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 2 

Abstract 23 

 Class I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular 24 

functions, with the p110g subunit playing a key role in immune signalling. PI3Kg is a key 25 

factor in inflammatory diseases, and has been identified as a therapeutic target for 26 

cancers due to its immunomodulatory role. Using a combined biochemical/biophysical 27 

approach, we have revealed insight into regulation of kinase activity, specifically defining 28 

how immunodeficiency and oncogenic mutations of R1021 in the c-terminus can 29 

inactivate or activate enzyme activity. Screening of small molecule inhibitors using HDX-30 

MS revealed that activation loop binding inhibitors induce allosteric conformational 31 

changes that mimic those seen for the R1021C mutant. Structural analysis of clinically 32 

advanced PI3K inhibitors revealed novel binding pockets that can be exploited for further 33 

therapeutic development. Overall this work provides unique insight into the regulatory 34 

mechanisms that control PI3Kg kinase activity, and shows a framework for the design of 35 

PI3K isoform and mutant selective inhibitors.  36 

 37 

Introduction 38 

The phosphoinositide 3-kinase (PI3K) family of enzymes are central regulators of 39 

growth, proliferation, migration, and metabolism in a plethora of cells and tissues [1,2]. 40 

PI3Ks are lipid kinases that generate the lipid second messenger phosphatidylinositol 41 

3,4,5 trisphosphate (PIP3), which is utilised downstream of cell surface receptors to 42 

regulate growth, metabolism, survival, and differentiation [1]. PIP3, is generated by four 43 

distinct class I PI3K catalytic isoforms separated into two groups (class IA [p110a, p110b, 44 
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p110d], and class IB [p110g] (sometimes referred to as PI3Ka, PI3Kb, PI3Kd, and PI3Kg 45 

catalytic subunit)). The primary difference between class IA and class IB PI3Ks is their 46 

association with specific regulatory subunits, with class IA binding p85-like regulatory 47 

subunits encoded by PIK3R1, PIK3R2, PIK3R3, and PI3Kg forming complexes with either 48 

a p101 or p84 (also called p87PIKAP) adaptor subunit [3-5]. The four isoforms of class I 49 

PI3K have distinct expression profiles, with PI3Ka and PI3Kb being ubiquitously 50 

expressed, and PI3Kd and PI3Kg being mainly localised in immune cells [1]. All PI3K 51 

isoforms have been implicated in a variety of human diseases, including cancer, 52 

immunodeficiencies, inflammation, and developmental disorders [6-8].  53 

The class IB PI3Kg isoform encoded by PIK3CG is a master regulator of immune 54 

cell function. It plays important roles in the regulation of myeloid (macrophages, mast 55 

cells, neutrophils) and lymphoid (T cells, B cells, and Natural Killer cells) derived immune 56 

cells [9-11]. PI3Kg regulates immune cell chemotaxis [11-13], cytokine release [14,15], 57 

and generation of reactive oxygen species[11], which are important processes in both the 58 

innate and adaptive immune systems. The ability of PI3Kg to mediate multiple immune 59 

cell functions is controlled by its activation downstream of numerous cell surface 60 

receptors, including G-protein coupled receptors (GPCRs)[16], the IgE/Antigen 61 

receptor[14], receptor tyrosine kinases (RTKs) [17], and the Toll-like receptors (TLRs) 62 

[18,19]. Activation of PI3Kg downstream of these stimuli are potentiated by their p84 and 63 

p101 regulatory subunits [5,18,20-22]. This is distinct from the roles of regulatory subunits 64 

in class IA PI3Ks, which act as potent inhibitors of p110 catalytic activity[23]. In mouse 65 

models, loss of PI3Kg either genetically or pharmacologically is protective in multiple 66 
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inflammatory diseases including cardiovascular disease [10], arthritis [9], Lupus [24], 67 

asthma [15], pulmonary inflammation and fibrosis [25,26],  and metabolic syndrome [27]. 68 

PI3Kg is also a driver of pancreatic ductal adenocarcinoma progression through 69 

immunomodulatory effects [28], and targeting PI3Kg in the immune system in combination 70 

with checkpoint inhibitors has shown promise as an anti-cancer therapeutic [29,30].  71 

Extensive biophysical and biochemical assays have identified many of the 72 

molecular mechanisms underlying PI3Kg regulation. The enzyme is composed of five 73 

domains, a putative uncharacterized adaptor binding domain (ABD), a Ras binding 74 

domain (RBD), a C2 domain, a helical domain, and a bi-lobal lipid kinase domain [31] (Fig. 75 

1A). PI3Kg activation is primarily mediated by Gbg subunits downstream of GPCR 76 

signalling, through a direct interaction of Gbg with the C2-helical linker of PI3Kg [21]. 77 

Activation of PI3Kg by Gbg requires a secondary interaction between Gbg and regulatory 78 

subunits for physiologically relevant activation [4], with the free p110g subunit in cells 79 

having no detectable activation downstream of GPCR activation [32]. In addition, PI3Kg 80 

activation can be facilitated by Ras GTPases interacting with the RBD [33], with the same 81 

interface putatively also mediating activation by Rab8 [19]. Experiments exploring a novel 82 

type II-like kinase inhibitor that targets an active conformation of PI3Kg revealed novel 83 

molecular aspects of regulation involving the C-terminal regulatory motif of the kinase 84 

domain, which is composed of the ka7, 8, 9, 10, 11, 12 helices that surround the activation 85 

loop, and keep the enzyme in an inhibited state [34] (Fig. 1B). The ka10, ka11, and ka12 86 

helices are sometimes referred to as the regulatory arch [35]. Inhibition mediated by the 87 

C-terminal regulatory motif is conserved through all class I PI3Ks, although for all other 88 
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isoforms, this inhibited conformation requires interactions with a p85 regulatory subunit 89 

(Fig. S1) [8]. In PI3Kg this inhibited conformation is proposed to be maintained by a 90 

Tryptophan lock, where W1080 maintains a closed conformation of the membrane 91 

binding C-terminal ka12 helix, leading to an inactive conformation of the activation loop 92 

[34] (Fig. 1B+C).  93 

 Disruption of PI3K signalling by either activating or inactivating mutations and 94 

deletions are involved in multiple human diseases. Overexpression of any activated class 95 

I PI3K isoform can lead to oncogenic transformation [36], although PI3Ka is the most 96 

frequently mutated in human disease. Activating PI3Ka mutations are linked to both 97 

cancer [37,38] and overgrowth disorders [39], with activating PI3Kd mutations linked to 98 

primary immuno-deficiencies [40-42]. A high proportion of these activating mutations 99 

cluster to the C-terminal regulatory motif of PI3Ks. Multiple PI3Kg mutations have been 100 

identified in cancer patients [43-45], although at a lower frequency than PI3Ka mutations. 101 

It would be expected that these mutations are activating, although this has not been fully 102 

explored. Intriguingly, PI3Kg loss of function mutations in the C-terminal regulatory motif 103 

(R1021P, N1085S) have been identified in patients with immunodeficiencies [46,47] (Fig. 104 

1B+C). PI3K mediated diseases being caused by both activating and inactivating 105 

mutations, highlights the critical role of maintaining appropriate PIP3 levels for human 106 

health.  107 

The involvement of activated PI3K signalling in multiple diseases has motivated 108 

class I PI3K inhibitor development. There is, however,  toxicity effects associated with 109 

compounds that target all PI3K isoforms by mechanism-based adverse side effects [48], 110 
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driving the development of isoform selective inhibitors. These efforts have led to multiple 111 

clinically approved inhibitors of PI3Ka and PI3Kd [49-51]. The critical role of PI3Kg in 112 

inflammation and the tumour microenvironment has stimulated development of PI3Kg 113 

specific inhibitors. Two main strategies for generating PI3Kg selective ATP-competitive 114 

inhibitors have been established:  i) targeting PI3Kg specific regions outside of the ATP 115 

binding pocket to reach regions not conserved among PI3K isoforms [52,53], and ii) 116 

targeting selective PI3Kg conformational changes [34]. Intriguingly, the conformational 117 

selective PI3Kg inhibitors appear to target its putatively activated conformation.  118 

The parallel discovery of disease linked mutations in the C-terminal regulatory 119 

motif, and conformational selective PI3Kg inhibitors that cause altered dynamics of the C-120 

terminus led us to investigate the underlying molecular mechanisms. Using a combined 121 

biochemical and biophysical approach, we characterized the dynamic conformational 122 

changes caused by the loss of function R1021P mutation, as well as a putative oncogenic 123 

R1021C mutation identified in Catalogue of Somatic Mutations in Cancer database 124 

[COSMIC [45]]. A screen of a number of PI3Kg selective and pan-PI3K inhibitors revealed 125 

that many of these molecules induced allosteric conformational changes in PI3Kg. A 126 

combined X-ray crystallography and hydrogen deuterium exchange mass spectrometry 127 

(HDX-MS) approach showed that inhibitor interactions with the activation loop mediates 128 

allosteric conformational changes. Intriguingly, similar conformational changes occurred 129 

for both the R1021C mutant and upon binding certain inhibitors, with lipid kinase assays 130 

revealing an increased potency of these inhibitors towards the activated PI3K mutant. 131 
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Overall, this work provides a unique insight into how mutations alter PI3Kg regulation, and 132 

pave the way to novel strategies for isoform and mutant selective PI3K inhibitors. 133 

 134 

Results          135 

R1021P and R1021C mutations alter the activity of PI3Kg 136 

 The recent discovery of an inactivating disease-linked mutation in PIK3CG located 137 

near the C-terminus of the kinase domain (R1021P) in immunocompromised patients led 138 

us to investigate the molecular mechanism of this mutation. Intriguingly, this same residue 139 

is found to be mutated in the COSMIC database (R1021C) [45]. To define the effect of 140 

these mutations on protein conformation and biochemical activity, we generated them 141 

recombinantly in complex with the p101 regulatory subunit. Both the p110g R1021C and 142 

R1021P complexes with p101 eluted from gel filtration similar to wild-type p110g, 143 

suggesting they were properly folded (Fig. S2). However, the yield of the R1021P 144 

complex with p101 was dramatically decreased relative to both wild-type and R1021C 145 

p110g, indicating that this mutation may decrease protein stability, consistent with 146 

decreased p110g and p101 expression in patient tissues [46]. We also generated the free 147 

R1021C p110g subunit, however we could not express free p110g R1021P, further 148 

highlighting that this mutation likely leads to decreased protein stability. 149 
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 150 

