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Abstract 
 
Background: Integration of functional genomic annotations when estimating polygenic risk 
scores (PRS) can provide insight into aetiology and improve risk prediction. This study 
explores the predictive utility of gene expression risk scores (GeRS), calculated using 
imputed gene expression and transcriptome-wide association study (TWAS) results. 
 
Methods: The predictive utility of GeRS was evaluated using 12 neuropsychiatric and 
anthropometric outcomes measured in two target samples: UK Biobank and the Twins Early 
Development Study (TEDS). GeRS were calculated based on imputed gene expression levels 
and TWAS results, using 53 gene expression-genotype panels, termed SNP-weight sets, 
capturing expression across a range of tissues. We compare the predictive utility of elastic 
net models containing GeRS within and across SNP-weight sets, and models containing both 
GeRS and PRS. We estimate the proportion of SNP-based heritability attributable to cis-
regulated gene expression.  
 
Results: GeRS significantly predicted a range of outcomes, with elastic net models 
combining GeRS across SNP-weight sets improving prediction. GeRS were less predictive 
than PRS, but models combining GeRS and PRS improved prediction for several outcomes, 
with relative improvements ranging from 0.3% for Height (p=0.023) to 4% for Rheumatoid 
Arthritis (p=5.9×10-8). The proportion of SNP-based heritability attributable to cis-regulated 
expression was modest for most outcomes, even when restricting GeRS to colocalised 
genes. 
 
Conclusion: GeRS represent a component of PRS and could be useful for functional 
stratification of genetic risk. Only in specific circumstances can GeRS substantially improve 
prediction over PRS alone. Future research considering functional genomic annotations 
when estimating genetic risk is warranted. 
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Introduction 
 
Polygenic risk scores (PRS) are a useful research tool and a promising opportunity for 
personalised medicine (1). A PRS indicates an individual’s genetic liability for an outcome 
and is traditionally calculated as the genome-wide association study (GWAS) effect size-
weighted sum of alleles (2). The correlation between genetic variants, termed linkage 
disequilibrium (LD), should be accounted for when estimating PRS. LD-based clumping is 
often used to obtain LD-independent variants, though more recent methods that estimate 
the joint effect of variants to account for LD have been shown to improve prediction (3). The 
predictive utility of PRS can be further increased by incorporating prior probability 
distributions on causal effect sizes, thereby reducing the signal to noise ratio (4).  
 
A wealth of research has shown enrichment in GWAS of expression quantitative trait loci 
(eQTLs), variants affecting gene expression (5, 6). The eQTL studies have identified many 
genetic variants associated with differential gene expression (7, 8). Integration of eQTL and 
GWAS summary statistics enables inference of gene expression changes associated with the 
GWAS phenotype, an approach called transcriptome-wide association study (TWAS) (9, 10). 
TWAS aggregates the effect of genetic associations in a functionally-informed manner to 
highlight associated up-/down-regulated genes within the context of a specific tissue or 
developmental stage (11). Due to the functionally informed aggregation of individual 
genetic effects, TWAS can identify novel associations not previously identified as significant 
in the corresponding GWAS. This approach has been useful for highlighting plausible 
candidate genes for experimental follow-up (12). 
 
There has been limited research investigating the predictive utility of PRS that consider the 
effect of each variant on gene expression. One approach is to split genetic variants into high 
and low prior groups based on whether they are eQTLs, and then calculate the PRS using a 
range of mixing parameters to optimally weight the contribution of high prior variants (13). 
This approach of reweighting eQTL variants improved prediction over functionally agnostic 
PRS in type 2 diabetes. An alternative approach is to calculate gene-expression risk scores 
(GeRS), which consider the joint effect of variation on each gene’s expression (12). GeRS are 
calculated as the sum of predicted expression for an individual weighted by the TWAS-based 
effect size, analogous to PRS except using predicted expression instead of individual 
genotypes, and TWAS effect size instead of GWAS effect size. GeRSs were shown to 
significantly predict schizophrenia, with GeRS derived using prefrontal cortex eQTL data 
explaining the most variance compared to other individual tissues, but a model containing 
GeRS based on multiple tissues providing the largest variance explained. However, whether 
GeRS can improve prediction in combination with PRS was not investigated. A recent study 
reports that the genetically regulated transcriptome is a component of broader genetic 
variation, but modelling these sources of variance separately improved out-of-sample 
prediction (14). This finding suggests that a GeRS will capture a component of PRS, but 
modelling GeRS and PRS separately will improve prediction 
 
Previous research has shown that GeRS can explain significant variance in schizophrenia, 
and that modelling variance explained by the genetically regulated transcriptome could 
improve prediction over models considering the genome alone. However, GeRS have only 
been applied to schizophrenia, and no previous study has combined GeRS with PRS. In this 
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study, we evaluate the predictive utility of GeRS calculated using the TWAS-based approach 
with eQTL data from a range of tissues. We apply the method to a range of quantitative 
traits and binary disorders in two samples, UK Biobank (UKB) (15) and the Twins Early 
Development Study (TEDS) (16). Furthermore, we evaluate whether GeRS provide novel 
information over PRS and explore the effect of stratifying genes by colocalization estimates 
of pleiotropy and tissue specificity of eQTL effects. 
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Methods 
 
UK Biobank (UKB) 
 
UKB is a prospective cohort study that recruited >500,000 individuals aged between 40-69 
years across the United Kingdom (15). The UKB received ethical approval from the North 
West - Haydock Research Ethics Committee (reference 16/NW/0274). 
 
