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1 ABSTRACT 

A key challenge in studying organisms and diseases is to detect rare molecular programs and rare cell 

populations (RCPs) that drive development, differentiation, and transformation. Molecular features such 

as genes and proteins defining RCPs are often unknown and difficult to detect from unenriched single-cell 

data, using conventional dimensionality reduction and clustering-based approaches. 

Here, we propose a novel unsupervised approach, named SCMER, which performs UMAP style 

dimensionality reduction via selecting a compact set of molecular features with definitive meanings. 

We applied SCMER in the context of hematopoiesis, lymphogenesis, tumorigenesis, and drug resistance 

and response. We found that SCMER can identify non-redundant features that sensitively delineate both 

common cell lineages and rare cellular states ignored by current approaches. 

SCMER can be widely used for discovering novel molecular features in a high dimensional dataset, 

designing targeted, cost-effective assays for clinical applications, and facilitating multi-modality 

integration.  

2 INTRODUCTION 

A tissue in a living organism often consists of millions to billions of cells. While the terminally 

differentiated cells with relatively distinct molecular profiles can be readily distinguished via single-cell 

RNA sequencing (scRNA-seq) at current sampling depth, many cells involved in development, 

differentiation, and transformation remain difficult to detect1,2. For example, a fraction of tumor cells in 

renal cell carcinomas can go through sarcomatoid transformation driven by epithelial to mesenchymal 

transformation (EMT)3,4; tumor cells in pancreatic ductal adenocarcinomas can transiently express 

stemness features (e.g., SOX2) at its invasion fronts5–7. These cells can be relatively rare in the sampled 
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populations, transiently expressing certain molecular features and thereby may not form distinct clusters 

in high dimensional feature spaces8,9.   

To detect characteristic features (e.g., genes, proteins) in a single-cell dataset, studies8,10–13 often employ 

unsupervised clustering followed by one-cluster-vs-all differential expression (DE) analysis. These 

approaches can detect major cell types governed by lineage features that dominate data variance, but are 

insensitive to rare but unique features that have relatively small variance and manifest as level gradients 

within cell-type clusters (a.k.a. cell states)14. They are also clumsy at detecting features affecting multiple 

clusters, e.g., transcription factors (TFs) regulating multiple cell types15, as that involves comparison of an 

exponentially growing number of cluster combinations. To detect features associated with continuous 

developmental processes, many studies perform trajectory inference16 followed by regression analysis to 

identify correlated features (e.g., Monocle17). The selection of features depends on trajectories, which 

could be challenging to infer accurately for complex processes.  A detailed comparison was performed by 

RankCorr12 across various methods such as statistical tests, logistic regression, MAST10, scVI11 , and 

COMET13. 

Most existing approaches regard features as independent variables without exploring their interactions18. 

As a result, they tend to identify redundant features (e.g. CD3D, CD3E and CD3G for T cells) that are 

highly correlated with the inferred clusters or trajectories, but ignore novel, uncorrelated features. Some 

recent work such as scHOT18 and SCMarker19 started to exploit correlational patterns among co- or anti- 

expressing genes. However, they do not model complex interactions of more than two genes. SCMarker 

cannot characterize continuous cell states, and scHOT relies on the accuracy of trajectory inference.  

To enhance sensitivity in detecting rare features and RCPs, many studies20,21 had to slice and dice data 

spaces in empirical, multifaceted ways8 or perform iterative gating22 and re-clustering at variable 

resolutions, which may lead to biased, irreproducible results.  
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Increasing the number and variety of molecular features23,24 and improving the fidelity of the 

measurements can help discover RCPs. However, they unavoidably increase the already high cost of 

experiments. To make assays cost-effective towards clinical applications, it is important to select a 

compact actionable set of molecular features that unbiasedly represent molecular diversity in high 

dimensional data. This ability is important for designing and manufacturing customized assays, e.g., 10x 

targeted gene expression, MissionBio Tapestri25 and NanoString GeoMx26, which perform multi-omics 

measurements of hundreds of selected DNA, RNA, and proteins.  

To address these fundamental challenges, we developed SCMER (Single-Cell Manifold Preserving 

Feature Selection), which selects an optimal set of features such as genes or proteins from a single-cell 

dataset. Similar to t-Distributed Stochastic Neighbor Embedding (t-SNE)27 and Manifold Approximation 

and Projection (UMAP)28, we hypothesize that a manifold defined by pairwise cell similarity scores 

sufficiently represents the complexity of the data, encoding both global relationship between cell groups 

and local relationship within cell groups29. By preserving such a manifold while performing feature 

selection, the most salient features that unbiasedly represent the original molecular diversity will be 

selected.  

SCMER does not require clusters or trajectories, and thereby circumvents the associated biases. It is 

sensitive to detect diverse features that delineate common and rare cell types, continuously changing cell 

states, and multicellular programs15 shared by multiple cell types. It reduces high dimensionality into a 

compact set of actionable features with definitive biological meanings. This distinguishes SCMER from 

PCA, t-SNE, UMAP, etc., which result in axes (meta-genes) with complex meanings. SCMER is 

efficiently implemented in Python using PyTorch30,and supports multicore and GPU acceleration. A one-

liner interface is provided for easy use. The open-source implementation is available at 

https://github.com/KChen-lab/SCMER. 
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3 RESULTS 

3.1 THE SCMER APPROACH AND ITS UNIQUE STRENGTH 

In a nutshell, SCMER (Fig. 1a, Methods) examines a data matrix � of � cells and � features and 

calculates a pairwise cell similarity matrix � (as defined in UMAP28) representing the manifold in �. It 

defines a weight vector �, which transforms � to � � ��. It then calculates another pairwise cell 

similarity matrix � from � and quantifies the level of agreement between � and � using Kullback-Leibler 

(KL) divergence as defined in t-SNE27. Finally, it uses elastic net to find a sparse and robust solution of � 

that minimizes the KL-divergence with Orthant-Wise Limited Memory Quasi-Newton (OWL-QN) 

algorithm31. Features with nonzero weights in � are deemed chosen. � can also be calculated from a 

different source (e.g., a different technology) instead of �, which enables a “supervised” and multi-omics 

mode of SCMER. 

