

1 **Disease related mutations in PI3K γ disrupt regulatory C-**

2 **terminal dynamics and reveals a path to selective inhibitors**

3 Manoj K Rathinaswamy¹, Zied Gaieb², Kaelin D Fleming¹, Chiara Borsari³, Noah J
4 Harris¹, Brandon E Moeller¹, Matthias P Wymann³, Rommie E Amaro², John E
5 Burke^{1,4%}

6

7 ¹Department of Biochemistry and Microbiology, University of Victoria, Victoria, British
8 Columbia, Canada V8W 2Y2

9 ²Department of Chemistry and Biochemistry, University of California San Diego, La
10 Jolla, California, USA, 92093

11 ³University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058 Basel,
12 Switzerland

13 ⁴Department of Biochemistry and Molecular Biology, The University of British Columbia,
14 Vancouver, British Columbia V6T 1Z3, Canada

15 Running title: Dynamic regulation and inhibition of PI3K γ

16 %To whom correspondence should be addressed: John E. Burke

17 Tel: 1-250-721-8732, email: jeburke@uvic.ca

18

19 Keywords: PI3K, PI3K γ , PIK3CG, hydrogen exchange, HDX-MS, molecular dynamics,
20 protein dynamics, allosteric, kinase inhibitor

21

22

23 **Abstract**

24 Class I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular
25 functions, with the p110 γ subunit playing a key role in immune signalling. PI3K γ is a key
26 factor in inflammatory diseases, and has been identified as a therapeutic target for
27 cancers due to its immunomodulatory role. Using a combined biochemical/biophysical
28 approach, we have revealed insight into regulation of kinase activity, specifically defining
29 how immunodeficiency and oncogenic mutations of R1021 in the c-terminus can
30 inactivate or activate enzyme activity. Screening of small molecule inhibitors using HDX-
31 MS revealed that activation loop binding inhibitors induce allosteric conformational
32 changes that mimic those seen for the R1021C mutant. Structural analysis of clinically
33 advanced PI3K inhibitors revealed novel binding pockets that can be exploited for further
34 therapeutic development. Overall this work provides unique insight into the regulatory
35 mechanisms that control PI3K γ kinase activity, and shows a framework for the design of
36 PI3K isoform and mutant selective inhibitors.

37

38 **Introduction**

39 The phosphoinositide 3-kinase (PI3K) family of enzymes are central regulators of
40 growth, proliferation, migration, and metabolism in a plethora of cells and tissues [1,2].
41 PI3Ks are lipid kinases that generate the lipid second messenger phosphatidylinositol
42 3,4,5 trisphosphate (PIP₃), which is utilised downstream of cell surface receptors to
43 regulate growth, metabolism, survival, and differentiation [1]. PIP₃, is generated by four
44 distinct class I PI3K catalytic isoforms separated into two groups (class IA [p110 α , p110 β ,

45 p110 δ], and class IB [p110 γ] (sometimes referred to as PI3K α , PI3K β , PI3K δ , and PI3K γ
46 catalytic subunit)). The primary difference between class IA and class IB PI3Ks is their
47 association with specific regulatory subunits, with class IA binding p85-like regulatory
48 subunits encoded by *PIK3R1*, *PIK3R2*, *PIK3R3*, and PI3K γ forming complexes with either
49 a p101 or p84 (also called p87^{PIKAP}) adaptor subunit [3-5]. The four isoforms of class I
50 PI3K have distinct expression profiles, with PI3K α and PI3K β being ubiquitously
51 expressed, and PI3K δ and PI3K γ being mainly localised in immune cells [1]. All PI3K
52 isoforms have been implicated in a variety of human diseases, including cancer,
53 immunodeficiencies, inflammation, and developmental disorders [6-8].

54 The class IB PI3K γ isoform encoded by *PIK3CG* is a master regulator of immune
55 cell function. It plays important roles in the regulation of myeloid (macrophages, mast
56 cells, neutrophils) and lymphoid (T cells, B cells, and Natural Killer cells) derived immune
57 cells [9-11]. PI3K γ regulates immune cell chemotaxis [11-13], cytokine release [14,15],
58 and generation of reactive oxygen species[11], which are important processes in both the
59 innate and adaptive immune systems. The ability of PI3K γ to mediate multiple immune
60 cell functions is controlled by its activation downstream of numerous cell surface
61 receptors, including G-protein coupled receptors (GPCRs)[16], the IgE/Antigen
62 receptor[14], receptor tyrosine kinases (RTKs) [17], and the Toll-like receptors (TLRs)
63 [18,19]. Activation of PI3K γ downstream of these stimuli are potentiated by their p84 and
64 p101 regulatory subunits [5,18,20-22]. This is distinct from the roles of regulatory subunits
65 in class IA PI3Ks, which act as potent inhibitors of p110 catalytic activity[23]. In mouse
66 models, loss of PI3K γ either genetically or pharmacologically is protective in multiple

67 inflammatory diseases including cardiovascular disease [10], arthritis [9], Lupus [24],
68 asthma [15], pulmonary inflammation and fibrosis [25,26], and metabolic syndrome [27].
69 PI3K γ is also a driver of pancreatic ductal adenocarcinoma progression through
70 immunomodulatory effects [28], and targeting PI3K γ in the immune system in combination
71 with checkpoint inhibitors has shown promise as an anti-cancer therapeutic [29,30].

72 Extensive biophysical and biochemical assays have identified many of the
73 molecular mechanisms underlying PI3K γ regulation. The enzyme is composed of five
74 domains, a putative uncharacterized adaptor binding domain (ABD), a Ras binding
75 domain (RBD), a C2 domain, a helical domain, and a bi-lobal lipid kinase domain [31] (Fig.
76 1A). PI3K γ activation is primarily mediated by G β γ subunits downstream of GPCR
77 signalling, through a direct interaction of G β γ with the C2-helical linker of PI3K γ [21].
78 Activation of PI3K γ by G β γ requires a secondary interaction between G β γ and regulatory
79 subunits for physiologically relevant activation [4], with the free p110 γ subunit in cells
80 having no detectable activation downstream of GPCR activation [32]. In addition, PI3K γ
81 activation can be facilitated by Ras GTPases interacting with the RBD [33], with the same
82 interface putatively also mediating activation by Rab8 [19]. Experiments exploring a novel
83 type II-like kinase inhibitor that targets an active conformation of PI3K γ revealed novel
84 molecular aspects of regulation involving the C-terminal regulatory motif of the kinase
85 domain, which is composed of the $\kappa\alpha$ 7, 8, 9, 10, 11, 12 helices that surround the activation
86 loop, and keep the enzyme in an inhibited state [34] (Fig. 1B). The $\kappa\alpha$ 10, $\kappa\alpha$ 11, and $\kappa\alpha$ 12
87 helices are sometimes referred to as the regulatory arch [35]. Inhibition mediated by the
88 C-terminal regulatory motif is conserved through all class I PI3Ks, although for all other

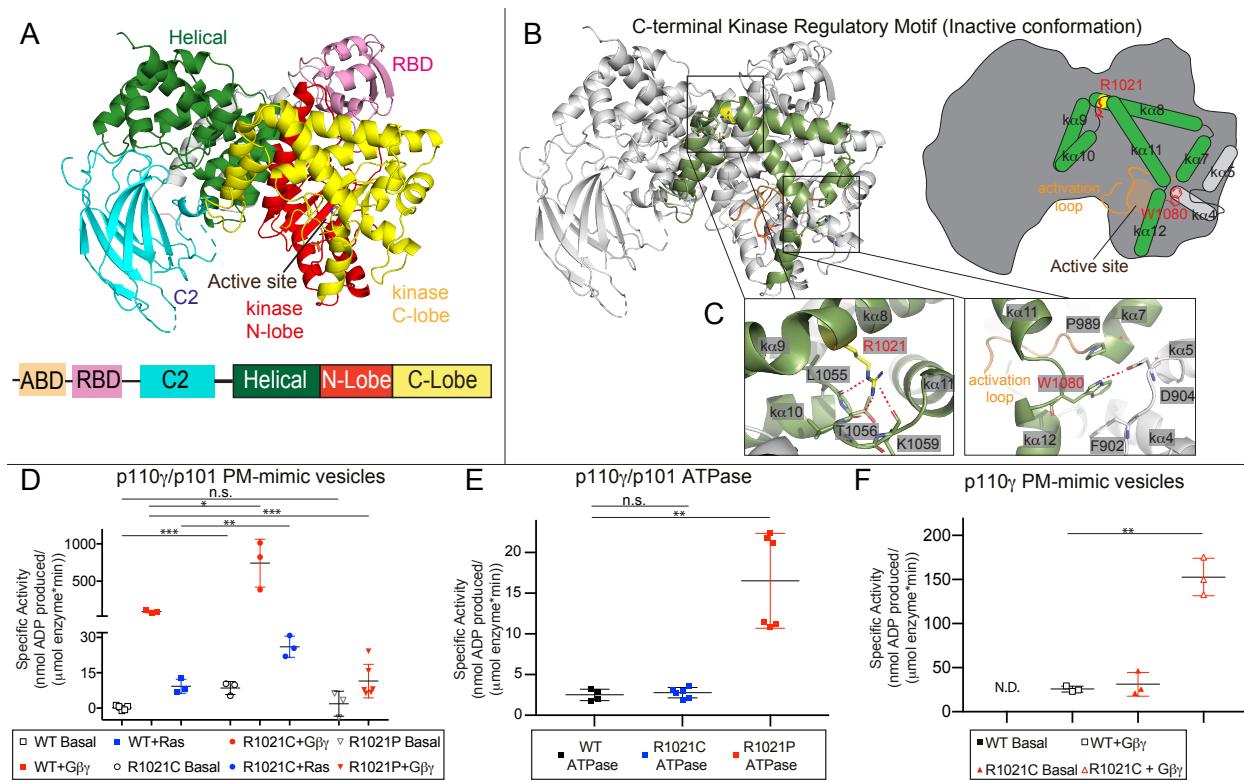
89 isoforms, this inhibited conformation requires interactions with a p85 regulatory subunit
90 (Fig. S1) [8]. In PI3K γ this inhibited conformation is proposed to be maintained by a
91 Tryptophan lock, where W1080 maintains a closed conformation of the membrane
92 binding C-terminal κ 12 helix, leading to an inactive conformation of the activation loop
93 [34] (Fig. 1B+C).

94 Disruption of PI3K signalling by either activating or inactivating mutations and
95 deletions are involved in multiple human diseases. Overexpression of any activated class
96 I PI3K isoform can lead to oncogenic transformation [36], although PI3K α is the most
97 frequently mutated in human disease. Activating PI3K α mutations are linked to both
98 cancer [37,38] and overgrowth disorders [39], with activating PI3K δ mutations linked to
99 primary immuno-deficiencies [40-42]. A high proportion of these activating mutations
100 cluster to the C-terminal regulatory motif of PI3Ks. Multiple PI3K γ mutations have been
101 identified in cancer patients [43-45], although at a lower frequency than PI3K α mutations.
102 It would be expected that these mutations are activating, although this has not been fully
103 explored. Intriguingly, PI3K γ loss of function mutations in the C-terminal regulatory motif
104 (R1021P, N1085S) have been identified in patients with immunodeficiencies [46,47] (Fig.
105 1B+C). PI3K mediated diseases being caused by both activating and inactivating
106 mutations, highlights the critical role of maintaining appropriate PIP₃ levels for human
107 health.

108 The involvement of activated PI3K signalling in multiple diseases has motivated
109 class I PI3K inhibitor development. There is, however, toxicity effects associated with
110 compounds that target all PI3K isoforms by mechanism-based adverse side effects [48],

111 driving the development of isoform selective inhibitors. These efforts have led to multiple
112 clinically approved inhibitors of PI3K α and PI3K δ [49-51]. The critical role of PI3K γ in
113 inflammation and the tumour microenvironment has stimulated development of PI3K γ
114 specific inhibitors. Two main strategies for generating PI3K γ selective ATP-competitive
115 inhibitors have been established: i) targeting PI3K γ specific regions outside of the ATP
116 binding pocket to reach regions not conserved among PI3K isoforms [52,53], and ii)
117 targeting selective PI3K γ conformational changes [34]. Intriguingly, the conformational
118 selective PI3K γ inhibitors appear to target its putatively activated conformation.

119 The parallel discovery of disease linked mutations in the C-terminal regulatory
120 motif, and conformational selective PI3K γ inhibitors that cause altered dynamics of the C-
121 terminus led us to investigate the underlying molecular mechanisms. Using a combined
122 biochemical and biophysical approach, we characterized the dynamic conformational
123 changes caused by the loss of function R1021P mutation, as well as a putative oncogenic
124 R1021C mutation identified in Catalogue of Somatic Mutations in Cancer database
125 [COSMIC [45]]. A screen of a number of PI3K γ selective and pan-PI3K inhibitors revealed
126 that many of these molecules induced allosteric conformational changes in PI3K γ . A
127 combined X-ray crystallography and hydrogen deuterium exchange mass spectrometry
128 (HDX-MS) approach showed that inhibitor interactions with the activation loop mediates
129 allosteric conformational changes. Intriguingly, similar conformational changes occurred
130 for both the R1021C mutant and upon binding certain inhibitors, with lipid kinase assays
131 revealing an increased potency of these inhibitors towards the activated PI3K mutant.


132 Overall, this work provides a unique insight into how mutations alter PI3K γ regulation, and
133 pave the way to novel strategies for isoform and mutant selective PI3K inhibitors.

134

135 **Results**

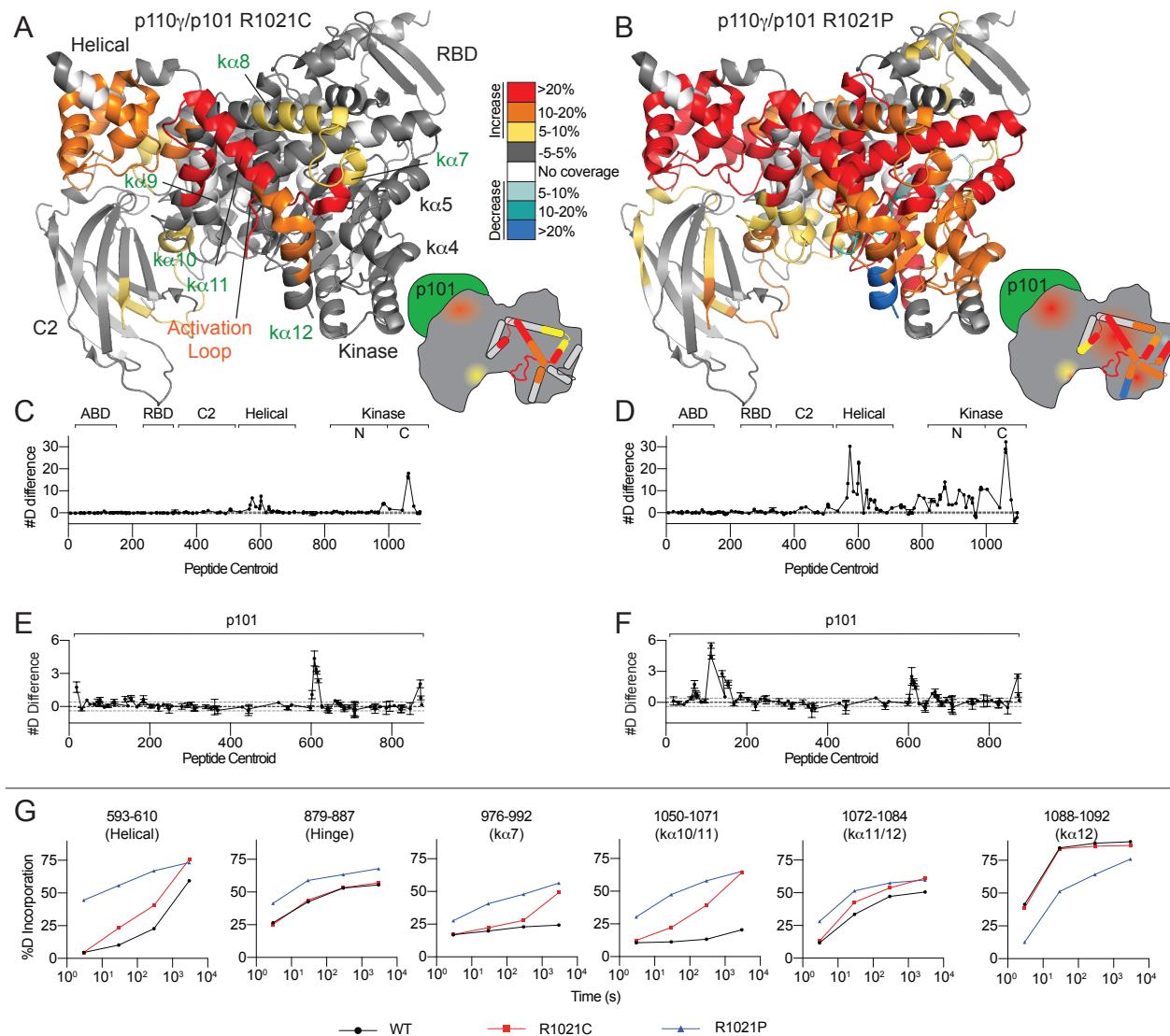
136 *R1021P and R1021C mutations alter the activity of PI3K γ*

137 The recent discovery of an inactivating disease-linked mutation in *PIK3CG* located
138 near the C-terminus of the kinase domain (R1021P) in immunocompromised patients led
139 us to investigate the molecular mechanism of this mutation. Intriguingly, this same residue
140 is found to be mutated in the COSMIC database (R1021C) [45]. To define the effect of
141 these mutations on protein conformation and biochemical activity, we generated them
142 recombinantly in complex with the p101 regulatory subunit. Both the p110 γ R1021C and
143 R1021P complexes with p101 eluted from gel filtration similar to wild-type p110 γ ,
144 suggesting they were properly folded (Fig. S2). However, the yield of the R1021P
145 complex with p101 was dramatically decreased relative to both wild-type and R1021C
146 p110 γ , indicating that this mutation may decrease protein stability, consistent with
147 decreased p110 γ and p101 expression in patient tissues [46]. We also generated the free
148 R1021C p110 γ subunit, however we could not express free p110 γ R1021P, further
149 highlighting that this mutation likely leads to decreased protein stability.

164 **E.** Activity assays testing the intrinsic ATPase activity (ATP conversion in the absence of membrane
165 substrate) for wild type and mutant p110 γ /p101 complexes.

166 **F.** Lipid kinase activity assays testing the activity of WT and R1021C for the free p110 γ catalytic subunit
167 with and without lipidated G β γ . Lipid kinase activity was generated by subtracting away non-specific ATPase
168 activity, for unstimulated WT p110 γ there was no detectable lipid kinase activity above basal ATPase activity
169 (N.D.). For panels D-F, every replicate is plotted, with error shown as standard deviation (n=3-6). Two tailed
170 p-values represented by the symbols as follows: ***<0.001; **<0.01; *<0.05; N.S.>0.05.

171


172 The R1021 residue forms hydrogen bonds with the carbonyl oxygens of L1055,
173 T1056, and K1059 located in or adjacent to the regulatory arch helices $\kappa\alpha$ 10 and $\kappa\alpha$ 11 of
174 PI3K γ (Fig. 1C). Both R1021C and R1021P would be expected to disrupt these
175 interactions, with the R1021P also expected to distort the secondary structure of the $\kappa\alpha$ 8
176 helix. The R1021P has been previously found to lead to greatly decreased lipid kinase
177 activity *in vitro* [46]. To characterize these mutations, we carried out biochemical assays
178 of wild-type, R1021C, and R1021P p110 γ /p101 complexes against plasma membrane-
179 mimic lipid vesicles containing 5% PIP₂. Assays were carried out in the presence and
180 absence of lipidated G β γ subunits, a potent p110 γ /p101 activator. These assays revealed
181 that p110 γ /p101 R1021C was ~8-fold more active than wild-type both basally and in the
182 presence of G β γ (Fig. 1D). The R1021P complex showed greatly decreased G β γ
183 stimulation compared to wild-type. Intriguingly, R1021P showed higher basal ATPase
184 activity (non-productive turnover of ATP) compared to WT, revealing that it still has
185 catalytic activity, but greatly decreased activity on lipid substrate (Fig. 1E). The R1021C

186 mutant also showed a ~8-fold increase in lipid kinase activity compared to wild-type when
187 assaying the free 110 γ subunit (Fig. 1F).

