

1 *Chlamydia gallinacea*: genetically armed as a pathogen however a phenotypical commensal?

2

3 Marloes Heijne^{a*}, Martina Jelocnik^b, Alexander Umanets^a, Michael S.M. Brouwer^a,
4 Annemiek Dinkla^a, Frank Harders^c, Lucien J.M. van Keulen^c, Hendrik Jan Roest^{a,#}, Famke
5 Schaafsma^{a,#}, Francisca C. Velkers^d, Jeanet A. van der Goot^e, Yvonne Pannekoek^f and Ad P.
6 Koets^{a,d}

7

8 ^a Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research,
9 Lelystad, the Netherlands

10 ^b Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Australia

11 ^c Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, the
12 Netherlands

13 ^d Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht
14 University, Utrecht, the Netherlands

15 ^e Department of Diagnostics and Crisis Organisation, Wageningen Bioveterinary Research,
16 Lelystad, the Netherlands

17 ^f Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, the
18 Netherlands

19

20 Running head: *Chlamydia gallinacea*: a pathogen or a commensal?

21

22 *Address correspondence to Marloes Heijne, marloes.heijne@wur.nl

23

24 [#] Current affiliation: Hendrik Jan Roest, Directorate Animal Supply Chain and Animal
25 Welfare, Ministry of Agriculture, Nature and Food Quality, The Hague, the Netherlands

26 [#] Current affiliation: Famke Schaafsma, Department of Healthy Living, TNO, Zeist, the
27 Netherlands

28

29 **Abstract**

30 *Chlamydia gallinacea* is an obligate intracellular bacterium that has recently been added to
31 the family of *Chlamydiaceae*. *C. gallinacea* is genetically diverse, widespread in poultry and
32 a suspected cause of pneumonia in slaughterhouse workers. In poultry, *C. gallinacea*
33 infections appear asymptomatic, but studies about the pathogenic potential are limited. In this
34 study two novel sequence types of *C. gallinacea* were isolated from apparently healthy
35 chickens. Both isolates (NL_G47 and NL_F725) were closely related to each other and
36 showed 99.1% DNA sequence identity to *C. gallinacea* Type strain 08-1274/3. To gain
37 further insight in the pathogenic potential, infection experiments in embryonated chicken eggs
38 and comparative genomics with *Chlamydia psittaci* were performed. *C. psittaci* is an
39 ubiquitous zoonotic pathogen of birds and mammals, and infection in poultry can result in
40 severe systemic illness. In experiments with embryonated chicken eggs *C. gallinacea* induced
41 mortality was observed, potentially strain dependent but lower compared to *C. psittaci*
42 induced mortality. Comparative analyses confirmed all currently available *C. gallinacea*
43 genomes possess the hallmark genes coding for known and potential virulence factors as
44 found in *C. psittaci* albeit to a reduced number of orthologues or paralogs. The presence of
45 (potential) virulence factors and the observed mortality in embryonated eggs indicates *C.*
46 *gallinacea* should rather be considered as a (conditional) pathogen than an innocuous
47 commensal.

48 **Importance**

49 *Chlamydiaceae* are a family of bacteria comprising human and animal pathogens including
50 the recently recognized *Chlamydia gallinacea*. *C. gallinacea* is widespread in poultry without
51 causing clinical signs, which raises questions about its pathogenic potential. To assess this
52 potential, two novel *C. gallinacea* strains were isolated, tested in infection experiments in

53 embryonated chicken eggs and compared to *C. psittaci*. *C. psittaci* infection in poultry can
54 result in severe systemic illness, depending on the conditions, and infections can be
55 transmitted to humans. In the experiments *C. gallinacea* infection induced mortality of the
56 embryo, but to a lower extent than infection with *C. psittaci*. Subsequent genome comparisons
57 confirmed both *C. gallinacea* strains possess potential virulence genes typical for chlamydia,
58 but fewer than *C. psittaci*. These results indicate *C. gallinacea* does have a pathogenic
59 potential which warrants further research to elucidate its role as a poultry pathogen.

60 **Introduction**

61 *Chlamydiaceae* are a family of obligate intracellular bacteria containing one genus and 14
62 species, and comprising human and animal pathogens. In birds, infections are caused by
63 *Chlamydia psittaci* or more recently recognized species such as *C. gallinacea*. *C. psittaci* is
64 zoonotic and has been reported worldwide in more than 465 bird species belonging to at least
65 30 orders. Most human infections have been linked to contact with birds or their environments
66 (1). *C. gallinacea* is mainly detected in poultry with reports from almost all continents (2-4).
67 *C. gallinacea* has incidentally been found in wild birds and cattle as a possible result of
68 infection spill-over (5, 6). Possible zoonotic transmission of *C. gallinacea* has been
69 considered but could neither be confirmed nor ruled out in slaughterhouse workers that were
70 exposed to *C. gallinacea* infected poultry and developed pneumonia (7).