A manifold encodes both clusters and continuums of cells. While clusters usually reflect distinct cell 

types, continuums reflect similar cell types and trajectory of transitioning/differentiating cell states32. 

SCMER selects optimal features that preserve the manifold and retain inter- and intra-cluster diversity 

(Fig. 1b). It can be applied to discover rich molecular pathways, identify prognostic genes, and design 

customized DNA/RNA/antibody panels of restricted sizes towards clinical applications. 

To elucidate the novel cell populations and features that SCMER uniquely identifies, we generated a 

synthetic dataset containing a branching trajectory of 4,000 single cells from five major cell types, namely 

progenitor (Pro), precursor of A and B (PreA and PreB), and mature A and B (A and B) (Fig. 1c). Four 

kinds of features are simulated, those (I) specific to one cell type/cluster, (II) shared by more than one cell 

type15, (III) gradually changing over cell states, and (IV) transiently activated (also known as 

checkpoints33). We created a total of 180 features including 20 cell-type specific features for each cell 

type (100 in total), 10 gradually changing features for each branch (20 in total), 5 shared features for 
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precursors and mature cells (10 in total), 5 transiently expressing features, and 45 random noise features. 

Each cell was given a ground-truth pseudo-time in the trajectory, which parameterizes the expected level 

of a feature. In addition to major cell type labeling, the cells transitioning from precursor to mature are 

identified as “RCP-A” and “RCP-B”, which overexpress type-IV features. Dispersion was added based on 

a negative-binomial distribution. In as few as 45 selected features, SCMER recalled all the four types of 

features. In contrast, the top 45 features determined by a DE analysis are all from type I -- none belonged 

to type II, III, or IV, while a pseudo-time-based correlation analysis missed type-IV features. As a result, 

SCMER significantly increased the precision and recall of detecting RCPs, while being comparable to 

other methods on major cell types (using a 	-NN classifier for one cell type at a time; Table 1 and 

Supplementary Note 1). 

Table 1. Precision/recall of detecting RCPs on the synthetic dataset 

 RCPs Major cell types 
Cell types RCP-A  RCP-B  Pro  PreA  PreB  A  B  
Abundance 2.55% 2.68% 21.23% 22.43% 19.83% 16.73% 15.30% 
SCMER 0.82 / 0.68 0.87 / 0.67 0.97 / 0.96 0.95 / 0.96 0.94 / 0.94 0.95 / 0.96 0.94 / 0.93 

DEG 0.61 / 0.34 0.73 / 0.40 0.94 / 0.95 0.94 / 0.93 0.95 / 0.94 0.94 / 0.95 0.95 / 0.96 

Correlation 0.48 / 0.36 0.43 / 0.28 0.91 / 0.96 0.76 / 0.67 0.76 / 0.67 0.88 / 0.95 0.88 / 0.92 

 

To comprehensively assess SCMER, we ran it on eight datasets34–41 (including Supplementary Results) 

that involve a variety of biological and technological challenges, such as unresolved borderline cells that 

blur clustering, continuously changing cell states, multicellular and transient cellular programs. For 

comparison, we used supervised DE analysis and widely-used unsupervised feature selection methods, 

including highly expressed genes (HXG), highly variable genes (HVG), SCMarker19, Monocle17, and 

RankCorr12. SCMER robustly demonstrated the best performance on all the experiments.  
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3.2 SCMER CHARACTERIZATION OF CELL TYPE AND INTRATUMORAL 

HETEROGENEITY IN CANCER 

Single-cell datasets derived from cancer samples are often highly complex, containing heterogeneous cell 

types and states in not only tumor cells but also stromal and immune cells. Supervised analysis of cancer 

data is challenging as cancer cells are highly plastic42 and can express novel unknown features, which can 

heavily confound clustering and trajectory-based analysis. We applied SCMER on a single-cell RNA-seq 

melanoma dataset containing 4,645 cells from 19 human melanoma samples34. Most cells were annotated 

as malignant cells, B cells, T cells, macrophages, natural killer (NK) cells, endothelial cells, or cancer 

associated fibroblasts (CAFs) by the authors based on clustering and DE analysis. However, there were 

unresolved borderline cells presenting between labeled clusters, which resemble more than one cell types 

and could be either doublets or RCPs (Fig. 2a). By selecting only 75 genes (Table 2), SCMER clearly 

preserved the manifold: the resulting UMAP embedding is very similar to the original and the relations 

among most cell types including the unresolved cells are largely preserved (Fig. 2b and Supplementary 

Figure 2).  

To understand the biological meanings of the selected genes, we compared them with the 11 gene sets 

described in the original publication that represent important cell types and pathways in the study. The 

selected genes compactly covered all the 11 gene sets (Table 2).  

Table 2. Melanoma features selected by SCMER 

Category Gene set All Highly 
variable 

SCMER Genes 

Resistance / 
intratumor 
heterogeneity 

AXL 100 52 2 HAPLN3, CD52 
MITF 100 28 3 TOB1, TYR, PMEL 

Cell types Melanoma 47 19 5 SERPINA3, PRAME, MIA, TYR, PMEL 
B cells 31 27 2 IRF8, MS4A1 
T cells 38 38 7 TCF7, TIGIT, CD8A, PRDM1, SPOCK2, 

NKG7, TOX 
Macrophages 92 73 1 TYROBP 
Endothelial  95 45 2 CDH5, HAPLN3 
Cancer associated 
fibroblasts (CAF) 

88 46 3 COL1A2, COL1A1, MFAP4 
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Pathways Exhaustion (consistent 
across samples) 

28 17 3 CD27, TIGIT, CXCL13 

Exhaustion (variable 
across samples) 