Genetic data 
 
UKB released imputed dosage data for 488,377 individuals and ~96 million variants, 
generated using IMPUTE4 software (15) with the Haplotype Reference Consortium 
reference panel (17) and the UK10K Consortium reference panel (18). This study retained 
individuals that were of European ancestry based on 4-means clustering on the first 2 
principal components provided by the UKB, had congruent genetic and self-reported sex, 
passed quality assurance tests by UKB, and removed related individuals (>3rd degree 
relative, KING threshold > 0.044) using relatedness kinship (KING) estimates provided by the 
UKB (15). The imputed dosages were converted to hard-call format for all variants. 
 
Phenotype data 
 
Eight UKB phenotypes were analysed. Six phenotypes were binary: Depression, Type 2 
Diabetes (T2D), Coronary Artery Disease (CAD), Inflammatory Bowel Disease (IBD), and 
Rheumatoid arthritis (RheuArth). Three phenotypes were continuous: Intelligence, Height, 
and Body Mass Index (BMI). Further information regarding outcome definitions can be 
found in the Supplementary Material. 
 
Analysis was performed on a subset of ~50,000 UKB participants for each outcome to 
reduce the computational burden of the analysis whilst maintaining sufficient power to 
perform downstream analyses. For each continuous trait (Intelligence, Height, BMI), a 
random sample was selected. For disease traits, all cases were included, except for 
Depression and CAD where a random sample of 25,000 cases was selected. Controls were 
randomly selected to obtain a total sample size of 50,000. Sample sizes for each phenotype 
after genotype data quality control are shown in Table 1. 
 
TEDS 
 
The Twins Early Development Study (TEDS) is a population-based longitudinal study of twins 
born in England and Wales between 1994 and 1996 (16). Ethical approval for TEDS has been 
provided by the King’s College London ethics committee (reference: 05/Q0706/228). 
Parental and/or self-consent was obtained before data collection. For this study, one 
individual from each twin pair was removed to retain only unrelated individuals. 
 
Genetic data 
 
As previously described (19), TEDS genotype data underwent stringent quality control prior 
to imputation via the Sanger Imputation server using the Haplotype Reference Consortium 
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reference data (17). Imputed genotype dosages were converted to hard-call format using a 
hard call threshold of 0.9, with variants for each individual set to missing if no genotype had 
a probability of > 0.9. Variants with an INFO score < 0.4, MAF < 0.001, missingness > 0.05 or 
Hardy-Weinberg equilibrium p-value < 1×10-6 were removed. 
 
Phenotypic data 
 
This study used four continuous phenotypes within TEDS: Height, Body Mass Index (BMI), 
Educational Achievement (GCSE), and Attention Deficit Hyperactivity Disorder (ADHD) 
symptom score (Table 1). Further information regarding the phenotype definitions can be 
found in the supplementary material and a previous study (20). 
 
Genotype-based Scoring 
 
Gene expression risk scores (GeRS) and polygenic risk scores (PRS) were calculated within a 
reference-standardised framework, whereby the resulting PRS and GeRS are not influenced 
by target sample specific properties including availability of variants and measurements of 
LD and allele frequency. This is achieved by using a common set of typically well imputed 
variants (HapMap3) and using reference genetic data (European 1KG Phase 3) to estimate 
LD and allele frequencies. Lastly, all genotype-based scores are scaled and centred based on 
the mean and standard deviation of scores in the reference sample. This reference-
standardised approach and its merits have been described previously (3).  
 
A schematic representation of calculating GeRS is shown in Figure 1. 
 

 

Figure 1. Schematic representation of GeRS Calculation. The top left panel describes the process of deriving SNP-weights 
predicting gene expression in a sample of individuals with both genotype and gene expression measured (e.g. Genotype-
tissue expression consortium, GTEx). These SNP-weights can be used to perform TWAS whereby SNP-weights are integrated 
with GWAS summary statistics to infer gene expression associations with the GWAS trait (upper right panel). The SNP-
weights can also be used to predict gene expression levels in a target sample with only genotype data available (lower left 
panel). Finally, GeRS can be calculated in the target sample by combining the level of predicted expression in each individual 
weighted by the TWAS effect size (lower right panel). This figure has been adapted from Gusev et al. 2016 (9). 
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GWAS summary statistics 
 
GWAS summary statistics were identified for phenotypes the same as or similar as possible 
to the UKB and TEDS phenotypes (descriptive statistics in Table S1), excluding GWAS with 
documented sample overlap with the target samples. GWAS summary statistics were 
formatted using the LD-Score Regression munge_sumstats.py script (see Web Resources) 
with default settings (listed in the Supplementary Material) except the minimum INFO score 
was set to 0.6. 
 