Fig 1. Mutations in the regulatory C-terminal motif of the kinase domain alter PI3Kg activity.  151 

A. Domain architecture of p110g (PDB ID: 6AUD) [54], with the domain schematic shown beneath. 152 

B. Model of the C-terminal regulatory motif of the kinase domain of p110g. The helices that make up the 153 

regulatory arch (ka10, 11,12) and those that pack against them (ka7, 8, 9) are highlighted in green both in 154 

the structural model and cartoon schematic. 155 

C. A close up of the W1080 ‘Tryptophan lock’ interaction with ka7 and the ka4-ka5 loop which maintains 156 

an inhibited conformation is shown, as well as the interaction of the R1021 residue with residues on the 157 

ka10-ka11 loop.  158 

D. Lipid kinase activity assays testing the activity of WT, R1021C, and R1021P p110g/p101 WT basally and 159 

in the presence of lipidated Gbg and HRas. Experiments were carried out with 50-3000 nM kinase, 1500 160 

nM Ras, 1500 nM Gbg, all in the presence of 100 µM ATP and 1 mg/mL PM-mimic vesicles [5% 161 

phosphatidylinositol 4,5 bisphosphate (PIP2), 20% phosphatidylserine (PS), 10% phosphatidyl choline (PC), 162 

50% phosphatidylethanolamine (PE), 10% Cholesterol, 5% sphingomyelin (SM)). 163 
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E. Activity assays testing the intrinsic ATPase activity (ATP conversion in the absence of membrane 164 

substrate) for wild type and mutant p110g/p101 complexes.  165 

F. Lipid kinase activity assays testing the activity of WT and R1021C for the free p110g catalytic subunit 166 

with and without lipidated Gbg. Lipid kinase activity was generated by subtracting away non-specific ATPase 167 

activity, for unstimulated WT p110g there was no detectable lipid kinase activity above basal ATPase activity 168 

(N.D.). For panels D-F, every replicate is plotted, with error shown as standard deviation (n=3-6). Two tailed 169 

p-values represented by the symbols as follows: ***<0.001; **<0.01; *<0.05; N.S.>0.05. 170 

      171 

The R1021 residue forms hydrogen bonds with the carbonyl oxygens of L1055, 172 

T1056, and K1059 located in or adjacent to the regulatory arch helices ka10 and ka11 of 173 

PI3Kg (Fig 1C). Both R1021C and R1021P would be expected to disrupt these 174 

interactions, with the R1021P also expected to distort the secondary structure of the ka8 175 

helix. The R1021P has been previously found to lead to greatly decreased lipid kinase 176 

activity in vitro [46]. To characterize these mutations, we carried out biochemical assays 177 

of wild-type, R1021C, and R1021P p110g/p101 complexes against plasma membrane-178 

mimic lipid vesicles containing 5% PIP2. Assays were carried out in the presence and 179 

absence of lipidated Gβg subunits, a potent p110g/p101 activator. These assays revealed 180 

that p110g/p101 R1021C was ~8-fold more active than wild-type both basally and in the 181 

presence of Gβg (Fig. 1D). The R1021P complex showed greatly decreased Gβg 182 

stimulation compared to wild-type. Intriguingly, R1021P showed higher basal ATPase 183 

activity (non-productive turnover of ATP) compared to WT, revealing that it still has 184 

catalytic activity, but greatly decreased activity on lipid substrate (Fig. 1E). The R1021C 185 
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mutant also showed a ~8-fold increase in lipid kinase activity compared to wild-type when 186 

assaying the free 110g subunit (Fig. 1F). 187 

 188 

R1021P and R1021C cause allosteric conformational changes throughout the regulatory 189 

C-terminal motif 190 

We carried out hydrogen deuterium exchange mass spectrometry (HDX-MS) 191 

experiments to define the molecular basis for why two different mutations at the same site 192 

have opposing effects on lipid kinase activity. HDX-MS is a technique that measures the 193 

exchange rate of amide hydrogens, and as the rate is dependent on the presence and 194 

stability of secondary structure, it is an excellent probe of protein conformational dynamics 195 

[55]. HDX-MS experiments were performed on complexes of wild-type p110g/p101, 196 

R1021C p110g/p101, and R1021P p110g/p101, as well as the free wild-type and R1021C 197 

p110g. The coverage map of the p110g and p101 proteins was composed of 153 peptides 198 

spanning ~93% percent of the exchangeable amides (Table S1).  199 
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 200 

Figure 2. R1021C and R1021P mutations in p110g are destabilising, with R1021P leading to global 201 

destabilization and R1021C leading to localised disruption of the C-terminal regulatory W1080 202 

Tryptophan ‘lock’.  203 

A+B. Peptides showing significant deuterium exchange differences (>5 %, >0.4 kDa and p<0.01 in an 204 

unpaired two-tailed t-test) between wild-type and R1021C (A) and wild-type and R1021P (B) p110g/p101 205 

complexes are coloured on a model of p110g (PDB: 6AUD)[54]. Differences in exchange are coloured 206 

according to the legend.  207 

C+D. The number of deuteron difference for the R1021C and R1021P mutants for all peptides analysed 208 

over the entire deuterium exchange time course for p110g. Every point represents the central residue of an 209 
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individual peptide. The domain location is noted above the primary sequence. A cartoon model of the p110g 210 

structural model is shown according to the legend in panels A+B. Error is shown as standard deviation 211 

(n=3).  212 

E+F. The number of deuteron difference for the R1021C and R1021P mutants for all peptides analysed 213 

over the entire deuterium exchange time course for p101. Every point represents the central residue of an 214 

individual peptide. Error is shown as standard deviation (n=3).  215 

G. Selected p110g peptides that showed decreases and increases in exchange are shown. The full list of 216 

all peptides and their deuterium incorporation is shown in supplementary data 1. 217 

 218 

The R1021C and R1021P mutations led to significant changes in the 219 

conformational dynamics of the p110g catalytic and p101 regulatory subunits (Fig. 2A-220 

G). The R1021C mutation resulted in increased H/D exchange in the C2, helical and 221 

kinase domains of p110g. Intriguingly, many of the changes in dynamics of the helical and 222 

kinase domains are similar to those observed upon membrane binding [21]. The largest 223 

differences occurred in the helices in the C-terminal regulatory motif (ka7-12) (Fig. 2C). 224 

A peptide spanning the C-terminal end of the activation loop and ka7 (976-992) showed 225 

increased exchange, with these changes primarily occurring at later timepoints of 226 

exchange (3000 s) (Fig. 2G). This is indicative of these regions maintaining secondary 227 

structure, although with increased flexibility. These increases in exchange for the R1021C 228 

mutant were conserved for the free p110g subunit, although with larger increases in 229 

exchange compared to the p110g/p101 complex (Fig. S3). Previous HDX-MS analysis of 230 

the regulatory mechanisms of class IA PI3Ks has revealed that increased dynamics of 231 

the activation loop occurs concurrently with increased lipid kinase activity [40,56-59]. This 232 
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highlights a potential molecular mechanism for how the R1021C mutation can lead to 233 

increased lipid kinase activity.  234 

The R1021P mutation resulted in larger increases in exchange throughout almost 235 

the entire C2, helical, and kinase domains (Fig. 2D). Comparing the rates of hydrogen 236 

exchange between wild-type, R1021C, and R1021P showed many regions where 237 

R1021C and R1021P both caused increased exchange. However, for the majority of 238 

these regions the R1021P led to increased exchange at early (3 s) and late timepoints 239 

(3000 s) of exchange, indicative that this mutation was leading to significant disruption of 240 

protein secondary structure (Fig. 2G). This large-scale destabilization throughout the 241 

protein may explain the low yield and decreased kinase activity. The two mutations in 242 

R1021C and R1021P both caused increased exchange in the p101 subunit. Peptides 243 

spanning 602-623, and 865-877 of p101 showed similar increases in exchange for both 244 

R1021C and R1021P, with R1021P also leading to increased exchange in a peptide 245 

nearer the N-terminus (102-122) (Fig. 2E+F, S3). As there is no structural model for the 246 

p101 subunit, it is hard to unambiguously interpret this data, however, as these may 247 

represent increased exchange due to partial destabilization of the complex, our work 248 

provides initial insight into the p110g contact site on p101.  249 

 250 

Molecular dynamics of p110g R1021C and R1021P mutants 251 

We carried out Gaussian-accelerated Molecular Dynamics (GaMD) simulations of 252 

wild-type p110g and its R1021C and R1021P variants to provide additional insight into 253 

the underlying molecular mechanisms of how these mutations alter lipid kinase activity. 254 
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Using the crystallographic structure of p110g lacking the N-terminus [amino acids 144-255 

1102, PDB: 6AUD [54]], we generated the activation loop and other neighboring loops as 256 

described in the methods, removed the co-crystallized ligand, and mutated R1021 to a 257 

cysteine and proline, resulting in three systems: WT, R1021C, and R1021P. Three 258 

replicas of fully solvated all-atom GaMD simulations were run for each model with 259 

AMBER18 achieving a cumulative extensive sampling of ~3, ~4.1, and ~1.5 µs for WT, 260 

R1021C, and R1021P, respectively (Fig. 3A+B). 261 

To quantify the effect of mutations on the structural dynamics of p110g, we 262 

calculated the root-mean-square-fluctuation (RMSF) of residues neighboring the mutation 263 

site. RMSF was calculated to determine average flexibility of each residue’s Ca and Cb 264 

atoms around their mean position (Fig. 3C). This revealed increased fluctuations in the 265 

residues forming the loop between ka10 and ka11 in the mutated systems, specifically 266 

residues T1056, V1057, and G1058 at the C-terminus of ka10. Many of these residues 267 

participate in hydrogen bonds with R1021 in WT (Fig. 3B). 268 

Analysis of the simulations revealed that mutation of R1021 results in disruption of 269 

the hydrogen bonding network between R1021 and L1055, T1056, and K1059 in the 270 

ka10-ka11 region. There were also alterations in the intra and inter helix hydrogen bonds 271 

in ka8, ka9, ka10, and ka11 (Fig. 3D, S4). Hydrogen bonding occupancies between 272 

Y1017 and T1056 decreased from 71% in WT to 56% and 45% in the R1021C and 273 

R1021P systems, respectively. Examining the ka8-ka9 backbone hydrogen bonding at 274 

the site of mutation, both mutations showed a disruption between C/P1021 and T1024. 275 