272 159 7 HLA-DPA1, HAVCR2, CTLA4, SRGN, IRF8, 
PDCD1, TOX 

Cell cycle 93 54 3 TYMS, AURKB, MCM5 
None of above C10orf54, A2M, RGS10, MIR4461, IFITM1, SYTL3, GZMB, DEDD, RGS1, MAGEC2, PTPRC, NME2, 

CCL4, CCR7, HLA-DQA1, GNLY, OAS2, TXNIP, SELPLG, PAEP, CD69, ELK2AP, GZMH, ANXA1, 
MTRNR2L2, B2M, PTPRCAP, HLA-DQB1, LSP1, C1orf56, TCL1A, GPR183, CXCR4, RPS4Y1, APOD, 
KIT, GZMA, VIM, LTB, RPS11, TNFAIP3, CD55, UXS1 

 

Interestingly, genes belonging to the known drug resistance AXL program and MITF program were also 

selected by SCMER. These genes do not preferentially express in a specific cluster (e.g. PMEL, TOB1, 

etc. in Fig. 2d and Supplementary Figure 1a,b).  

SCMER also selected novel genes such as TNFAIP3, VIM, COL1A1, and COL1A2, which are involved in 

EMT. The original publication missed TNFAIP3 and VIM and did not mention EMT. COL1A1 and 

COL1A2 were only reported as CAF specific markers. Also found were intra-cluster features for different 

kinds of immune cells (Fig. 2e,f and Supplementary Figure 1c) or shared by all cell types 

(Supplementary Figure 1d), which correspond to multicellular programs. PDCD1 and TCF7, which are 

known to mark different subsets of T cells (exhausted versus memory) were detected, showing anti-

correlated (Pearson’s 
 � �0.24) expressions within the same cluster (Supplementary Figure 1c). 

Pathway enrichment analysis43 on the novel genes suggest that these genes are involved in innate immune 

response (A2M, CD55, IFITM1, VIM, OAS2, etc.), adaptive immune response (CD55, CCR7, GPR183, 

TNFAIP3, PTPRC, etc.), inflammatory abnormality of the skin (KIT, CXCR4, TCL1A, B2M, etc.), and 

other immune pathways (Supplementary Tables 1 and 2). These genes thus may be useful in further 

stratifying malignant and immune cell states (e.g., activation, exhaustion, etc.). Some genes such as 

PMEL, PDCD1, and OAS2 appeared associated with survival outcome in TCGA SKCM patients44 (Fig. 

1g,h,i).  
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To comprehensively assess the performance of SCMER, we varied the number of selected features and 

recorded the number of recalled gene sets. SCMER consistently recalled more gene sets than other 

widely-used methods for any given number of features, demonstrating the best performance (Fig. 2c).  

We also applied SCMER to a large-scale pan-cancer single-cell transcriptomic study consisting of 198 

cell lines and patient samples from 22 cancer types35. SCMER showed the high sensitivity to characterize 

intra-cluster heterogeneity, identifying recurrent heterogeneous programs shared by a majority of cell 

lines and by patient tumor samples (Supplementary Figure 3 and Supplementary Result 1). 

3.3 SCMER DEFINING CELL SUBTYPES AND STATES IN ILEUM LAMINA PROPRIA 

IMMUNOCYTES 

We further examined SCMER in a complex setting involving many cell subtypes and subtle intra-cluster 

structure and shared pathways. The dataset contains 39,563 gastrointestinal immune cells collected from 

inflamed tissues from ten Crohn’s disease patients36. As a risk factor to cancer, chronic inflammation 

involves extensive interaction among various immune cell types such as helper T cells (TH) and innate 

lymphoid cells (ILCs), which are regulated by both shared and cell-type specific TFs and cytokines and 

are difficult to delineate in high dimensional embeddings. The dataset appeared to include 27 cell types 

and subtypes/states in the original report. Four major cell types, T cells, B cells, phagocytes, and stromal 

cells each appeared as a cloud in the original embedding (Fig. 3a) but can be further dissected into 

subtypes. For example, T cells were dissected into eight subtypes/states through further clustering.   

Circumventing clustering, SCMER selected 250 features from 3,573 highly variable genes 

(Supplementary Tables 3 and 4) with the manifold well preserved. The separability among cell types 

were comparable with the original embedding, and the manifold of subtypes (RCPs) in each major cell 

type were well preserved (Fig. 3b). 
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SCMER identified features delineating both clusters and sub-clusters. For example, the well-known 

lineage features such as CD79A (B cells) and CD7 (T cells) and immune subtype markers such as FCER2 

(naïve B cells) and ANKRD28 (TRM) were identified (Fig. 3c,d and Supplementary Figure 4a). Less 

reported features such as SEPP1 for M2 macrophages were also among the list (Supplementary Figure 

4b). The selected features also included genes that encodes lysozyme (LYZ), complements (C1QA, C1QB, 

and C1QC), granulysin (GLNY), and granzymes (GZMA, GZMB, GZMK, and GZMH) (Fig. 3c and 

Supplementary Figure 4c).  

NK and ILC1 cells were mixed together in one cluster and can hardly be further dissected based on 

unsupervised clustering and DE analysis. However, based on the genes selected by SCMER such as 

GNLY CCL4, etc., which displayed dichotomizing levels within the cluster, we were able to further 

separate NK and ILC1 cells and estimate their abundances (Supplementary Figure 5). 

SCMER also found TFs that regulate a wide range of cellular activities, including JUN and FOS (Fig. 

3d), which are important for immune cell interactions. These features changed gradually among all the 

cell types, rather than expressing specifically in certain clusters. Other features such as CD69 (known T 

cell activation feature) and ODF2L (novel T cell subtype feature) also showed gradual change among 

subtypes instead of clear-cut, on-and-off patterns (Fig. 3f). Notably, among our selected features that 

were not reported in the original publication, DUSP1, DUSP2, and DUSP4 (Fig. 3g and Supplementary 

Figure 4d) were from a nucleus-predominant subfamily of dual-specificity phosphatases (DUSPs) family, 

which affect many cellular processes by regulating MAP kinases. DUSP1 has been reported as a key 

regulator45 of both innate and adaptive immune responses by inactivating p38 and JNK (c-Jun N-terminal 

kinase). We found that DUSP2 and DUSP4 showed gradients majorly in the T cell cloud, while DUSP1 

was expressed in all the major cell types. These genes are related to a wide range of immune phenotypes 

including producing inflammatory cytokines and autoimmune responses, which are highly relevant to 

Crohn’s disease. 
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SCMER again compared favorably to the other methods that selected various numbers of features (Fig. 