188

189 *R1021P and R1021C cause allosteric conformational changes throughout the regulatory*
190 *C-terminal motif*

191 We carried out hydrogen deuterium exchange mass spectrometry (HDX-MS)
192 experiments to define the molecular basis for why two different mutations at the same site
193 have opposing effects on lipid kinase activity. HDX-MS is a technique that measures the
194 exchange rate of amide hydrogens, and as the rate is dependent on the presence and
195 stability of secondary structure, it is an excellent probe of protein conformational dynamics
196 [55]. HDX-MS experiments were performed on complexes of wild-type p110 γ /p101,
197 R1021C p110 γ /p101, and R1021P p110 γ /p101, as well as the free wild-type and R1021C
198 p110 γ . The coverage map of the p110 γ and p101 proteins was composed of 153 peptides
199 spanning ~93% percent of the exchangeable amides (Table S1).

200

201 **Figure 2. R1021C and R1021P mutations in p110 γ are destabilising, with R1021P leading to global**

202 destabilization and R1021C leading to localised disruption of the C-terminal regulatory W1080

203 Tryptophan 'lock'.

204 **A+B.** Peptides showing significant deuterium exchange differences (>5 %, >0.4 kDa and p<0.01 in an

205 unpaired two-tailed t-test) between wild-type and R1021C (A) and wild-type and R1021P (B) p110 γ /p101

206 complexes are coloured on a model of p110 γ (PDB: 6AUD)[54]. Differences in exchange are coloured

207 according to the legend.

208 **C+D.** The number of deuterium difference for the R1021C and R1021P mutants for all peptides analysed

209 over the entire deuterium exchange time course for p110 γ . Every point represents the central residue of an

210 individual peptide. The domain location is noted above the primary sequence. A cartoon model of the p110 γ
211 structural model is shown according to the legend in panels A+B. Error is shown as standard deviation
212 (n=3).

213 **E+F.** The number of deuteron difference for the R1021C and R1021P mutants for all peptides analysed
214 over the entire deuterium exchange time course for p101. Every point represents the central residue of an
215 individual peptide. Error is shown as standard deviation (n=3).

216 **G.** Selected p110 γ peptides that showed decreases and increases in exchange are shown. The full list of
217 all peptides and their deuterium incorporation is shown in supplementary data 1.

218

219 The R1021C and R1021P mutations led to significant changes in the
220 conformational dynamics of the p110 γ catalytic and p101 regulatory subunits (Fig. 2A-
221 G). The R1021C mutation resulted in increased H/D exchange in the C2, helical and
222 kinase domains of p110 γ . Intriguingly, many of the changes in dynamics of the helical and
223 kinase domains are similar to those observed upon membrane binding [21]. The largest
224 differences occurred in the helices in the C-terminal regulatory motif (k α 7-12) (Fig. 2C).
225 A peptide spanning the C-terminal end of the activation loop and k α 7 (976-992) showed
226 increased exchange, with these changes primarily occurring at later timepoints of
227 exchange (3000 s) (Fig. 2G). This is indicative of these regions maintaining secondary
228 structure, although with increased flexibility. These increases in exchange for the R1021C
229 mutant were conserved for the free p110 γ subunit, although with larger increases in
230 exchange compared to the p110 γ /p101 complex (Fig. S3). Previous HDX-MS analysis of
231 the regulatory mechanisms of class IA PI3Ks has revealed that increased dynamics of
232 the activation loop occurs concurrently with increased lipid kinase activity [40,56-59]. This

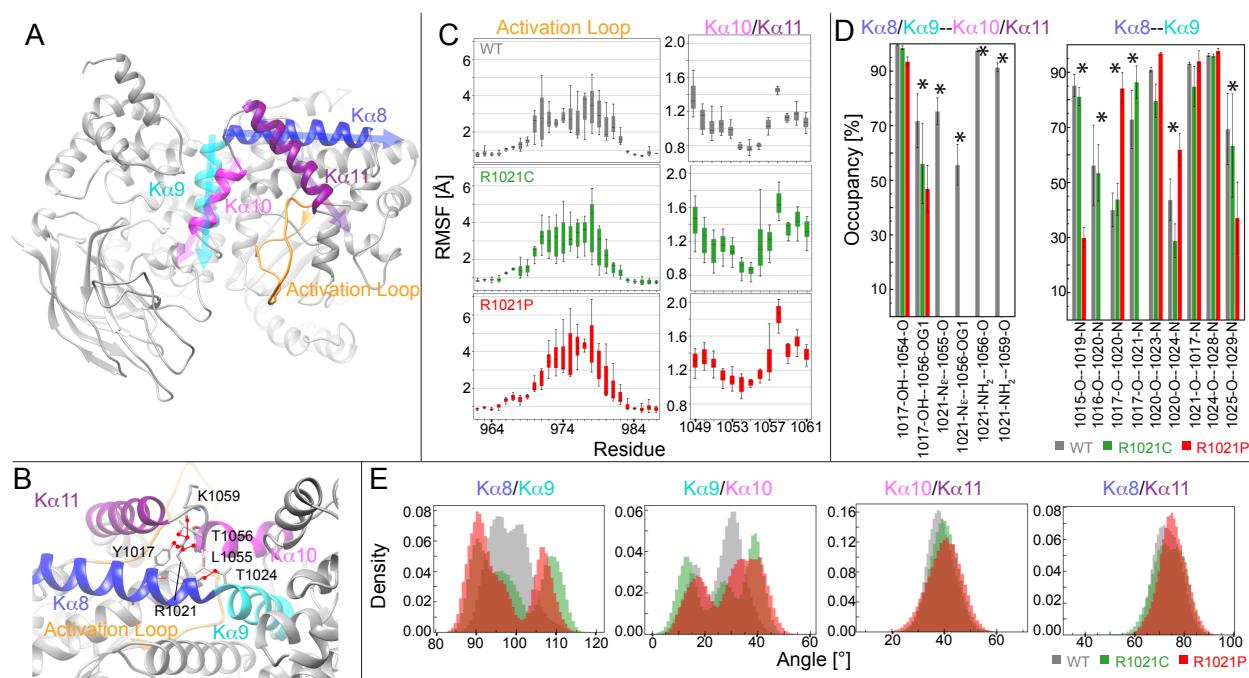
233 highlights a potential molecular mechanism for how the R1021C mutation can lead to
234 increased lipid kinase activity.

235 The R1021P mutation resulted in larger increases in exchange throughout almost
236 the entire C2, helical, and kinase domains (Fig. 2D). Comparing the rates of hydrogen
237 exchange between wild-type, R1021C, and R1021P showed many regions where
238 R1021C and R1021P both caused increased exchange. However, for the majority of
239 these regions the R1021P led to increased exchange at early (3 s) and late timepoints
240 (3000 s) of exchange, indicative that this mutation was leading to significant disruption of
241 protein secondary structure (Fig. 2G). This large-scale destabilization throughout the
242 protein may explain the low yield and decreased kinase activity. The two mutations in
243 R1021C and R1021P both caused increased exchange in the p101 subunit. Peptides
244 spanning 602-623, and 865-877 of p101 showed similar increases in exchange for both
245 R1021C and R1021P, with R1021P also leading to increased exchange in a peptide
246 nearer the N-terminus (102-122) (Fig. 2E+F, S3). As there is no structural model for the
247 p101 subunit, it is hard to unambiguously interpret this data, however, as these may
248 represent increased exchange due to partial destabilization of the complex, our work
249 provides initial insight into the p110 γ contact site on p101.

250

251 *Molecular dynamics of p110 γ R1021C and R1021P mutants*

252 We carried out Gaussian-accelerated Molecular Dynamics (GaMD) simulations of
253 wild-type p110 γ and its R1021C and R1021P variants to provide additional insight into
254 the underlying molecular mechanisms of how these mutations alter lipid kinase activity.


255 Using the crystallographic structure of p110 γ lacking the N-terminus [amino acids 144-
256 1102, PDB: 6AUD [54]], we generated the activation loop and other neighboring loops as
257 described in the methods, removed the co-crystallized ligand, and mutated R1021 to a
258 cysteine and proline, resulting in three systems: WT, R1021C, and R1021P. Three
259 replicas of fully solvated all-atom GaMD simulations were run for each model with
260 AMBER18 achieving a cumulative extensive sampling of ~3, ~4.1, and ~1.5 μ s for WT,
261 R1021C, and R1021P, respectively (Fig. 3A+B).

262 To quantify the effect of mutations on the structural dynamics of p110 γ , we
263 calculated the root-mean-square-fluctuation (RMSF) of residues neighboring the mutation
264 site. RMSF was calculated to determine average flexibility of each residue's C α and C β
265 atoms around their mean position (Fig. 3C). This revealed increased fluctuations in the
266 residues forming the loop between k α 10 and k α 11 in the mutated systems, specifically
267 residues T1056, V1057, and G1058 at the C-terminus of k α 10. Many of these residues
268 participate in hydrogen bonds with R1021 in WT (Fig. 3B).

269 Analysis of the simulations revealed that mutation of R1021 results in disruption of
270 the hydrogen bonding network between R1021 and L1055, T1056, and K1059 in the
271 k α 10-k α 11 region. There were also alterations in the intra and inter helix hydrogen bonds
272 in k α 8, k α 9, k α 10, and k α 11 (Fig. 3D, S4). Hydrogen bonding occupancies between
273 Y1017 and T1056 decreased from 71% in WT to 56% and 45% in the R1021C and
274 R1021P systems, respectively. Examining the k α 8-k α 9 backbone hydrogen bonding at
275 the site of mutation, both mutations showed a disruption between C/P1021 and T1024.
276 Additionally, the proline mutation showed complete disruption of backbone hydrogen

277 bonds at A1016-L1020 and Y1017-P1021, decreased bonding occupancy at K1015-
278 A1019 and N1025-I1029, and increased bonding occupancy of Y1017-L1020 and P1021-
279 T1024. The notable increase in hydrogen bonding disruption in the R1021P compared to
280 R1021C could be responsible for the increased destabilization observed by HDX-MS.

281 To obtain further insights into the dynamic behavior of the C-terminus of the kinase
282 domain and how mutation of R1021 alters conformational dynamics, we monitored the
283 fluctuations of four different angles formed between κ 8, κ 9, κ 10, and κ 11 (Fig. 3E).
284 The simulations revealed increased angle fluctuations in the mutant simulations between
285 κ 8 and κ 9, and κ 9 and κ 10, with a bimodal distribution in the κ 8/ κ 9 angle
286 compared to WT. There was also increased fluctuations in the activation loop in the
287 mutants compared to WT (Figure 3C, Fig. S4).

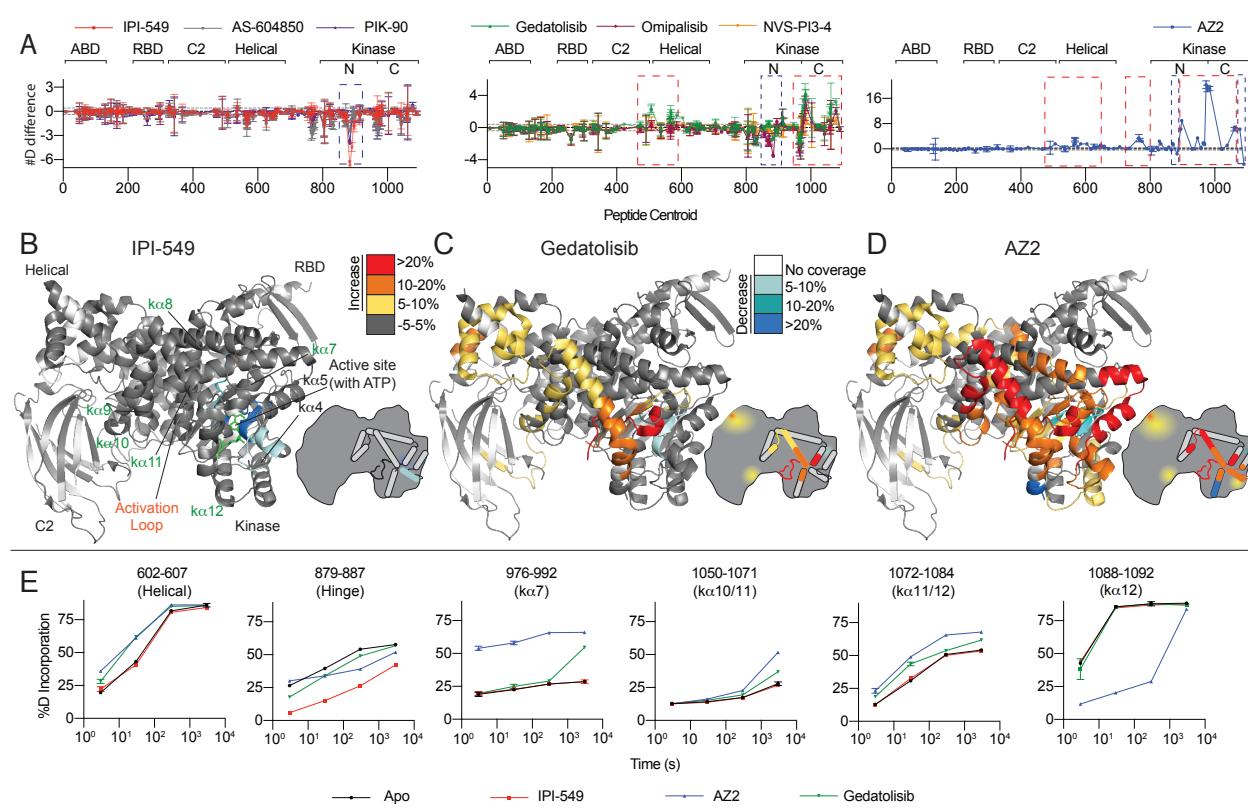
288
289 **Figure 3. Molecular dynamics reveal that the R1021C and R1021P mutations show increased**
290 **instability in p110 γ .**

291 **A.** Model of p110 γ showcasing the regulatory domain's $\kappa\alpha 8$ (995-1023), $\kappa\alpha 9$ (1024-1037), $\kappa\alpha 10$ (1045-
292 1054), and $\kappa\alpha 11$ (1057-1078) helices, and the activation loop (962-988).

293 **B.** A zoomed-in snapshot of R1021 microenvironment showing residues in licorice. Hydrogen bonds with
294 R1021 are drawn as red lines.

295 **C.** RMSF [\AA] of each residue's $\text{C}\alpha$ and $\text{C}\beta$ atoms in the activation loop and the $\kappa\alpha 10/\kappa\alpha 11$ helices,
296 respectively. RMSF values for each atom across replicates are shown as a quantile plot, with error shown
297 as standard deviation (n=3).

298 **D.** The mean and standard deviation of hydrogen bond occupancies between the indicated helices/sets of
299 helices across replicates (n=3). Asterisks indicate significant differences in occupancies.


300 **E.** Inter-angle density distributions across all replicas between $\kappa\alpha 8$, $\kappa\alpha 9$, $\kappa\alpha 10$, and $\kappa\alpha 11$. In all panels, WT,
301 R1021C, and R1021P are colored in grey, green, and red, respectively.

302

303 *Multiple PI3K γ inhibitors lead to allosteric conformational changes*

304 Many of the differences in conformational dynamics observed by HDX-MS for the
305 p110 γ mutants were similar to previously observed allosteric changes caused by
306 cyclopropyl ethyl containing isoindolinone compounds [34]. We performed HDX-MS
307 experiments with seven potent PI3K inhibitors on free p110 γ to define the role of allosteric
308 in PI3K γ inhibition. We analysed inhibitors that were selective for PI3K γ [AS-604850 [9],
309 AZ2 [34], NVS-PI3-4 [15,60], and IPI-549 [53]] as well as pan-PI3K inhibitors [PIK90 [61],
310 Omipalisib [62], and Gedatolisib [63]]. Of these compounds only AS-604850, PIK90, and
311 Omipalisib have been structurally characterized bound to p110 γ . A table summarizing
312 these compounds and their selectivity for different PI3K isoforms is shown in **table S2**.
313 Deuterium exchange experiments were carried out with monomeric p110 γ over 4
314 timepoints of deuterium exchange (3,30,300, and 3000 s). We obtained 180 peptides

315 covering ~89% percent of the exchangeable amides (Table S1). To verify that results on
316 the free p110 γ complex are relevant to the physiological p110 γ /p101 complex, we also
317 carried out experiments with the p110 γ /p101 complex with Gedatolisib and IPI-549, with
318 the free p110 γ showing almost exactly the same differences as seen for the p110 γ /p101
319 complex (Fig. S5).

320
321 **Figure 4. HDX-MS reveals that different classes of PI3K inhibitors lead to unique allosteric**
322 **conformational changes.**

323 **A.** The number of deuteron difference for the 7 different inhibitors analysed over the entire deuterium
324 exchange time course for p110 γ . Every point represents the central residue of an individual peptide. The
325 domain location is noted above the primary sequence. Error is shown as standard deviation (n=3).
326 **B-D.** Peptides showing significant deuterium exchange differences (>5%, >0.4 kDa and p<0.01 in an
327 unpaired two-tailed t-test) between wild-type and IPI-549 (B), Gedatolisib (C), and AZ2 (D) are coloured on

328 a model of p110 γ (PDB: 6AUD). Differences in exchange are mapped according to the legend. A cartoon
329 model in the same format as Fig. 1 is shown as a reference.

330 **E.** Selected p110 γ peptides that showed decreases and increases in exchange are shown. The full list of
331 all peptides and their deuterium incorporation is shown in supplementary data 1.

332

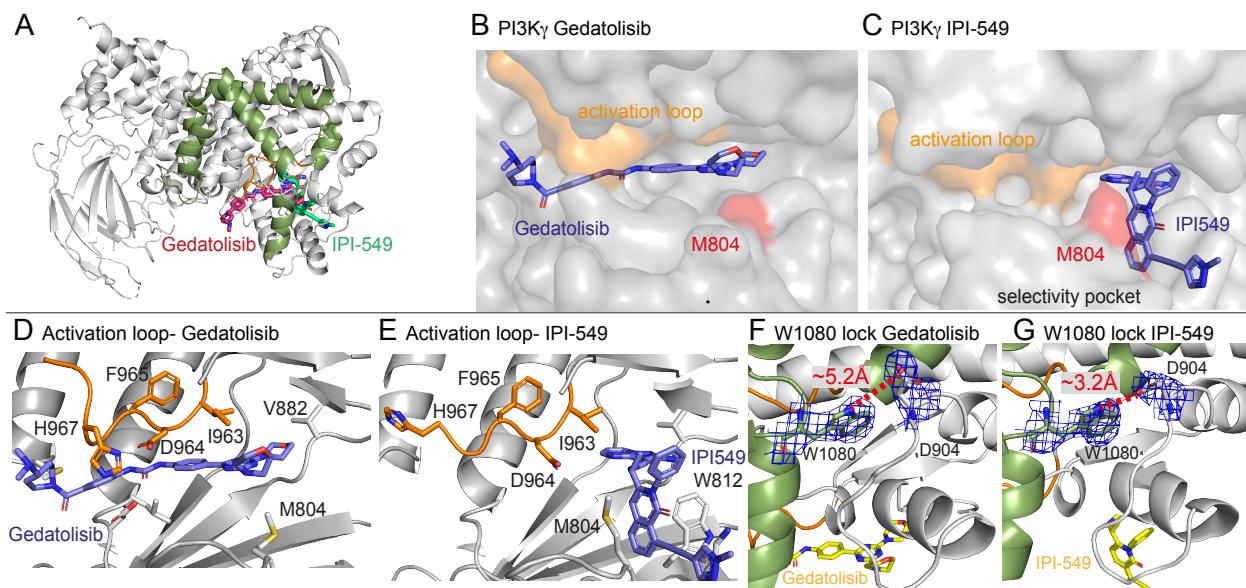
333 Based on the H/D exchange differences observed with inhibitors present, we were
334 able to classify the inhibitors into three broad groups. The first group contains the
335 isoquinolinone compound IPI-549, the imidazo[1,2-c]quinazoline molecule PIK-90 and
336 the thiazolidinedione compound AS-604850 (Fig. 4A+B). These compounds caused
337 decreased exchange near the active site, with the primary region being protected being
338 the hinge region between the N- and C- lobes of the kinase domain (Fig. 4B+E). No (IPI-
339 549, AS-604850) or very small (PIK-90) increases in deuterium incorporation were
340 observed (Fig. 4A, S6), suggesting that there are limited large scale allosteric
341 conformational changes for these compounds.

