes such as PRTN3 (monocytes) and PDZD8 (erythroid) that appeared transiently expressed
during the developmental process and became dim in terminally differentiated cells (Fig. 4d), which were
not prioritized by Monocle. Besides, it identified TF genes such as JUN and SOX4, which play important

47,48

rolesin regulating cell differentiation™"**. We comprehensively evaluated the performance and confirmed

that SCMER outperformed the other unsupervised methods in recapitulating molecular diversity (Fig. 4c).

3.5 SCMER IDENTIFIES MOLECULAR DRIVERS FROM PERTURBED CELLS

More and more studies using single-cell technologies to investigate heterogeneity of cellsin responseto a

genetic or chemical perturbation®. In these experiments, cell state may transition under complex kinetics.

To investigate the utility of SCMER in studying cellular responses, we applied it on single-cell data

derived from dexamethasone (DEX) treated A549 lung adenocarcinoma cell line®. As reported in the

12
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original publication, the 1,429 cells sampled at O, 1, and 3 hours after the DEX treatment formed a
continuum in the transcriptomic space (Fig. 5a), indicating heterogeneous responses of the cell
population. After running SCMER on the sci-RNA-seq data, 80 genes were selected, with the manifold

and treatment states largely preserved (Fig. 5b).

We inferred TF activities based on motif enrichment™ in the chromatin accessibility (sci-ATAC-seq) data
co-assayed on the same set of cells®® (M ethods, Fig. 5¢). Among the top 50 highly variable TFs
(Supplementary Figure 8a), NR3C1, the primary target of DEX*®, had the most prominently increasing
activity level over treatment time. Other TFs such as FEV*! and the ETS family**, also targets of DEX,

had decreasing activity levels.

We then correlated the expression levels of the genes selected by SCMER with the activity levels of the
top TFs. We found that FKBP5, GALNT18, NRCAM, etc. were positively correlated with NR3C1, while
CYP24A1, COL5A2, etc. were negatively correlated (Supplementary Table 7, Supplementary Figure
8). In particular, FKBP5, afactor in the negative feedback loop of glucocorticoid receptor response and
regulator of immune processes’>*, had the highest positive correlation (r = 0.355) in the whole
transcriptome; while CYP24A1, which regul ates multiple metabolism processes™, was the most negative
(r = —0.365). Cdlls of high FKBP5 expression levels came mostly from 1 and 3 hours (Fig. 5d), with
matched polarized distributionsin the RNA and the ATAC embeddings (Fig. 5g). Similar patterns were

observed between cells of high and those of low CYP24A1 expression levels (Fig. 5f,i).

Interestingly, SCMER a so selected a group of genes uncorrelated with prominent TF activities (Fig. 5j,
Supplementary Figure 8). Among them were MKI167 (e.g., r = —0.005 with NR3C1) (Fig. 5e,h), which
encodes proliferation marker protein Ki-67, and other cell-cycle genes such as CENPF, TOP2A, RYBP,
MLHS3, etc. Pathway analysis confirmed that these genes are highly enriched in cell proliferation
pathways (Supplementary Table 8), indicating that an appreciable fraction of cells continued

proliferating despite the treatment. It is not surprising that the levels of these genes were uncorrel ated
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with chromatin state changes, asit has been shown that cell cycling status has little direct effect on
chromatin accessibility>®. Also among uncorrelated were several cancer cell stemness marker genes® such
as ACTG1, TSC22D1, and FN1, which may indicate that afraction of cancer cells maintained their
stemness during the course of the treatment. These genes would have been missed by a DE analysis

supervised by the treatment time.

Taken together, our results demonstrated the superior power of SCMER in discovering features associated

with heterogeneous cellular state change in the context of perturbation experiments.

3.6 SCMER ACHIEVES CROSS-MODALITY FEATURE MAPPING

One challenge in applying sScRNA-seq for cell-typing is that expression levels of mMRNAs can differ
substantially from those of homologous proteins, due to post transcriptional modifications®’. Although
performing multi-omics assays may be the ultimate solution, they are currently associated with higher
cost and lower throughput. Thus, rather than simply selecting the homologous mRNAs, it is beneficial to
identify the set of genes whose expression levels maximally represent cellular diversity at the protein
level. This capability can be important for designing targeted, cost-effective assays for preclinical and
clinical applications. SCMER isideally suited for such apurpose, asit alows selecting featuresin one

modality while preserving manifold in another modality.