Additionally, the proline mutation showed complete disruption of backbone hydrogen 276 
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bonds at A1016-L1020 and Y1017-P1021, decreased bonding occupancy at K1015-277 

A1019 and N1025-I1029, and increased bonding occupancy of Y1017-L1020 and P1021-278 

T1024. The notable increase in hydrogen bonding disruption in the R1021P compared to 279 

R1021C could be responsible for the increased destabilization observed by HDX-MS. 280 

To obtain further insights into the dynamic behavior of the C-terminus of the kinase 281 

domain and how mutation of R1021 alters conformational dynamics, we monitored the 282 

fluctuations of four different angles formed between ka8, ka9, ka10, and ka11 (Fig. 3E). 283 

The simulations revealed increased angle fluctuations in the mutant simulations between 284 

ka8 and ka9, and ka9 and ka10, with a bimodal distribution in the ka8/ka9 angle 285 

compared to WT. There was also increased fluctuations in the activation loop in the 286 

mutants compared to WT (Figure 3C, Fig. S4). 287 

 288 

Figure 3. Molecular dynamics reveal that the R1021C and R1021P mutations show increased 289 

instability in p110g .  290 
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A. Model of p110g showcasing the regulatory domain’s ka8 (995-1023), ka9 (1024-1037), ka10 (1045-291 

1054), and ka11 (1057-1078) helices, and the activation loop (962-988).  292 

B. A zoomed-in snapshot of R1021 microenvironment showing residues in licorice. Hydrogen bonds with 293 

R1021 are drawn as red lines.  294 

C. RMSF [Å] of each residue’s Ca and Cb atoms in the activation loop and the ka10/ka11 helices, 295 

respectively. RMSF values for each atom across replicates are shown as a quantile plot, with error shown 296 

as standard deviation (n=3).  297 

D. The mean and standard deviation of hydrogen bond occupancies between the indicated helices/sets of 298 

helices across replicates (n=3). Asterisks indicate significant differences in occupancies. 299 

E. Inter-angle density distributions across all replicas between ka8, ka9, ka10, and ka11. In all panels, WT, 300 

R1021C, and R1021P are colored in grey, green, and red, respectively. 301 

 302 

Multiple PI3Kg inhibitors lead to allosteric conformational changes 303 

Many of the differences in conformational dynamics observed by HDX-MS for the 304 

p110g mutants were similar to previously observed allosteric changes caused by 305 

cyclopropyl ethyl containing isoindolinone compounds [34]. We performed HDX-MS 306 

experiments with seven potent PI3K inhibitors on free p110g to define the role of allostery 307 

in PI3Kg inhibition. We analysed inhibitors that were selective for PI3Kg [AS-604850 [9], 308 

AZ2 [34], NVS-PI3-4 [15,60], and IPI-549 [53]) as well as pan-PI3K inhibitors [PIK90 [61], 309 

Omipalisib [62], and Gedatolisib [63]]. Of these compounds only AS-604850, PIK90, and 310 

Omipalisib have been structurally characterized bound to p110g. A table summarizing 311 

these compounds and their selectivity for different PI3K isoforms is shown in table S2. 312 

Deuterium exchange experiments were carried out with monomeric p110g over 4 313 

timepoints of deuterium exchange (3,30,300, and 3000 s). We obtained 180 peptides 314 
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covering ~89% percent of the exchangeable amides (Table S1). To verify that results on 315 

the free p110g complex are relevant to the physiological p110g/p101 complex, we also 316 

carried out experiments with the p110g/p101 complex with Gedatolisib and IPI-549, with 317 

the free p110g showing almost exactly the same differences as seen for the p110g/p101 318 

complex (Fig. S5). 319 

 320 

Figure 4. HDX-MS reveals that different classes of PI3K inhibitors lead to unique allosteric 321 

conformational changes.  322 

A. The number of deuteron difference for the 7 different inhibitors analysed over the entire deuterium 323 

exchange time course for p110g. Every point represents the central residue of an individual peptide. The 324 

domain location is noted above the primary sequence. Error is shown as standard deviation (n=3).  325 

B-D. Peptides showing significant deuterium exchange differences (>5%, >0.4 kDa and p<0.01 in an 326 

unpaired two-tailed t-test) between wild-type and IPI-549 (B), Gedatolisib (C), and AZ2 (D) are coloured on 327 
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a model of p110g (PDB: 6AUD). Differences in exchange are mapped according to the legend. A cartoon 328 

model in the same format as Fig. 1 is shown as a reference.  329 

E. Selected p110g peptides that showed decreases and increases in exchange are shown. The full list of 330 

all peptides and their deuterium incorporation is shown in supplementary data 1. 331 

 332 

Based on the H/D exchange differences observed with inhibitors present, we were 333 

able to classify the inhibitors into three broad groups. The first group contains the 334 

isoquinolinone compound IPI-549, the imidazo[1,2-c]quinazoline molecule PIK-90 and 335 

the thiazolidinedione compound AS-604850 (Fig. 4A+B). These compounds caused 336 

decreased exchange near the active site, with the primary region being protected being 337 

the hinge region between the N- and C- lobes of the kinase domain (Fig. 4B+E). No (IPI-338 

549, AS-604850) or very small (PIK-90) increases in deuterium incorporation were 339 

observed (Fig 4A, S6), suggesting that there are limited large scale allosteric 340 

conformational changes for these compounds.  341 

The H/D exchange experiments revealed a second class of inhibitors that showed 342 

decreased exchange at the active site, but also significant increases in exchange in the 343 

kinase and helical domains (Fig. 4A+C, S6). The second group includes the bis-344 

morpholinotriazine molecule Gedatolisib, difluoro-benzene sulfonamide compound 345 

Omipalisib and the PI3Kg-specific thiazole derivative NVS-PI3-4. Binding of these 346 

inhibitors caused increased exchange in the helical domain, and multiple regions of the 347 

kinase regulatory motif, including ka7, ka10, ka11 and ka12. The peptide covering ka7 348 

also spans the C-terminal end of the activation loop. Intriguingly, for the Gedatolisib 349 

molecule, the differences in H/D exchange matched very closely to those observed in the 350 
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R1021C mutant. This suggests that the conformational changes induced by these 351 

compounds mimic the partially activated state that occurs in the R1021C mutant.  352 

           Finally, AZ2 caused large scale increased exposure throughout large regions of 353 

the helical and kinase domains (Fig. 4A+D), consistent with previous reports [34]. The 354 

same regulatory motif regions that showed increased exchange with Gedatolisib showed 355 

much larger changes with AZ2. Importantly, increased exchange was observed at earlier 356 

timepoints for AZ2 compared to Gedatolisib (example peptide 976-992 covering the 357 

activation loop and ka7), suggesting that AZ2 leads to a complete disruption of secondary 358 

structure, with Gedatolisib likely causing increased secondary structure dynamics (Fig. 359 

4E).  360 

This shows that multiple PI3K inhibitors can cause large scale allosteric 361 

conformational changes upon inhibitor binding, however, deciphering the molecular 362 

mechanism of these changes were hindered by lack of high-resolution structural 363 

information for many of these compounds. 364 

 365 

Structures of PI3Kg bound to IPI-549, Gedatolisib, and NVS-PI3-4 366 

To further define the molecular basis for how different inhibitors lead to allosteric 367 

conformational changes we solved the crystal structure of p110g bound to IPI-549, 368 

Gedatolisib, and NVS-PI3-4 at resolutions of 2.55Å, 2.65Å, and 3.15Å, respectively (Fig. 369 

5A-C, S6, S8). The inhibitor binding mode for all were unambiguous (Fig. S8). 370 

These structures revealed insight into how IPI-549 and NVS-PI3-4 can achieve 371 

selectivity for PI3Kg (Fig. S7). All inhibitors formed the critical hydrogen bond with the 372 
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amide hydrogen of V882 in the hinge, which is a conserved feature of ATP competitive 373 

PI3K kinase inhibitors. NVS-PI3-4 leads to opening of a p110g unique pocket mediated 374 

by a conformational change in K883 (Fig. S7D-H). The opening of K883 is accommodated 375 

by it rotating into contact with D884 and T955. This opening would not be possible in 376 

p110a and p110d as the corresponding K883 residue (L829 in p110d and R852 in p110a) 377 

would clash with the corresponding T955 residue (R902 in p110d and K924 in p110a) 378 

(Fig S7I-J). IPI-549 binds with a characteristic propeller shape, as seen for multiple p110g 379 

and p110d selective inhibitors [64]. IPI-549 leads to a conformational change in the 380 

orientation of M804, which opens the specificity pocket, primarily composed of W812 and 381 

M804 (Fig. 5C, S7). Comparison of IPI-549 bound to p110g to the selective inhibitor 382 

Idelalisib bound to p110d revealed a potential molecular mechanism for p110g selectivity. 383 

Structure activity analysis of IPI-549 and its derivatives showed a critical role for 384 

substitutions at the alkyne position in achieving p110g specificity[53]. The N-385 

methylpyrazole group in IPI-549 projects out of the specificity pocket towards the ka1-386 

ka2 loop. This loop is significantly shorter in p110d, with a potential clash with bulkier 387 

alkyne derivatives (Fig. S7K-L). However, this cannot be the main driver of specificity, as 388 

a phenyl substituent of the alkyne had decreased selectivity of p110g over p110d, with 389 

hydrophilic heterocycles in this position being critical in p110g selectivity[53]. A major 390 

difference in this pocket between p110g and p110d is K802 in p110g (T750 in p110d), with 391 

this residue making a pi-stacking interaction with W812. The N-methylpyrazole group 392 

packs against K802, with a bulkier group in this position likely to disrupt the pi stacking 393 

interaction, explaining the decreased potency for these compounds[53]. 394 
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 395 

Fig 5: Structures of Gedatolisib and IPI-549 bound to p110g 396 

A.  Overall structure of Gedatolisib (red) and IPI-549 (green) bound to p110g.  397 

B-C.  Comparison of Gedatolisib and IPI-549 bound to p110g with the activation loop and selectivity pocket 398 

highlighted. M804 that changes conformation upon selectivity pocket opening is coloured red.  399 

D-E.  Comparison of the conformation of the activation loop (orange) of p110g when Gedatolisib or IPI-549 400 

are bound, with residues in the activation loop labelled, specifically D964 and F965 of the DFG motif labelled. 401 

F-G.  The Trp lock composed of W0180 is partially disrupted in the Gedatolisib structure compared to the 402 