342 The H/D exchange experiments revealed a second class of inhibitors that showed
343 decreased exchange at the active site, but also significant increases in exchange in the
344 kinase and helical domains (Fig. 4A+C, S6). The second group includes the bis-
345 morpholinotriazine molecule Gedatolisib, difluoro-benzene sulfonamide compound
346 Omipalisib and the PI3K γ -specific thiazole derivative NVS-PI3-4. Binding of these
347 inhibitors caused increased exchange in the helical domain, and multiple regions of the
348 kinase regulatory motif, including $\kappa\alpha 7$, $\kappa\alpha 10$, $\kappa\alpha 11$ and $\kappa\alpha 12$. The peptide covering $\kappa\alpha 7$
349 also spans the C-terminal end of the activation loop. Intriguingly, for the Gedatolisib
350 molecule, the differences in H/D exchange matched very closely to those observed in the

351 R1021C mutant. This suggests that the conformational changes induced by these
352 compounds mimic the partially activated state that occurs in the R1021C mutant.

353 Finally, AZ2 caused large scale increased exposure throughout large regions of
354 the helical and kinase domains (Fig. 4A+D), consistent with previous reports [34]. The
355 same regulatory motif regions that showed increased exchange with Gedatolisib showed
356 much larger changes with AZ2. Importantly, increased exchange was observed at earlier
357 timepoints for AZ2 compared to Gedatolisib (example peptide 976-992 covering the
358 activation loop and $\kappa\alpha 7$), suggesting that AZ2 leads to a complete disruption of secondary
359 structure, with Gedatolisib likely causing increased secondary structure dynamics (Fig.
360 4E).

361 This shows that multiple PI3K inhibitors can cause large scale allosteric
362 conformational changes upon inhibitor binding, however, deciphering the molecular
363 mechanism of these changes were hindered by lack of high-resolution structural
364 information for many of these compounds.


365

366 *Structures of PI3K γ bound to IPI-549, Gedatolisib, and NVS-PI3-4*

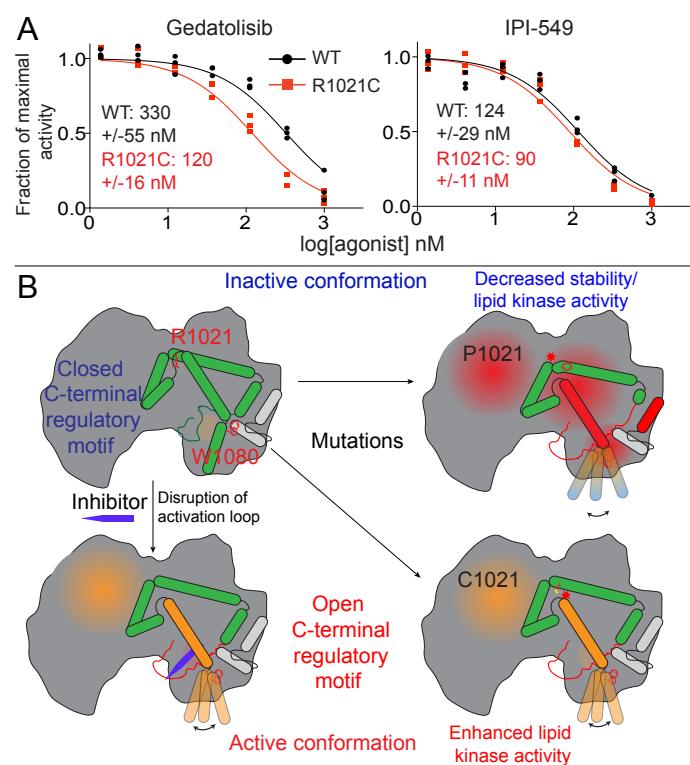
367 To further define the molecular basis for how different inhibitors lead to allosteric
368 conformational changes we solved the crystal structure of p110 γ bound to IPI-549,
369 Gedatolisib, and NVS-PI3-4 at resolutions of 2.55 \AA , 2.65 \AA , and 3.15 \AA , respectively (Fig.
370 5A-C, S6, S8). The inhibitor binding mode for all were unambiguous (Fig. S8).

371 These structures revealed insight into how IPI-549 and NVS-PI3-4 can achieve
372 selectivity for PI3K γ (Fig. S7). All inhibitors formed the critical hydrogen bond with the

373 amide hydrogen of V882 in the hinge, which is a conserved feature of ATP competitive
374 PI3K kinase inhibitors. NVS-PI3-4 leads to opening of a p110 γ unique pocket mediated
375 by a conformational change in K883 (Fig. S7D-H). The opening of K883 is accommodated
376 by it rotating into contact with D884 and T955. This opening would not be possible in
377 p110 α and p110 δ as the corresponding K883 residue (L829 in p110 δ and R852 in p110 α)
378 would clash with the corresponding T955 residue (R902 in p110 δ and K924 in p110 α)
379 (Fig S7I-J). IPI-549 binds with a characteristic propeller shape, as seen for multiple p110 γ
380 and p110 δ selective inhibitors [64]. IPI-549 leads to a conformational change in the
381 orientation of M804, which opens the specificity pocket, primarily composed of W812 and
382 M804 (Fig. 5C, S7). Comparison of IPI-549 bound to p110 γ to the selective inhibitor
383 Idelalisib bound to p110 δ revealed a potential molecular mechanism for p110 γ selectivity.
384 Structure activity analysis of IPI-549 and its derivatives showed a critical role for
385 substitutions at the alkyne position in achieving p110 γ specificity[53]. The *N*-
386 methylpyrazole group in IPI-549 projects out of the specificity pocket towards the $\kappa\alpha$ 1-
387 $\kappa\alpha$ 2 loop. This loop is significantly shorter in p110 δ , with a potential clash with bulkier
388 alkyne derivatives (Fig. S7K-L). However, this cannot be the main driver of specificity, as
389 a phenyl substituent of the alkyne had decreased selectivity of p110 γ over p110 δ , with
390 hydrophilic heterocycles in this position being critical in p110 γ selectivity[53]. A major
391 difference in this pocket between p110 γ and p110 δ is K802 in p110 γ (T750 in p110 δ), with
392 this residue making a pi-stacking interaction with W812. The *N*-methylpyrazole group
393 packs against K802, with a bulkier group in this position likely to disrupt the pi stacking
394 interaction, explaining the decreased potency for these compounds[53].

395

396 **Fig 5: Structures of Gedatolisib and IPI-549 bound to p110 γ**


397 **A.** Overall structure of Gedatolisib (red) and IPI-549 (green) bound to p110 γ .

398 **B-C.** Comparison of Gedatolisib and IPI-549 bound to p110 γ with the activation loop and selectivity pocket
399 highlighted. M804 that changes conformation upon selectivity pocket opening is coloured red.

400 **D-E.** Comparison of the conformation of the activation loop (orange) of p110 γ when Gedatolisib or IPI-549
401 are bound, with residues in the activation loop labelled, specifically D964 and F965 of the DFG motif labelled.
402 **F-G.** The Trp lock composed of W1080 is partially disrupted in the Gedatolisib structure compared to the
403 IPI-549 structure. The interaction between W1080 and D904 is shown, with the distance between the two
404 shown on each structure. The electron density from a feature enhanced map [65] around W1080 and D904
405 in each structure is contoured at 1.5 sigma.

406 One of the most striking differences between the structure of Gedatolisib and IPI-
407 549 bound to p110 γ is the conformation of the N-terminus of the activation loop, including
408 the residues that make up the DFG motif (Fig. 5B, D+E, S8). The majority of the activation
409 loop is disordered in PI3K γ crystal structures, with the last residue being between 967
410 and 969. Gedatolisib makes extensive contacts with the activation loop, with H967
411 immediately following the DFG motif in a completely altered conformation. The interaction

412 of the cyclopropyl motif in AZ2 with the activation loop has previously been proposed to
413 be critical in mediating allosteric conformational changes. In addition to the change in the
414 activation loop, there was a minor perturbation of the W1080 lock, with the Gedatolisib
415 structure revealing a disruption of the hydrogen bond between W1080 and D904, with
416 this bond maintained in the IPI-549 structure (Fig. 5F+G). The C-terminus of the activation
417 loop and $\kappa\alpha 7$ immediately following showed some of the largest changes upon inhibitor
418 binding in HDX experiments. The $\kappa\alpha 7$ helix is directly in contact with W1080, and we
419 postulated that the conformational changes induced in the N-terminus of the activation
420 loop may mediate these changes.

421
422 **Fig. 6. Activating mutations show slight differences in inhibition by allosteric inhibitors and model**
423 **of PI3K γ regulation.**

424 A. IC₅₀ curves for wild-type and R1021C p110 γ /p101 complexes. Assays were carried out with 5% C8 PIP₂
425 / 95% PS vesicles at a final concentration of 1 mg/ml in the presence of 100 μ M ATP and 1.5 μ M lipidated

426 G β γ . PI3K γ concentration was 4 nM for R1021C and 8 nM for WT. Error is shown as standard deviation
427 (n=3)

428 **B.** Model of conformational changes that occur upon mutation of the C-terminal motif and binding of
429 activation loop interacting conformation selective inhibitors.

430

431 *Conformational selective inhibitors show altered specificity towards activating PI3K γ*
432 *mutant*

433 We observed that HDX differences occurring in the R1021C mutant, were very
434 similar to conformational changes observed for p110 γ bound to Gedatolisib, particularly
435 for the peptide spanning 976-992 in the activation loop. As this region is directly adjacent
436 to the inhibitor binding site, we postulated that there may be altered inhibitor binding for
437 the R1021C mutant. We carried out IC₅₀ measurement for wild-type and R1021C
438 p110 γ /p101 with both IPI-549 and Gedatolisib (Fig. 6A). Gedatolisib was roughly three-
439 fold more potent for the R1021C mutant over the wild-type, with no significant difference
440 in IC₅₀ values for IPI-549 compared to wild-type. This provides initial insight into how
441 understanding the dynamics of activating mutations and inhibitors may be useful as a
442 novel strategy towards designing mutant specific inhibitors.

443

444 **Discussion:**

445 Understanding the molecular determinants of how mutations in PI3Ks lead to
446 altered signalling in disease is vital in the design of targeted therapeutic strategies. The
447 PI3K γ isoform is critical to maintain immune system function, and plays important roles in
448 the regulation of the tumour microenvironment [7,66]. Bi-allelic loss of function mutations

449 in PI3K γ are a driver of human immunodeficiencies, and multiple inactivating mutations
450 located in the C-terminal regulatory motif of the kinase domain have been described
451 [46,47]. Initial results linking deletion of PI3K γ to the development of colon cancer [67]
452 have been disputed [68], and recent studies suggest that tumour growth and metastasis
453 is attenuated in PI3K γ deficient mice [30,69] and IPI-549 treated animals [29]. Inhibiting
454 PI3K γ has shown promise as an immunomodulatory agent in generating an anti-tumour
455 immune response [29,30]. There have also been numerous reports of overexpression
456 and single nucleotide variants in PIK3CG linked to cancer development in multiple tissues
457 [69-76]. Oncogenic mutations in PIK3CG are widely distributed, which is distinct from the
458 oncogenic hotspot mutations seen in the helical and kinase domain of PIK3CA. There
459 has been limited analysis of the functional consequences of oncogenic PIK3CG mutants,
460 with the R1021 residue in the regulatory motif of the kinase domain being unique, as
461 mutations of this residue exist in both immunodeficiencies and tumours.

462 Here, we have described the biochemical and biophysical characterisation of both
463 activating and inactivating disease linked R1021 mutations in the regulatory motif of the
464 PI3K γ kinase domain. This has revealed that mutation of R1021 can lead to either kinase
465 activation or inactivation. The R1021 in the $\kappa\alpha 8$ helix is conserved across all class I PI3Ks,
466 with it making a number of hydrogen bonds with residues in $\kappa\alpha 10$ and $\kappa\alpha 11$. Both R1021P
467 and R1021C would lead to disruption of the hydrogen bonds with $\kappa\alpha 10$ and $\kappa\alpha 11$,
468 however R1021P would also lead to disruption of the $\kappa\alpha 8$ helix due to the altered
469 dynamics introduced by the proline residue. HDX-MS results were consistent with this
470 hypothesis, with R1021P leading to large scale conformational changes across the entire

471 protein, with the main disruptions occurring in the helical and kinase domain. Molecular
472 dynamics simulations revealed alterations in the fluctuation of the helices in the C-
473 terminal regulatory motif for R1021P. The $\kappa\alpha 10$ helix in the kinase domain extensively
474 contacts the helical domain, with the altered orientation of this helix potentially revealing
475 a mechanism of increased exchange in the helical domain. The R1021P mutation greatly
476 destabilized the protein, with purification yields being >20-fold lower than wild-type,
477 consistent with greatly decreased p110 γ and p101 levels in patient T cells [46]. Consistent
478 with previous reports we found greatly decreased lipid kinase activity for R1021P,
479 although the enzyme maintained catalytic ability, as it showed greatly increased basal
480 ATPase activity, which is similar to what occurs upon mutation of the W1080 lock or
481 removal of the $\kappa\alpha 12$ helix [34,46]. This suggests a mechanism whereby R1021P mutation
482 leads to large scale destabilization, and locks the enzyme into a lipid kinase inactive form.

483 The R1021C mutation in contrast, had enhanced lipid kinase activity, both basally,
484 and upon G $\beta\gamma$ activation. Increased conformational changes for this mutation were
485 primarily localised to the C-terminal regulatory motif, with additional increased exchange
486 occurring in the helical domain, although not to the same extent as seen in R1021P. Many
487 of these changes in the C-terminal regulatory motif have been previously observed upon
488 membrane binding [21], as well as upon binding to conformational selective inhibitors [34].
489 One of the largest changes in exchange occurred at the C-terminus of the activation loop
490 and the beginning of $\kappa\alpha 7$ which is in contact with the W1080 lock. We propose a model
491 of how mutation of R1021 can lead to either activated or inactivated lipid kinase activity
492 (Fig. 6B). The conformation of the C-terminal regulatory motif is critical in regulating lipid

493 kinase activity, where minor perturbations (R1021C) can lead to disruption of multiple
494 inhibitory contacts allowing for reorientation of the $\kappa\alpha 12$ membrane binding helix and
495 increased lipid kinase activity. For R1021P, this mutation leads to extensive
496 conformational disruption throughout the protein, along with the C-terminal regulatory
497 domain, which results in decreased protein stability and inactivation of kinase activity.
498 Reinforcing this as a general mechanism important for class I PI3K regulation is that
499 mutation of the equivalent R992 in PIK3CA to either Leu or Asn has been found in tumour
500 samples [45].

501 This work corroborates the important role of the C-terminal regulatory motif in
502 controlling PI3K lipid kinase activity. The orientation of this motif is critical in the regulation
503 of all class I PI3Ks, although this is regulated by different molecular mechanisms in p110 α ,
504 p110 β , p110 δ , and p110 γ . The class IA PI3Ks require p85 regulatory subunits to stabilize
505 the C-terminal regulatory motif, with the nSH2 of p85 interacting with and stabilising $\kappa\alpha 10$
506 for all class IA PI3Ks [57,77], and the cSH2 of p85 stabilising $\kappa\alpha 7$, $\kappa\alpha 8$, $\kappa\alpha 11$ and $\kappa\alpha 12$
507 for p110 β and p110 δ [59,78]. The p110 γ isoform is unique in that its C-terminal motif
508 adopts an inhibited conformation in the absence of regulatory proteins. The C-terminal
509 regulatory motif of p110 γ can be post-translationally modified by phosphorylation of $\kappa\alpha 9$
510 (T1024) by protein kinase A decreasing lipid kinase activity [79], while protein kinase C
511 phosphorylates an adjacent area in the helical domain (S582) [80] increasing lipid kinase
512 activity.

513 It has previously been noted that PI3K γ can be selectively targeted through a
514 conformationally selective inhibitor, AZ2 [34]. This was mediated through a cyclopropyl

515 moiety on AZ2, which putatively alters the orientation of the activation loop, leading to
516 disruption of the inhibitory conformation of the C-terminal regulatory motif. Many of the
517 changes observed for this inhibitor were similar to those seen in the R1021C and R1021P
518 mutant. To interrogate if allosteric conformational changes were unique to cyclopropyl
519 containing compounds, we screened a panel of pan-PI3K and PI3K γ selective inhibitors
520 using HDX-MS. HDX-MS analysis of inhibitors bound to PI3K γ revealed distinct dynamics
521 between compounds. The compounds PIK90, IPI549, and AS-604850 only caused
522 decreased exchange at the active site. Comparison of the crystal structures of these
523 compounds [9,61] revealed similar conformation of the activation loop, with limited
524 interaction between the inhibitors and the activation loop. AZ2, containing the cyclopropyl
525 moiety led to large scale conformational changes consistent with previous results [34].
526 Intriguingly, the non-specific inhibitors Gedatolisib and Omipalisib caused increased
527 exchange in many of the same regions that showed enhanced exchange with the R1021C
528 mutant. Comparison of the crystal structures of these inhibitors [62] revealed more
529 extensive interactions with the activation loop, and significant conformational
530 rearrangement of the activation loop. Distinct from the AZ2 compound, neither Gedatolisib
531 and Omipalisib show specificity for PI3K γ over class IA PI3Ks [62,63]. Similar HDX-MS
532 differences were observed for both the R1021C mutant and wild type bound to
533 Gedatolisib. Gedatolisib showed increased potency versus R1021C over wild type PI3K γ ,
534 with a ~3-fold decrease in IC50 values. Altogether, this suggests that R1021C induces a
535 conformation similar to the wild type enzyme bound to Gedatolisib. This provides an

536 intriguing approach for designing oncogenic PI3K specific inhibitors through further
537 optimisation of the ATP competitive inhibitor moieties in the activation loop binding region.

538 Overall, this work provides novel insight into how the C-terminal regulatory motif
539 of PI3K γ regulates lipid kinase activity, how oncogenic and immunodeficiency mutations
540 can disrupt this regulation, and how we can exploit these conformational changes to
541 develop isoform and mutant selective small molecule inhibitors. Further exploration of the
542 dynamic regulation of the C-terminal regulatory motif of PI3Ks by mutations and inhibitors
543 may reveal unique approaches to develop therapeutics for PI3K related human diseases.

544

545 **Methods:**

546 *Expression and Purification of PI3K γ constructs:*

547 Full length monomeric p110 γ (WT, R1021C) and p110 γ /p101 complex (WT, R1021C,
548 R1021P) were expressed in Sf9 insect cells using the baculovirus expression system. For
549 the complex, the subunits were co-expressed from a MultiBac vector[81]. Following 55
550 hours of expression, cells were harvested by centrifuging at 1680 RCF (Eppendorf
551 Centrifuge 5810 R) and the pellets were snap-frozen in liquid nitrogen. Both the monomer
552 and the complex were purified identically through a combination of nickel affinity,
553 streptavidin affinity and size exclusion chromatographic techniques.

554 Frozen insect cell pellets were resuspended in lysis buffer (20 mM Tris pH 8.0, 100
555 mM NaCl, 10 mM imidazole pH 8.0, 5% glycerol (v/v), 2 mM beta-mercaptoethanol (β ME),
556 protease inhibitor (Protease Inhibitor Cocktail Set III, Sigma)) and sonicated for 2 minutes
557 (15s on, 15s off, level 4.0, Misonix sonicator 3000). Triton-X was added to the lysate to a

558 final concentration of 0.1% and clarified by spinning at 15,000 g for 45 minutes (Beckman
559 Coulter JA-20 rotor). The supernatant was loaded onto a 5 mL HisTrap™ FF crude
560 column (GE Healthcare) equilibrated in NiNTA A buffer (20 mM Tris pH 8.0, 100 mM NaCl,
561 20 mM imidazole pH 8.0, 5% (v/v) glycerol, 2 mM β ME). The column was washed with
562 high salt NiNTA A buffer (20 mM Tris pH 8.0, 1 M NaCl, 20 mM imidazole pH 8.0, 5% (v/v)
563 glycerol, 2 mM β ME), NiNTA A buffer, 6% NiNTA B buffer (20 mM Tris pH 8.0, 100 mM
564 NaCl, 250 mM imidazole pH 8.0, 5% (v/v) glycerol, 2 mM β ME) and the protein was eluted
565 with 100% NiNTA B. The eluent was loaded onto a 5 mL StrepTrap™ HP column (GE
566 Healthcare) equilibrated in gel filtration buffer (20 mM Tris pH 8.5, 100 mM NaCl, 50 mM
567 Ammonium Sulfate and 0.5 mM tris(2-carboxyethyl) phosphine (TCEP)). The column was
568 washed with the same buffer and loaded with tobacco etch virus protease. After cleavage
569 on the column overnight, the protein was eluted in gel filtration buffer. The eluent was
570 concentrated in a 50,000 MWCO Amicon Concentrator (Millipore) to <1 mL and injected
571 onto a Superdex™ 200 10/300 GL Increase size-exclusion column (GE Healthcare)
572 equilibrated in gel filtration buffer. After size exclusion, the protein was concentrated,
573 aliquoted, frozen and stored at -80°C.