We ran SCMER on a CITE-seq dataset containing 14,468 bone marrow mononuclear cells (BMNC)™.
The protein manifold based on 25 markers was utilized to “ supervise” the selection of mMRNAs
(M ethods). CITE-seq, which co-assays mRNA and protein markers from the same set of cdlls, isideal for

obtaining the optimal mapping between mMRNASs and proteins (Fig. 6a,b).

As shown, the mMRNA expression levels of genes homologous to the protein markers, such asCD4 (a Ty,
cell marker) and NCAM1 (CD56, an NK cell marker) offered low power in delineating the corresponding

cell types (Fig. 6d,e). Some markers, e.g., CD45RA (B cellsand naive T cells) and CD45RO (memory T

14


https://doi.org/10.1101/2020.12.01.407262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.407262; this version posted December 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

cells) areisoforms of the same gene, PTPRC. Consequently, T cell subtypes were less distinguishablein
the RNA space than in the protein space (Fig. 6b). The differences among CD8 T cell subtypes were even

bigger than the differences between CD4 and CD8 T cells.

SCMER selected a set of genes that best preserved the diversity at the protein-level, notably the
continuum among naive CD8 T cells, memory CD8 T cells, and effector CD8 T cells (Fig. 6¢). It
identified genes that are non-homol ogous to the protein markers but better represent the protein level
difference, for example, GPR183, KLRF1, CD79B, and S100A4 for CD4, CD56, CD45RA, and CD45R0,
respectively (Fig 6d,f). On the other hand, the SCMER result appeared to better delineate progenitor cells

than the protein markers, which demonstrates a strength of integrating complementary modalities.

Similar conclusions were drawn when applying SCMER on another smaller PBMC CITE-seq dataset*

with 10 protein markers (Supplementary Result 3).

Importantly, the genes selected by SCMER from one donor (14,468 cells) appeared to preserve the cell
diversity in another donor (16,204 cells) (Supplementary Figure 10e-f), which validated the

applicability of SCMER in designing targeted panels for populational level testing.

4 DISCUSSION

SCMER was designed to meet an important need in single-cell molecular data analysis, to sensitively
identify non-redundant features that delineate both common cell lineages and rare cellular states ignored
by current approaches. It provides an ab initial approach for discovering novel genes and featuresin high
dimensional datasets, designing cost-effective assays for potential clinical applications, and assisting

multi-modality integration of gene expression, proteins, and other features.

SCMER does not require clusters or trgjectories and is not affected by uncertainties in clustering or

trgjectory inference. It explores aternative explanations via feature selection and reports the most salient
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features representing different facets of cells and underlying molecular activities. As aresult, on datasets
involving hematopoiesis, lymphogenesis, tumorigenesis, and drug resistance and response, SCMER
identified features representing major cell types, rare cell populations (RCPs), continuous cell states, and
multicellular programs. In our study, it prevailed existing unsupervised methods and often performed
better than or comparably to the supervised methods when accurate labeling was possible
(Supplementary Figure 11). Moreover, SCMER can handle batch effects by treating batches as a
stratum, and finding a consensus set of features that preserve the manifold in respective batches

(Methods). In that manner, it will prioritize genes contributing to biological but not technical variances.

SCMER can run in various supervised modes. It can accept a manifold from a different modality, for
example, selecting RNA features under the guidance of a protein manifold (Supplementary Result 3). It
can fix features preselected by users and find the best “ partner” features (Supplementary Result 4) or
select features from ashortlist (Supplementary Result 5). The framework appears effective on cell line
and patient data generated by various technol ogies, including scRNA-seq and mass cytometry™
(Supplementary Result 6). Thistype of integrative analysis can potentially be extended to other

modality combinations such as sScRNA with scATAC, or mRNA with miRNA.