3i, Supplementary Result 2). It was evident that the other methods tended to ignore features associated 

with intra-cluster heterogeneity and multicellular programs. The novel genes selected by SCMER were 

also highly enriched in multiple immune pathways43 (humoral immune response, leukocyte migration, 

complement activation, etc.; Supplementary Table 5). Overall, SCMER sensitively preserved different 

types and levels of heterogeneity in the original data. 

3.4 SCMER DISSECTS CONTINUOUS CELL LINEAGE DIFFERENTIATION  

Cell differentiation involves many unique patterns of gene expressions, including those gradually 

changing, shared among cell types, or transiently activating during the process. None of these patterns can 

be characterized through clustering. Having shown that SCMER identifies both inter- and intra-cluster 

features, here, we examine if it can identify key differentiation features in hematopoiesis in human bone 

marrow (BM). A recent study37 sequenced 6,915 BM cells from four healthy donors. The transcriptomes 

of the cells formed a continuum instead of discrete clusters in the UMAP, reflecting the continuous 

differentiation process (Fig. 4a).  

From this dataset, SCMER selected 100 features, which clearly preserved the trajectory of differentiation 

(Fig. 4b). The original publication reported 57 established features belonging to 12 sets (Table 3). 

SCMER recalled all the 12 sets as well as other well-known immune features (e.g. GNLY and CD74). 

SCMER also picked up features for less abundant cells that were not reported in the original publication 

(Supplementary Table 6), for example, CLC and PRG2 for granulocyte and macrophage progenitor 

(GMP) cells (Supplementary Figure 7a). Neither of them was prioritized by DE analysis or Monocle17. 

Similarly, increasing GPR183 expression was found in a subgroup of T cells, B cells, and Monocytes 

(Fig. 4d). The function of GPR183 is not fully known, but emerging evidence shows that it may be a 

regulator of immune cell migration46. 

Table 3. Bone Marrow features Recalled by SCMER 
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Category  Gene set All Highly variable SCMER Recalled genes 
Undifferentiated (HSC/Prog) Undifferentiated  7 3 3 MEIS1, MSI2, EGR1 

Myeloid 

GMP-Promono 4 4 2 MPO, ELANE 
Promono-
differentiated 

6 4 1 MNDA 

Mono 3 3 2 FCN1, C5AR1 
cDC 2 1 1 FCER1A 
pDC 6 6 4 TCF4, IRF8, JCHAIN, GZMB 

Erythroid Ery 5 3 2 HBD, HBB 

Lymphoid 

Pro-B 7 7 1 VPREB1 

B 2 2 1 MS4A1 

Plasma 3 3 2 MZB1, JCHAIN 

T/CLT 5 5 2 CD3D, IL7R 

CLT/NK 7 7 2 CCL5, GZMB 

None of above ETS1, HIST1H1C, ATP2B1, HIST1H4C, SOX4, NPR3, HLA-DPA1, GPR183, CTSS, 
NEAT1, RNASE2, KIAA0087, DUSP1, JUN, EREG, HLF, AREG, CDK6, HSP90B1, FYB1, 
HBA1, HLA-B, PRTN3, VCAN, HMGN2, CD52, NUSAP1, PRKG2, SLC40A1, TOP2A, 
HIST1H1B, AHSP, STK17B, S100A6, IGLL1, THBS1, HLA-DRA, CA1, APOOL, HOPX, 
CALR, KLF6, HMGB2, TXNDC5, PDZD8, FGL2, BCL11A, IQGAP1, PRSS2, HLA-E, 
CYBB, S100A12, NRIP1, GNLY, SAMSN1, PTPRC, CENPF, PIK3R1, SAMHD1, CENPU, 
HIST1H2AJ, MT-ND5, PRG2, PSAP, ANXA1, CD74, ASPM, STMN1, CLC, DNTT, 
S100A10, NAMPT, CSTA, CST3, TXNIP, ZFAS1, SPINK2, SAT1, MKI67 

 

SCMER identified many genes that displayed gradient along the developmental trajectories, for example, 

AHSP and CA1 for Erythroid cells, and VPREB1 for B cells (Supplementary Figure 7b). It also 

identified genes such as PRTN3 (monocytes) and PDZD8 (erythroid) that appeared transiently expressed 

during the developmental process and became dim in terminally differentiated cells (Fig. 4d), which were 

not prioritized by Monocle. Besides, it identified TF genes such as JUN and SOX4, which play important 

roles in regulating cell differentiation47,48. We comprehensively evaluated the performance and confirmed 

that SCMER outperformed the other unsupervised methods in recapitulating molecular diversity (Fig. 4c).  

3.5 SCMER IDENTIFIES MOLECULAR DRIVERS FROM PERTURBED CELLS 

More and more studies using single-cell technologies to investigate heterogeneity of cells in response to a 

genetic or chemical perturbation49. In these experiments, cell state may transition under complex kinetics. 

To investigate the utility of SCMER in studying cellular responses, we applied it on single-cell data 

derived from dexamethasone (DEX) treated A549 lung adenocarcinoma cell line38. As reported in the 
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original publication, the 1,429 cells sampled at 0, 1, and 3 hours after the DEX treatment formed a 

continuum in the transcriptomic space (Fig. 5a), indicating heterogeneous responses of the cell 

population. After running SCMER on the sci-RNA-seq data, 80 genes were selected, with the manifold 

and treatment states largely preserved (Fig. 5b).  