574 For crystallography, p110 γ (144-1102) was expressed in Sf9 insect cells for 72
575 hours. The cell pellet was lysed and the lysate was subjected to nickel affinity purification
576 as described above. The eluent was loaded onto HiTrap™ Heparin HP cation exchange
577 column equilibrated in Hep A buffer (20 mM Tris pH 8.0, 100 mM NaCl, 5% glycerol and
578 2 mM β ME). A gradient was started with Hep B buffer (20 mM Tris pH 8.0, 1 M NaCl, 5%
579 glycerol and 2 mM β ME) and the fractions containing the peak were pooled. This was

580 then loaded onto HiTrap™ Q HP anion exchange column equilibrated with Hep A and
581 again subjected to a gradient with Hep B. The peak fractions were pooled, concentrated
582 on a 50,000 MWCO Amicon Concentrator (Millipore) to <1 mL and injected onto a
583 Superdex™ 200 10/300 GL Increase size-exclusion column (GE Healthcare) equilibrated
584 in gel filtration buffer (20 mM Tris pH 7.2, 0.5 mM (NH₄)₂SO₄, 1% ethylene glycol, 0.02%
585 CHAPS and 5 mM DTT). Protein from size exclusion was concentrated to >5 mg/mL,
586 aliquoted, frozen and stored at -80°C.

587

588 *Expression and Purification of lipidated G $\beta\gamma$:*

589 Full length, lipidated G $\beta\gamma$ was expressed in Sf9 insect cells and purified as described
590 previously[82]. After 65 hours of expression, cells were harvested and the pellets were
591 frozen as described above. Pellets were resuspended in lysis buffer (20 mM HEPES pH
592 7.7, 100 mM NaCl, 10 mM β ME, protease inhibitor (Protease Inhibitor Cocktail Set III,
593 Sigma)) and sonicated for 2 minutes (15s on, 15s off, level 4.0, Misonix sonicator 3000).
594 The lysate was spun at 500 RCF (Eppendorf Centrifuge 5810 R) to remove intact cells
595 and the supernatant was centrifuged again at 25,000 g for 1 hour (Beckman Coulter JA-
596 20 rotor). The pellet was resuspended in lysis buffer and sodium cholate was added to a
597 final concentration of 1% and stirred at 4°C for 1 hour. The membrane extract was clarified
598 by spinning at 10,000 g for 30 minutes (Beckman Coulter JA-20 rotor). The supernatant
599 was diluted 3 times with NiNTA A buffer (20 mM HEPES pH 7.7, 100 mM NaCl, 10 mM
600 Imidazole, 0.1% C12E10, 10mM β ME) and loaded onto a 5 mL HisTrap™ FF crude
601 column (GE Healthcare) equilibrated in the same buffer. The column was washed with

602 NiNTA A, 6% NiNTA B buffer (20 mM HEPES pH 7.7, 25 mM NaCl, 250 mM imidazole
603 pH 8.0, 0.1% C12E10, 10 mM β ME) and the protein was eluted with 100% NiNTA B. The
604 eluent was loaded onto HiTrapTM Q HP anion exchange column equilibrated in Hep A
605 buffer (20 mM Tris pH 8.0, 8 mM CHAPS, 2 mM Dithiothreitol (DTT)). A gradient was
606 started with Hep B buffer (20 mM Tris pH 8.0, 500 mM NaCl, 8 mM CHAPS, 2 mM DTT)
607 and the protein was eluted in ~50% Hep B buffer. The eluent was concentrated in a
608 30,000 MWCO Amicon Concentrator (Millipore) to < 1 mL and injected onto a SuperdexTM
609 75 10/300 GL size exclusion column (GE Healthcare) equilibrated in Gel Filtration buffer
610 (20 mM HEPES pH 7.7, 100 mM NaCl, 10 mM CHAPS, 2 mM TCEP). Fractions
611 containing protein were pooled, concentrated, aliquoted, frozen and stored at -80°C.

612

613

614 *Expression and Purification of Lipidated HRas G12V:*

615 Full-length HRas G12V was expressed by infecting 500 mL of Sf9 cells with 5 mL of
616 baculovirus. Cells were harvested after 55 hours of infection and frozen as described
617 above. The frozen cell pellet was resuspended in lysis buffer (50 mM HEPES pH 7.5, 100
618 mM NaCl, 10 mM β ME and protease inhibitor (Protease Inhibitor Cocktail Set III, Sigma))
619 and sonicated on ice for 1 minute 30 seconds (15s ON, 15s OFF, power level 4.0) on the
620 Misonix sonicator 3000. Triton-X 114 was added to the lysate to a final concentration of
621 1%, mixed for 10 minutes at 4°C and centrifuged at 25,000 rpm for 45 minutes (Beckman
622 Ti-45 rotor). The supernatant was warmed to 37°C for few minutes until it turned cloudy
623 following which it was centrifuged at 11,000 rpm at room temperature for 10 minutes

624 (Beckman JA-20 rotor) to separate the soluble and detergent-enriched phases. The
625 soluble phase was removed, and Triton-X 114 was added to the detergent-enriched
626 phase to a final concentration of 1%. Phase separation was performed 3 times. Imidazole
627 pH 8.0 was added to the detergent phase to a final concentration of 15 mM and the
628 mixture was incubated with Ni-NTA agarose beads (Qiagen) for 1 hour at 4°C. The beads
629 were washed with 5 column volumes of Ras-NiNTA buffer A (20mM Tris pH 8.0, 100mM
630 NaCl, 15mM imidazole pH 8.0, 10mM β ME and 0.5% Sodium Cholate) and the protein
631 was eluted with 2 column volumes of Ras-NiNTA buffer B (20mM Tris pH 8.0, 100mM
632 NaCl, 250mM imidazole pH 8.0, 10mM β ME and 0.5% Sodium Cholate). The protein was
633 buffer exchanged to Ras-NiNTA buffer A using a 10,000 kDa MWCO Amicon
634 concentrator, where protein was concentrated to ~1mL and topped up to 15 mL with Ras-
635 NiNTA buffer A and this was repeated a total of 3 times. GTP γ S was added in 2-fold molar
636 excess relative to HRas along with 25 mM EDTA. After incubating for an hour at room
637 temperature, the protein was buffer exchanged with phosphatase buffer (32 mM Tris pH
638 8.0, 200 mM Ammonium Sulphate, 0.1 mM ZnCl₂, 10 mM β ME and 0.5% Sodium
639 Cholate). 1 unit of immobilized calf alkaline phosphatase (Sigma) was added per
640 milligram of HRas along with 2-fold excess nucleotide and the mixture was incubated for
641 1 hour on ice. MgCl₂ was added to a final concentration of 30 mM to lock the bound
642 nucleotide. The immobilized phosphatase was removed using a 0.22-micron spin filter
643 (EMD Millipore). The protein was concentrated to less than 1 mL and was injected onto
644 a SuperdexTM 75 10/300 GL size exclusion column (GE Healthcare) equilibrated in gel
645 filtration buffer (20 mM HEPES pH 7.7, 100 mM NaCl, 10 mM CHAPS, 1 mM MgCl₂ and

646 2 mM TCEP). The protein was concentrated to 1 mg/mL using a 10,000 kDa MWCO

647 Amicon concentrator, aliquoted, snap-frozen in liquid nitrogen and stored at -80°C.

648

649 *Lipid Vesicle Preparation:*

650 For kinase assays comparing WT and mutant activities, lipid vesicles containing 5% brain

651 phosphatidylinositol 4,5- bisphosphate (PIP2), 20% brain phosphatidylserine (PS), 50%

652 egg-yolk phosphatidylethanolamine (PE), 10% egg-yolk phosphatidylcholine (PC), 10%

653 cholesterol and 5% egg-yolk sphingomyelin (SM) were prepared by mixing the lipids

654 dissolved in organic solvent. The solvent was evaporated in a stream of argon following

655 which the lipid film was desiccated in a vacuum for 45 minutes. The lipids were

656 resuspended in lipid buffer (20 mM HEPES pH 7.0, 100 mM NaCl and 10 % glycerol) and

657 the solution was sonicated for 15 minutes. The vesicles were subjected to five freeze

658 thaw cycles and extruded 11 times through a 100-nm filter (T&T Scientific: TT-002-0010).

659 The extruded vesicles were sonicated again for 5 minutes, aliquoted and stored at -80°C.

660 For inhibitor response assays, lipid vesicles containing 95% PS and 5% C8-PIP2 were

661 used. PS was dried and desiccated as described above. The lipid film was mixed and

662 resuspended with C8-PIP2 solution (2.5 mg/mL in lipid buffer). Following this, vesicles

663 were essentially prepared the same way as described above. All vesicles were stored at

664 5 mg/mL.

665

666 *Lipid Kinase assays:*

667 All lipid kinase activity assays employed the Transcreener ADP2 Fluorescence Intensity
668 (FI) Assay (Bellbrook labs) which measures ADP production. For assays comparing the
669 activities of mutants, final concentrations of PM-mimic vesicles were 1 mg/mL, ATP was
670 100 μ M ATP and lipidated G β γ /HRas were at 1.5 μ M. 2 μ L of a PI3K solution at 2X final
671 concentration was mixed with 2 μ L substrate solution containing ATP, vesicles and
672 G β γ /HRas or G β γ /HRas gel filtration buffer and the reaction was allowed to proceed for
673 60 minutes at 20°C. The reaction was stopped with 4 μ L of 2X stop and detect solution
674 containing Stop and Detect buffer, 8 nM ADP Alexa Fluor 594 Tracer and 93.7 μ g/mL
675 ADP2 Antibody IRDye QC-1 and incubated for 50 minutes. The fluorescence intensity
676 was measured using a SpectraMax M5 plate reader at excitation 590 nm and emission
677 620 nm. This data was normalized against a 0-100% ADP window made using conditions
678 containing either 100 μ M ATP/ADP with vesicles and kinase buffer. % ATP turnover was
679 interpolated from an ATP standard curve obtained from performing the assay on 100 μ M
680 (total) ATP/ADP mixtures with increasing concentrations of ADP using Prism 7. All
681 specific activities of lipid kinase activity were corrected for the basal ATPase activity by
682 subtracting the specific activity of the WT/mutant protein in the absence of
683 vesicles/activators.

684 For assays measuring inhibitor response, substrate solutions containing vesicles,
685 ATP and G β γ at 4X final concentration (as described above) were mixed with 4X solutions
686 of inhibitor dissolved in lipid buffer (<1% DMSO) in serial to obtain 2X substrate solutions
687 with inhibitors at the various 2X concentrations. 2 μ L of this solution was mixed with 2 μ L
688 of 2X protein solution to start the reaction and allowed to proceed for 60 minutes at 37 °C.

689 Following this, the reaction was stopped and the intensity was measured. The raw data
690 was normalized against a 0-100% ADP window as described above. The % inhibition was
691 calculated by comparison to the activity with no inhibitor to obtain fraction activity
692 remaining.

693

694 *Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS):*

695 HDX experiments were performed similarly as described before [40]. For HDX with
696 mutants, 3 μ L containing 13 picomoles of protein was incubated with 8.25 μ L of D₂O
697 buffer (20mM HEPES pH 7.5, 100 mM NaCl, 98% (v/v) D₂O) for four different time periods
698 (3, 30, 300, 3000 s at 20 °C). After the appropriate time, the reaction was stopped with
699 57.5 μ L of ice-cold quench buffer (2M guanidine, 3% formic acid), immediately snap
700 frozen in liquid nitrogen and stored at -80 °C. For HDX with inhibitors, 5 μ L of p110 γ or
701 p110 γ /p101 at 2 μ M was mixed with 5 μ L of inhibitor at 4 μ M in 10% DMSO or 5 μ L of
702 blank solution containing 10% DMSO and incubated for 20 minutes on ice. 40 μ L of D₂O
703 buffer was added to this solution to start the exchange reaction which was allowed to
704 proceed for four different time periods (3, 30, 300, 3000 s at 20 °C). After the appropriate
705 time, the reaction was terminated with 20 μ L of ice-cold quench buffer and the samples
706 were frozen.

707 Protein samples were rapidly thawed and injected onto an ultra-high pressure liquid
708 chromatography (UPLC) system at 2 °C. Protein was run over two immobilized pepsin
709 columns (Tajan, ProDx protease column, PDX.PP01-F32 and Applied Biosystems,
710 Porosyme, 2-3131-00) at 10 °C and 2 °C at 200 μ l/min for 3 min, and peptides were

711 collected onto a VanGuard precolumn trap (Waters). The trap was subsequently eluted
712 in line with an Acquity 1.7- μ m particle, 100 \times 1 mm² C18 UPLC column (Waters), using
713 a gradient of 5–36% B (buffer A, 0.1% formic acid; buffer B, 100% acetonitrile) over 16
714 min. Mass spectrometry experiments were performed on an Impact II TOF (Bruker)
715 acquiring over a mass range from 150 to 2200 m/z using an electrospray ionization source
716 operated at a temperature of 200 °C and a spray voltage of 4.5 kV. Peptides were
717 identified using data-dependent acquisition methods following tandem MS/MS
718 experiments (0.5-s precursor scan from 150–2000 m/z; 12 0.25-s fragment scans from
719 150–2000 m/z). MS/MS datasets were analysed using PEAKS7 (PEAKS), and a false
720 discovery rate was set at 1% using a database of purified proteins and known
721 contaminants.

722 HD-Examiner software (Sierra Analytics) was used to automatically calculate the
723 level of deuterium incorporation into each peptide. All peptides were manually inspected
724 for correct charge state and presence of overlapping peptides. Deuteration levels were
725 calculated using the centroid of the experimental isotope clusters. The results for these
726 proteins are presented as relative levels of deuterium incorporation, and the only control
727 for back exchange was the level of deuterium present in the buffer (62% for experiments
728 with mutants and 75.5% for experiments with inhibitors). Changes in any peptide at any
729 time point greater than both 5% and 0.4 Da between conditions with a paired t test value
730 of p < 0.01 were considered significant. The raw HDX data are shown in two different
731 formats. The raw peptide deuterium incorporation graphs for a selection of peptides with
732 significant differences are shown, with the raw data for all analyzed peptides in the source

733 data. To allow for visualization of differences across all peptides, we utilized number of
734 deuterium difference (#D) plots. These plots show the total difference in deuterium
735 incorporation over the entire H/D exchange time course, with each point indicating a
736 single peptide. The mass spectrometry proteomics data have been deposited to the
737 ProteomeXchange Consortium via the PRIDE partner repository[83] with the dataset
738 identifier PXD021132.

739

740 *X-ray crystallography:*

741 p110 γ (144-1102) was crystallized from a grid of 2 μ l sitting drops at 1:1, 2:1 and 3:1
742 protein to reservoir ratios at 18°C. Protein at 4 mg/mL (in 20 mM Tris pH 7.2, 0.5 mM
743 (NH₄)₂SO₄, 1% ethylene glycol, 0.02% CHAPS and 5 mM DTT) was mixed with reservoir
744 solution containing 100 mM Tris pH 7.5, 250 mM (NH₄)₂SO₄ and 20-22% PEG 4000.
745 Large multinucleate crystals were generated in these drops. Inhibitor stocks were
746 prepared at concentrations of 0.01 mM, 0.1 mM and 1 mM in cryo-protectant solution
747 containing 100 mM Tris pH 7.5, 250 mM (NH₄)₂SO₄, 23% PEG 4000 and 14% glycerol.
748 Inhibitors at increasing concentrations were added to the drops stepwise every 1 hour.
749 After overnight incubation with the inhibitor, single crystals were manually broken from
750 the multi-nucleates and soaked in a fresh drop containing 1 mM inhibitor in cryo-
751 protectant before being immediately frozen in liquid nitrogen.

752 Diffraction data for PI3K γ crystals were collected on beamline 08ID-1 of the
753 Canadian Light Source. Data was collected at 0.97949 Å. Data were processed using
754 XDS [84]. Phases were initially obtained by molecular replacement using Phaser [85]

755 using PDB: 2CHW for the IPI-549 complex [61], and 5JHA for Gedatolisib and NVS-PI3-
756 4 [86]. Iterative model building and refinement were performed in COOT [87] and
757 phenix.refine [88]. Refinement was carried out with rigid body refinement, followed by
758 translation/libration/screw B-factor and xyz refinement. The final model was verified in
759 Molprobity [89] to examine all Ramachandran and Rotamer outliers. Data collection and
760 refinement statistics are shown in Table S3. The crystallography data has been deposited
761 in the protein data bank with accession numbers (PDB: 7JWE, 7JX0, 7JWZ).

762

763 *Molecular Dynamics: Missing loops modelling*

764 The employed crystallographic structures of the p110 γ protein reveal several missing
765 gaps corresponding to flexible loops within range of the ligand-binding site: the activation
766 loop (residues 968-981), and loops connecting the C2 and helical domains (residues 435-
767 460 and 489-497). These missing gaps were modelled as disordered loops using
768 Modeller9.19 [90]. Keeping the crystallographic coordinates fixed, 50 models were
769 independently generated for each system. The wild type (WT), R1021C, and R1021P
770 systems used PDB ID 6AUD [54] with their corresponding mutations in the mutant
771 systems. The alignment used by Modeller between the crystallographic structure
772 sequences and the FASTA sequence of p110 γ (Uniprot ID P48736) were generated using
773 Clustal Omega [91]. The top models were visually inspected to discard those in which
774 loops were entangled in a knot or clashed with the rest of the structure. Lastly, from the
775 remaining models, three were selected for each system to initiate simulations in triplicates.

776

777 *Molecular Dynamics: System preparation*

778 The generated models were prepared using tleap program of the AMBER package [92].
779 The systems were parametrized using the general AMBER force field (GAFF) using
780 ff14sb for the protein [93]. The systems were fully solvated with explicit water molecules
781 described using the TIP3P model [94], adding K⁺ and Cl⁻ counterions to neutralize the
782 total charge. The total number of atoms is 97,861 for WT (size: 116 Å × 95 Å × 94 Å),
783 100,079 for R1021C (size: 116 Å × 95 Å × 94 Å), 97,861 for R1021P (size: 116 Å × 95 Å
784 × 94 Å).

785

786 *Gaussian accelerated Molecular Dynamics (GaMD)*

787 All-atom MD simulations were conducted using the GPU version of AMBER18 [92]. The
788 systems were initially relaxed through a series of minimization, heating, and equilibration
789 cycles. During the first cycle, the protein was restrained using a harmonic potential with
790 a force constant of 10 kcal/mol-Å², while the solvent, and ions were subjected to an initial
791 minimization of 2000 steps using the steepest descent approach for 1000 steps and
792 conjugate gradient approach for another 1000 steps. The full system (protein + solvent)
793 was then similarly minimized for 1000 and 4000 steps using the steepest descent and
794 conjugate gradient approaches, respectively. Subsequently, the temperature was
795 incrementally changed from 100 to 300 K for 10 ps at 2 fs/step (NVT ensemble). Next,
796 the systems were equilibrated for 200 ps at 1 atom and 300K (NPT ensemble), and for
797 200ps at 300K (NVT ensemble). Lastly, more equilibration simulations were run in the
798 NVT ensemble in two steps; all systems were simulated using conventional MD for 50 ns

799 and GaMD for 50ns. Temperature control (300 K) and pressure control (1 atm) were
800 performed via Langevin dynamics and Berendsen barostat, respectively. Production
801 GaMD were simulated for $\sim 3 \mu\text{s}$ for WT, $\sim 4.1 \mu\text{s}$ R1021C, $\sim 1.5 \mu\text{s}$ for R1021P. GaMD is
802 an unconstrained enhanced sampling approach that works by adding a harmonic boost
803 potential to smooth biomolecular potential energy surface and reduce the system energy
804 barriers [95]. Details of the GaMD method have been extensively described in previous
805 studies [95,96].