SCMER is an efficient method based on the orthant-wise limited memory quasi-Newton (OWL-QN)
agorithm®. On a dataset with 10,000 cells and 2,000 candidate features, it typically convergesin 20 to 40
iterations, which takes 5 to 10 minutes on a desktop computer equipped with a 3.20GHz 6-core Intel Core
i7-8700 CPU. GPU acceleration is aso supported, and the time consumption is halved with a middle-end

NVidiaGTX 960M GPU on alaptop computer with a2.7GHz 4-core Intel Corei7-5700HQ CPU.

Because SCMER detects informative features that represent much wider and more complex biological
processes than current methods, we expect it to be of immediate interest in projects producing large
numbers of unsorted cells, such as the Human Cell Atlas®®, the Human BioMolecular Atlas Program

(HUBMAP)”, the Precancer Atlas™ and the Human Tumor Atlas Network®. It will be beneficial in

16


https://doi.org/10.1101/2020.12.01.407262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.407262; this version posted December 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

various scenarios including biomarker discovery and clinical assay designing. As afirst-of-its-kind
method designed for manifold preserving feature selection on biomedical data, it can potentially be
broadly applied to non- single-cell data, for example, bulk RNA expression®®, copy number aberration®,
and genetic and drug screening datain large cohort studies such as TCGA®, GTEx*, Depmap®, CTRP®,

etc.

5 METHODS

5.1 CELL-CELL SIMILARITY
SCMER isinspired by three methods: Stochastic Neighbor-Preserving Feature Selection (SNFS)®, t-
distributed stochastic neighbor embedding (t-SNE)*” and Uniform Manifold Approximation and

Projection (UMAP)?*%,

t-SNE is one of the most widely used method for data embedding. For a dataset X € R™*? with n cells

and D features, the similarity of acell i to another cell j isdefined as

_exp (—”xi - xj||2/202)
U Tkerexp(=llx, — x;112/202)’

which comprises a cell-cell similarity matrix P € R™*™. ¢ isascaling factor. It creates an d-dimensional

embedding Y € R™ . |t calculates another cell-cell similarity matrix Q € R™*™ for Y, whose entries are

2 _1
(1 lvi-wl)
W=y A+ ye -yl

The cost function is defined as the Kullback-Leibler (KL) divergence of P and Q, formally

l

p..
C=KLPIQ) = Y > pylogL.
7 qij
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Because UMAP is more sensitivity to both global relationship between cell groups and local relationship

within cell groups®, we borrowed a part of the UMAP formulation, i.e.,

- exp(—({lx: —x;[| — pi)/:) g = (1 + (ly: —yill = Ti)/Ui)_1
Yo Temexp(=Ulxe = xll = p) /o) Y Tt + lyie =il = 1) /0)7Y

where p; = min||x; — x;|| and 7; = min|ly; — y;||. The scaling factor o; is chosen such that
Y exp(—(||x; —x;|| — pi)/0:) = log k, which may be viewed as constructing a soft nearest neighbor
graph. We default it to 100 in our experiments. Similar to UMAP, setting it in the range 10 to 1,000 gives

very similar results®®,

5.2 MARKER SELECTION BY ELASTIC NET

Different from t-SNE and UMAP, instead of alowing Y to be an arbitrary matrix, we require each column
of Y to be directly taken from acolumn of X, i.e., to select afeature. To formally model this procedure.

We use avector w € R? to indicate the selection of the features, where 0 means unselected, and set

Y = Xw,
which set al unselected featuresto zeroin Y. In terms of calculating the distances, zeroing out the
columns is effectively discarding them. Thus, the definition of Q isunchanged. Ideally, to select d

features, we optimize

min C subject to ||w]|, = d,
w
where ||w]|, isthe [,-pseudo-norm, i.e., the number of nonzero entries. However, this question is known
to be NP-hard, whose determination requires checking all the (Z ) possibilities. Thus, we fall back to [, -

norm, the convex approximation of [,-pseudo-norm, asin

min C + A||lw]|4,
w

18


https://doi.org/10.1101/2020.12.01.407262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.407262; this version posted December 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

where [;-norm ||w]||; = >;|w;| and A isthe strength of the regularization. We denote the loss function as
L. The number of chosen features decreases with larger 4. Thus, for agiven d, we use a binary search to
find a . Dueto limitations of precision, the specific d may not always be achievable. In that case, we
alow for afew more features to be selected, and discard those that are assigned with the lowest weights
(Supplementary Note 2). In the result, the features who have nonzero weights in w are considered

selected. The specific weight is not used in downstream analysis (Supplementary Note 2).