IPI-549 structure. The interaction between W1080 and D904 is shown, with the distance between the two 403 

shown on each structure. The electron density from a feature enhanced map [65] around W1080 and D904 404 

in each structure is contoured at 1.5 sigma.  405 

 One of the most striking differences between the structure of Gedatolisib and IPI-406 

549 bound to p110g is the conformation of the N-terminus of the activation loop, including 407 

the residues that make up the DFG motif (Fig. 5B, D+E, S8). The majority of the activation 408 

loop is disordered in PI3Kg crystal structures, with the last residue being between 967 409 

and 969. Gedatolisib makes extensive contacts with the activation loop, with H967 410 

immediately following the DFG motif in a completely altered conformation. The interaction 411 
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of the cyclopropyl motif in AZ2 with the activation loop has previously been proposed to 412 

be critical in mediating allosteric conformational changes. In addition to the change in the 413 

activation loop, there was a minor perturbation of the W1080 lock, with the Gedatolisib 414 

structure revealing a disruption of the hydrogen bond between W1080 and D904, with 415 

this bond maintained in the IPI-549 structure (Fig. 5F+G). The C-terminus of the activation 416 

loop and ka7 immediately following showed some of the largest changes upon inhibitor 417 

binding in HDX experiments. The ka7 helix is directly in contact with W1080, and we 418 

postulated that the conformational changes induced in the N-terminus of the activation 419 

loop may mediate these changes.  420 

 421 

Fig. 6. Activating mutations show slight differences in inhibition by allosteric inhibitors and model 422 

of PI3Kg regulation.   423 

A. IC50 curves for wild-type and R1021C p110g/p101 complexes. Assays were carried out with 5% C8 PIP2 424 

/ 95% PS vesicles at a final concentration of 1 mg/ml in the presence of 100 µM ATP and 1.5 µM lipidated 425 
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Gbg. PI3Kg concentration was 4 nM for R1021C and 8 nM for WT. Error is shown as standard deviation 426 

(n=3)  427 

B. Model of conformational changes that occur upon mutation of the C-terminal motif and binding of 428 

activation loop interacting conformation selective inhibitors.  429 

 430 

Conformational selective inhibitors show altered specificity towards activating PI3Kg 431 

mutant 432 

We observed that HDX differences occurring in the R1021C mutant, were very 433 

similar to conformational changes observed for p110g bound to Gedatolisib, particularly 434 

for the peptide spanning 976-992 in the activation loop. As this region is directly adjacent 435 

to the inhibitor binding site, we postulated that there may be altered inhibitor binding for 436 

the R1021C mutant. We carried out IC50 measurement for wild-type and R1021C 437 

p110g/p101 with both IPI-549 and Gedatolisib (Fig. 6A). Gedatolisib was roughly three-438 

fold more potent for the R1021C mutant over the wild-type, with no significant difference 439 

in IC50 values for IPI-549 compared to wild-type. This provides initial insight into how 440 

understanding the dynamics of activating mutations and inhibitors may be useful as a 441 

novel strategy towards designing mutant specific inhibitors.   442 

 443 

Discussion: 444 

Understanding the molecular determinants of how mutations in PI3Ks lead to 445 

altered signalling in disease is vital in the design of targeted therapeutic strategies. The 446 

PI3Kg isoform is critical to maintain immune system function, and plays important roles in 447 

the regulation of the tumour microenvironment [7,66]. Bi-allelic loss of function mutations 448 
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in PI3Kg are a driver of human immunodeficiencies, and multiple inactivating mutations 449 

located in the C-terminal regulatory motif of the kinase domain have been described 450 

[46,47]. Initial results linking deletion of PI3Kg to the development of colon cancer [67] 451 

have been disputed [68], and recent studies suggest that tumour growth and metastasis 452 

is attenuated in PI3Kg deficient mice [30,69] and IPI-549 treated animals [29]. Inhibiting 453 

PI3Kg has shown promise as an immunomodulatory agent in generating an anti-tumour 454 

immune response [29,30]. There have also been numerous reports of overexpression 455 

and single nucleotide variants in PIK3CG linked to cancer development in multiple tissues 456 

[69-76]. Oncogenic mutations in PIK3CG are widely distributed, which is distinct from the 457 

oncogenic hotspot mutations seen in the helical and kinase domain of PIK3CA. There 458 

has been limited analysis of the functional consequences of oncogenic PIK3CG mutants, 459 

with the R1021 residue in the regulatory motif of the kinase domain being unique, as 460 

mutations of this residue exist in both immunodeficiencies and tumours.  461 

Here, we have described the biochemical and biophysical characterisation of both 462 

activating and inactivating disease linked R1021 mutations in the regulatory motif of the 463 

PI3Kg kinase domain. This has revealed that mutation of R1021 can lead to either kinase 464 

activation or inactivation. The R1021 in the ka8 helix is conserved across all class I PI3Ks, 465 

with it making a number of hydrogen bonds with residues in ka10 and ka11. Both R1021P 466 

and R1021C would lead to disruption of the hydrogen bonds with ka10 and ka11, 467 

however R1021P would also lead to disruption of the ka8 helix due to the altered 468 

dynamics introduced by the proline residue. HDX-MS results were consistent with this 469 

hypothesis, with R1021P leading to large scale conformational changes across the entire 470 
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protein, with the main disruptions occurring in the helical and kinase domain. Molecular 471 

dynamics simulations revealed alterations in the fluctuation of the helices in the C-472 

terminal regulatory motif for R1021P. The ka10 helix in the kinase domain extensively 473 

contacts the helical domain, with the altered orientation of this helix potentially revealing 474 

a mechanism of increased exchange in the helical domain. The R1021P mutation greatly 475 

destabilized the protein, with purification yields being >20-fold lower than wild-type, 476 

consistent with greatly decreased p110g and p101 levels in patient T cells [46]. Consistent 477 

with previous reports we found greatly decreased lipid kinase activity for R1021P, 478 

although the enzyme maintained catalytic ability, as it showed greatly increased basal 479 

ATPase activity, which is similar to what occurs upon mutation of the W1080 lock or 480 

removal of the ka12 helix [34,46]. This suggests a mechanism whereby R1021P mutation 481 

leads to large scale destabilization, and locks the enzyme into a lipid kinase inactive form.  482 

The R1021C mutation in contrast, had enhanced lipid kinase activity, both basally, 483 

and upon Gbg activation. Increased conformational changes for this mutation were 484 

primarily localised to the C-terminal regulatory motif, with additional increased exchange 485 

occurring in the helical domain, although not to the same extent as seen in R1021P. Many 486 

of these changes in the C-terminal regulatory motif have been previously observed upon 487 

membrane binding [21], as well as upon binding to conformational selective inhibitors [34]. 488 

One of the largest changes in exchange occurred at the C-terminus of the activation loop 489 

and the beginning of ka7 which is in contact with the W1080 lock. We propose a model 490 

of how mutation of R1021 can lead to either activated or inactivated lipid kinase activity 491 

(Fig. 6B). The conformation of the C-terminal regulatory motif is critical in regulating lipid 492 
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kinase activity, where minor perturbations (R1021C) can lead to disruption of multiple 493 

inhibitory contacts allowing for reorientation of the ka12 membrane binding helix and 494 

increased lipid kinase activity. For R1021P, this mutation leads to extensive 495 

conformational disruption throughout the protein, along with the C-terminal regulatory 496 

domain, which results in decreased protein stability and inactivation of kinase activity. 497 

Reinforcing this as a general mechanism important for class I PI3K regulation is that 498 

mutation of the equivalent R992 in PIK3CA to either Leu or Asn has been found in tumour 499 

samples [45].   500 

This work corroborates the important role of the C-terminal regulatory motif in 501 

controlling PI3K lipid kinase activity. The orientation of this motif is critical in the regulation 502 

of all class I PI3Ks, although this is regulated by different molecular mechanisms in p110a, 503 

p110b, p110d, and p110g. The class IA PI3Ks require p85 regulatory subunits to stabilize 504 

the C-terminal regulatory motif, with the nSH2 of p85 interacting with and stabilising ka10 505 

for all class IA PI3Ks [57,77], and the cSH2 of p85 stabilising ka7, ka8, ka11 and ka12 506 

for p110b and p110d [59,78]. The p110g isoform is unique in that its C-terminal motif 507 

adopts an inhibited conformation in the absence of regulatory proteins. The C-terminal 508 

regulatory motif of p110g can be post-translationally modified by phosphorylation of ka9 509 

(T1024) by protein kinase A decreasing lipid kinase activity [79], while protein kinase C 510 

phosphorylates an adjacent area in the helical domain (S582) [80] increasing lipid kinase 511 

activity.   512 

It has previously been noted that PI3Kg can be selectively targeted through a 513 

conformationally selective inhibitor, AZ2 [34]. This was mediated through a cyclopropyl 514 
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moiety on AZ2, which putatively alters the orientation of the activation loop, leading to 515 

disruption of the inhibitory conformation of the C-terminal regulatory motif. Many of the 516 

changes observed for this inhibitor were similar to those seen in the R1021C and R1021P 517 

mutant. To interrogate if allosteric conformational changes were unique to cyclopropyl 518 

containing compounds, we screened a panel of pan-PI3K and PI3Kg selective inhibitors 519 

using HDX-MS. HDX-MS analysis of inhibitors bound to PI3Kg revealed distinct dynamics 520 

between compounds. The compounds PIK90, IPI549, and AS-604850 only caused 521 

decreased exchange at the active site. Comparison of the crystal structures of these 522 

compounds [9,61] revealed similar conformation of the activation loop, with limited 523 

interaction between the inhibitors and the activation loop. AZ2, containing the cyclopropyl 524 

moiety led to large scale conformational changes consistent with previous results [34]. 525 

Intriguingly, the non-specific inhibitors Gedatolisib and Omipalisib caused increased 526 

exchange in many of the same regions that showed enhanced exchange with the R1021C 527 

mutant. Comparison of the crystal structures of these inhibitors [62] revealed more 528 

extensive interactions with the activation loop, and significant conformational 529 

rearrangement of the activation loop. Distinct from the AZ2 compound, neither Gedatolisib 530 

and Omipalisib show specificity for PI3Kg over class IA PI3Ks [62,63]. Similar HDX-MS 531 

differences were observed for both the R1021C mutant and wild type bound to 532 

Gedatolisib. Gedatolisib showed increased potency versus R1021C over wild type PI3Kg, 533 

with a ~3-fold decrease in IC50 values. Altogether, this suggests that R1021C induces a 534 

conformation similar to the wild type enzyme bound to Gedatolisib. This provides an 535 
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intriguing approach for designing oncogenic PI3K specific inhibitors through further 536 

optimisation of the ATP competitive inhibitor moieties in the activation loop binding region. 537 