806

807 *GaMD analysis: Principal component analysis (PCA).*

808 PCA was performed using the `sklearn.decomposition.PCA` function in the *Scikit-learn*
809 library using python3.6.9. First, all simulations were aligned with *mdtraj* [97] onto the same
810 initial coordinates using C α atoms of the kinase domain (residues 726–1088). Next,
811 simulation coordinates of each domain of interest (for example k α 9-k α 10) from all
812 systems (WT, R1021C, and R1021P) and replicas were concatenated and used to fit the
813 transformation function. Subsequently, the fitted transformation function was applied to
814 reduce the dimensionality of each domain's simulation C α coordinates. It is important to
815 note that all systems are transformed into the same PC space to evaluate the simulation
816 variance across systems.

817

818 *GaMD analysis: Angles calculation.*

819 Inter-helical angles were calculated using in-house python scripts along with *mdtraj* [97]
820 as the angle between two vectors representing the principal axis along each helix. Each

821 principal axis connects two points corresponding to the center of mass (COM) of the first
822 and last turn from each helix. For $\kappa\alpha 8$, points 1 and 2 are represented by the COM of
823 residues 1020-1023 and 1004-1007 $C\alpha$ coordinates, respectively. For $\kappa\alpha 9$, points 1 and
824 2 are represented by the COM of residues 1024-1027 and 1034-1037 $C\alpha$ coordinates,
825 respectively. For $\kappa\alpha 10$, points 1 and 2 are represented by the COM of residues 1053-
826 1056 and 1046-1049 $C\alpha$ coordinates, respectively. For $\kappa\alpha 11$, points 1 and 2 are
827 represented by the COM of residues 1062-1065 and 1074-1077 $C\alpha$ coordinates,
828 respectively. Angles were computed at each frame along the trajectories after structural
829 alignment onto the initial coordinates using the $C\alpha$ atoms of the kinase domain (residues
830 726–1088) as a reference.

831

832 *GaMD analysis: Hydrogen bonds calculation.*

833 Hydrogen bonds were calculated using the *baker hubbard* command implemented with
834 *mdtraj*[97] Occupancy (%) was determined by counting the number of frames in which a
835 specific hydrogen bond was formed with respect to the total number of frames and then
836 averaged across replicas.

837

838 *GaMD analysis: Root-mean-square-fluctuations (RMSF).*

839 RMSF was calculated using in-house python scripts along with *mdtraj*[97] RMSF was
840 computed for each residue atom and represented as box plot to show the range of RMSF
841 values across replicas. The trajectories were aligned onto the initial coordinates using the
842 $C\alpha$ atoms of the kinase domain (residues 726–1088) as a reference.

843

844 ***PI3K Inhibitors***

845 Compounds were purchased from companies indicated below in $\geq 95\%$ purity (typical 98%
846 pure). IPI-549[53] was from ChemieTex (Indianapolis, USA, #CT-IPI549); PIK-90 [61]
847 from Axon Medchem (Groningen, The Netherlands, #Axon1362); AS-604850 (PI 3-K γ
848 Inhibitor II, Calbiochem) [9] from Sigma Aldrich (#528108); Gedatolisib (PF-05212384,
849 PKI587) [63] from Bionet (Camelford, UK, #FE-0013); Omipalisib (GSK2126458, GSK458)
850 [62] from LuBioScience GmbH (Zurich, Switzerland, #S2658); NVS-PI3-4 [15,60] and
851 AZg1 (AZ2) [34] from Haoyuan Chemexpress Co., Ltd. (Shanghai, China, #HY-133907
852 and #HY-111570, respectively).

853

854 **Acknowledgements**

855 J.E.B. is supported by a new investigator grant from the Canadian Institute of Health
856 Research (CIHR), a Michael Smith Foundation for Health Research (MSFHR) Scholar
857 award (17686), and an operating grant from the Cancer Research Society (CRS-24368).
858 R.E.A and Z.G. are supported in part by NIH GM132826. M.P.W. is funded by the Stiftung
859 für Krebsbekämpfung grant 341, the Swiss National Science Foundation grant
860 310030_189065, the Novartis Foundation for medical-biological Research grant 14B095;
861 and the Innosuisse grant 37213.1 IP-LS. We appreciate feedback from members of the
862 Burke lab during preparation.

863

864 **Data availability statement**

865 The crystallography data has been deposited in the protein data bank with accession
866 numbers (PDB: 7JWE, 7JX0, 7JWZ). The mass spectrometry proteomics data have been
867 deposited to the ProteomeXchange Consortium via the PRIDE partner repository[83] with
868 the dataset identifier PXD021132. All data generated or analyzed during this study are
869 included in the manuscript and supporting files. Specifically biochemical kinase assay
870 data are included in the source data files.

871

872

873 **References**

874

- 875 1. Bilanges B, Posor Y, Vanhaesebrouck B. PI3K isoforms in cell signalling
876 and vesicle trafficking. *Nat Rev Mol Cell Biol*. Nature Publishing Group; 2019 May
877 20;10:6742.
- 878 2. Madsen RR, Vanhaesebrouck B. Cracking the context-specific PI3K signaling
879 code. *Sci Signal*. American Association for the Advancement of Science; 2020
880 Jan 7;13(613):eaay2940.
- 881 3. Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L. p84, a
882 new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-
883 kinase p110gamma. *Curr Biol [Internet]*. 2005 Mar 29;15(6):566–70. Available
884 from:
885 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15797027
- 886 4. Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J,
887 Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT. The G beta
888 gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor,
889 p101. *Cell*. 1997 Apr 4;89(1):105–14.
- 890 5. Bohnacker T, Marone R, Collmann E, Calvez R, Hirsch E, Wymann M.
891 PI3Kgamma adaptor subunits define coupling to degranulation and cell motility by
892 distinct PtdIns(3,4,5)P3 pools in mast cells. *Sci Signal*. 2009 Jan;2(74):ra27.
- 893 6. Goncalves MD, Cantley LC. Phosphatidylinositol 3-Kinase, Growth Disorders, and
894 Cancer. Vol. 379, *The New England journal of medicine*. 2018. pp. 2052–62.
- 895 7. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The
896 PI3K Pathway in Human Disease. *Cell*. 2017 Aug 10;170(4):605–35.
- 897 8. Burke JE. Structural Basis for Regulation of Phosphoinositide Kinases and Their
898 Involvement in Human Disease. *Mol Cell*. 2018 Sep 6;71(5):653–73.
- 899 9. Camps M, Rückle T, Ji H, Ardissonne V, Rintelen F, Shaw J, Ferrandi C, Chabert
900 C, Gillieron C, Françon B, Martin T, Gretener D, Perrin D, Leroy D, Vitte P-A,

902 Hirsch E, Wymann MP, Cirillo R, Schwarz MK, Rommel C. Blockade of
903 PI3Kgamma suppresses joint inflammation and damage in mouse models of
904 rheumatoid arthritis. *Nat Med.* 2005 Sep;11(9):936–43.

905 10. Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, Marengo
906 S, Russo G, Azzolino O, Rybalkin SD, Silengo L, Altruda F, Wetzker R, Wymann
907 MP, Lembo G, Hirsch E. PI3Kgamma modulates the cardiac response to chronic
908 pressure overload by distinct kinase-dependent and -independent effects. *Cell.*
909 2004 Aug 6;118(3):375–87.

910 11. Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S,
911 Mantovani A, Altruda F, Wymann MP. Central role for G protein-coupled
912 phosphoinositide 3-kinase gamma in inflammation. *Science.* 2000 Feb
913 11;287(5455):1049–53.

914 12. Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D. Roles of PLC-beta2 and -beta3
915 and PI3Kgamma in chemoattractant-mediated signal transduction. *Science.*
916 American Association for the Advancement of Science; 2000 Feb
917 11;287(5455):1046–9.

918 13. Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, Bolon B,
919 Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak TW, Ohashi PS,
920 Suzuki A, Penninger JM. Function of PI3Kgamma in thymocyte development, T
921 cell activation, and neutrophil migration. *Science.* American Association for the
922 Advancement of Science; 2000 Feb 11;287(5455):1040–6.

923 14. Laffargue M, Calvez R, Finan P, Trifilieff A, Barbier M, Altruda F, Hirsch E,
924 Wymann MP. Phosphoinositide 3-kinase gamma is an essential amplifier of mast
925 cell function. *Immunity.* 2002 Mar;16(3):441–51.

926 15. Collmann E, Bohnacker T, Marone R, Dawson J, Rehberg M, Stringer R,
927 Krombach F, Burkhardt C, Hirsch E, Hollingworth GJ, Thomas M, Wymann MP.
928 Transient targeting of phosphoinositide 3-kinase acts as a roadblock in mast cells'
929 route to allergy. *J Allergy Clin Immunol.* 2013 Oct;132(4):959–68.

930 16. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S,
931 Vanhaesebroeck B, Dhand R, Nurnberg B. Cloning and characterization of a G
932 protein-activated human phosphoinositide-3 kinase. *Science.* 1995 Aug
933 4;269(5224):690–3.

934 17. Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG,
935 Acevedo LM, Manglicmot JRE, Song X, Wrasidlo W, Blair SL, Ginsberg MH,
936 Cheresh DA, Hirsch E, Field SJ, Varner JA. Receptor tyrosine kinases and
937 TLR/IL1Rs unexpectedly activate myeloid cell PI3ky, a single convergent point
938 promoting tumor inflammation and progression. *Cancer Cell.* 2011 Jun
939 14;19(6):715–27.

940 18. Luo L, Wall AA, Tong SJ, Hung Y, Xiao Z, Tarique AA, Sly PD, Fantino E,
941 Marzolo M-P, Stow JL. TLR Crosstalk Activates LRP1 to Recruit Rab8a and
942 PI3K γ for Suppression of Inflammatory Responses. *Cell Rep.* 2018 Sep
943 11;24(11):3033–44.

944 19. Luo L, Wall AA, Yeo JC, Condon ND, Norwood SJ, Schoenwaelder S, Chen KW,
945 Jackson S, Jenkins BJ, Hartland EL, Schroder K, Collins BM, Sweet MJ, Stow JL.

946 Rab8a interacts directly with PI3K γ to modulate TLR4-driven PI3K and mTOR
947 signalling. *Nat Commun.* 2014;5:4407.

948 20. Stephens LR, Eguino A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J,
949 Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT. The Gbg
950 sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. *Cell.*
951 1997 Jan;89:105–14.

952 21. Vadas O, Dbouk HA, Shymanets A, Perisic O, Burke JE, Abi Saab WF, Khalil BD,
953 Harteneck C, Bresnick AR, Nürnberg B, Backer JM, Williams RL. Molecular
954 determinants of PI3K γ -mediated activation downstream of G-protein-coupled
955 receptors (GPCRs). *Proc Natl Acad Sci USA.* National Acad Sciences; 2013 Nov
956 19;110(47):18862–7.

957 22. Kurig B, Shymanets A, Bohnacker T, Prajwal, Brock C, Ahmadian MR, Schaefer
958 M, Gohla A, Harteneck C, Wymann MP, Jeanclos E, Nürnberg B. Ras is an
959 indispensable coregulator of the class IB phosphoinositide 3-kinase
960 p87/p110gamma. *Proc Natl Acad Sci USA [Internet].* 2009 Nov
961 20;106(48):20312–7. Available from:
962 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&doct=Citation&list_uids=19906996

963 23. Burke JE, Williams RL. Synergy in activating class I PI3Ks. *Trends in Biochemical
964 Sciences.* 2015 Feb;40(2):88–100.

965 24. Barber D, Bartolome A, Hernandez C, Flores J, Redondo C, Fernandez-Arias C,
966 Camps M, Ruckle T, Schwarz M, Rodriguez S, Martinez AC, Balomenos D,
967 Rommel C, Carrera A. PI3Kgamma inhibition blocks glomerulonephritis and
968 extends lifespan in a mouse model of systemic lupus. *Nat Med [Internet].* 2005
969 Aug 20;11(9):933–5. Available from:
970 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&doct=Citation&list_uids=16127435

971 25. Thomas M, Edwards MJ, Sawicka E, Duggan N, Hirsch E, Wymann MP, Owen C,
972 Trifilieff A, Walker C, Westwick J, Finan P. Essential role of phosphoinositide 3-
973 kinase gamma in eosinophil chemotaxis within acute pulmonary inflammation.
974 *Immunology.* John Wiley & Sons, Ltd; 2009 Mar;126(3):413–22.

975 26. Campa CC, Silva RL, Margaria JP, Pirali T, Mattos MS, Kraemer LR, Reis DC,
976 Grosa G, Copperi F, Dalmarco EM, Lima-Júnior RCP, Aprile S, Sala V, Dal Bello
977 F, Prado DS, Alves-Filho JC, Medana C, Cassali GD, Tron GC, Teixeira MM,
978 Ciraolo E, Russo RC, Hirsch E. Inhalation of the prodrug PI3K inhibitor CL27c
979 improves lung function in asthma and fibrosis. *Nat Commun.* Nature Publishing
980 Group; 2018 Dec 12;9(1):5232–16.

981 27. Breasson L, Becattini B, Sardi C, Molinaro A, Zani F, Marone R, Botindari F,
982 Bousquenaud M, Ruegg C, Wymann MP, Solinas G. PI3K γ activity in leukocytes
983 promotes adipose tissue inflammation and early-onset insulin resistance during
984 obesity. *Sci Signal.* American Association for the Advancement of Science; 2017
985 Jul 18;10(488):eaaf2969.

986 28. Kaneda MM, Cappello P, Nguyen AV, Ralainirina N, Hardamon CR, Foubert P,
987 Schmid MC, Sun P, Mose E, Bouvet M, Lowy AM, Valasek MA, Sasik R, Novelli
988

990 F, Hirsch E, Varner JA. Macrophage PI3K γ Drives Pancreatic Ductal
991 Adenocarcinoma Progression. *Cancer Discov.* American Association for Cancer
992 Research; 2016 Aug;6(8):870–85.

993 29. De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu
994 S, Ghosh A, Pink M, Tchaicha J, Douglas M, Tibbitts T, Sharma S, Proctor J,
995 Kosmider N, White K, Stern H, Soglia J, Adams J, Palombella VJ, McGovern K,
996 Kutok JL, Wolchok JD, Merghoub T. Overcoming resistance to checkpoint
997 blockade therapy by targeting PI3K γ in myeloid cells. *Nature*. 2016 Nov 9.

998 30. Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G,
999 Nguyen AV, Figueiredo CC, Foubert P, Schmid MC, Pink M, Winkler DG, Rausch
1000 M, Palombella VJ, Kutok J, McGovern K, Frazer KA, Wu X, Karin M, Sasik R,
1001 Cohen EEW, Varner JA. PI3K γ is a molecular switch that controls immune
1002 suppression. *Nature*. 2016 Nov 17;539(7629):437–42.

1003 31. Walker EH, Perisic O, Ried C, Stephens L, Williams RL. Structural insights into
1004 phosphoinositide 3-kinase catalysis and signalling. *Nature*. 1999 Nov
1005 18;402(6759):313–20.

1006 32. Deladeriere A, Gambardella L, Pan D, Anderson KE, Hawkins PT, Stephens LR.
1007 The regulatory subunits of PI3K γ control distinct neutrophil responses. *Sci Signal*.
1008 2015;8(360):ra8.

1009 33. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins
1010 PT, Stephens L, Eccleston JF, Williams RL. Crystal structure and functional
1011 analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. *Cell*
1012 [Internet]. 2000 Dec 8;103(6):931–43. Available from:
1013 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11136978

1014 34. Gangadhara G, Dahl G, Bohnacker T, Rae R, Gunnarsson J, Blaho S, Öster L,
1015 Lindmark H, Karabelas K, Pemberton N, Tyrchan C, Mogemark M, Wymann MP,
1016 Williams RL, Perry MWD, Papavoine T, Petersen J. A class of highly selective
1017 inhibitors bind to an active state of PI3K γ . *Nature Chemical Biology*. Nature
1018 Publishing Group; 2019 Apr;15(4):348–57.

1019 35. Vadas O, Burke JE, Zhang X, Berndt A, Williams RL. Structural basis for
1020 activation and inhibition of class I phosphoinositide 3-kinases. *Sci Signal*
1021 [Internet]. 2011 Oct 18;4(195):1–13. Available from:
1022 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22009150

1023 36. Kang S, Denley A, Vanhaesebroeck B, Vogt PK. Oncogenic transformation
1024 induced by the p110 β , - γ , and - δ isoforms of class I phosphoinositide
1025 3-kinase. *Proc Natl Acad Sci USA*. 2006 Jan 31;103(5):1289–94.

1026 37. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A,
1027 Powell S, Riggins G, Willson J, Markowitz S, Kinzler K, Vogelstein B, Velculescu
1028 V. High frequency of mutations of the PIK3CA gene in human cancers. *Science*.
1029 2004 May 23;304(5670):554.

1030 38. Vasan N, Razavi P, Johnson JL, Shao H, Shah H, Antoine A, Ladewig E, Gorelick
1031 A, Lin T-Y, Toska E, Xu G, Kazmi A, Chang MT, Taylor BS, Dickler MN, Jhaveri

1034 K, Chandarlapaty S, Rabadan R, Reznik E, Smith ML, Sebra R, Schimmoller F,
1035 Wilson TR, Friedman LS, Cantley LC, Scaltriti M, Baselga J. Double PIK3CA
1036 mutations in cis increase oncogenicity and sensitivity to PI3K α inhibitors. *Science*.
1037 American Association for the Advancement of Science; 2019 Nov
1038 8;366(6466):714–23.

1039 39. Lindhurst MJ, Parker VER, Payne F, Sapp JC, Rudge S, Harris J, Witkowski AM,
1040 Zhang Q, Groeneveld MP, Scott CE, Daly A, Huson SM, Tosi LL, Cunningham
1041 ML, Darling TN, Geer J, Gucev Z, Sutton VR, Tziotzios C, Dixon AK, Helliwell T,
1042 O'Rahilly S, Savage DB, Wakelam MJO, Barroso I, Biesecker LG, Semple RK.
1043 Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating
1044 mutations in PIK3CA. *Nat Genet*. 2012 Aug;44(8):928–33.

1045 40. Dornan GL, Siempelkamp BD, Jenkins ML, Vadas O, Lucas CL, Burke JE.
1046 Conformational disruption of PI3K δ regulation by immunodeficiency mutations in
1047 PIK3CD and PIK3R1. *Proc Natl Acad Sci USA*. 2017 Feb 21;114(8):1982–7.

1048 41. Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K. PI3K δ and
1049 primary immunodeficiencies. *Nat Rev Immunol*. 2016 Nov;16(11):702–14.

1050 42. Angulo I, Vadas O, Garçon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale
1051 H, Coulter T, Curtis J, Wu C, Blake-Palmer K, Perisic O, Smyth D, Maes M,
1052 Fiddler C, Juss J, Cilliers D, Markelj G, Chandra A, Farmer G, Kielkowska A,
1053 Clark J, Kracker S, Debré M, Picard C, Pellier I, Jabado N, Morris JA, Barcenas-
1054 Morales G, Fischer A, Stephens L, Hawkins P, Barrett JC, Abinun M, Clatworthy
1055 M, Durandy A, Doffinger R, Chilvers ER, Cant AJ, Kumararatne D, Okkenhaug K,
1056 Williams RL, Condliffe A, Nejentsev S. Phosphoinositide 3-kinase δ gene
1057 mutation predisposes to respiratory infection and airway damage. *Science*.
1058 American Association for the Advancement of Science; 2013 Nov
1059 15;342(6160):866–71.

1060 43. Lowery MA, Bradley M, Chou JF, Capanu M, Gerst S, Harding JJ, Dika IE, Berger
1061 M, Zehir A, Ptashkin R, Wong P, Rasalan-Ho T, Yu KH, Cersek A, Morgono E,
1062 Salehi E, Valentino E, Hollywood E, O'Reilly EM, Abou-Alfa GK. Binimetinib plus
1063 Gemcitabine and Cisplatin Phase I/II Trial in Patients with Advanced Biliary
1064 Cancers. *Clin Cancer Res*. American Association for Cancer Research; 2019 Feb
1065 1;25(3):937–45.