Transcriptome-wide association study (TWAS) 
 
FUSION software (9) was used to integrate GWAS summary statistics with precomputed 
SNP-weights of gene expression to infer differential gene expression associated with the 
GWAS-phenotype. The term SNP-weight refers to a multi-SNP-based predictor of a gene’s 
expression. SNP-weights used in this study were derived using gene expression data from a 
range of distinct tissues and European-ancestry adulthood samples, downloaded from the 
FUSION website (See URLs). The weights pertained to five RNA reference samples: (i) the 
Genotype-Tissue Expression (GTEx) Consortium (Version 7)(7), measuring gene expression 
across 48 tissues, including brain regions, blood and peripheral tissues, (ii) The 
CommonMind Consortium (CMC)(8), measuring expression and differential splicing in the 
dorsolateral prefrontal cortex, (iii) The Netherlands Twins Register (NTR)(21) and (iv) Young 
Finns Study (YFS)(9), which both provide information on blood tissue gene expression, and 
(v) Metabolic Syndrome in Men (METSIM)(9), assessing adipose tissue expression. The SNP-
weights obtained from a given sample and tissue (e.g. GTEx thyroid, NTR peripheral blood) 
are referred to as SNP-weight sets. Characteristics for the 53 SNP-weight sets used are 
available in Table S2. The SNP-weights include 260,598 features (SNP-weight set and gene 
pairs), capturing expression of 26,434 unique genes (protein-coding and non-protein 
coding). The number of features that could be reliably imputed for each GWAS is shown in 
Table S3. TWAS was performed using default settings in FUSION and LD estimates from the 
European subset of the 1KG Phase 3 reference sample (N=503). 
 
Colocalization analysis tests whether the association between a genetic locus and two or 
more traits is driven by the same causal variant, or whether the association for each trait is 
driven by different causal variants that are in LD. Colocalization was performed using the 
coloc R package (22), implemented within the FUSION software, to estimate the posterior 
probability that the GWAS phenotype and gene’s expression share a single causal variant, 
termed PP4. A coloc p-value threshold of 0.05 was used, to perform colocalization for all 
features with a TWAS p-value < 0.05. 
 
Predicting expression in target samples 
 
The cis-heritable component of expression for each gene was imputed in each target sample 
using the same gene expression SNP-weights described above, and target sample genotype 
data. Predicted expression levels are calculated as, 
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𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑗 =  ∑ 𝑋𝑗

𝑚

𝑗=1

× 𝛽 (1) 
 

 
 
where the predicted level of expression (𝐺𝑒𝑛𝑒𝐸𝑥𝑝) for an individual is the number of effect 
alleles carried by the individual (𝑋𝑗) weighted by the effect of each variant on gene 

expression as estimated from penalised regression model (𝛽), across 𝑚 variants. This was 
implemented using the FUSION script ‘make_score.R’ to convert the TWAS SNP-weights into 
PLINK score file format, and then using PLINK to carry out the scoring in the target sample. 
Predicted expression levels are then centred and scaled based on the mean and standard 
deviation of the predicted expression in the 1KG Phase 3 European reference sample. 
 
Gene Expression Risk Scoring 
 
Gene expression risk scores (GeRS) were calculated as  
 
 

𝐺𝑒𝑅𝑆 =  ∑ 𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑗

𝑔

𝑗=1

× 𝑍 (2) 
 

 
where the 𝐺𝑒𝑅𝑆 of an individual is equal to the TWAS effect size (𝑍)-weighted sum of the 
individual's predicted expression (𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑗), at 𝑔 genes. GeRS were calculated for each 

SNP-weight set separately, meaning 53 GeRS for each GWAS/TWAS phenotype were 
generated. To remove genes with highly correlated predicted expression due to LD, genes 
were ranked by TWAS p-value and clumping was performed to remove genes with a 
predicted expression R2 > 0.9 within 500kb of the lead gene boundaries. Within the MHC 
region, the single most significant gene was retained due to long range and complex LD 
structures. Predicted expression estimates used for clumping were estimated in the 
European 1KG Phase 3 reference. A range of nested p-value thresholds were used to select 
genes considered in the GeRS: 1, 5×10-1, 1×10-1, 5×10-2, 1×10-2, 1×10-3, 1×10-4, 1×10-5 and 
1×10-6. Scripts used to perform gene expression risk scoring can be found on the GenoPred 
website (see URLs).  
 
In addition, we evaluate the predictive utility of GeRS restricted to genes with evidence of 
colocalization with the outcome (PP4 > 0.8), and GeRS restricted to genes showing tissue 
specific expression. Tissue-specific GeRS were derived by only considering genes that were 
either not significantly heritable in blood SNP-weight sets (GTEx Whole blood, YFS or NTR), 
or genes whose predicted expression was uncorrelated with the corresponding feature in 
the blood SNP-weight sets (R2 < 0.01). This approach is congruent with a previous study 
identifying tissue specific eQTL effects prior to risk scoring (23). Blood-specific features were 
identified using the same criteria but comparing predicted expression across all non-blood 
SNP-weight sets. The number of tissue-specific features for each SNP-weight set are listed in 
Table S2. 
 