Overall, this work provides novel insight into how the C-terminal regulatory motif 538 

of PI3Kg regulates lipid kinase activity, how oncogenic and immunodeficiency mutations 539 

can disrupt this regulation, and how we can exploit these conformational changes to 540 

develop isoform and mutant selective small molecule inhibitors. Further exploration of the 541 

dynamic regulation of the C-terminal regulatory motif of PI3Ks by mutations and inhibitors 542 

may reveal unique approaches to develop therapeutics for PI3K related human diseases.  543 

 544 

Methods: 545 

Expression and Purification of PI3Kg constructs: 546 

Full length monomeric p110g (WT, R1021C) and p110g/p101 complex (WT, R1021C, 547 

R1021P) were expressed in Sf9 insect cells using the baculovirus expression system. For 548 

the complex, the subunits were co-expressed from a MultiBac vector[81]. Following 55 549 

hours of expression, cells were harvested by centrifuging at 1680 RCF (Eppendorf 550 

Centrifuge 5810 R) and the pellets were snap-frozen in liquid nitrogen. Both the monomer 551 

and the complex were purified identically through a combination of nickel affinity, 552 

streptavidin affinity and size exclusion chromatographic techniques. 553 

Frozen insect cell pellets were resuspended in lysis buffer (20 mM Tris pH 8.0, 100 554 

mM NaCl, 10 mM imidazole pH 8.0, 5% glycerol (v/v), 2 mM beta-mercaptoethanol (bME), 555 

protease inhibitor (Protease Inhibitor Cocktail Set III, Sigma)) and sonicated for 2 minutes 556 

(15s on, 15s off, level 4.0, Misonix sonicator 3000). Triton-X was added to the lysate to a 557 
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final concentration of 0.1% and clarified by spinning at 15,000 g for 45 minutes (Beckman 558 

Coulter JA-20 rotor). The supernatant was loaded onto a 5 mL HisTrap™ FF crude 559 

column (GE Healthcare) equilibrated in NiNTA A buffer (20 mM Tris pH 8.0, 100 mM NaCl, 560 

20 mM imidazole pH 8.0, 5% (v/v) glycerol, 2 mM bME). The column was washed with 561 

high salt NiNTA A buffer (20 mM Tris pH 8.0, 1 M NaCl, 20 mM imidazole pH 8.0, 5% (v/v) 562 

glycerol, 2 mM bME), NiNTA A buffer, 6% NiNTA B buffer (20 mM Tris pH 8.0, 100 mM 563 

NaCl, 250 mM imidazole pH 8.0, 5% (v/v) glycerol, 2 mM bME) and the protein was eluted 564 

with 100% NiNTA B. The eluent was loaded onto a 5 mL StrepTrap™ HP column (GE 565 

Healthcare) equilibrated in gel filtration buffer (20mM Tris pH 8.5, 100 mM NaCl, 50 mM 566 

Ammonium Sulfate and 0.5 mM tris(2-carboxyethyl) phosphine (TCEP)). The column was 567 

washed with the same buffer and loaded with tobacco etch virus protease. After cleavage 568 

on the column overnight, the protein was eluted in gel filtration buffer. The eluent was 569 

concentrated in a 50,000 MWCO Amicon Concentrator (Millipore) to <1 mL and injected 570 

onto a Superdex™ 200 10/300 GL Increase size-exclusion column (GE Healthcare) 571 

equilibrated in gel filtration buffer. After size exclusion, the protein was concentrated, 572 

aliquoted, frozen and stored at -80oC. 573 

For crystallography, p110g (144-1102) was expressed in Sf9 insect cells for 72 574 

hours. The cell pellet was lysed and the lysate was subjected to nickel affinity purification 575 

as described above. The eluent was loaded onto HiTrapTM Heparin HP cation exchange 576 

column equilibrated in Hep A buffer (20 mM Tris pH 8.0, 100 mM NaCl, 5% glycerol and 577 

2 mM bME). A gradient was started with Hep B buffer (20 mM Tris pH 8.0, 1 M NaCl, 5% 578 

glycerol and 2 mM bME) and the fractions containing the peak were pooled. This was 579 
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then loaded onto HiTrapTM Q HP anion exchange column equilibrated with Hep A and 580 

again subjected to a gradient with Hep B. The peak fractions were pooled, concentrated 581 

on a 50,000 MWCO Amicon Concentrator (Millipore) to <1 mL and injected onto a 582 

Superdex™ 200 10/300 GL Increase size-exclusion column (GE Healthcare) equilibrated 583 

in gel filtration buffer (20 mM Tris pH 7.2, 0.5 mM (NH4)2SO4, 1% ethylene glycol, 0.02% 584 

CHAPS and 5 mM DTT). Protein from size exclusion was concentrated to >5 mg/mL, 585 

aliquoted, frozen and stored at -80oC. 586 

 587 

Expression and Purification of lipidated Gβg: 588 

Full length, lipidated Gβg was expressed in Sf9 insect cells and purified as described 589 

previously[82]. After 65 hours of expression, cells were harvested and the pellets were 590 

frozen as described above. Pellets were resuspended in lysis buffer (20 mM HEPES pH 591 

7.7, 100 mM NaCl, 10 mM bME, protease inhibitor (Protease Inhibitor Cocktail Set III, 592 

Sigma)) and sonicated for 2 minutes (15s on, 15s off, level 4.0, Misonix sonicator 3000). 593 

The lysate was spun at 500 RCF (Eppendorf Centrifuge 5810 R) to remove intact cells 594 

and the supernatant was centrifuged again at 25,000 g for 1 hour (Beckman Coulter JA-595 

20 rotor). The pellet was resuspended in lysis buffer and sodium cholate was added to a 596 

final concentration of 1% and stirred at 4oC for 1 hour. The membrane extract was clarified 597 

by spinning at 10,000 g for 30 minutes (Beckman Coulter JA-20 rotor). The supernatant 598 

was diluted 3 times with NiNTA A buffer (20 mM HEPES pH 7.7, 100 mM NaCl, 10 mM 599 

Imidazole, 0.1% C12E10, 10mM bME) and loaded onto a 5 mL HisTrap™ FF crude 600 

column (GE Healthcare) equilibrated in the same buffer. The column was washed with 601 
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NiNTA A, 6% NiNTA B buffer (20 mM HEPES pH 7.7, 25 mM NaCl, 250 mM imidazole 602 

pH 8.0, 0.1% C12E10, 10 mM bME) and the protein was eluted with 100% NiNTA B. The 603 

eluent was loaded onto HiTrapTM Q HP anion exchange column equilibrated in Hep A 604 

buffer (20 mM Tris pH 8.0, 8 mM CHAPS, 2 mM Dithiothreitol (DTT)). A gradient was 605 

started with Hep B buffer (20 mM Tris pH 8.0, 500 mM NaCl, 8 mM CHAPS, 2 mM DTT) 606 

and the protein was eluted in ~50% Hep B buffer. The eluent was concentrated in a 607 

30,000 MWCO Amicon Concentrator (Millipore) to < 1 mL and injected onto a SuperdexTM 608 

75 10/300 GL size exclusion column (GE Healthcare) equilibrated in Gel Filtration buffer 609 

(20 mM HEPES pH 7.7, 100 mM NaCl, 10 mM CHAPS, 2 mM TCEP). Fractions 610 

containing protein were pooled, concentrated, aliquoted, frozen and stored at -80oC. 611 

 612 

 613 

Expression and Purification of Lipidated HRas G12V: 614 

  Full-length HRas G12V was expressed by infecting 500 mL of Sf9 cells with 5 mL of 615 

baculovirus. Cells were harvested after 55 hours of infection and frozen as described 616 

above. The frozen cell pellet was resuspended in lysis buffer (50 mM HEPES pH 7.5, 100 617 

mM NaCl, 10 mM bME and protease inhibitor (Protease Inhibitor Cocktail Set III, Sigma)) 618 

and sonicated on ice for 1 minute 30 seconds (15s ON, 15s OFF, power level 4.0) on the 619 

Misonix sonicator 3000. Triton-X 114 was added to the lysate to a final concentration of 620 

1%, mixed for 10 minutes at 4°C and centrifuged at 25,000 rpm for 45 minutes (Beckman 621 

Ti-45 rotor). The supernatant was warmed to 37°C for few minutes until it turned cloudy 622 

following which it was centrifuged at 11,000 rpm at room temperature for 10 minutes 623 
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(Beckman JA-20 rotor) to separate the soluble and detergent-enriched phases. The 624 

soluble phase was removed, and Triton-X 114 was added to the detergent-enriched 625 

phase to a final concentration of 1%. Phase separation was performed 3 times. Imidazole 626 

pH 8.0 was added to the detergent phase to a final concentration of 15 mM and the 627 

mixture was incubated with Ni-NTA agarose beads (Qiagen) for 1 hour at 4°C. The beads 628 

were washed with 5 column volumes of Ras-NiNTA buffer A (20mM Tris pH 8.0, 100mM 629 

NaCl, 15mM imidazole pH 8.0, 10mM bME and 0.5% Sodium Cholate) and the protein 630 

was eluted with 2 column volumes of Ras-NiNTA buffer B (20mM Tris pH 8.0, 100mM 631 

NaCl, 250mM imidazole pH 8.0, 10mM bME and 0.5% Sodium Cholate). The protein was 632 

buffer exchanged to Ras-NiNTA buffer A using a 10,000 kDa MWCO Amicon 633 

concentrator, where protein was concentrated to ~1mL and topped up to 15 mL with Ras-634 

NiNTA buffer A and this was repeated a total of 3 times. GTPgS was added in 2-fold molar 635 

excess relative to HRas along with 25 mM EDTA. After incubating for an hour at room 636 

temperature, the protein was buffer exchanged with phosphatase buffer (32 mM Tris pH 637 

8.0, 200 mM Ammonium Sulphate, 0.1 mM ZnCl2, 10 mM bME and 0.5% Sodium 638 

Cholate). 1 unit of immobilized calf alkaline phosphatase (Sigma) was added per 639 

milligram of HRas along with 2-fold excess nucleotide and the mixture was incubated for 640 

1 hour on ice. MgCl2 was added to a final concentration of 30 mM to lock the bound 641 

nucleotide. The immobilized phosphatase was removed using a 0.22-micron spin filter 642 