We inferred TF activities based on motif enrichment50 in the chromatin accessibility (sci-ATAC-seq) data 

co-assayed on the same set of cells38 (Methods, Fig. 5c). Among the top 50 highly variable TFs 

(Supplementary Figure 8a), NR3C1, the primary target of DEX38, had the most prominently increasing 

activity level over treatment time. Other TFs such as FEV51 and the ETS family52, also targets of DEX, 

had decreasing activity levels. 

We then correlated the expression levels of the genes selected by SCMER with the activity levels of the 

top TFs. We found that FKBP5, GALNT18, NRCAM, etc. were positively correlated with NR3C1, while 

CYP24A1, COL5A2, etc. were negatively correlated (Supplementary Table 7, Supplementary Figure 

8). In particular, FKBP5, a factor in the negative feedback loop of glucocorticoid receptor response and 

regulator of immune processes53,54, had the highest positive correlation (
 � 0.355) in the whole 

transcriptome; while CYP24A1, which regulates multiple metabolism processes55, was the most negative 

(
 � �0.365). Cells of high FKBP5 expression levels came mostly from 1 and 3 hours (Fig. 5d), with 

matched polarized distributions in the RNA and the ATAC embeddings (Fig. 5g). Similar patterns were 

observed between cells of high and those of low CYP24A1 expression levels (Fig. 5f,i).  

Interestingly, SCMER also selected a group of genes uncorrelated with prominent TF activities (Fig. 5j, 

Supplementary Figure 8). Among them were MKI67 (e.g., 
 � �0.005 with NR3C1) (Fig. 5e,h), which 

encodes proliferation marker protein Ki-67, and other cell-cycle genes such as CENPF, TOP2A, RYBP, 

MLH3, etc. Pathway analysis confirmed that these genes are highly enriched in cell proliferation 

pathways (Supplementary Table 8), indicating that an appreciable fraction of cells continued 

proliferating despite the treatment. It is not surprising that the levels of these genes were uncorrelated 
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with chromatin state changes, as it has been shown that cell cycling status has little direct effect on 

chromatin accessibility56. Also among uncorrelated were several cancer cell stemness marker genes43 such 

as ACTG1, TSC22D1, and FN1, which may indicate that a fraction of cancer cells maintained their 

stemness during the course of the treatment. These genes would have been missed by a DE analysis 

supervised by the treatment time.  

Taken together, our results demonstrated the superior power of SCMER in discovering features associated 

with heterogeneous cellular state change in the context of perturbation experiments. 

3.6 SCMER ACHIEVES CROSS-MODALITY FEATURE MAPPING 

One challenge in applying scRNA-seq for cell-typing is that expression levels of mRNAs can differ 

substantially from those of homologous proteins, due to post transcriptional modifications57. Although 

performing multi-omics assays may be the ultimate solution, they are currently associated with higher 

cost and lower throughput. Thus, rather than simply selecting the homologous mRNAs, it is beneficial to 

identify the set of genes whose expression levels maximally represent cellular diversity at the protein 

level. This capability can be important for designing targeted, cost-effective assays for preclinical and 

clinical applications. SCMER is ideally suited for such a purpose, as it allows selecting features in one 

modality while preserving manifold in another modality.  

We ran SCMER on a CITE-seq dataset containing 14,468 bone marrow mononuclear cells (BMNC)39.  

The protein manifold based on 25 markers was utilized to “supervise” the selection of mRNAs 

(Methods). CITE-seq, which co-assays mRNA and protein markers from the same set of cells, is ideal for 

obtaining the optimal mapping between mRNAs and proteins (Fig. 6a,b).  

As shown, the mRNA expression levels of genes homologous to the protein markers, such as CD4 (a Th 

cell marker) and NCAM1 (CD56, an NK cell marker) offered low power in delineating the corresponding 

cell types (Fig. 6d,e). Some markers, e.g., CD45RA (B cells and naïve T cells) and CD45RO (memory T 
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cells) are isoforms of the same gene, PTPRC. Consequently, T cell subtypes were less distinguishable in 

the RNA space than in the protein space (Fig. 6b). The differences among CD8 T cell subtypes were even 

bigger than the differences between CD4 and CD8 T cells.  

SCMER selected a set of genes that best preserved the diversity at the protein-level, notably the 

continuum among naïve CD8 T cells, memory CD8 T cells, and effector CD8 T cells (Fig. 6c). It 

identified genes that are non-homologous to the protein markers but better represent the protein level 

difference, for example, GPR183, KLRF1, CD79B, and S100A4 for CD4, CD56, CD45RA, and CD45RO, 

respectively (Fig 6d,f). On the other hand, the SCMER result appeared to better delineate progenitor cells 

than the protein markers, which demonstrates a strength of integrating complementary modalities.  

Similar conclusions were drawn when applying SCMER on another smaller PBMC CITE-seq dataset40 

with 10 protein markers (Supplementary Result 3).  

Importantly, the genes selected by SCMER from one donor (14,468 cells) appeared to preserve the cell 

diversity in another donor (16,204 cells) (Supplementary Figure 10e-f), which validated the 

applicability of SCMER in designing targeted panels for populational level testing. 

4 DISCUSSION 

SCMER was designed to meet an important need in single-cell molecular data analysis, to sensitively 

identify non-redundant features that delineate both common cell lineages and rare cellular states ignored 

by current approaches. It provides an ab initial approach for discovering novel genes and features in high 

dimensional datasets, designing cost-effective assays for potential clinical applications, and assisting 

multi-modality integration of gene expression, proteins, and other features.  

SCMER does not require clusters or trajectories and is not affected by uncertainties in clustering or 

trajectory inference. It explores alternative explanations via feature selection and reports the most salient 
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features representing different facets of cells and underlying molecular activities. As a result, on datasets 

involving hematopoiesis, lymphogenesis, tumorigenesis, and drug resistance and response, SCMER 

identified features representing major cell types, rare cell populations (RCPs), continuous cell states, and 

multicellular programs. In our study, it prevailed existing unsupervised methods and often performed 

better than or comparably to the supervised methods when accurate labeling was possible 

(Supplementary Figure 11). Moreover, SCMER can handle batch effects by treating batches as a 

stratum, and finding a consensus set of features that preserve the manifold in respective batches 

(Methods). In that manner, it will prioritize genes contributing to biological but not technical variances. 