Polygenic Risk Scores (PRS) 
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Polygenic scoring was carried out using the traditional p-value thresholding and LD-based 
clumping approach (pT+clump), and a more recent method, PRScs (24), which models LD 
between genetic variants and applies shrinkage parameters to avoid overfitting. PRScs has 
been previously reported to out-perform other polygenic scoring methods (3). pT+clump 
was performed using an R2 threshold of 0.1 and window of 250kb. Within the MHC region 
(28-34Mb on chromosome 6), the pT+clump method retains only the single most significant 
variant due to long range of complex LD in this region. A range of p-value thresholds were 
used to select variants: 1×10-8, 1×10-6, 1×10-4, 1×10-2, 0.1, 0.2, 0.3, 0.4, 0.5 and 1. PRScs was 
performed using a range of global shrinkage parameters (1×10-6,1×10-4,1×10-2 and 1) and 
the fully Bayesian mode, which estimates the optimal shrinkage parameter. Analogous to 
the GeRS, only HapMap3 variants were considered during polygenic scoring, and the 
European subset of the 1KG Phase 3 reference was used to estimate LD. 
 
As a sensitivity analysis, pT+clump PRS were also calculated using only variants within 500kb 
of genes used in the TWAS, thereby restricting the PRS to the same variants within the gene 
expression SNP-weights and highlighting the effect of reweighting genetic variants by their 
effect on gene expression.  
 
Furthermore, pT+clump PRS for Rheumatoid Arthritis were also calculated without 
restricting to a single variant in the MHC region to gain insight into difference between PRS 
and GeRS prediction for this outcome. 
 
Evaluating predictive utility of GeRS 
 
Prediction accuracy was evaluated as the Pearson correlation between the observed and 
predicted phenotype outcomes. Correlation was used as the main test statistic as it is 
applicable for both binary and continuous outcomes and standard errors are easily 
computed. Correlations can be easily converted to other test statistics such as R2 (observed 
or liability) and area under the curve (AUC) (equations 8 and 11 in (25)), with relative 
performance of each method remaining unchanged.  
 
Logistic regression was used for predicting binary outcomes, and linear regression was used 
for predicting continuous outcomes. If the model contained only one predictor, a 
generalized linear model was used. If the model contained more than one predictor (e.g. 
GeRS for each p-value threshold), an elastic net model was applied to avoid overfitting due 
to the inclusion of multiple correlated predictors (26).  
 
Elastic net modelling 
 
Previous research has shown that modelling multiple PRS based on a range of parameters 
(p-value thresholds or shrinkage parameters) optimises prediction out-of-sample (3). 
Therefore, elastic net models were derived using pT+clump PRS across p-value thresholds, 
or PRScs scores across global shrinkage parameters. Furthermore, elastic net models were 
derived for GeRSs across a range of p-value thresholds and SNP-weight sets to evaluate the 
effect of modelling multiple GeRS simultaneously. 
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A nested cross validation procedure (27) was used to estimate the predictive utility of elastic 
net models (Figure 2), where hyperparameter selection is performed using inner 10-fold 
cross validation, while an outer 5-fold cross-validation computes an unbiased estimate of 
the predictive utility of the model with the inner cross validation based hyperparameter 
tuning. This approach avoids overfitting whilst providing modelling predictions for the full 
sample. The inner 10-fold cross validation for hyperparameter optimisation was carried out 
using the ‘caret’ R package. 
 

 
Figure 2. Schematic representation of nested cross validation procedure. The outer loop splits the sample into 5 parts, 4 
parts are used as a training sample for hyperparameter optimisation, and the resulting model is then used to predict the 
outcome in the remaining part (test sample). This process is repeated until predictions are available for all parts of the 
sample. Hyperparameter optimisation is carried out within the inner loop, which consists of 10-fold cross validation. 

 
The correlation between observed and predicted values of each model were compared 
using William’s test (also known as the Hotelling-Williams test) (28) as implemented by the 
‘psych’ R package’s ‘paired.r’ function, with the correlation between model predictions of 
each method specified to account for their non-independence. A two-sided test was used 
when calculating p-values. 
 
Estimating variance explained by cis-heritable expression 
 
A schematic representation of this analysis is in Figure S1. To estimate the proportion of 
SNP-based heritability explained by cis-regulated expression,  we used AVENGEME to 
estimate SNP-based heritability of each phenotype in the target sample based on pT+clump 
PRS associations across p-value thresholds, and the phenotypic variance explained by cis-
regulated expression (GE-based heritability) based on the GeRS associations across p-value 
thresholds. To estimate the association with GeRS at each p-value threshold we used 
predictions from elastic net models containing GeRS across all SNP-weight sets for a given p-
value threshold. The proportion of SNP-based heritability explained by cis-heritable 
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expression was then calculated as GE-based heritability divided by the SNP-based 
heritability. AVENGEME also estimates the fraction of non-causal variants. AVENGEME has 
been previously used to estimate the proportion of SNP-based heritability attributable to 
cis-regulated gene expression based on GeRS associations, acknowledging that the estimate 
will be inflated due to LD causing gene expression SNP-weights to tag other causal 
mechanisms, such as variants affecting protein structure and function (12). As a sensitivity 
analysis, we estimated the GE-based heritability using GeRS restricted to genes with 
colocalization PP4 > 0.8 to remove genes which do not colocalise. For the GeRS analysis, the 
‘nsnp’ variable in AVENGEME, indicating the number of independent markers in the score 
was set to the number of LD independent markers in the TWAS gene stratified PRS. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.369462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.369462
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 
 
Predictive utility of GeRS 
 
For the six disorders and six quantitative traits analysed in UK Biobank and TEDS, the GeRS 
calculated were significantly correlated with each phenotype. GeRS were most predictive of 
Height in TEDS using the GTEx Nerve Tibial SNP-weight set with a correlation between 
predicted and observed values of 0.22 (SE=0.01, p-value= 6.8×10-61). The predictive utility of 
GeRS typically increased as more relaxed p-value thresholds were used to select genes 
(Figures 3, S2-S3). The predictive utility of GeRS for outcomes available in both UKB and 
TEDS, Height and BMI, were broadly consistent. 
 