(EMD Millipore). The protein was concentrated to less than 1 mL and was injected onto 643 

a SuperdexTM 75 10/300 GL size exclusion column (GE Healthcare) equilibrated in gel 644 

filtration buffer (20 mM HEPES pH 7.7, 100 mM NaCl, 10 mM CHAPS, 1 mM MgCl2 and 645 
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2 mM TCEP).  The protein was concentrated to 1 mg/mL using a 10,000 kDa MWCO 646 

Amicon concentrator, aliquoted, snap-frozen in liquid nitrogen and stored at -80°C. 647 

 648 

Lipid Vesicle Preparation: 649 

For kinase assays comparing WT and mutant activities, lipid vesicles containing 5% brain 650 

phosphatidylinositol 4,5- bisphosphate (PIP2), 20% brain phosphatidylserine (PS), 50% 651 

egg-yolk phosphatidylethanolamine (PE), 10% egg-yolk phosphatidylcholine (PC), 10% 652 

cholesterol and 5% egg-yolk sphingomyelin (SM) were prepared by mixing the lipids 653 

dissolved in organic solvent. The solvent was evaporated in a stream of argon following 654 

which the lipid film was desiccated in a vacuum for 45 minutes. The lipids were 655 

resuspended in lipid buffer (20 mM HEPES pH 7.0, 100 mM NaCl and 10 % glycerol) and 656 

the solution was sonicated for 15 minutes. The vesicles were subjected to five freeze 657 

thaw cycles and extruded 11 times through a 100-nm filter (T&T Scientific: TT-002-0010). 658 

The extruded vesicles were sonicated again for 5 minutes, aliquoted and stored at -80°C. 659 

For inhibitor response assays, lipid vesicles containing 95% PS and 5% C8-PIP2 were 660 

used. PS was dried and desiccated as described above. The lipid film was mixed and 661 

resuspended with C8-PIP2 solution (2.5 mg/mL in lipid buffer). Following this, vesicles 662 

were essentially prepared the same way as described above. All vesicles were stored at 663 

5 mg/mL. 664 

 665 

Lipid Kinase assays: 666 
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All lipid kinase activity assays employed the Transcreener ADP2 Fluorescence Intensity 667 

(FI) Assay (Bellbrook labs) which measures ADP production. For assays comparing the 668 

activities of mutants, final concentrations of PM-mimic vesicles were 1 mg/mL, ATP was 669 

100 µM ATP and lipidated Gβg/HRas were at 1.5 µM. 2 µL of a PI3K solution at 2X final 670 

concentration was mixed with 2 µL substrate solution containing ATP, vesicles and 671 

Gβg/HRas or Gβg/HRas gel filtration buffer and the reaction was allowed to proceed for 672 

60 minutes at 20°C. The reaction was stopped with 4 µL of 2X stop and detect solution 673 

containing Stop and Detect buffer, 8 nM ADP Alexa Fluor 594 Tracer and 93.7 µg/mL 674 

ADP2 Antibody IRDye QC-1 and incubated for 50 minutes. The fluorescence intensity 675 

was measured using a SpectraMax M5 plate reader at excitation 590 nm and emission 676 

620 nm. This data was normalized against a 0-100% ADP window made using conditions 677 

containing either 100 µM ATP/ADP with vesicles and kinase buffer. % ATP turnover was 678 

interpolated from an ATP standard curve obtained from performing the assay on 100 µM 679 

(total) ATP/ADP mixtures with increasing concentrations of ADP using Prism 7. All 680 

specific activities of lipid kinase activity were corrected for the basal ATPase activity by 681 

subtracting the specific activity of the WT/mutant protein in the absence of 682 

vesicles/activators.  683 

For assays measuring inhibitor response, substrate solutions containing vesicles, 684 

ATP and Gβg at 4X final concentration (as described above) were mixed with 4X solutions 685 

of inhibitor dissolved in lipid buffer (<1% DMSO) in serial to obtain 2X substrate solutions 686 

with inhibitors at the various 2X concentrations. 2 µL of this solution was mixed with 2 µL 687 

of 2X protein solution to start the reaction and allowed to proceed for 60 minutes at 37 oC. 688 
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Following this, the reaction was stopped and the intensity was measured. The raw data 689 

was normalized against a 0-100% ADP window as described above. The % inhibition was 690 

calculated by comparison to the activity with no inhibitor to obtain fraction activity 691 

remaining.  692 

 693 

Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS): 694 

HDX experiments were performed similarly as described before [40]. For HDX with 695 

mutants, 3  µL containing 13 picomoles of protein was incubated with 8.25 µL of D2O 696 

buffer (20mM HEPES pH 7.5, 100 mM NaCl, 98% (v/v) D2O) for four different time periods 697 

(3, 30, 300, 3000 s at 20 oC). After the appropriate time, the reaction was stopped with 698 

57.5 µL of ice-cold quench buffer (2M guanidine, 3% formic acid), immediately snap 699 

frozen in liquid nitrogen and stored at -80 oC. For HDX with inhibitors, 5 µL of p110g or 700 

p110g/p101  at 2 µM was mixed with 5 µL of inhibitor at 4 µM in 10% DMSO or 5 µL of 701 

blank solution containing 10% DMSO and incubated for 20 minutes on ice. 40 µL of D2O 702 

buffer was added to this solution to start the exchange reaction which was allowed to 703 

proceed for four different time periods (3, 30, 300, 3000 s at 20 oC). After the appropriate 704 

time, the reaction was terminated with 20 µL of ice-cold quench buffer and the samples 705 

were frozen. 706 

Protein samples were rapidly thawed and injected onto an ultra-high pressure liquid 707 

chromatography (UPLC) system at 2 °C. Protein was run over two immobilized pepsin 708 

columns (Trajan, ProDx protease column, PDX.PP01-F32 and Applied Biosystems, 709 

Porosyme, 2-3131-00) at 10 °C and 2 °C at 200 µl/min for 3 min, and peptides were 710 
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collected onto a VanGuard precolumn trap (Waters). The trap was subsequently eluted 711 

in line with an Acquity 1.7-μm particle, 100 × 1 mm2 C18 UPLC column (Waters), using 712 

a gradient of 5–36% B (buffer A, 0.1% formic acid; buffer B, 100% acetonitrile) over 16 713 

min. Mass spectrometry experiments were performed on an Impact II TOF (Bruker) 714 

acquiring over a mass range from 150 to 2200 m/z using an electrospray ionization source 715 

operated at a temperature of 200 °C and a spray voltage of 4.5 kV. Peptides were 716 

identified using data-dependent acquisition methods following tandem MS/MS 717 

experiments (0.5-s precursor scan from 150–2000 m/z; 12 0.25-s fragment scans from 718 

150–2000 m/z). MS/MS datasets were analysed using PEAKS7 (PEAKS), and a false 719 

discovery rate was set at 1% using a database of purified proteins and known 720 

contaminants. 721 

HD-Examiner software (Sierra Analytics) was used to automatically calculate the 722 

level of deuterium incorporation into each peptide. All peptides were manually inspected 723 

for correct charge state and presence of overlapping peptides. Deuteration levels were 724 

calculated using the centroid of the experimental isotope clusters. The results for these 725 

proteins are presented as relative levels of deuterium incorporation, and the only control 726 

for back exchange was the level of deuterium present in the buffer (62% for experiments 727 

with mutants and 75.5% for experiments with inhibitors). Changes in any peptide at any 728 

time point greater than both 5% and 0.4 Da between conditions with a paired t test value 729 

of p < 0.01 were considered significant. The raw HDX data are shown in two different 730 

formats. The raw peptide deuterium incorporation graphs for a selection of peptides with 731 

significant differences are shown, with the raw data for all analyzed peptides in the source 732 
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data. To allow for visualization of differences across all peptides, we utilized number of 733 

deuteron difference (#D) plots. These plots show the total difference in deuterium 734 

incorporation over the entire H/D exchange time course, with each point indicating a 735 

single peptide. The mass spectrometry proteomics data have been deposited to the 736 

ProteomeXchange Consortium via the PRIDE partner repository[83] with the dataset 737 

identifier PXD021132. 738 

 739 

X-ray crystallography: 740 

p110g (144-1102) was crystallized from a grid of 2µl sitting drops at 1:1, 2:1 and 3:1 741 

protein to reservoir ratios at 18oC. Protein at 4 mg/mL (in 20 mM Tris pH 7.2, 0.5 mM 742 

(NH4)2SO4, 1% ethylene glycol, 0.02% CHAPS and 5 mM DTT) was mixed with reservoir 743 

solution containing 100 mM Tris pH 7.5, 250 mM (NH4)2SO4 and 20-22% PEG 4000. 744 

Large multinucleate crystals were generated in these drops. Inhibitor stocks were 745 

prepared at concentrations of 0.01 mM, 0.1 mM and 1 mM in cryo-protectant solution 746 

containing 100 mM Tris pH 7.5, 250 mM (NH4)2SO4, 23% PEG 4000 and 14% glycerol. 747 

Inhibitors at increasing concentrations were added to the drops stepwise every 1 hour. 748 

After overnight incubation with the inhibitor, single crystals were manually broken from 749 

the multi-nucleates and soaked in a fresh drop containing 1 mM inhibitor in cryo-750 

protectant before being immediately frozen in liquid nitrogen.  751 

Diffraction data for PI3Kg crystals were collected on beamline 08ID-1 of the 752 

Canadian Light Source. Data was collected at 0.97949 Å. Data were processed using 753 

XDS [84]. Phases were initially obtained by molecular replacement using Phaser [85] 754 
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using PDB: 2CHW for the IPI-549 complex [61], and 5JHA for Gedatolisib and NVS-PI3-755 

4 [86]. Iterative model building and refinement were performed in COOT [87] and 756 

phenix.refine [88]. Refinement was carried out with rigid body refinement, followed by 757 

translation/libration/screw B-factor and xyz refinement. The final model was verified in 758 

Molprobity [89] to examine all Ramachandran and Rotamer outliers. Data collection and 759 

refinement statistics are shown in Table S3. The crystallography data has been deposited 760 

in the protein data bank with accession numbers (PDB: 7JWE, 7JX0, 7JWZ).  761 

 762 

Molecular Dynamics: Missing loops modelling 763 

The employed crystallographic structures of the p110g protein reveal several missing 764 

gaps corresponding to flexible loops within range of the ligand-binding site: the activation 765 

loop (residues 968-981), and loops connecting the C2 and helical domains (residues 435-766 