The cost, C = KL(P||Q), isarobust indicator of whether the manifold is successfully retained. A typical
range of C is 2.0 — 4.0 when the manifold is reasonably retained. More features (i.e., smaller ;-

regularization) may be needed if the C is greater than 4.0.

Our model also alows an additional 1,-regularization (ridge) to form an elastic net model. It may improve
the robustness of the panel by dlightly increase the redundancy, so that noise or drop-out in one feature

has | ess effects.

5.3 BATCH EFFECT CORRECTION BY STRATIFICATION

Batch effect is a common problem in experiments including multiple samples. For SCMER, the samples
are considered a stratum. In specific, aset of P and Q can be constructed for each sample, denoted as P®
and Q, while w is shared by all samples. A cost € can thus be calculated for each sample, and
collectively form anew objective € = ¥; €. Thus, SCMER will ignore features that identify different

samples and focuses on features that retain cell-cell similaritiesin all/most samples.

5.4 SUPERVISED MULTI-OMICS MODE

To transfer the manifold in one matrix (X) to another (X'), either between different modalities or subsets
of features of the same modality, we simply modify the definition of Y to Y = X'w. With all other
procedures unchanged, the algorithm is now searching for featuresin X’ that gives a manifold similar to
that of X. Thisisalso applicable to select features from a shortlist of the original ones.
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5.5 USING PRESELECTED FEATURES

In the case that a researcher wants to specify a few features that are known to be useful, we slightly
modify the regularization to A|[Vw||;, where V = diag(v) isadiagona matrix. If afeatureis considered
important a priori, the corresponding entry in v is set to 0 to avoid [, -regularization. In this “ softly-
supervised” way, SCMER is more likely to select these features, but may still discard some of them if
they are contradicting with the manifold. Thus, in addition, we provide a“hard-supervised” way where a

set of features are guaranteed to be kept. Other features are selected to supplement them.

5.6 ORTHANT-WISE LIMITED MEMORY QUASI-NEWTON ALGORITHM

Limited-memory BFGS (L-BFGS) is an widely-used optimization algorithm in the quasi-Newton
methods family®®. It approximates the Broyden—Fletcher—Gol dfarb—Shanno (BFGS) algorithm with

0(mD) memory, where m can be chosen based on computing resources.

Although L-BFGS usually converge very fast (<20 iterations) for most [,-regularized regression

problems, it will diverge for [, -regularization, whose partia derivativeisundefined at {w | w; = 0 3i}:

1 i >0
olwlly _ 9 %ilwil _ 2lwil oo
5 =— =g = undefined w; =0,
w; w; w;
L L L -1 w; <0

It should be noted that setting the undefined point to O (or any other value) at w; = 0 does hot solve the
problem as the discontinuity will also break L-BFGS. A modified version of L-BFGS called orthant-wise
limited memory quasi-Newton (OWL-QN) agorithm®® solves this problem by introducing pseudo-

gradients and restrict the optimization to an orthant without discontinuities in the gradient.

L-BFGS optimizer is provided in PyTorch™®, in which SCMER isimplemented. Based on it, we
implemented a special case of OWL-QN algorithm for optimization of the model. Two modifications we

made are as follows.
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Firstly, we derive the pseudo-gradient, where the pseudo-partial derivative at a discontinuity w, of the
lossfunction L = C(w) + A||lw]|; isdefined as
0; L(wy) 07 L(wg) > 0and 0; L(wy) >0
0;L(Wo) = 40;"L(w,) 0; L(w,) < 0and d;"L(w,) <0,
0 otherwise

where 9;L(w,) isthe pseudo partial derivative and d;”L(w,) is the short hand of

oL

wi—(Wo); a_WL Wi=(Wo)k

lim , 1.6, the left limit of the partial derivative. Similarly, 9;" L(w,) istheright limit.

Note that the gradient of C(w) is continuous, i.e., 9; C(wy) = 9; C(w,) = 9;C(wy). Thus,

aiC(WO) -1 alC(WO) —-1>0
0;L(wp) ={8;C(wp) +1  9,C(wg)+21<0 .