Combining GeRS across p-value thresholds in an elastic net model significantly improved 
prediction over the single best GeRS p-value threshold for all outcomes in UKB except 
Depression and IBD (Figure 4A, Table S4). The largest improvement in prediction when 
modelling multiple p-value thresholds was for T2D in UKB (23.6% improvement, p-
value=2.2×10-28). Modelling GeRS across multiple p-value thresholds did not improve 
prediction for any outcome in the TEDS sample, and led to a significant decrease in 
prediction for GCSE (6.1% reduction, p-value=1.9×10-3) (Figure S4A, Table S4). 
 

 

Figure 3. Correlation between GeRS for three outcomes in UKB across p-value thresholds. The all bar indicates the 
correlation between observed and predicted values from an elastic net model including all p-value thresholds. Error bars 
represent the standard error of the correlation. GeRS are based on a single SNP-weight sets. Figure only shows results for 
the three SNP-weights with the strongest correlation between predicted and observed values. Values above bars are p-
values indicating whether the correlation is significantly different from zero. 
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Modelling GeRS derived using multiple SNP-weights significantly improved prediction over 
any single SNP-weight set for all outcomes except Depression in UKB, and GCSE and ADHD 
symptoms in TEDS (Figure 4B and S4B, Table S4). Significant relative improvements provided 
by modelling GeRS from multiple SNP-weight sets varied from 7.1% (p-value = 2.4×10-2) for 
Height in TEDS to 29% (p-value = 3.5x10-27) for RheuArth in UKB.  
 

 
Figure 4. Comparing the predictive utility of GeRS and PRS in UKB. A) Compares the predictive utility of models containing 
GeRS across SNP-weight sets based on the single best p-value threshold and models containing GeRS across all p-value 
thresholds. B) Compares the predictive utility of models containing GeRS across p-value thresholds based on the single best 
SNP-weight set and models containing GeRS based on all SNP-weight sets. C) Compares the predictive utility of models 
containing PRS and models containing GeRS and PRS. D) Compares the predictive utility of models containing models also 
containing PRS derived using PRScs, and models also containing GeRS. Values on the right of each bar indicate the absolute 
difference in predicted-observed correlation between the full and nested model. Values on the right are coloured in green to 
indicate a significant increase in prediction, and red to indicate a significant decrease in prediction. 
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Comparison of SNP-weight sets 
 
The predictive utility of GeRS derived using each SNP-weight set separately is shown in 
Figures S5-S6. Often the most predictive GeRS were derived using SNP-weight sets capturing 
expression in tissues previously implicated for the outcome, such as CMC DLFPC for 
Depression and BMI in UKB. However, the predictive utility of GeRS showed a strong 
relationship with the size of the sample used to derive the SNP-weights (rpearson=0.15 in 
UKB), and the number of features within the SNP-weight sets (rpearson=0.29 in UKB) (Figures 5 
and S7). When fitting both the SNP-weight set sample size and number of features in a joint 
model, the effect of sample size was no longer significant. After correcting for the number 
of features in each SNP-weight set, the most predictive SNP-weight set varied for most 
outcomes (Figures S8-S9). For example, the most predictive SNP-weight set for Depression 
was GTEx Thyroid but changed to CMC DLPFC after accounting for the number of features 
within each SNP-weight set. The CMC DLPFC Splicing SNP-weight set was often the least 
predictive after correcting for the number of features due to features often capturing 
multiple splice variants for a given gene which are therefore highly redundant. 
 

 
Figure 5. Relationship between the predictive utility of GeRS and the number of features within each SNP-weight set in UKB. 
The y-axis shows the correlation between observed and predicted values, standardised within each outcome. 

 
Stratifying by colocalization and tissue specificity 
 
TWAS associations can be driven by the same causal variant driving the association with 
both gene expression and the phenotype (vertical or horizontal pleiotropy), or the 
associations can be driven by linkage disequilibrium between different causal variants 
affecting each outcome. As a result, TWAS associations do not necessarily indicate that the 
observed differential expression of a gene is associated with the outcome. Colocalization 
estimates of whether both gene expression and the outcome are affected by the same 
causal variant (PP4), were used to determine whether restricting GeRS to colocalised 
associations altered the predictive utility of GeRS. We found GeRS restricted to colocalised 
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genes (PP4 > 0.8) had reduced predictive utility compared to unrestricted GeRS (Figures 6, 
S10-S12). 
 