1066 44. AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision
1067 Medicine through an International Consortium. *Cancer Discov*. American
1068 Association for Cancer Research; 2017 Aug;7(8):818–31.

1069 45. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H,
1070 Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok
1071 CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R,
1072 Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA. COSMIC: the
1073 Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids Res*. 2019 Jan
1074 8;47(D1):D941–7.

1075 46. Takeda AJ, Maher TJ, Zhang Y, Lanahan SM, Bucklin ML, Compton SR, Tyler
1076 PM, Comrie WA, Matsuda M, Olivier KN, Pittaluga S, McElwee JJ, Long Priel DA,
1077 Kuhns DB, Williams RL, Mustillo PJ, Wymann MP, Koneti Rao V, Lucas CL.

1078 Human PI3K γ deficiency and its microbiota-dependent mouse model reveal
1079 immunodeficiency and tissue immunopathology. *Nat Commun.* Nature Publishing
1080 Group; 2019 Sep 25;10(1):4364–12.

1081 47. Thian M, Hoeger B, Kamnev A, Poyer F, Köstel Bal S, Caldera M, Jiménez-
1082 Heredia R, Huemer J, Pickl WF, Groß M, Ehl S, Lucas CL, Menche J, Hutter C,
1083 Attarbaschi A, Dupré L, Boztug K. Germline biallelic PIK3CG mutations in a
1084 multifaceted immunodeficiency with immune dysregulation. *Haematologica.*
1085 *Haematologica*; 2020 Jan 30;:haematol.2019.231399.

1086 48. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities.
1087 *Nat Rev Drug Discov.* 2014 Jan 31;13(2):140–56.

1088 49. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H,
1089 Conte P, Mayer IA, Kaufman B, Yamashita T, Lu Y-S, Inoue K, Takahashi M,
1090 Pápai Z, Longin A-S, Mills D, Wilke C, Hirawat S, Juric D, SOLAR-1 Study Group.
1091 Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast
1092 Cancer. *N Engl J Med.* Massachusetts Medical Society; 2019 May
1093 16;380(20):1929–40.

1094 50. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND,
1095 Spurgeon SE, Kahl BS, Bello C, Webb HK, Johnson DM, Peterman S, Li D, Jahn
1096 TM, Lannutti BJ, Ulrich RG, Yu AS, Miller LL, Furman RR. Idelalisib, an inhibitor
1097 of phosphatidylinositol 3 kinase p110 δ , for relapsed/refractory chronic lymphocytic
1098 leukemia. *Blood.* 2014 Mar 10;123(22):3390–7.

1099 51. Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, Wagner-
1100 Johnston ND, Coutre SE, Benson DM, Peterman S, Cho Y, Webb HK, Johnson
1101 DM, Yu AS, Ulrich RG, Godfrey WR, Miller LL, Spurgeon SE. Idelalisib, a
1102 selective inhibitor of phosphatidylinositol 3-kinase- δ , as therapy for previously
1103 treated indolent non-Hodgkin lymphoma. *Blood.* 2014 Mar 10;123(22):3406–13.

1104 52. Collier PN, Martinez-Botella G, Cornebise M, Cottrell KM, Doran JD, Griffith JP,
1105 Mahajan S, Maltais F, Moody CS, Huck EP, Wang T, Aronov AM. Structural basis
1106 for isoform selectivity in a class of benzothiazole inhibitors of phosphoinositide 3-
1107 kinase γ . *J Med Chem.* 2015 Jan 8;58(1):517–21.

1108 53. Evans CA, Liu T, Lescarbeau A, Nair SJ, Grenier L, Pradeilles JA, Glenadel Q,
1109 Tibbitts T, Rowley AM, DiNitto JP, Brophy EE, O'Hearn EL, Ali JA, Winkler DG,
1110 Goldstein SI, O'Hearn P, Martin CM, Hoyt JG, Soglia JR, Cheung C, Pink MM,
1111 Proctor JL, Palombella VJ, Tremblay MR, Castro AC. Discovery of a Selective
1112 Phosphoinositide-3-Kinase (PI3K)- γ Inhibitor (IPI-549) as an Immuno-Oncology
1113 Clinical Candidate. *ACS Med Chem Lett.* American Chemical Society; 2016 Sep
1114 8;7(9):862–7.

1115 54. Safina BS, Elliott RL, Forrest AK, Heald RA, Murray JM, Nonomiya J, Pang J,
1116 Salphati L, Seward EM, Staben ST, Ultsch M, Wei B, Yang W, Sutherlin DP.
1117 Design of Selective Benzoxazepin PI3K δ Inhibitors Through Control of Dihedral
1118 Angles. *ACS Med Chem Lett.* 2017 Sep 14;8(9):936–40.

1119 55. Vadas O, Jenkins ML, Dornan GL, Burke JE. Using Hydrogen-Deuterium
1120 Exchange Mass Spectrometry to Examine Protein-Membrane Interactions. *Meth
1121 Enzymol.* Elsevier; 2017;583:143–72.

1122 56. Dornan GL, Burke JE. Molecular Mechanisms of Human Disease Mediated by
1123 Oncogenic and Primary Immunodeficiency Mutations in Class IA
1124 Phosphoinositide 3-Kinases. *Front Immunol. Frontiers*; 2018;9:575.

1125 57. Burke JE, Williams RL. Dynamic steps in receptor tyrosine kinase mediated
1126 activation of class IA phosphoinositide 3-kinases (PI3K) captured by H/D
1127 exchange (HDX-MS). *Adv Biol Regul.* 2013 Jan;53(1):97–110.

1128 58. Burke JE, Perisic O, Masson GR, Vadas O, Williams RL. Oncogenic mutations
1129 mimic and enhance dynamic events in the natural activation of phosphoinositide
1130 3-kinase p110 α (PIK3CA). *Proc Natl Acad Sci USA.* 2012 Sep 18;109(38):15259–
1131 64.

1132 59. Burke JE, Vadas O, Berndt A, Finegan T, Perisic O, Williams RL. Dynamics of the
1133 phosphoinositide 3-kinase p110 δ interaction with p85 α and membranes reveals
1134 aspects of regulation distinct from p110 α . 2011 Aug 10;19(8):1127–37.

1135 60. Bruce I, Akhlaq M, Bloomfield GC, Budd E, Cox B, Cuenoud B, Finan P, Gedeck
1136 P, Hatto J, Hayler JF, Head D, Keller T, Kirman L, Leblanc C, Le Grand D,
1137 McCarthy C, O'Connor D, Owen C, Oza MS, Pilgrim G, Press NE, Sviridenko L,
1138 Whitehead L. Development of isoform selective PI3-kinase inhibitors as
1139 pharmacological tools for elucidating the PI3K pathway. *Bioorganic & Medicinal
1140 Chemistry Letters.* 2012 Sep 1;22(17):5445–50.

1141 61. Knight Z, Gonzalez B, Feldman M, Zunder E, Goldenberg D, Williams O, Loewith
1142 R, Stokoe D, Balla A, Toth B, Balla T, Weiss W, Williams R, Shokat K. A
1143 pharmacological map of the PI3-K family defines a role for p110 α in insulin
1144 signaling. *Cell.* 2006 Jun 19;125(4):733–47.

1145 62. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA,
1146 Luengo JI, Newlander KA, Parrish CA, Ridgers LH, Sarpong MA, Schmidt SJ,
1147 Van Aller GS, Carson JD, Diamond MA, Elkins PA, Gardiner CM, Garver E,
1148 Gilbert SA, Gontarek RR, Jackson JR, Kershner KL, Luo L, Raha K, Sherk CS,
1149 Sung C-M, Sutton D, Tummino PJ, Wegrzyn RJ, Auger KR, Dhanak D. Discovery
1150 of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of
1151 Rapamycin. *ACS Med Chem Lett.* American Chemical Society; 2010 Apr
1152 8;1(1):39–43.

1153 63. Venkatesan AM, Dehnhardt CM, Delos Santos E, Chen Z, Santos Dos O, Ayral-
1154 Kaloustian S, Khafizova G, Brooijmans N, Mallon R, Hollander I, Feldberg L,
1155 Lucas J, Yu K, Gibbons J, Abraham RT, Chaudhary I, Mansour TS.
1156 Bis(morpholino-1,3,5-triazine) derivatives: potent adenosine 5'-triphosphate
1157 competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin
1158 inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor.
1159 *J Med Chem.* 2010 Mar 25;53(6):2636–45.

1160 64. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon
1161 W-C, Liu Y, Rommel C, Gaillard P, Rückle T, Schwarz MK, Shokat KM, Shaw JP,
1162 Williams RL. The p110 delta structure: mechanisms for selectivity and potency of
1163 new PI(3)K inhibitors. *Nature Chemical Biology.* Nature Publishing Group; 2010
1164 Feb;6(2):117–24.

1165 65. Afonine PV, Moriarty NW, Mustyakimov M, Sobolev OV, Terwilliger TC, Turk D,
1166 Urzhumtsev A, Adams PD. FEM: feature-enhanced map. *Acta Crystallogr D Biol*
1167 *Crystallogr.* 2015 Mar;71(Pt 3):646–66.

1168 66. Okkenhaug K. Signaling by the phosphoinositide 3-kinase family in immune cells.
1169 *Annu Rev Immunol.* 2013;31:675–704.

1170 67. Sasaki T, Irie-Sasaki J, Horie Y, Bachmaier K, Fata JE, Li M, Suzuki A, Bouchard
1171 D, Ho A, Redston M, Gallinger S, Khokha R, Mak TW, Hawkins PT, Stephens L,
1172 Scherer SW, Tsao M, Penninger JM. Colorectal carcinomas in mice lacking the
1173 catalytic subunit of PI(3)Kgamma. *Nature.* Nature Publishing Group; 2000 Aug
1174 24;406(6798):897–902.

1175 68. Barbier M, Attoub S, Calvez R, Laffargue M, Jarry A, Mareel M, Altruda F,
1176 Gespach C, Wu D, Lu B, Hirsch E, Wymann MP. Tumour biology. Weakening link
1177 to colorectal cancer? *Nature Publishing Group*; 2001 Oct
1178 25;413(6858):796–6.

1179 69. Torres C, Mancinelli G, Cordoba-Chacon J, Viswakarma N, Castellanos K,
1180 Grimaldo S, Kumar S, Principe D, Dorman MJ, McKinney R, Hirsch E, Dawson D,
1181 Munshi HG, Rana A, Grippo PJ. p110 γ deficiency protects against pancreatic
1182 carcinogenesis yet predisposes to diet-induced hepatotoxicity. *Proc Natl Acad Sci*
1183 USA. National Academy of Sciences; 2019 Jul 16;116(29):14724–33.

1184 70. Dituri F, Mazzocca A, Lupo L, Edling CE, Azzariti A, Antonaci S, Falasca M,
1185 Giannelli G. PI3K class IB controls the cell cycle checkpoint promoting cell
1186 proliferation in hepatocellular carcinoma. *Int J Cancer.* John Wiley & Sons, Ltd;
1187 2012 Jun 1;130(11):2505–13.

1188 71. Edling CE, Selvaggi F, Buus R, Maffucci T, Di Sebastiano P, Friess H, Innocenti
1189 P, Kocher HM, Falasca M. Key role of phosphoinositide 3-kinase class IB in
1190 pancreatic cancer. *Clin Cancer Res.* 2010 Oct 15;16(20):4928–37.

1191 72. Ge Y, He Z, Xiang Y, Wang D, Yang Y, Qiu J, Zhou Y. The identification of key
1192 genes in nasopharyngeal carcinoma by bioinformatics analysis of high-throughput
1193 data. *Mol Biol Rep.* 2019 Jun;46(3):2829–40.

1194 73. Zhang P, Kang B, Xie G, Li S, Gu Y, Shen Y, Zhao X, Ma Y, Li F, Si J, Wang J,
1195 Chen J, Yang H, Xu X, Yang Y. Genomic sequencing and editing revealed the
1196 GRM8 signaling pathway as potential therapeutic targets of squamous cell lung
1197 cancer. *Cancer Lett.* 2019 Feb 1;442:53–67.

1198 74. Nava Rodrigues D, Rescigno P, Liu D, Yuan W, Carreira S, Lambros MB, Seed
1199 G, Mateo J, Riisnaes R, Mullane S, Margolis C, Miao D, Miranda S, Dolling D,
1200 Clarke M, Bertan C, Crespo M, Boysen G, Ferreira A, Sharp A, Figueiredo I,
1201 Kelher D, Aldubayan S, Burke KP, Sumanasuriya S, Fontes MS, Bianchini D,
1202 Zafeiriou Z, Teixeira Mendes LS, Mouw K, Schweizer MT, Pritchard CC, Salipante
1203 S, Taplin M-E, Beltran H, Rubin MA, Cieslik M, Robinson D, Heath E, Schultz N,
1204 Armenia J, Abida W, Scher H, Lord C, D'Andrea A, Sawyers CL, Chinnaiyan AM,
1205 Alimonti A, Nelson PS, Drake CG, Van Allen EM, de Bono JS. Immunogenomic
1206 analyses associate immunological alterations with mismatch repair defects in
1207 prostate cancer. *J Clin Invest.* American Society for Clinical Investigation; 2018
1208 Oct 1;128(10):4441–53.

1209 75. Shu X, Gu J, Huang M, Tannir NM, Matin SF, Karam JA, Wood CG, Wu X, Ye Y.
1210 Germline genetic variants in somatically significantly mutated genes in tumors are
1211 associated with renal cell carcinoma risk and outcome. *Carcinogenesis*. 2018 May
1212 28;39(6):752–7.

1213 76. Wang J, Li M, Han X, Wang H, Wang X, Ma G, Xia T, Wang S. MiR-1976
1214 knockdown promotes epithelial-mesenchymal transition and cancer stem cell
1215 properties inducing triple-negative breast cancer metastasis. *Cell Death Dis.*
1216 Nature Publishing Group; 2020 Jul 3;11(7):500–12.

1217 77. Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang C-H, Kinzler
1218 KW, Vogelstein B, Amzel LM. A frequent kinase domain mutation that changes
1219 the interaction between PI3Kalpha and the membrane. *Proc Natl Acad Sci USA*.
1220 National Acad Sciences; 2009 Oct 6;106(40):16996–7001.

1221 78. Zhang X, Vadas O, Perisic O, Anderson KE, Clark J, Hawkins PT, Stephens LR,
1222 Williams RL. Structure of Lipid Kinase p110b/p85b Elucidates an Unusual SH2-
1223 Domain-Mediated Inhibitory Mechanism. *Mol Cell* [Internet]. 2011 Apr
1224 4;41(5):567–78. Available from:
1225 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&doct=Citation&list_uids=21362552

1226 79. Perino A, Ghigo A, Ferrero E, Morello F, Santulli G, Baillie GS, Damilano F,
1227 Dunlop AJ, Pawson C, Walser R, Levi R, Altruda F, Silengo L, Langeberg LK,
1228 Neubauer G, Heymans S, Lembo G, Wymann MP, Wetzker R, Houslay MD,
1229 Iaccarino G, Scott JD, Hirsch E. Integrating Cardiac PIP(3) and cAMP Signaling
1230 through a PKA Anchoring Function of p110gamma. *Mol Cell* [Internet]. Elsevier
1231 Inc; 2011 Apr 8;42(1):84–95. Available from:
1232 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&doct=Citation&list_uids=21474070

1233 80. Walser R, Burke JE, Gogvadze E, Bohnacker T, Zhang X, Hess D, Künzi P,
1234 Leitges M, Hirsch E, Williams RL, Laffargue M, Wymann MP. PKC β
1235 phosphorylates PI3K γ to activate it and release it from GPCR control. Stephens L,
1236 editor. *PLoS Biol*. Public Library of Science; 2013;11(6):e1001587.

1237 81. Berger I, Fitzgerald DJ, Richmond TJ. Baculovirus expression system for
1238 heterologous multiprotein complexes. *Nat Biotechnol*. Nature Publishing Group;
1239 2004 Dec;22(12):1583–7.

1240 82. Kozasa T. Purification of G protein subunits from Sf9 insect cells using
1241 hexahistidine-tagged alpha and beta gamma subunits. *Methods Mol Biol*. New
1242 Jersey: Humana Press; 2004;237:21–38.

1243 83. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu
1244 DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J,
1245 Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF,
1246 Ternent T, Brazma A, Vizcaíno JA. The PRIDE database and related tools and
1247 resources in 2019: improving support for quantification data. *Nucleic Acids Res*.
1248 2019 Jan 8;47(D1):D442–50.

1249 84. Kabsch W. XDS. *Acta Crystallogr D Biol Crystallogr*. 2010 Feb;66(Pt 2):125–32.

1252 85. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ.
1253 Phaser crystallographic software. *J Appl Crystallogr.* 2007 Jul 13;40(Pt 4):658–74.

1254 86. Bohnacker T, Prota AE, Beaufils F, Burke JE, Melone A, Inglis AJ, Rageot D, Sele
1255 AM, Cmiljanovic V, Cmiljanovic N, Bargsten K, Aher A, Akhmanova A, Díaz JF,
1256 Fabbro D, Zvelebil M, Williams RL, Steinmetz MO, Wymann MP. Deconvolution of
1257 Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for
1258 therapeutic intervention. *Nat Commun.* Nature Publishing Group; 2017 Mar
1259 9;8:14683.

1260 87. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot.
1261 *Acta Crystallogr D Biol Crystallogr.* 2010 Apr;66(Pt 4):486–501.

1262 88. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW,
1263 Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards
1264 automated crystallographic structure refinement with phenix.refine. *Acta*
1265 *Crystallogr D Biol Crystallogr.* 2012 Apr;68(Pt 4):352–67.

1266 89. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray
1267 LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for
1268 macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr.* 2010
1269 Jan;66(Pt 1):12–21.

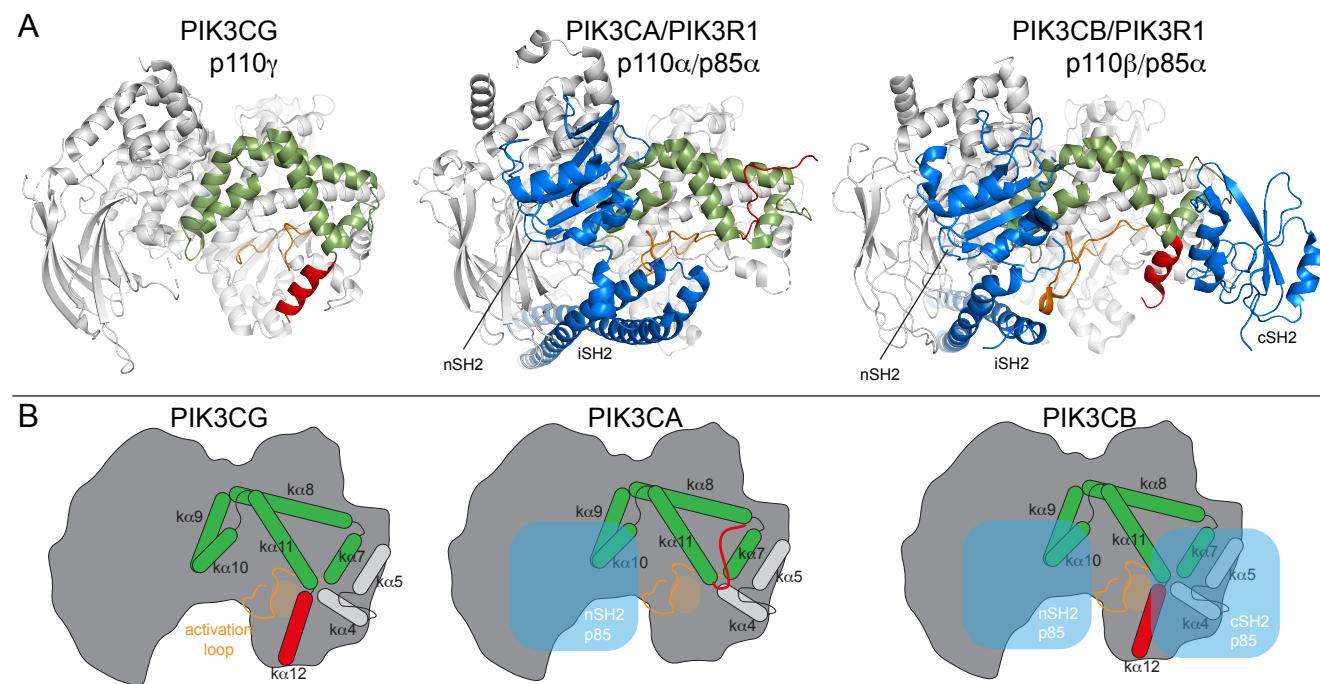
1270 90. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial
1271 restraints. *Journal of Molecular Biology.* 1993 Dec 5;234(3):779–815.