In fact, for L, discontinuitiesare {w | w; = 0 3i}.

Secondly, we confine the search areain each quasi-Newton optimization step so that it does not cross any
discontinuity. Specifically, for our problem where all discontinuities are at 0, when updating wt to wt*?,
we reset the value of wi** to Oif sign(w{*") # sign(wy). It constrains the optimization to bein the

same “orthant” in each iteration.

5.7 DATA PREPROCESSING

For the melanoma data®*, which is TPM based, after removi ng ERCC spike-ins, we processed the data
using the standard workflow of SCANPY *°, including quality control (filtering out genes that are detected
in lessthan 3 cells), normalization (10,000 reads per cell), log transformation, highly variable genes
detection (with aloose threshold to filter out noisy genes; not to be confused with the DXG we compared

with), and scaling.

For the lleum Lamina Propria Immunocytes data’®, bone marrow data’’, and A549 data’®, which are UM

based, we used the standard workflow of SCANPY , including quality control (filtering out genesthat are
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detected in less than 3 cells), normalization (10,000 reads per cell), log transformation, highly variable
genes detection, and scaling. We used the stratified approach to suppress batch effect on the lleum

Lamina Propria Immunocytes data.

For protein datain CITE-Seq®*°, we followed the preprocessing of protein data described in the original
publication. For mRNA datain CITE-seq, we follow the standard workflow of SCANPY, as described
above, except that we did not filter highly variable genes. We preprocessed protein data as mRNA data,

without filtering highly variable genes.

5.8 INFERENCE OF TF ACTIVITIES

Because TFstend to bind at sites with cognate motifs, accessibility at peaks with the matifs reflects their
activity. To estimate transcription factor activity from sci-ATAC-seq data, we use chromV AR™ package
with the default setting. It quantifies accessibility variation across single cells by aggregating accessible
regions containing a specific TF motif. The observed accessibility of al peaks containing a TF motif is

compared with a background set of peaks normalized for known technical confounders.

5.9 COMPARISON WITH OTHER METHODS

To identify the highly expressed genes (HXG), we used the standard SCANPY *® workflow. HXG is
defined by the total reads of a gene across al cells. To identify the highly variable genes, we followed the

standard scoring method in SCANPY .

SCMarker*® provides a gene list without ranks. It has two parameters, n and k, which affect the number
of resulting features. Based on our observation, n has aminor effect on the result. Thus, wefixed n = 50

and tested k from 10 to 1,200 to create feature gene lists of various sizes.

We ran Monocle'” in unsupervised and supervised manners. For the supervised run, the labels were used

directly. Thetrajectory was inferred using clusters/labels and pseudo-time is calculated. Genes were
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ranked by the degree they are explained by functions (which were fitted with cubic splines) of pseudo-
time. For the unsupervised run, we clustered the cells and visually confirmed the clusters are concordance

with the [abels.

We ran RankCorr*? in both supervised and unsupervised manner. For the supervised run, we used the
label from the data directly. For the unsupervised run, we used the Leiden algorithm’ for clustering
which isthe recommended method in SCANPY . Default parameters were used, and the clusters are

visually checked that they are reasonable.

For random results, we randomly selected gene sets of given sizes. Reported are mean performance and
the critical level of statistically significantly better (or worse) than random as defined by single-sample

one-sided z-test at 5% significance level.

6 ADDITIONAL INFORMATION

6.1 ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicablein this study.

6.2 CONSENT FOR PUBLICATION

Not applicablein this study.

6.3 AVAILABILITY OF DATA AND MATERIAL

The open source implementation of SCMER available at https./github.com/K Chen-lab/SCMER under

the MIT License. Scripts for reproducing al the results are also included. All original datasets are

accessible through the original publications™ .
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8 FIGURE LEGENDS

Fig. 1: The SCMER approach and its unique strength.

(a) Workflow of SCMER. SCMER selects the features that perserve the manifold from asingle-cell
omics dataset X. Features can be selected from either X or another co-assayed omics X'. Vector w
indicates the selection. Y is the dataset after feature selection. P and Q are cell-cell similarity matrices
for X and Y, respectively.