Cis-eQTL effects are moderately correlated across tissues (7), meaning GeRS for a given SNP-
weight set will capture variance attributable to other tissues. To explore the predictive 
utility of tissue-specific GeRS, we restricted GeRS to genes either not significantly heritable 
in blood SNP-weight sets, or genes whose predicted expression was uncorrelated with the 
corresponding feature in the blood SNP-weight sets. We found restricting GeRS to tissue 
specific features reduced the predictive utility of GeRS based on individual SNP-weight sets, 
but the predictive utility of models including all SNP-weight sets did not change substantially 
(Figures S10-S11). 
 
 
Comparison of GeRS to PRS 
 
Compared to PRS-only models, models containing PRS and multi-SNP-weight set GeRS 
provided statistically significant improvements in prediction for all outcomes in UKB except 
Depression and IBD (Figure 4C, Table S4). Inclusion of GeRS did not significantly improve 
prediction over PRS-only models for any outcome in TEDS (Figure S4C, Table S4). Statistically 
significant relative improvements varied from 1% (p-value=4.4×10-5, correlation increased 
from 0.281 to 0.284) for BMI in UKB to 20.8% for RheuArth in UKB (p-value=1.7×10-31, 
correlation increased from 0.133 to 0.168). Inclusion of GeRS significantly decreased the 
correlation between observed and predicted values for IBD in UKB (-9.6%, p-value=6×10-4). 
We then explored whether GeRS improve prediction over PRS derived using PRScs, which 
models LD to estimate the joint effect of nearby variants, as opposed to LD-based clumping 
which removes variants in LD. When comparing GeRS to PRScs scores, the improvement in 
prediction provided by GeRS was attenuated for all outcomes, although statistically 
significant relative improvements remained when including GeRS for RheuArth (4%), Height 
(0.3%), BMI (0.4%) and Intelligence (2.5%) in UKB (Figure 4C, Table S4). 
 
A distinction between the pT+clump PRS and GeRS, is how they handle the MHC region. The 
pT+clump PRS retain a single variant in the MHC region. In contrast, GeRS retain a single 
gene in the MHC region, which considers information across multiple variants. Given the 
large genetic effects in the MHC region for RheuArth, we performed a sensitivity analysis to 
explore whether the approach of retaining only the single variant in the MHC region is 
responsible for the improved prediction when including GeRS. The analysis showed that 
inclusion of GeRS still significantly improved prediction of RheuArth over PRS alone (p-
value=6.40×10-11), though the relative improvement was attenuated from 20.8% to 8.4%.  
 
When comparing the predictive utility of all SNP-weight set GeRS to PRS, we found the 
proportion of PRS-phenotype correlation that GeRS can explain (rGeRS/rPRS) was between 
44.6% for BMI in TEDS, and 102.6% for RheuArth in UKB (Figure 6 and S12, Table S5). When 
restricting GeRS to colocalised genes (PP4 > 0.8), the proportion of PRS-phenotype 
correlation that GeRS can explain reduced to between -2.8% for ADHD in TEDS and 96.4% 
for RheuArth in UKB. The predictive utility of PRS stratified to include only variants within 
gene boundaries was reduced compared to unstratified PRS, but still greater than the GeRS 
for all outcomes except RheuArth. 
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Figure 6. Shows the correlation between predicted and observed values in UKB for models. GeRS = All SNP-weight set GeRS; 
GeRS (coloc) = All SNP-weight set GeRS restricted to genes with a colocalization PP4 > 0.8; PRS = Genome-wide PRS; PRS 
(Gene) = PRS restricted to gene regions considered by GeRS. 

 
Estimating heritability explained by cis-heritable expression 
 
AVENGEME estimated the SNP-based heritability of each phenotype based on PRS 
associations, with values ranging from 7.8% (95%CI=7.2%-8.4%) for CAD in UKB to 27.9% 
(95%CI=25.9%-30.0%) for Height in TEDS (Figure 7 and S13, Table S6). AVENGEME estimated 
the phenotypic variance explained by cis-heritable expression based on GeRS associations 
(GE-based heritability), returning estimates between 3.2% (95%CI=2.9%-3.5%) for 
Depression in UKB and 15.4% (95%CI=14.3%-16.6%) for IBD in UKB (Figure 7 and S13, Table 
S6). The proportion of SNP-based heritability explained by cis-heritable expression ranged 
from 26% for BMI in TEDS to 82% for RheuArth in UKB (Figure 7 and S13, Table S6). When 
restricting GeRS to colocalised features, the proportion of SNP-based heritability explained 
by cis-heritable expression ranged from 3% for ADHD in TEDS to 92% for RheuArth in UKB. 
 