SCMER can run in various supervised modes. It can accept a manifold from a different modality, for 

example, selecting RNA features under the guidance of a protein manifold (Supplementary Result 3). It 

can fix features preselected by users and find the best “partner” features (Supplementary Result 4) or 

select features from a shortlist (Supplementary Result 5). The framework appears effective on cell line 

and patient data generated by various technologies, including scRNA-seq and mass cytometry41 

(Supplementary Result 6). This type of integrative analysis can potentially be extended to other 

modality combinations such as scRNA with scATAC, or mRNA with miRNA. 

SCMER is an efficient method based on the orthant-wise limited memory quasi-Newton (OWL-QN) 

algorithm31. On a dataset with 10,000 cells and 2,000 candidate features, it typically converges in 20 to 40 

iterations, which takes 5 to 10 minutes on a desktop computer equipped with a 3.20GHz 6-core Intel Core 

i7-8700 CPU. GPU acceleration is also supported, and the time consumption is halved with a middle-end 

NVidia GTX 960M GPU on a laptop computer with a 2.7GHz 4-core Intel Core i7-5700HQ CPU. 

Because SCMER detects informative features that represent much wider and more complex biological 

processes than current methods, we expect it to be of immediate interest in projects producing large 

numbers of unsorted cells, such as the Human Cell Atlas58, the Human BioMolecular Atlas Program 

(HuBMAP)59, the Precancer Atlas60 and the Human Tumor Atlas Network61. It will be beneficial in 
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various scenarios including biomarker discovery and clinical assay designing. As a first-of-its-kind 

method designed for manifold preserving feature selection on biomedical data, it can potentially be 

broadly applied to non- single-cell data, for example, bulk RNA expression29, copy number aberration62, 

and genetic and drug screening data in large cohort studies such as TCGA63, GTEx64, Depmap65, CTRP66, 

etc. 

5 METHODS 

5.1 CELL-CELL SIMILARITY 

SCMER is inspired by three methods: Stochastic Neighbor-Preserving Feature Selection (SNFS)67, t-

distributed stochastic neighbor embedding (t-SNE)27 and Uniform Manifold Approximation and 

Projection (UMAP)28. 

t-SNE is one of the most widely used method for data embedding. For a dataset � � ���� with � cells 

and � features, the similarity of a cell � to another cell � is defined as 

��� � exp ����� � ����/2�� ∑ exp"�#�� � ��#�/2��$�	�

, 
which comprises a cell-cell similarity matrix � � ����. � is a scaling factor. It creates an '-dimensional 

embedding � � ���
 . It calculates another cell-cell similarity matrix � � ���� for �, whose entries are 

(�� � �1 * �+� � +��� ��∑ "1 * #+� � +�#�$���	�

. 
The cost function is defined as the Kullback-Leibler (KL) divergence of � and �, formally 

, � -."�#�$ � / / ��� log ���(��
��

. 
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Because UMAP is more sensitivity to both global relationship between cell groups and local relationship 

within cell groups29, we borrowed a part of the UMAP formulation, i.e.,  

��� � exp3�3��� � ��� � 4�5/��5∑ exp"�"#�� � ��# � 4�$/��$�	�

, (�� � 31 * 3�+� � +�� � 6�5/��5��∑ "1 * "#+� � +�# � 6�$/��$���	�

, 
where 4� � min��� � ��� and 6� � min�+� � +��.The scaling factor �� is chosen such that 

∑ exp3�3��� � ��� � 4�5/��5� � log� 	, which may be viewed as constructing a soft nearest neighbor 

graph. We default it to 100 in our experiments. Similar to UMAP, setting it in the range 10 to 1,000 gives 

very similar results28. 

5.2 MARKER SELECTION BY ELASTIC NET 

Different from t-SNE and UMAP, instead of allowing � to be an arbitrary matrix, we require each column 

of � to be directly taken from a column of �, i.e., to select a feature. To formally model this procedure. 

We use a vector � � �� to indicate the selection of the features, where 0 means unselected, and set 

� � ��, 
which set all unselected features to zero in �. In terms of calculating the distances, zeroing out the 

columns is effectively discarding them. Thus, the definition of � is unchanged. Ideally, to select ' 

features, we optimize 

min



, subject to #�#� � ', 
where #�#� is the @�-pseudo-norm, i.e., the number of nonzero entries. However, this question is known 

to be NP-hard, whose determination requires checking all the ��'  possibilities. Thus, we fall back to @�-

norm, the convex approximation of @�-pseudo-norm, as in 

min



, * λ#�#�, 
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where @�-norm #�#� � ∑ |C�|�  and D is the strength of the regularization. We denote the loss function as 

.. The number of chosen features decreases with larger D. Thus, for a given ', we use a binary search to 

find a D. Due to limitations of precision, the specific ' may not always be achievable. In that case, we 

allow for a few more features to be selected, and discard those that are assigned with the lowest weights 

(Supplementary Note 2). In the result, the features who have nonzero weights in � are considered 

selected. The specific weight is not used in downstream analysis (Supplementary Note 2).  

The cost, , � -."�#�$, is a robust indicator of whether the manifold is successfully retained. A typical 

range of , is 2.0 – 4.0 when the manifold is reasonably retained. More features (i.e., smaller @�-

regularization) may be needed if the , is greater than 4.0. 

Our model also allows an additional @�-regularization (ridge) to form an elastic net model. It may improve 

the robustness of the panel by slightly increase the redundancy, so that noise or drop-out in one feature 

has less effects.  