460 and 489-497). These missing gaps were modelled as disordered loops using 767 

Modeller9.19 [90]. Keeping the crystallographic coordinates fixed, 50 models were 768 

independently generated for each system. The wild type (WT), R1021C, and R1021P 769 

systems used PDB ID 6AUD [54] with their corresponding mutations in the mutant 770 

systems. The alignment used by Modeller between the crystallographic structure 771 

sequences and the FASTA sequence of p110g (Uniprot ID P48736) were generated using 772 

Clustal Omega [91]. The top models were visually inspected to discard those in which 773 

loops were entangled in a knot or clashed with the rest of the structure. Lastly, from the 774 

remaining models, three were selected for each system to initiate simulations in triplicates. 775 

 776 
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Molecular Dynamics: System preparation 777 

The generated models were prepared using tleap program of the AMBER package [92]. 778 

The systems were parametrized using the general AMBER force field (GAFF) using 779 

ff14sb for the protein [93]. The systems were fully solvated with explicit water molecules 780 

described using the TIP3P model [94], adding K+ and Cl- counterions to neutralize the 781 

total charge. The total number of atoms is 97,861 for WT (size: 116 Å × 95 Å × 94 Å), 782 

100,079 for R1021C (size: 116 Å × 95 Å × 94 Å), 97,861 for R1021P (size: 116 Å × 95 Å 783 

× 94 Å). 784 

 785 

Gaussian accelerated Molecular Dynamics (GaMD) 786 

All-atom MD simulations were conducted using the GPU version of AMBER18 [92]. The 787 

systems were initially relaxed through a series of minimization, heating, and equilibration 788 

cycles. During the first cycle, the protein was restrained using a harmonic potential with 789 

a force constant of 10 kcal/mol-Å2, while the solvent, and ions were subjected to an initial 790 

minimization of 2000 steps using the steepest descent approach for 1000 steps and 791 

conjugate gradient approach for another 1000 steps. The full system (protein + solvent) 792 

was then similarly minimized for 1000 and 4000 steps using the steepest descent and 793 

conjugate gradient approaches, respectively. Subsequently, the temperature was 794 

incrementally changed from 100 to 300 K for 10 ps at 2 fs/step (NVT ensemble). Next, 795 

the systems were equilibrated for 200 ps at 1 atom and 300K (NPT ensemble), and for 796 

200ps at 300K (NVT ensemble). Lastly, more equilibration simulations were run in the 797 

NVT ensemble in two steps; all systems were simulated using conventional MD for 50 ns 798 
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and GaMD for 50ns. Temperature control (300 K) and pressure control (1 atm) were 799 

performed via Langevin dynamics and Berendsen barostat, respectively. Production 800 

GaMD were simulated for ~3 µs for WT, ~4.1 µs R1021C, ~1.5 µs for R1021P. GaMD is 801 

an unconstrained enhanced sampling approach that works by adding a harmonic boost 802 

potential to smooth biomolecular potential energy surface and reduce the system energy 803 

barriers [95]. Details of the GaMD method have been extensively described in previous 804 

studies [95,96]. 805 

 806 

GaMD analysis: Principal component analysis (PCA).  807 

PCA was performed using the sklearn.decomposition.PCA function in the Scikit-learn 808 

library using python3.6.9. First, all simulations were aligned with mdtraj [97] onto the same 809 

initial coordinates using Ca atoms of the kinase domain (residues 726–1088). Next, 810 

simulation coordinates of each domain of interest (for example ka9-ka10) from all 811 

systems (WT, R1021C, and R1021P) and replicas were concatenated and used to fit the 812 

transformation function. Subsequently, the fitted transformation function was applied to 813 

reduce the dimensionality of each domain’s simulation Ca coordinates. It is important to 814 

note that all systems are transformed into the same PC space to evaluate the simulation 815 

variance across systems.  816 

 817 

GaMD analysis: Angles calculation.  818 

Inter-helical angles were calculated using in-house python scripts along with mdtraj [97] 819 

as the angle between two vectors representing the principal axis along each helix. Each 820 
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principal axis connects two points corresponding to the center of mass (COM) of the first 821 

and last turn from each helix. For ka8, points 1 and 2 are represented by the COM of 822 

residues 1020-1023 and 1004-1007 Ca coordinates, respectively. For ka9, points 1 and 823 

2 are represented by the COM of residues 1024-1027 and 1034-1037 Ca coordinates, 824 

respectively. For ka10, points 1 and 2 are represented by the COM of residues 1053-825 

1056 and 1046-1049 Ca coordinates, respectively. For ka11, points 1 and 2 are 826 

represented by the COM of residues 1062-1065 and 1074-1077 Ca coordinates, 827 

respectively. Angles were computed at each frame along the trajectories after structural 828 

alignment onto the initial coordinates using the Ca atoms of the kinase domain (residues 829 

726–1088) as a reference. 830 

 831 

GaMD analysis: Hydrogen bonds calculation.  832 

Hydrogen bonds were calculated using the baker hubbard command implemented with 833 

mdtraj[97] Occupancy (%) was determined by counting the number of frames in which a 834 

specific hydrogen bond was formed with respect to the total number of frames and then 835 

averaged across replicas. 836 

 837 

GaMD analysis: Root-mean-square-fluctuations (RMSF).  838 

RMSF was calculated using in-house python scripts along with mdtraj[97] RMSF was 839 

computed for each residue atom and represented as box plot to show the range of RMSF 840 

values across replicas. The trajectories were aligned onto the initial coordinates using the 841 

Cα atoms of the kinase domain (residues 726–1088) as a reference.  842 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406264doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406264
http://creativecommons.org/licenses/by/4.0/


 42 

 843 

PI3K Inhibitors 844 

Compounds were purchased from companies indicated below in ≥ 95% purity (typical 98% 845 

pure). IPI-549[53] was from ChemieTex (Indianapolis, USA, #CT-IPI549); PIK-90 [61] 846 

from Axon Medchem (Groningen, The Netherlands, #Axon1362); AS-604850 (PI 3-Kγ 847 

Inhibitor II, Calbiochem) [9] from Sigma Aldrich (#528108); Gedatolisib (PF-05212384, 848 

PKI587) [63] from Bionet (Camelford, UK, #FE-0013); Omipalisib (GSK2126458, GSK458) 849 

[62] from LuBioScience GmbH (Zurich, Switzerland, #S2658); NVS-PI3-4 [15,60] and 850 

AZg1 (AZ2) [34] from Haoyuan Chemexpress Co., Ltd. (Shanghai, China, #HY-133907 851 

and #HY-111570, respectively). 852 
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The crystallography data has been deposited in the protein data bank with accession 865 

numbers (PDB: 7JWE, 7JX0, 7JWZ). The mass spectrometry proteomics data have been 866 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository[83] with 867 

the dataset identifier PXD021132. All data generated or analyzed during this study are 868 

included in the manuscript and supporting files. Specifically biochemical kinase assay 869 

data are included in the source data files. 870 
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Supplemental information: Supplemental Figures and Tables 

 

 

Figure S1 (relates to Fig 1). Comparing the different regulatory mechanisms that maintain the c-terminal 

regulatory motif in a inhibited state in the class I PI3Ks.  

(A) A structural model comparing the architecture of the C-terminal regulatory motif in PIK3CG (PI3Kg, PDB: 

6AUD[1]). PIK3CA (PI3Ka, PDB: 4JPS	[2]), PIK3CB (PI3Kb, PDB: 2Y3A	[3]). The activation loop is shown in orange, 

with the ka12 helix shown in red (not a helix in PI3Ka). The p85 regulatory subunits interacting with the motif in 

PI3Ka and PI3Kb are shown in blue, with the domains of the nSH2, iSH2, and cSH2 annotated on the structure.  

(B) Cartoon model shown in the same format as in Figure 1, highlighting the regulatory motif and its interaction with 

regulatory proteins.  
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Figure S2 (relates to Fig 2). Purification of mutated p110γ / p101 complexes. 

(A) SDS-page analysis of the final complexes after size exclusion chromatography. The location of size markers 

are shown on the left.  

(B) Gel filtration elution of the wild type and mutant p110g / p101 complexes on a Superdex™ 200 10/300 GL 

Increase column. 
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Figure S3. Differences in HDX for the R1021C mutation in free p110g.  

A. Peptides showing significant deuterium exchange differences (>5 %, >0.4 kDa and p<0.01 in an unpaired two-

tailed t-test) between p110g wild-type and R1021C.  Differences are colored on a model of p110g (PDB: 6AUD). 

B. The number of deuteron difference for the R1021C mutant for all peptides analysed over the entire deuterium 

exchange time course for p110g. 

C. Selected p110g peptides that showed decreases and increases in exchange are shown. The full list of all peptides 

and their deuterium incorporation is shown in Supplementary Data 1.  

D. Selected p101 peptides that showed differences in exchange are shown. The full list of all peptides and their 

deuterium incorporation is shown in Supplementary Data 1.  
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Figure S4. Differences between molecular dynamic simulations of WT, R1021C, and R1021P. 

A. Principal component analysis (PCA) plots showing PC1 vs. PC2 of Ka7/8 (989-1023), Activation loop (962-988), 

hinge (879-887), ka9/10 (1024-1054) and ka11/12 (1057-1088) for WT (grey), R1021C (green) and R1021P (red) 

B-C. The mean and standard deviation of hydrogen bonding occupancies between ka8 and ka9 (B),  ka10 and 

ka11 (C) across replicates for WT (grey), R1021C (green) and R1021P (red). Asterisks indicate significant 

differences between WT and mutants.  

D. Model of p110g showing helices in the C-terminal regulatory motif and the activation loop. 
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Figure S5. Differences in HDX for free p110g and p110g/p101 with selected inhibitors.  

A. Peptides showing significant deuterium exchange differences (>5 %, >0.4 kDa and p<0.01 in an unpaired two-

tailed t-test) between p110g wild-type and IPI-549 and Gedatolisib.  Differences are colored on a model of p110g 

(PDB: 6AUD). 

B. The number of deuteron difference for free p110g with selected inhibitors for all peptides analysed over the entire 

deuterium exchange time course for p110g. 

C. Peptides showing significant deuterium exchange differences (>5 %, >0.4 kDa and p<0.01 in an unpaired two-

tailed t-test) between p110g/p101 with IPI-549 and Gedatolisib.  Differences are colored on a model of p110g (PDB: 

6AUD). 
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D. The number of deuteron difference for p110g/p101 with selected inhibitors for all peptides analysed over the 

entire deuterium exchange time course for p110g and p101. 