Estimates of the proportion of variants with no causal effect on the trait were broadly 
consistent when using PRS or GeRS, with PRS-based estimates ranging from 76.1% 
(95%CI=70.9%-80.6%) for GCSE in TEDS and 96.4% (95%CI=95.9%-96.9%) for IBD in UKB 
(Table S6). 
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Figure 7. Estimates of SNP-based heritability and GE-based heritability for outcomes in UKB. PRS indicates the SNP-
heritability as estimated using PRS association results in AVENGEME. GeRS indicates the GE-based heritability as estimated 
using GeRS association results in AVENGEME. GeRS (coloc) indicates the GE-based heritability as estimated using GeRS 
when restricted to genes with colocalization PP4 > 0.8. The value above each bar indicates the proportion of SNP-based 
heritability accounted for by cis-regulated expression (Green=GeRS/PRS, Blue=GeRS (coloc)/PRS)). 
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Discussion 
 
This study has characterised the predictive utility of gene expression risk scores (GeRS), an 
approach that leverages gene expression summary statistics, GWAS summary statistics and 
target sample genotype data to infer genetic risk conferred via cis-regulated gene 
expression. We investigate factors affecting the predictive utility of GeRS, test whether 
GeRS can improve prediction over PRS alone, and estimate the proportion of SNP-based 
heritability that can be accounted for by cis-regulated expression. Our findings indicate 
GeRS represent a component of PRS, with GeRS explaining a substantial proportion of 
variance explained by PRS, suggesting GeRS may provide a useful approach for stratifying 
genetic risk into functional categories. Furthermore, this study finds GeRS generally provide 
small improvements in prediction over PRS alone, though GeRS can more substantial 
improvements in specific circumstances. 
 
Prediction using GeRS vs. PRS 
 
GeRS typically explained less phenotypic variance than PRS derived using the same GWAS 
summary statistics. However, for several outcomes linear models combining GeRS and PRS 
did improve prediction over PRS alone. GeRS typically provided relative improvements of 
1%-6% for the correlation between predicted and observed phenotype values, although for 
Rheumatoid Arthritis GeRS provided a 20.8% improvement when combined with pT+clump 
scores. All improvements in prediction provided by inclusion of GeRS were attenuated when 
using PRScs scores, which models LD as opposed to LD-based clumping, with GeRS only 
providing a 4% improvement for Rheumatoid Arthritis.  
 
This pattern of results is likely due to the different method’s approaches and ability to 
jointly model variants in LD. The attenuated improvement for Rheumatoid Arthritis when 
using PRScs is particularly pronounced due to the methods ability to model effects within 
the MHC region as there are well-documented and strong HLA allele effects within the MHC 
region for Rheumatoid Arthritis (29). The PRScs method models all variation within the MHC 
region, where as pT+clump PRS considered only the strongest associated variant within the 
MHC region. In contrast, GeRS jointly models variants integrating their effect of gene 
expression, and then retains the single lead gene. This explanation is supported by our 
sensitivity analysis showing the gain in prediction for Rheumatoid Arthritis was also 
attenuated when compared to pT+clump PRS that were not clumped to a single variant 
within the MHC region. Nonetheless, the GeRS approach still provides some advantage over 
PRS in all cases, indicating that the functionally informed approach used by GeRS for jointly 
modelling variants better captures the risk in the MHC region than pT+clump or even PRScs 
can, possibly due to the documented eQTL effects in the locus altering expression of 
relevant HLA genes (30). Therefore, these results suggest GeRS can provide novel 
information over PRS alone, albeit in specific circumstances where multiple variants 
affecting gene expression are the causal risk factor. Given that the gene expression SNP-
weights used in GeRS are derived using linear models, further improvement may be 
provided by using non-linear models that can capture haplotypes more effectively (31).  
 
Inclusion of GeRS did not significantly improve prediction over PRS alone in the TEDS sample 
for any outcome. GeRS showed a similar correlation with Height and BMI as was found in 
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the UK Biobank. These findings indicate the non-significant improvement in prediction when 
including GeRS is due to the smaller sample size of TEDS compared to UKB as this will reduce 
the power to detect small increases in prediction between models, and increase the 
likelihood of overfitting due to the large number of predictors in the model compared to the 
number of individuals in the sample. Approaches to efficiently integrate transcriptomic data 
without using many predictors would help alleviate this issue. 
 
Opportunities provided by GeRS 
 
Although GeRS explain less variance than PRS, they may provide novel opportunities over 
PRS for several reasons. Firstly, GeRS are a gene-based genetic risk score, meaning the GeRS 
are well suited to stratification by biological pathways or other gene-based characteristics. 
Gene-based polygenic scores can also be created by restricting the variants considered to 
those proximal to genes (32). However, genetic variation proximal to a gene may have no 
effect on the gene’s expression or function. Secondly, GeRS are sensitive to the properties 
of the original gene expression dataset used to derive the expression SNP-weights and can 
capture gene expression within a range of contexts such as tissues and developmental 
stages. Therefore, GeRS could serve as a useful predictor for stratifying individuals based on 
the underlying aetiology of their disorder, addressing the possible that criticism of 
functionally agnostic PRS, that they are disconnected from aetiological considerations. 
Complex disorders are heterogenous at the phenotypic level and at the aetiological level. 
For example, it may be possible to stratify individuals based on the specific tissue underlying 
their condition. 
 
Factors affecting predictive utility of GeRS 
 
Furthermore, models containing GeRS derived using multiple tissues improve prediction 
over the single best tissue, congruent with a previous study (12).  
 
We found the relative predictive utility of GeRS derived using different SNP-weight sets was 
strongly correlated with the number of genes captured by the SNP-weight set. This is likely 
due to a multitude of factors including the sample size and quality of the original gene 
expression dataset. Both of these factors will increase the number of genes captured by the 
SNP-weight set by detecting more genes with significantly heritable cis-regulated 
expression, and increase the variance in gene expression the SNP-weights explain out-of-
sample. It is likely that the relevance of the tissue to the outcome is also an important factor 
influencing the predictive utility of an outcome, however the sample size and number of 
features have a larger effect on the predictive utility of GeRS due to the moderately 
correlated cis-regulated expression across tissues enabling tissues irrelevant to the outcome 
to act as a proxy for gene expression within relevant but unavailable tissues. 
 