1272 91. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H,
1273 Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of
1274 high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst*
1275 *Biol.* EMBO Press; 2011 Oct 11;7(1):539–9.

1276 92. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A,
1277 Simmerling C, Wang B, Woods RJ. The Amber biomolecular simulation programs.
1278 *J Comput Chem.* 2005 Dec;26(16):1668–88.

1279 93. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C.
1280 ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters
1281 from ff99SB. *J Chem Theory Comput.* 2015 Aug 11;11(8):3696–713.

1282 94. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison
1283 of simple potential functions for simulating liquid water. *The Journal of Chemical*
1284 *Physics.* American Institute of PhysicsAIP; 1998 Aug 31;79(2):926–35.


1285 95. Miao Y, Feher VA, McCammon JA. Gaussian Accelerated Molecular Dynamics:
1286 Unconstrained Enhanced Sampling and Free Energy Calculation. *J Chem Theory*
1287 *Comput.* American Chemical Society; 2015 Aug 11;11(8):3584–95.

1288 96. Pang YT, Miao Y, Wang Y, McCammon JA. Gaussian Accelerated Molecular
1289 Dynamics in NAMD. *J Chem Theory Comput.* American Chemical Society; 2017
1290 Jan 10;13(1):9–19.

1291 97. McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX,
1292 Schwantes CR, Wang L-P, Lane TJ, Pande VS. MDTraj: A Modern Open Library
1293 for the Analysis of Molecular Dynamics Trajectories. *Biophys J.* 2015 Oct
1294 20;109(8):1528–32.

1295

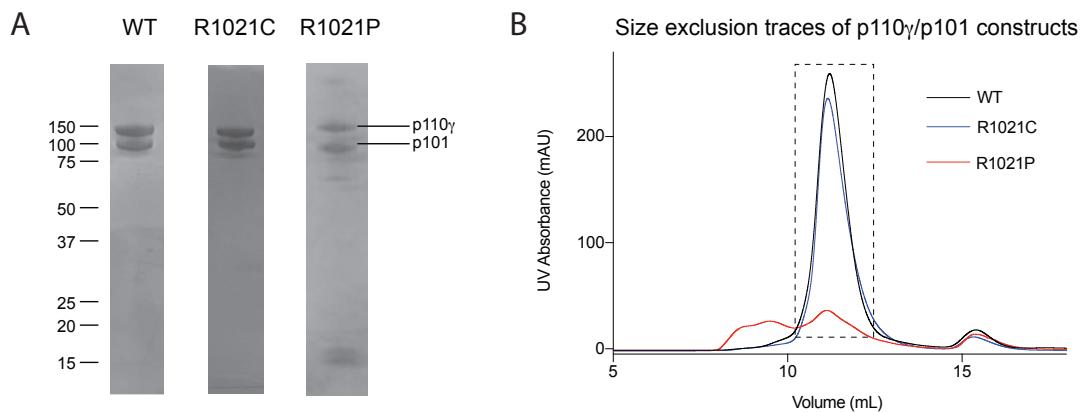

Supplemental information: Supplemental Figures and Tables

Figure S1 (relates to Fig 1). Comparing the different regulatory mechanisms that maintain the c-terminal regulatory motif in an inhibited state in the class I PI3Ks.

(A) A structural model comparing the architecture of the C-terminal regulatory motif in PIK3CG (PI3K γ , PDB: 6AUD[1]). PIK3CA (PI3K α , PDB: 4JPS [2]), PIK3CB (PI3K β , PDB: 2Y3A [3]). The activation loop is shown in orange, with the $\kappa\alpha 12$ helix shown in red (not a helix in PI3K α). The p85 regulatory subunits interacting with the motif in PI3K α and PI3K β are shown in blue, with the domains of the nSH2, iSH2, and cSH2 annotated on the structure.

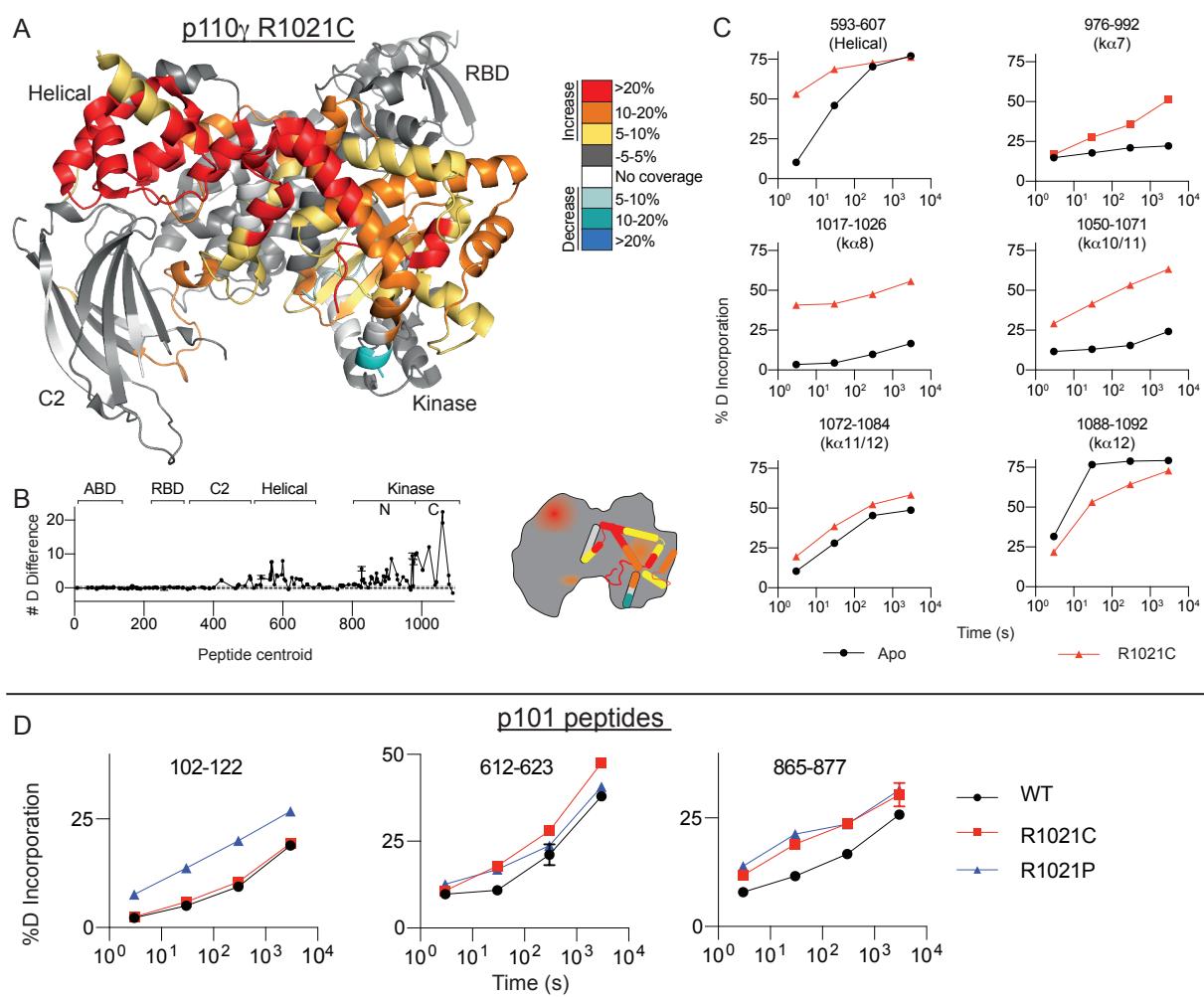
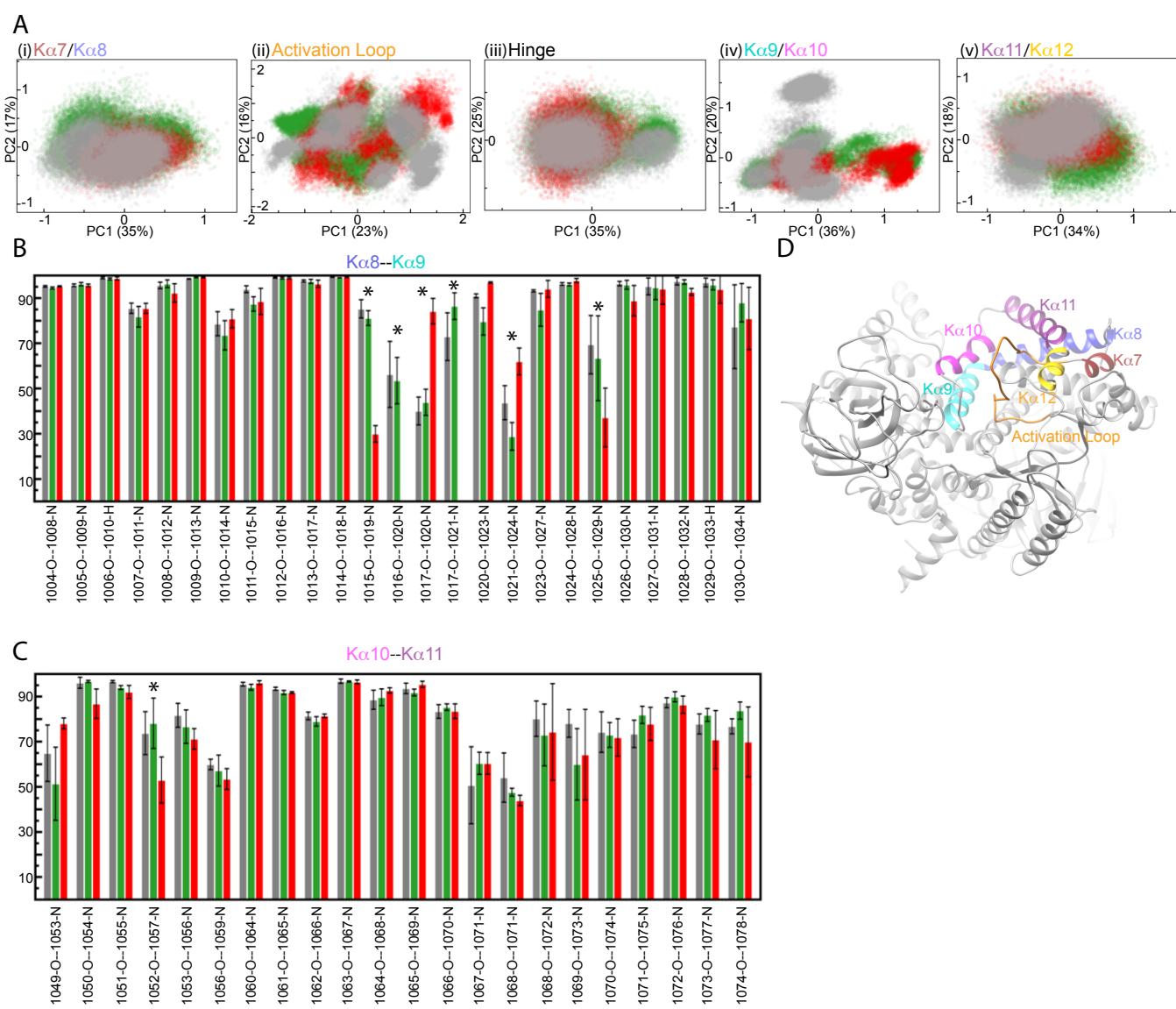

(B) Cartoon model shown in the same format as in Figure 1, highlighting the regulatory motif and its interaction with regulatory proteins.

Figure S2 (relates to Fig 2). Purification of mutated p110 γ / p101 complexes.

(A) SDS-page analysis of the final complexes after size exclusion chromatography. The location of size markers are shown on the left.

(B) Gel filtration elution of the wild type and mutant p110 γ / p101 complexes on a SuperdexTM 200 10/300 GL Increase column.


Figure S3. Differences in HDX for the R1021C mutation in free p110 γ .

A. Peptides showing significant deuterium exchange differences (>5 %, >0.4 kDa and $p < 0.01$ in an unpaired two-tailed t-test) between p110 γ wild-type and R1021C. Differences are colored on a model of p110 γ (PDB: 6AUD).

B. The number of deuterium difference for the R1021C mutant for all peptides analysed over the entire deuterium exchange time course for p110 γ .

C. Selected p110 γ peptides that showed decreases and increases in exchange are shown. The full list of all peptides and their deuterium incorporation is shown in Supplementary Data 1.

D. Selected p101 peptides that showed differences in exchange are shown. The full list of all peptides and their deuterium incorporation is shown in Supplementary Data 1.

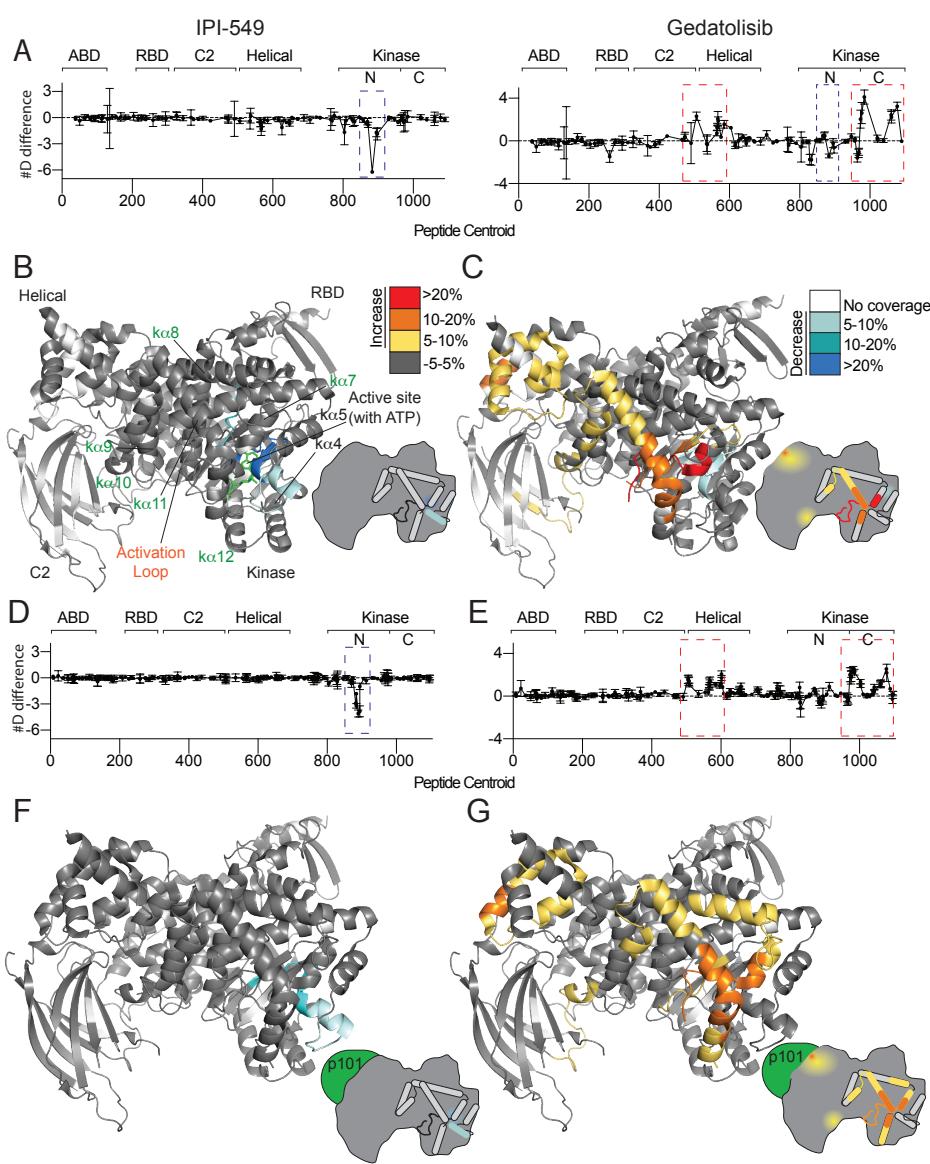
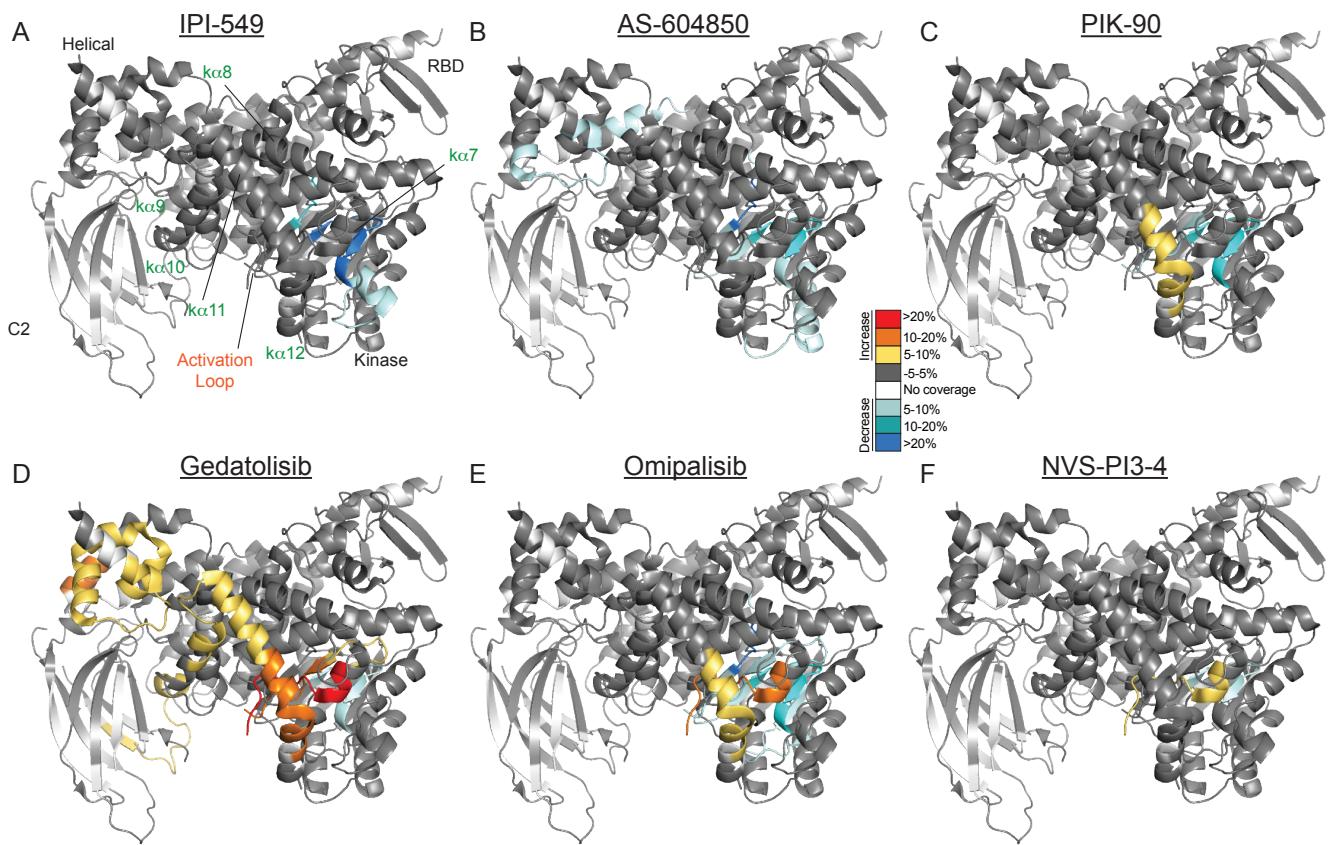
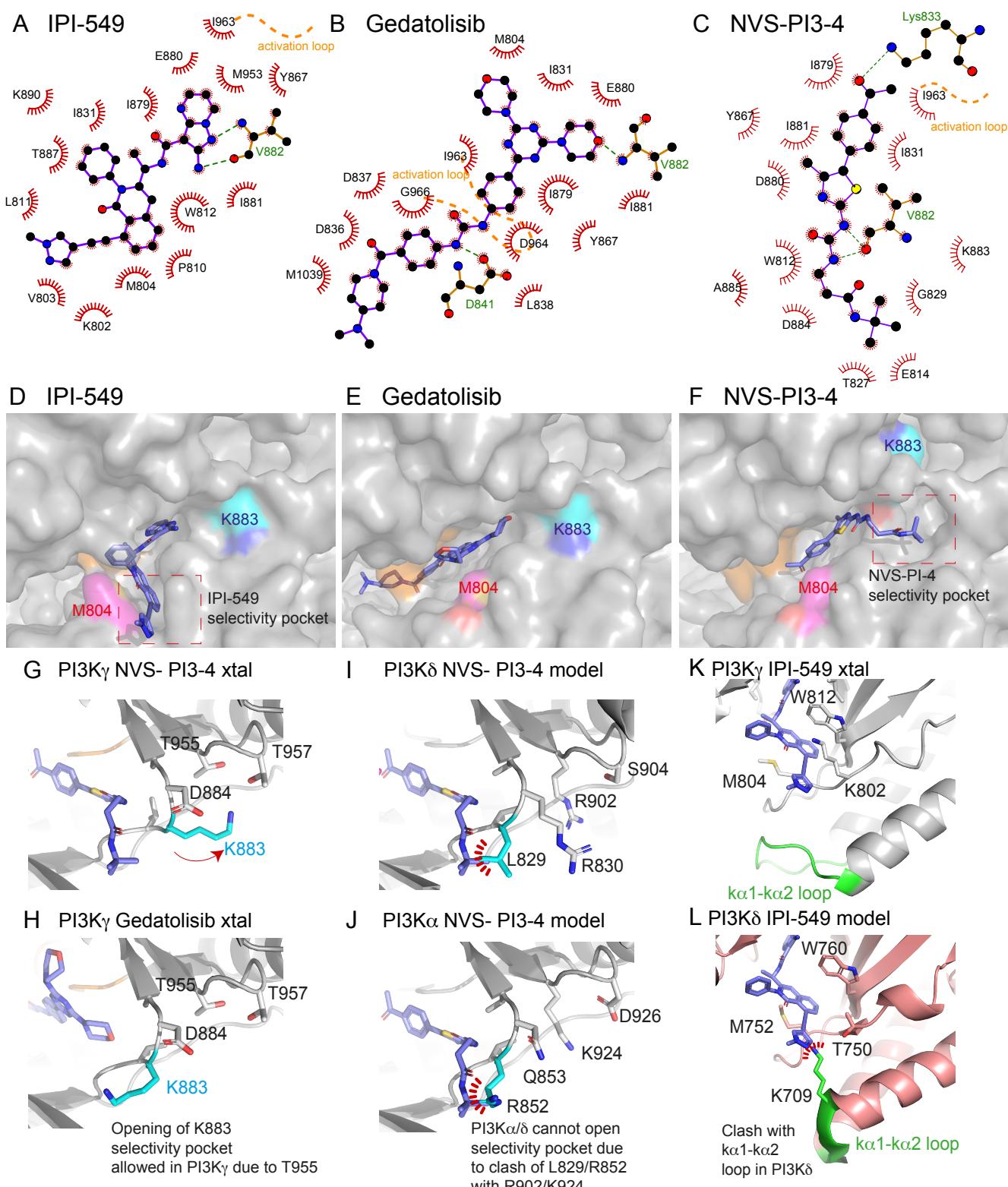