5.3 BATCH EFFECT CORRECTION BY STRATIFICATION 

Batch effect is a common problem in experiments including multiple samples. For SCMER, the samples 

are considered a stratum. In specific, a set of � and � can be constructed for each sample, denoted as ���� 

and ����, while � is shared by all samples. A cost ,��� can thus be calculated for each sample, and 

collectively form a new objective , � ∑ ,���
� . Thus, SCMER will ignore features that identify different 

samples and focuses on features that retain cell-cell similarities in all/most samples. 

5.4 SUPERVISED MULTI-OMICS MODE 

To transfer the manifold in one matrix (�) to another (�E), either between different modalities or subsets 

of features of the same modality, we simply modify the definition of � to � � �E�. With all other 

procedures unchanged, the algorithm is now searching for features in �E that gives a manifold similar to 

that of �. This is also applicable to select features from a shortlist of the original ones. 
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5.5 USING PRESELECTED FEATURES 

In the case that a researcher wants to specify a few features that are known to be useful, we slightly 

modify the regularization to λ#F�#�, where F � diag"I$ is a diagonal matrix. If a feature is considered 

important a priori, the corresponding entry in I is set to 0 to avoid @�-regularization. In this “softly-

supervised” way, SCMER is more likely to select these features, but may still discard some of them if 

they are contradicting with the manifold. Thus, in addition, we provide a “hard-supervised” way where a 

set of features are guaranteed to be kept. Other features are selected to supplement them. 

5.6 ORTHANT-WISE LIMITED MEMORY QUASI-NEWTON ALGORITHM 

Limited-memory BFGS (L-BFGS) is an widely-used optimization algorithm in the quasi-Newton 

methods family68. It approximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with 

J"K�$ memory, where K can be chosen based on computing resources.  

Although L-BFGS usually converge very fast (<20 iterations) for most @�-regularized regression 

problems, it will diverge for @�-regularization, whose partial derivative is undefined at L� | C� � 0 M�N: 

O#�#�OC�

� O ∑ |C�|�OC�

� O|C�|OC�

� P 1 C� Q 0undeRined C� � 0�1 C� S 0T . 
It should be noted that setting the undefined point to 0 (or any other value) at C� � 0 does not solve the 

problem as the discontinuity will also break L-BFGS. A modified version of L-BFGS called orthant-wise 

limited memory quasi-Newton (OWL-QN) algorithm31 solves this problem by introducing pseudo-

gradients and restrict the optimization to an orthant without discontinuities in the gradient. 

L-BFGS optimizer is provided in PyTorch30, in which SCMER is implemented. Based on it, we 

implemented a special case of OWL-QN algorithm for optimization of the model. Two modifications we 

made are as follows. 
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Firstly, we derive the pseudo-gradient, where the pseudo-partial derivative at a discontinuity �� of the 

loss function . � ,"�$ * D#�#� is defined as 

OU�."��$ � VO��."��$ O��."��$ Q 0 and O��."��$ Q 0O��."��$ O��."��$ S 0 and O��."��$ S 00 otherwise T , 
where OU�."��$ is the pseudo partial derivative and O��."��$ is the short hand of 

lim����
���
� T ��
���

Z
����
���

, i.e, the left limit of the partial derivative. Similarly, O��."��$ is the right limit. 

Note that the gradient of ,"�$ is continuous, i.e., O��,"��$ � O��,"��$ � O�,"��$. Thus, 

OU�."��$ � VO�,"��$ � D O�,"��$ � D Q 0O�,"��$ * D O�,"��$ * D S 00 �D [ O�,"��$ [ DT . 
In fact, for ., discontinuities are L� | C� � 0 M�N.  

Secondly, we confine the search area in each quasi-Newton optimization step so that it does not cross any 

discontinuity. Specifically, for our problem where all discontinuities are at 0, when updating �� to ����, 

we reset the value of C�
��� to 0 if sign3C�

���5 \ sign3C�
�5. It constrains the optimization to be in the 

same “orthant” in each iteration.  

5.7 DATA PREPROCESSING 

For the melanoma data34, which is TPM based, after removing ERCC spike-ins, we processed the data 

using the standard workflow of SCANPY69, including quality control (filtering out genes that are detected 

in less than 3 cells), normalization (10,000 reads per cell), log transformation, highly variable genes 

detection (with a loose threshold to filter out noisy genes; not to be confused with the DXG we compared 

with), and scaling.  

For the Ileum Lamina Propria Immunocytes data36, bone marrow data37, and A549 data38, which are UMI 

based, we used the standard workflow of SCANPY, including quality control (filtering out genes that are 
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detected in less than 3 cells), normalization (10,000 reads per cell), log transformation, highly variable 

genes detection, and scaling. We used the stratified approach to suppress batch effect on the Ileum 

Lamina Propria Immunocytes data.  

For protein data in CITE-Seq39,40, we followed the preprocessing of protein data described in the original 

publication. For mRNA data in CITE-seq, we follow the standard workflow of SCANPY, as described 

above, except that we did not filter highly variable genes. We preprocessed protein data as mRNA data, 

without filtering highly variable genes. 

5.8 INFERENCE OF TF ACTIVITIES 

Because TFs tend to bind at sites with cognate motifs, accessibility at peaks with the motifs reflects their 

activity. To estimate transcription factor activity from sci-ATAC-seq data, we use chromVAR50 package 

with the default setting. It quantifies accessibility variation across single cells by aggregating accessible 

regions containing a specific TF motif. The observed accessibility of all peaks containing a TF motif is 

compared with a background set of peaks normalized for known technical confounders. 

5.9 COMPARISON WITH OTHER METHODS 

To identify the highly expressed genes (HXG), we used the standard SCANPY69 workflow. HXG is 

defined by the total reads of a gene across all cells. To identify the highly variable genes, we followed the 

standard scoring method in SCANPY69.  

SCMarker19 provides a gene list without ranks. It has two parameters, � and 	, which affect the number 

of resulting features. Based on our observation, � has a minor effect on the result. Thus, we fixed � � 50 

and tested 	 from 10 to 1,200 to create feature gene lists of various sizes. 