(b) Applications of SCMER. SCMER selects features that preserve the manifold and retain inter- and
intra-cluster diversity, and thus can be applied to discover rich molecular pathways, integrate modalities,
and design customized DNA/RNA/antibody panels of restricted sizes.

(c) Capahilities of SCMER compared with mainstream label/cluster-based differential expression (DE)
analysis methods and correl ation-based methods. The hypothetical branching trajectories contains

common progenitors (Pro), precursors (PreA, PreB), and mature cells (A, B).

Fig. 2: Results of the data of melanoma patients.

(a) UMAP embedding of the dataset without feature selection. (Macro: macrophages, Endo: endothelia
cells, CAF: cancer associated fibroblasts, Unres: unresolved cells; labels are in the same color of dots

representing cells.)

(b) UMAP of the dataset using SCMER selected genes.

(c) Recall of gene setsfor SCMER, scMarker, Monocle, RankCorr, highly expressed genes (HXG),

highly variable genes (HV G), principal component analysis (PCA), and differentially expressed genes
(DEG, supervised). X-axisis number of selected genes and Y -axisis number of covered gene sets. A gene
set isrecalled when at least one gene in the set is selected. Methods recalled more gene sets with fewer

genes are of better performance. “Random” shows the expected number of gene sets for randomly
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selected markers. The area correspondsto 1.645 X standard deviation on each side. Results above the

areais significantly better than random (p < 0.05 for one sided z-test).

(d-f) Expression of genes that show intra-cluster gradients.

(g-i) Overall Kaplan-Meier survival curve for selected markersin TCGA SKCM. High and low include

patients in above and under 33% percentile, respectively. Each group includesn = 151 patients.

Fig. 3: Results of theileum lamina propriaimmunocytes data.

(a) UMAP embedding of the original dataset (List of abbreviations: Supplementary Table 14).

(b) UMAP embedding of the same dataset on genes selected by SCMER.

(c-f) Examples of expression level of genes selected by SCMER that (c) distinguish major cell types and
(d) subtypes, (€) are transcription factors regulating different cell types, and (f) show gradual changes

among cell states.

(g) Expression level of DUSPL. See Supplementary Figure 4 for DUSP2 and DUSP4.

(h) Distribution of expressionsin major cell types of genes above.

(i) Recall of gene setsfor SCMER, scMarker, Monocle, HXG, HVG, PCA, and DEG, similar to Fig. 2c.

Fig. 4: Results of the bone marrow hematopoiesis data.

(a) UMAP embedding of the original dataset (List of abbreviations: Supplementary Table 14).

(b) UMAP embedding of the dataset on SCMER selected genes.

(c) Recall of gene setsfor SCMER, scMarker, Monocle, HXG, HVG, PCA, and DEG, similar to Fig. 2c.
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(d) Activity of selected markers. Arrows are drawn for avisua reference for the developmental

jprocesses.

Fig. 5: Results of the A549 lung cancer cell line data.

(a-c) UMAP embedding of (a) the original sci-RNA-seq dataset, (b) the sci-RNA-seq dataset on SCMER
selected markers, and (c) the sci-ATAC-seq peak dataset.

(d-i) Expression of selected genes show in (d-f) RNA space and (g-i) ATAC space. ATAC space only
includes co-assayed cells.

(1) Heatmap of expression of selected genes and motif-based activity of highly variable transcription

factors (TFs). (Uncor: uncorrelated, Pos: positively correlated, Neg: negatively correlated, with regard to

NR3C1 and NR3C2.) ETV3 and ETV4 are in the ETS transcription factor family.

Fig. 6: Results of the CI TE-seq bone marrow mononuclear cells data.

(a-c) UMAP embedding of original dataset using (a) protein, (b) genes, and (c) SCMER selected genes. T
cells and Progenitor cells [HSC, LMPP (lymphoid-primed multipotent progenitors), GMP, and Progenitor
of B, Mk (megakaryocyte), RBC, and DC cellg], are highlighted for better visual identification. Fully

annotated cell types are shown in Supplementary Figure 10.

(d-f) Levels of representative (d) proteins, (€) genes, and (f) SCMER selected genes.
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