Quantifying heritability accounted for by cis-regulated expression 
 
GeRS capture only a small amount of novel phenotypic variance compared to PRS, indicating 
that GeRS largely capture a component of risk captured by PRS. These findings are 
congruent with a previous study modelling the genome and genetically regulated 
transcriptome using CORE GREML (14). We estimate the proportion of phenotypic variance 
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that can be explained by cis-regulated gene expression and compare the results to SNP-
based heritability estimates using PRS results. Across the phenotypes we estimate cis-
regulated gene expression explains 26%-82% of SNP-based heritability. However, due to 
linkage disequilibrium GeRS are likely to capture effects mediated through other 
mechanisms. To more accurately estimate the proportion of SNP-based heritability 
accounted for by cis-regulated expression, we restricted the analysis to genes that colocalise 
and their association is therefore unlikely to be driven by linkage. When restricting the 
analysis to colocalised genes, we estimated 3% to 92% of SNP-based heritability was 
accounted for by cis-regulated expression. For most outcomes this supports previous 
research showing strong enrichment of eQTLs in GWAS summary statistics (5, 6). Our 
findings suggest that restricting GeRS to colocalised genes will reduce their predictive utility 
but may provide a more accurate estimate of an individual’s risk mediated via cis-regulated 
expression. This raises a further issue for gene-based polygenic scores, as they are more 
liable to capturing linkage effects and there is no option to restrict analyses to colocalised 
genes. Even when restricting our analysis to colocalised genes, our estimates of phenotypic 
variance attributable to cis-regulated expression may still be upwardly biased due to GeRS 
capturing effects driven by horizontal pleiotropy as opposed to vertical pleiotropy 
(mediation). An example of horizontal pleiotropy would be where a disease-associated 
variant is an eQTL for a gene, but the variant confers risk for the disease via another 
mechanistic route, such as trans eQTL effects. A recently developed method called MESC 
can be used to identify the variance explained by vertical pleiotropy (mediation) alone (33). 
Indeed, the results reported by MESC are lower than the estimates based on GeRS in this 
study. 
 
Opportunities for GeRS based on observed expression 
 
Although the colocalization and tissue specificity of genes did not improve prediction of 
GeRS when based on predicted expression in the target sample, restricting genes by these 
criteria is likely to improve the predictive utility of GeRS derived using observed gene 
expression in the target sample. This is supported by a previous study which found GeRS 
derived using GWAS summary statistics and eQTL data, and observed gene expression data, 
could substantially improve prediction over PRS but only when using eQTL data from the 
relevant tissue and restricting the risk scores to colocalised genes (23). Tissue specificity and 
colocalization is more important when integrating with observed gene expression as the 
GeRS must capture genuine differences in expression associated with the outcome. Future 
research exploring the predictive utility of GeRS derived using TWAS results and observed 
expression is warranted. 
 
In summary, this study has demonstrated that GeRS explain a substantial proportion of 
variance for a range of outcomes, with multiple tissue GeRS explaining more variance than 
the single best tissue. Furthermore, we demonstrate that GeRS can improve prediction of 
outcomes over PRS alone in specific circumstances, where multiple eQTL effects must be 
considered to fully capture the genetic risk conferred by a locus. However, the results 
largely indicate that GeRS capture a component of risk captured by functionally agnostic 
PRS, and estimates of variance explained by cis-regulated expression is 26%-82% of total 
SNP-based heritability, although these estimates likely captures risk not only mediated via 
cis-regulated expression due to horizontal pleiotropy and linkage. In conclusion, GeRS may 
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serve as a useful research tool by providing a novel opportunity to stratify genetic risk by 
expression within specific tissues, developmental stage, and other gene-based 
characteristics. 
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URLS 
 

• LDSC HapMap 3 SNP-list: 
https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2 

• LDSC Munge Sumstats: 
https://github.com/bulik/ldsc/blob/master/munge_sumstats.py 

• Impute.me: https://impute.me/ 

• GenoPred website: https://opain.github.io/GenoPred 
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Tables 
 
Table 1. Sample size for each target sample phenotype 

UKB 
Phenotype 

Description 
Total sample 

size 
No. of 

controls 
No. of cases 

Depression Major depression 49995 24999 24996 

Intelligence  Fluid intelligence 49998 NA NA 

BMI Body Mass Index 49993 NA NA 

Height Height 49993 NA NA 

T2D Type-2 Diabetes 49990 35102 14888 

CAD Coronary Artery Disease 49991 24998 24993 

IBD 
Inflammatory Bowel 

Disease 
50000 46539 3461 

RheuArth Rheumatoid Arthritis 50000 46592 3408 

TEDS 
Phenotype 

        

GCSE Mean GCSE scores 7296 NA NA 

ADHD  ADHD symptoms 7880 NA NA 

BMI21 Body Mass Index at age 21 5220 NA NA 

Height21 Height at age 21 5455 NA NA 
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