We ran Monocle17 in unsupervised and supervised manners. For the supervised run, the labels were used 

directly. The trajectory was inferred using clusters/labels and pseudo-time is calculated. Genes were 
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ranked by the degree they are explained by functions (which were fitted with cubic splines) of pseudo-

time. For the unsupervised run, we clustered the cells and visually confirmed the clusters are concordance 

with the labels. 

We ran RankCorr12 in both supervised and unsupervised manner. For the supervised run, we used the 

label from the data directly. For the unsupervised run, we used the Leiden algorithm70 for clustering 

which is the recommended method in SCANPY. Default parameters were used, and the clusters are 

visually checked that they are reasonable. 

For random results, we randomly selected gene sets of given sizes. Reported are mean performance and 

the critical level of statistically significantly better (or worse) than random as defined by single-sample 

one-sided z-test at 5% significance level.  

6 ADDITIONAL INFORMATION 

6.1 ETHICS APPROVAL AND CONSENT TO PARTICIPATE 

Not applicable in this study. 

6.2 CONSENT FOR PUBLICATION 

Not applicable in this study. 

6.3 AVAILABILITY OF DATA AND MATERIAL 

The open source implementation of SCMER available at https://github.com/KChen-lab/SCMER under 

the MIT License. Scripts for reproducing all the results are also included. All original datasets are 

accessible through the original publications34–41. 
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8 FIGURE LEGENDS 

Fig. 1: The SCMER approach and its unique strength. 

(a) Workflow of SCMER. SCMER selects the features that perserve the manifold from a single-cell 

omics dataset ]. Features can be selected from either � or another co-assayed omics �E. Vector ^ 

indicates the selection. � is the dataset after feature selection. � and � are cell-cell similarity matrices 

for � and �, respectively. 

(b) Applications of SCMER. SCMER selects features that preserve the manifold and retain inter- and 

intra-cluster diversity, and thus can be applied to discover rich molecular pathways, integrate modalities, 

and design customized DNA/RNA/antibody panels of restricted sizes. 

(c) Capabilities of SCMER compared with mainstream label/cluster-based differential expression (DE) 

analysis methods and correlation-based methods. The hypothetical branching trajectories contains 

common progenitors (Pro), precursors (PreA, PreB), and mature cells (A, B). 

 

Fig. 2: Results of the data of melanoma patients. 

(a) UMAP embedding of the dataset without feature selection. (Macro: macrophages, Endo: endothelial 

cells, CAF: cancer associated fibroblasts, Unres: unresolved cells; labels are in the same color of dots 

representing cells.) 

(b) UMAP of the dataset using SCMER selected genes. 

(c) Recall of gene sets for SCMER, scMarker, Monocle, RankCorr, highly expressed genes (HXG), 

highly variable genes (HVG), principal component analysis (PCA), and differentially expressed genes 

(DEG, supervised). X-axis is number of selected genes and Y-axis is number of covered gene sets. A gene 

set is recalled when at least one gene in the set is selected. Methods recalled more gene sets with fewer 

genes are of better performance. “Random” shows the expected number of gene sets for randomly 
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selected markers. The area corresponds to 1.645 _ standard deviation on each side. Results above the 

area is significantly better than random (� S  0.05 for one sided z-test). 

(d-f) Expression of genes that show intra-cluster gradients. 

(g-i) Overall Kaplan-Meier survival curve for selected markers in TCGA SKCM. High and low include 

patients in above and under 33% percentile, respectively. Each group includes � � 151 patients. 

 

Fig. 3: Results of the ileum lamina propria immunocytes data. 

(a) UMAP embedding of the original dataset (List of abbreviations: Supplementary Table 14). 

(b) UMAP embedding of the same dataset on genes selected by SCMER. 

(c-f) Examples of expression level of genes selected by SCMER that (c) distinguish major cell types and 

(d) subtypes, (e) are transcription factors regulating different cell types, and (f) show gradual changes 

among cell states. 

(g) Expression level of DUSP1. See Supplementary Figure 4 for DUSP2 and DUSP4. 

(h) Distribution of expressions in major cell types of genes above. 

(i) Recall of gene sets for SCMER, scMarker, Monocle, HXG, HVG, PCA, and DEG, similar to Fig. 2c. 

 

Fig. 4: Results of the bone marrow hematopoiesis data. 

(a) UMAP embedding of the original dataset (List of abbreviations: Supplementary Table 14).  

(b) UMAP embedding of the dataset on SCMER selected genes. 

(c) Recall of gene sets for SCMER, scMarker, Monocle, HXG, HVG, PCA, and DEG, similar to Fig. 2c. 
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(d) Activity of selected markers. Arrows are drawn for a visual reference for the developmental 

processes. 

 

Fig. 5: Results of the A549 lung cancer cell line data. 

(a-c) UMAP embedding of (a) the original sci-RNA-seq dataset, (b) the sci-RNA-seq dataset on SCMER 

selected markers, and (c) the sci-ATAC-seq peak dataset. 

(d-i) Expression of selected genes show in (d-f) RNA space and (g-i) ATAC space. ATAC space only 

includes co-assayed cells. 

(j) Heatmap of expression of selected genes and motif-based activity of highly variable transcription 

factors (TFs). (Uncor: uncorrelated, Pos: positively correlated, Neg: negatively correlated, with regard to 

NR3C1 and NR3C2.) ETV3 and ETV4 are in the ETS transcription factor family. 

 

Fig. 6: Results of the CITE-seq bone marrow mononuclear cells data. 

(a-c) UMAP embedding of original dataset using (a) protein, (b) genes, and (c) SCMER selected genes. T 

cells and Progenitor cells [HSC, LMPP (lymphoid-primed multipotent progenitors), GMP, and Progenitor 

of B, Mk (megakaryocyte), RBC, and DC cells], are highlighted for better visual identification. Fully 

annotated cell types are shown in Supplementary Figure 10. 

(d-f) Levels of representative (d) proteins, (e) genes, and (f) SCMER selected genes. 
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