Figure S4. Differences between molecular dynamic simulations of WT, R1021C, and R1021P.


A. Principal component analysis (PCA) plots showing PC1 vs. PC2 of $\text{K}\alpha 7/8$ (989-1023), Activation loop (962-988), hinge (879-887), $\text{K}\alpha 9/10$ (1024-1054) and $\text{K}\alpha 11/12$ (1057-1088) for WT (grey), R1021C (green) and R1021P (red)

B-C. The mean and standard deviation of hydrogen bonding occupancies between $\text{K}\alpha 8$ and $\text{K}\alpha 9$ (B), $\text{K}\alpha 10$ and $\text{K}\alpha 11$ (C) across replicates for WT (grey), R1021C (green) and R1021P (red). Asterisks indicate significant differences between WT and mutants.

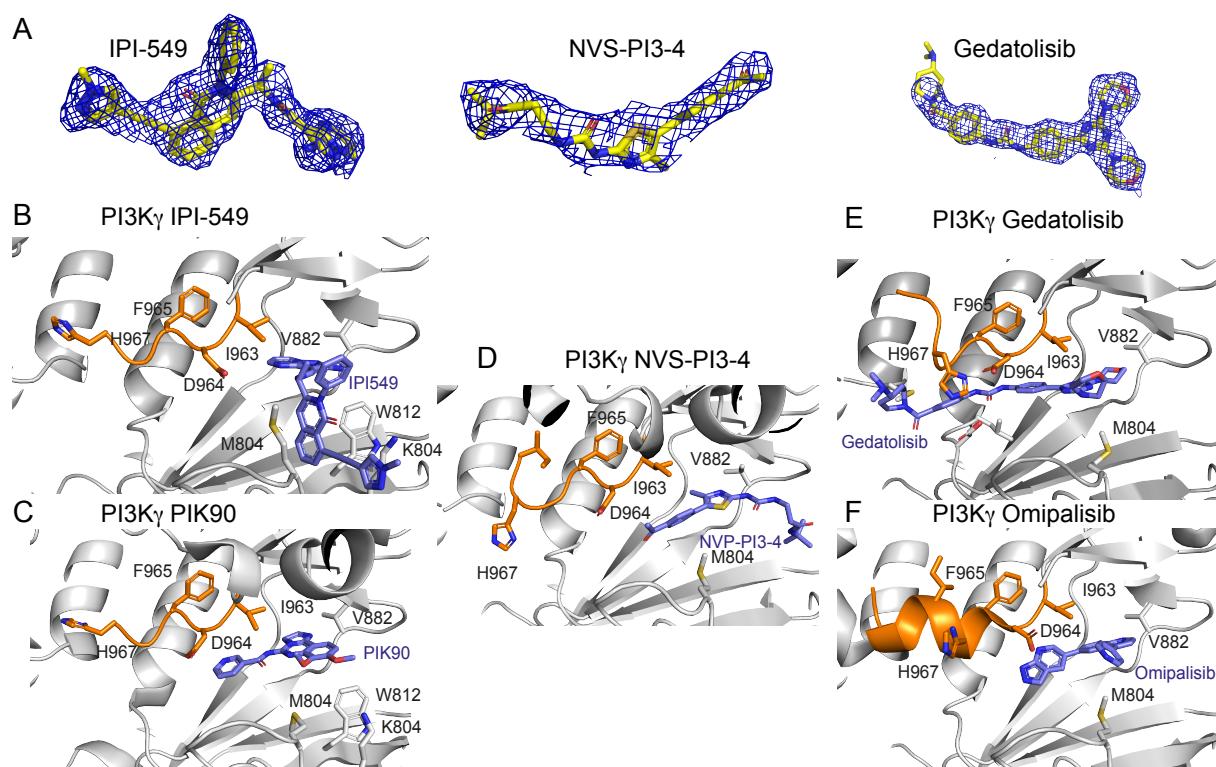
D. Model of p110 γ showing helices in the C-terminal regulatory motif and the activation loop.



D. The number of deuteron difference for p110 γ /p101 with selected inhibitors for all peptides analysed over the entire deuterium exchange time course for p110 γ and p101.

Figure S6. HDX-MS reveals that different classes of PI3K inhibitors lead to unique allosteric conformational changes.

A-F. Peptides showing significant deuterium exchange differences (>5 %, >0.4 kDa and p<0.01 in an unpaired two-tailed t-test) between wild-type and six different inhibitors are colored on a model of p110 γ (PDB: 6AUD). Differences in exchange are mapped according to the legend.


Figure S7: Structures of Gedatolisib and IPI-549 bound to p110 γ

A-C. LigPlot+ [4] representations of p110 γ bound to (A) IPI-549, (B) Gedatolisib, and (C) NVS-PI3-4. Hydrogen bonds are shown in green. All inhibitors form hydrogen bonds (green) with V882 in the hinge. The activation loop is shown as an orange dotted line.

D-E. Comparison of Gedatolisib, IPI-549, and NVS-PI3-4 bound to p110 γ with the activation loop and selectivity pockets highlighted. M804 and K883 that change conformation upon selectivity pocket opening are colored magenta and cyan, respectively.

G-J. Molecular basis for NVS-PI3-4 for p110 γ over p110 α/δ . The structure of p110 γ bound to NVS-PI3-4 (**G**) compared to p110 γ bound to Gedatolisib (**H**), revealed a conformational change in K883 leading to opening of pocket accommodating the t-butyl motif. Comparing this to a model of p110 δ (PDB: 5DXU) [5] (**I**) and p110 α (PDB: 4JPS) [2] (**J**) with NVS-PI3-4 revealed that this pocket is unlikely to open with L829 in p110 δ and R852 in p110 α (corresponds to K883 in p110 γ) unable to adopt this conformational change due to steric clashes / electrostatic repulsion with R902 in p110 δ and K924 in p110 α (corresponds to T955 in p110 γ).

K-L. Molecular basis for IPI-549 specificity for p110 γ over p110 δ . The structure of p110 γ bound to IPI-549 (**H**) compared to a model of IPI-549 bound to p110 δ (**I**), based on the structure of p110 δ bound to the specificity pocket inhibitor Idelalisib (PDB: 4XE0) [6]. K802 and W812 in p110 γ are labelled, along with the corresponding residues in p110 δ . The $\kappa 1$ - $\kappa 2$ loop is green, with potential clashes in p110 δ with the methylpyrazole of IPI-549 highlighted.

Fig. S8. Binding of IPI-549, NVS-PI3-4, and Gedatolisib lead to different conformations of the activation loop of p110 γ

A. The electron density from a feature enhanced map [7] around IPI-549, NVS-PI3-4, and Gedatolisib contoured at 1 sigma.

B-F. Conformations of the activation loop of p110 γ in the presence of annotated inhibitors. Structures of PIK90, and Omipalisib bound to p110 γ were from PDB: 2CHX[8] and 3I54[9], respectively.

Data set	Apo p110 γ (mutants)	R1021C	p110 γ / p101	R1021C p110 γ p101	R1021P p110 γ p101
HDX reaction details	%D ₂ O=87.9% pH _(read) =7.5 Temp=18°C	%D ₂ O=87.9% pH _(read) =7.5 Temp=18°C	%D ₂ O=62.0% pH _(read) =7.5 Temp=18°C	%D ₂ O=62.0% pH _(read) =7.5 Temp=18°C	%D ₂ O=62.0% pH _(read) =7.5 Temp=18°C
HDX time course (seconds)	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000
HDX controls	N/A	N/A	N/A	N/A	N/A
Back-exchange	Corrected based on %D ₂ O				
Number of peptides	204	202	153	153	152
Sequence coverage	92.7%	92.5%	92.7%	92.7%	91.7%
Average peptide /redundancy	Length=14.0 Redundancy= 2.4	Length=14.0 Redundancy= 2.4	Length=14.8 Redundancy= 2.0	Length=14.8 Redundancy= 2.0	Length=14.8 Redundancy= 2.0
Replicates	3 (2 3000s, 2 300s)	3 (2 300s)	3	3	3
Repeatability	Average StDev=0.5%	Average StDev=0.5%	Average StDev=0.6%	Average StDev=0.6%	Average StDev=0.6%
Significant differences in HDX	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01
Apo p110γ (inhibitor)	+ IPI-549	+ AZg1/AZ	+ AS-605240	+ Gedatolisib	+ Omipalisib
%D ₂ O=75.5% pH _(read) =7.5 Temp=18°C					
3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000
N/A	N/A	N/A	N/A	N/A	N/A
Corrected based on %D ₂ O					
180	180	180	180	180	180
88.6%	88.6%	88.6%	88.6%	88.6%	88.6%
Length= 13.4 Redundancy= 2.2					
3	3	3	3	3	3
Average StDev=0.9%					
>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01
+ RD-HBC 520	+ PIK-90	Apo p110γ/p101 (p101+inhibitor)	+ IPI-549 (p101)	+ Gedatolisib (p101)	
%D ₂ O=75.5% pH _(read) =7.5 Temp=18°C					
3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	
N/A	N/A	N/A	N/A	N/A	
Corrected based on %D ₂ O					
180	180	228	228	228	
88.6%	88.6%	96.3%	96.3%	96.3%	
Length= 13.4 Redundancy= 2.2	Length= 13.4 Redundancy= 2.2	Length= 14.1 Redundancy= 2.9	Length= 14.1 Redundancy= 2.9	Length= 13.4 Redundancy= 2.2	
3	3	3	3	3	
Average StDev=0.9%					
>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	>5% and >0.4 Da and unpaired t-test ≤0.01	

Table S1. Full HDX-MS experimental conditions and data analysis parameters from the guidelines of the IC-HDX-MS community [10].

	Compound	Structure	Reference (PMIDs)	PDB	IC ₅₀ PI3K α (nM)	IC ₅₀ PI3K β (nM)	IC ₅₀ PI3K δ (nM)	IC ₅₀ PI3K γ (nM)
1	IPI-549		27660692	This study	3200	3500	>8400	16
2	PIK-90		19318683	2CHX	11	350	58	18
3	AS-604850		16127437	2A4Z	4500	>20000	>20000	250
4	Gedatolisib PF-05212384 PKI587		20166697	This study	0.4	-	-	5.4
5	Omipalisib (GSK2126458, GSK458)		24900173	3L08	0.0019 (K _i)	0.13 (K _i)	0.024 (K _i)	0.06 (K _i)
6	NVS-PI3-4		23029326	This study	1800	250	750	90
7	AZ2		30718815	N.D.	3981	31622	200	0.3

Table S2. List of all PI3K inhibitors analysed in this manuscript. IC₅₀s for class IA and IB are listed from the reference attached. N.D. is not determined.

Table S3 X-ray Data collection and refinement statistics

	PI3K γ IPI549	PI3K γ Gedatolisib	PI3K γ NVS-PI3-4
Data collection			
Wavelength	0.97949	0.97949	0.97949
Space group	C121	C121	C121
Cell dimensions			
a, b, c (Å)	144.3, 67.9, 106.4	143.5, 67.6, 106.3	143.6 67.6 106.8
α, β, γ (°)	90 94.5 90	90, 95.4, 90	90 95.4 90
Resolution (Å)	44.4 - 2.65 (2.74 - 2.65)*	40.72-2.55 (2.64- 2.55)	40.93 - 3.15 (3.26 - 3.15)
R_{merge}	0.125 (1.919)	0.061 (1.349)	0.119 (1.118)
$I / \sigma I$	7.1 (0.69)	11.91 (0.87)	7.92 (0.84)
CC1/2	0.992 (0.407)	0.999 (0.385)	0.994 (0.425)
Completeness (%)	98.9 (98.23)	99.41 (99.40)	98.08 (99.04)
Redundancy	3.3 (3.4)	3.3 (3.4)	3.0 (3.0)
Refinement			
Resolution (Å)	44.4 - 2.65 (2.74 - 2.65)	40.72-2.55 (2.64- 2.55)	40.93 - 3.15 (3.26 - 3.15)
No. unique reflections	29722 (2941)	33183 (3303)	17573 (1761)
$R_{\text{work}} / R_{\text{free}}$	22.7/26.8	20.9/25.3	22.9/27.4
No. atoms			
Protein	6752	6612	6506
Ligand/ion	40	45	28
Water	0	9	0
B -factors			
Protein	100.4	88.9	108.2
Ligand/ion	88.3	78.7	117.2
Water		65.5	
Ramachandran favored	94.47	95.21	96.51
Ramachandran outliers	0.61	0.0	0.13
Rotamer outliers	0.53	0.41	0.0
R.m.s. deviations			
Bond lengths (Å)	0.003	0.003	0.004
Bond angles (°)	0.53	0.59	0.56

*Values in parentheses are for highest-resolution shell.

Number of crystals used for structure=1

Source data figure legend. Summary of all HDX-MS peptide data (see attached excel source data file). The charge state (Z), residue start (S), residue end number (E), and retention time (RT) are displayed for every peptide. Data listed is the mean of 3 independent experiments, with SDs presented. Time points are labelled, and the relative level of HDX is coloured according to the legend.

Supplemental references

1. Safina BS, Elliott RL, Forrest AK, Heald RA, Murray JM, Nonomiya J, Pang J, Salphati L, Seward EM, Staben ST, Ultsch M, Wei B, Yang W, Sutherlin DP. Design of Selective Benzoxazepin PI3K δ Inhibitors Through Control of Dihedral Angles. *ACS Med Chem Lett.* 2017 Sep 14;8(9):936–40.
2. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, Fritsch C, Blasco F, Blanz J, Aichholz R, Hamon J, Fabbro D, Caravatti G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. *Bioorganic & Medicinal Chemistry Letters.* 2013 Jul 1;23(13):3741–8.
3. Zhang X, Vadas O, Perisic O, Anderson KE, Clark J, Hawkins PT, Stephens LR, Williams RL. Structure of Lipid Kinase p110b/p85b Elucidates an Unusual SH2-Domain-Mediated Inhibitory Mechanism. *Mol Cell* [Internet]. 2011 Apr 4;41(5):567–78. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&doct=Citation&list_uids=21362552
4. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. *J Chem Inf Model.* 2011 Oct 24;51(10):2778–86.
5. Heffron TP, Heald RA, Ndubaku C, Wei B, Augustin M, Do S, Edgar K, Eigenbrot C, Friedman L, Gancia E, Jackson PS, Jones G, Kolesnikov A, Lee LB, Lesnick JD, Lewis C, McLean N, Mörtl M, Nonomiya J, Pang J, Price S, Prior WW, Salphati L, Sideris S, Staben ST, Steinbacher S, Tsui V, Wallin J, Sampath D, Olivero AG. The Rational Design of Selective Benzoxazepin Inhibitors of the α -Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326). *J Med Chem.* 2016 Feb 11;59(3):985–1002.
6. Somoza JR, Koditek D, Villaseñor AG, Novikov N, Wong MH, Liclican A, Xing W, Lagpacan L, Wang R, Schultz BE, Papalia GA, Samuel D, Lad L, McGrath ME. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ . *J Biol Chem.* 2015 Mar 27;290(13):8439–46.
7. Afonine PV, Moriarty NW, Mustyakimov M, Sobolev OV, Terwilliger TC, Turk D, Urzhumtsev A, Adams PD. FEM: feature-enhanced map. *Acta Crystallogr D Biol Crystallogr.* 2015 Mar;71(Pt 3):646–66.
8. Knight Z, Gonzalez B, Feldman M, Zunder E, Goldenberg D, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss W, Williams R, Shokat K. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. *Cell.* 2006 Jun 19;125(4):733–47.
9. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, Luengo JI, Newlander KA, Parrish CA, Ridgers LH, Sarpong MA, Schmidt SJ, Van Aller GS, Carson JD, Diamond MA, Elkins PA, Gardiner CM, Garver E, Gilbert SA, Gontarek RR, Jackson JR, Kershner KL, Luo L, Raha K, Sherk CS, Sung C-M, Sutton D, Tummino PJ, Wegrzyn RJ, Auger KR, Dhanak D. Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin. *ACS Med Chem Lett.* American Chemical Society; 2010 Apr 8;1(1):39–43.
10. Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, Bou-Assaf GM, Engen JR, Englander SW, Faber J, Garlish R, Griffin PR, Gross ML, Guttman M, Hamuro Y, Heck AJR, Houde D, Jacob RE, Jørgensen TJD, Kaltashov IA, Klinman JP, Konermann L, Man P, Mayne L, Pascal BD, Reichmann D, Skehel M, Snijder J, Strutzenberg TS, Underbakke ES, Wagner C, Wales TE, Walters BT, Weis DD, Wilson DJ, Wintrode PL, Zhang Z, Zheng J, Schriemer DC, Rand KD. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. *Nat Methods.* Nature Publishing Group; 2019 Jul;16(7):595–602.