 

Figure S6. HDX-MS reveals that different classes of PI3K inhibitors lead to unique allosteric conformational 

changes.  

A-F. Peptides showing significant deuterium exchange differences (>5 %, >0.4 kDa and p<0.01 in an unpaired two-

tailed t-test) between wild-type and six different inhibitors are colored on a model of p110g (PDB: 6AUD). Differences 

in exchange are mapped according to the legend. 
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Figure S7: Structures of Gedatolisib and IPI-549 bound to p110g 

A-C.   LigPlot+ [4] representations of p110g bound to (A) IPI-549, (B) Gedatolisib, and (C) NVS-PI3-4. Hydrogen 

bonds are shown in green. All inhibitors form hydrogen bonds (green) with V882 in the hinge. The activation loop is 

shown as an orange dotted line.  
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D-E.  Comparison of Gedatolisib, IPI-549, and NVS-PI3-4 bound to p110g with the activation loop and selectivity 

pockets highlighted. M804 and K883 that change conformation upon selectivity pocket opening are colored magenta 

and cyan, respectively. 

G-J. Molecular basis for NVS-PI3-4 for p110g over p110a/d. The structure of p110g bound to NVS-PI3-4 (G) 

compared to p110g bound to Gedatolisib (H), revealed a conformational change in K883 leading to opening of 

pocket accommodating the t-butyl motif. Comparing this to a model of p110d (PDB: 5DXU) [5] (I) and p110a (PDB: 

4JPS) [2] (J) with NVS-PI3-4 revealed that this pocket is unlikely to open with L829 in p110d and R852 in p110a 

(corresponds to K883 in p110g) unable to adopt this conformational change due to steric clashes / electrostatic 

repulsion with R902 in p110d and K924 in p110a (corresponds to T955 in p110g).  

K-L. Molecular basis for IPI-549 specificity for p110g over p110d. The structure of p110g bound to IPI-549 (H) 

compared to a model of IPI-549 bound to p110d (I), based on the structure of p110d bound to the specificity pocket 

inhibitor Idelalisib (PDB: 4XE0) [6]. K802 and W812 in p110g are labelled, along with the corresponding residues in 

p110d. The ka1-ka2 loop is green, with potential clashes in p110d with the methylpyrazole of IPI-549 highlighted.  
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Fig. S8. Binding of IPI-549, NVS-PI3-4, and Gedatolisib lead to different conformations of the activation loop 

of p110g 

A. The electron density from a feature enhanced map	[7] around IPI-549, NVS-PI3-4, and Gedatolisib contoured at 

1 sigma.  

B-F. Conformations of the activation loop of p110g in the presence of annotated inhibitors. Structures of PIK90, and 

Omipalisib bound to p110g were from PDB: 2CHX[8] and 3l54[9], respectively.  
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Data set Apo p110𝛾 
(mutants) 

R1021C p110𝛾 / p101 R1021C p110𝛾 
p101  

R1021P p110𝛾 
p101  

HDX reaction 
details 

%D2O=87.9% 
pH(read)=7.5 
Temp=18ºC 

%D2O=87.9% 
pH(read)=7.5 
Temp=18ºC 

%D2O=62.0% 
pH(read)=7.5 
Temp=18ºC 

%D2O=62.0% 
pH(read)=7.5 
Temp=18ºC 

%D2O=62.0% 
pH(read)=7.5 
Temp=18ºC 

HDX time course 
(seconds) 

3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 

HDX controls N/A N/A N/A N/A N/A 
Back-exchange Corrected based 

on %D2O 
Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

Number of 
peptides 

204 202 153 153 152 

Sequence 
coverage 

92.7% 92.5% 92.7% 92.7% 91.7% 

Average peptide 
/redundancy 

Length=14.0 
Redundancy= 2.4 

Length=14.0 
Redundancy= 2.4 

Length=14.8 
Redundancy= 2.0 

Length=14.8 
Redundancy= 2.0 

Length=14.8 
Redundancy= 2.0 

Replicates 3 (2 3000s, 2 
300s) 

3 (2 300s) 3  3  3 

Repeatability Average 
StDev=0.5% 

Average 
StDev=0.5% 

Average 
StDev=0.6% 

Average 
StDev=0.6% 

Average 
StDev=0.6% 

Significant 
differences in 
HDX 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

Apo p110𝛾 
(inhibitor) 

+ IPI-549 + AZg1/AZ + AS-605240 + Gedatolisib + Omipalisib 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 
N/A N/A N/A N/A N/A N/A 
Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

180 180 180 180 180 180 
88.6% 88.6% 88.6% 88.6% 88.6% 88.6% 
Length= 13.4 
Redundancy= 2.2 

Length= 13.4 
Redundancy= 2.2 

Length= 13.4 
Redundancy= 2.2 

Length= 13.4 
Redundancy= 2.2 

Length= 13.4 
Redundancy= 2.2 

Length= 13.4 
Redundancy= 2.2 

3 3  3  3  3  3  
Average 
StDev=0.9% 

Average 
StDev=0.9% 

Average 
StDev=0.9% 

Average 
StDev=0.9% 

Average 
StDev=0.9% 

Average 
StDev=0.9% 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

+ RD-HBC 520 + PIK-90 Apo p110𝛾/p101 
(p101+inhibitor) 

+ IPI-549 (p101) + Gedatolisib 
(p101) 

 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

%D2O=75.5% 
pH(read)=7.5 
Temp=18ºC 

 

3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000 3, 30, 300, 3000  
N/A N/A N/A N/A N/A  
Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

Corrected based 
on %D2O 

 

180 180 228 228 228  
88.6% 88.6% 96.3% 96.3% 96.3%  
Length= 13.4 
Redundancy= 2.2 

Length= 13.4 
Redundancy= 2.2 

Length= 14.1 
Redundancy= 2.9 

Length= 14.1 
Redundancy= 2.9 

Length= 13.4 
Redundancy= 2.2 

 

3  3  3  3  3   
Average 
StDev=0.9% 

Average 
StDev=0.9% 

Average 
StDev=0.9% 

Average 
StDev=0.9% 

Average 
StDev=0.9% 

 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

>5% and >0.4 Da 
and unpaired t-
test ≤0.01 

 

 

Table S1. Full HDX-MS experimental conditions and data analysis parameters from the guidelines of the IC-HDX-

MS community [10]. 
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 Compound Structure Reference 
(PMIDs) PDB 

IC50 
PI3Kα 
(nM) 

IC50 
PI3Kβ 
(nM) 

IC50 
PI3Kδ 
(nM) 

IC50 
PI3Kγ 
(nM) 

1 IPI-549 

 

27660692 This 
study 3200 3500 >8400 16 

2 PIK-90 

 

19318683 2CHX 11 350 58 18 

3 AS-604850 
 

16127437 2A4Z 4500 >20000 >20000 250 

4 
Gedatolisib 
PF-05212384 
PKI587 

 

20166697 This 
study 0.4 - - 5.4 

5 
Omipalisib 
(GSK2126458, 
GSK458) 

 

24900173 3L08 0.0019 
(Ki) 0.13 (Ki) 

0.024 
(Ki) 

0.06 
(Ki) 

6 NVS-PI3-4 

 

23029326 This 
study 1800 250 750 90 

7 AZ2 

 

30718815 N.D. 3981 31622 200 0.3 

Table S2. List of all PI3K inhibitors analysed in this manuscript. IC50s for class IA and IB are listed from the 

reference attached. N.D. is not determined. 
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Table S3 X-ray Data collection and refinement statistics 
	 PI3Kg		

IPI549	
PI3Kg		
Gedatolisib	

PI3Kg	
NVS-PI3-4	

Data	collection	 	 	 	
Wavelength	 0.97949	 0.97949	 0.97949	
Space	group	 C121	 C121	 C121	
Cell	dimensions	 	 	 	
				a,	b,	c	(Å) 144.3,	67.9,	106.4	 143.5,	67.6,	106.3		 143.6	67.6	106.8	
    a, b, g 	(°)	 90	94.5	90	 90,	95.4,	90	 90	95.4	90	
Resolution	(Å)	 44.4	 	 -	 2.65	 (2.74	 	 -	

2.65)*	
40.72-2.55	 (2.64-
2.55)	

40.93		-	3.15	(3.26		-	
3.15)	

Rmerge	 0.125	(1.919)	 0.061	(1.349)	 0.119	(1.118)	
I	/	sI	 7.1	(0.69)	 11.91	(0.87)	 7.92	(0.84)	
CC1/2	 0.992	(0.407)	 0.999	(0.385)	 0.994	(0.425)	
Completeness	(%)	 98.9	(98.23)	 99.41	(99.40)	 98.08	(99.04)	
Redundancy	 3.3	(3.4)	 3.3	(3.4)	 3.0	(3.0)	
	 	 	 	
Refinement	 	 	 	
Resolution	(Å)	 44.4	 	 -	 2.65	 (2.74	 	 -	

2.65)	
40.72-2.55	 (2.64-
2.55)	

40.93		-	3.15	(3.26		-	
3.15)	

No.	unique	reflections	 29722	(2941)	 33183	(3303)	 17573	(1761)	
Rwork	/	Rfree	 22.7/26.8	 20.9/25.3	 22.9/27.4	
No.	atoms	 	 	 	
				Protein	 6752	 6612	 6506	
				Ligand/ion	 40	 45	 28	
				Water	 0	 9	 0	
B-factors	 	 	 	
				Protein	 100.4	 88.9	 108.2	
				Ligand/ion	 88.3	 78.7	 117.2	
				Water	 	 65.5	 	
Ramachandran	favored	 94.47	 95.21	 96.51	
Ramachandran	outliers	 0.61	 0.0	 0.13	
Rotamer	outliers	 0.53	 0.41	 0.0	
R.m.s.	deviations	 	 	 	
				Bond	lengths	(Å)	 0.003	 0.003	 0.004	
				Bond	angles	(°)	 0.53	 0.59	 0.56	

*Values in parentheses are for highest-resolution shell. 

Number of crystals used for structure=1 

 

Source data figure legend. Summary of all HDX-MS peptide data (see attached excel source data file). The 

charge state (Z), residue start (S), residue end number (E), and retention time (RT) are displayed for every peptide. 

Data listed is the mean of 3 independent experiments, with SDs presented. Time points are labelled, and the relative 

level of HDX is coloured according to the legend. 
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