71 Infections with *C. psittaci* in birds are often asymptomatic, but can result in localized
72 syndromes (e.g., conjunctivitis) or severe systemic illness. Chlamydial strain, avian host, host
73 age and (environmental) stressors are important factors in the pathogenicity and occurrence of
74 clinical signs (1). Studies investigating the pathogenesis of *C. gallinacea* are currently limited.
75 As yet, clinical signs of disease in *C. gallinacea* infections have not been reported in
76 observational field studies (2, 7, 8). Under experimental conditions it has been demonstrated

77 that infection in broilers results in reduced weight gain (2). In a transmission study, *C.*
78 *gallinacea* was mainly present in rectal and cloacal samples without clinical signs of disease
79 and transmission occurred via the faecal-oral route (9).

80 Molecular studies using *ompA* genotyping or Multi Locus Sequence Typing (MLST)
81 showed *C. gallinacea* is diverse, with at least 13 different *ompA* types and 15 different
82 sequence types (ST) in 25 strains (2, 10). Fine detail comparative genomics revealed the *C.*
83 *gallinacea* genome is conserved, syntenic and compact, but possess the hallmark of
84 chlamydial specific virulence factors: inclusion membrane (Inc) proteins, polymorphic
85 membrane proteins (Pmps), a Type III Secretion System (T3SS) and a plasticity zone with a
86 cytotoxin (*tox*) gene (10, 11). Whether this genetic diversity and the presence of chlamydial
87 virulence genes contributes to the pathogenicity of *C. gallinacea* remains a question, as
88 clinical disease in infected chickens has not been reported in the limited number of field and
89 experimental studies.

90 In this study, two novel *C. gallinacea* strains were isolated and compared to a virulent *C.*
91 *psittaci* strain using an *in vivo* infection model in embryonated chicken eggs. In the eggs, *C.*
92 *gallinacea* induced mortality was observed, but to a lower extent than *C. psittaci* induced
93 mortality. In addition, molecular typing and comparative genomics with inter- and intra-
94 species genomes was carried out. Both novel isolates represent different sequence types and
95 possess the hallmark genes coding for known and potential virulence factors as found in *C.*
96 *psittaci*, albeit to a reduced number of orthologs or alleles. The presence of these potential
97 virulence factors and the observed mortality in *C. gallinacea* infected eggs indicates *C.*
98 *gallinacea* should rather be considered as a (conditional) pathogen than an innocuous
99 commensal.

100 **Results**

101 **Isolation and pathology in embryonated eggs**

102 Two novel strains (NL_G47 and NL_F725) of *C. gallinacea* were isolated and
103 propagated in the yolk sac of embryonated chicken eggs. Strain NL_G47 was isolated from a
104 caecal scraping sample collected in January 2018 from a 40-week old clinically healthy layer
105 hen. Strain NL_F725 was isolated from a caecal suspension sample collected in August 2017
106 from a 34-week old layer hen. Both hens originated from different flocks, but were housed at
107 the same location. Both flocks tested PCR positive for *C. gallinacea* in environmental boot
108 sock samples about one month before the caecal samples were collected. The flock from
109 which strain NL_F725 originated had to be culled to prevent spread of Infectious
110 Laryngotracheitis (ILT). Three weeks before ILT infection was suspected the flock tested
111 PCR positive for *C. gallinacea*. Background data of the flocks and a timeline are added to the
112 supplementary (S1 and S2).

113 Primary isolation and propagation in Buffalo Green Monkey (BGM) cells failed, but
114 after three passages in eggs the strains could be propagated in BGM cells. Replication of
115 NL_G47 and NL_F725 was confirmed with positive immunofluorescence of the yolk sac
116 membrane (see S3) and a positive *Chlamydiaceae* PCR targeting the 23S rRNA gene.

117 With the primary isolation of NL_G47, mortality was observed at day 10 after
118 inoculation (incubation day 16) and at day 6 (incubation day 12) in the second passage. At
119 primary isolation of NL_F725 no mortality of the embryos was observed, but eggs were
120 harvested before day 10 after inoculation (day 8 after inoculation, incubation day 14) for
121 logistical reasons. With the second passage of NL_F725, mortality of the embryos was
122 observed at day 6 or day 7 after inoculation (incubation day 12 or 13). Based on egg candling,
123 congestion of the blood vessels was observed prior to mortality of the embryos. At harvest the

124 embryos were deep red (rubor), showed cyanotic toes and haemorrhaging of the skin
125 (supplementary S3).

126 Histology and immunohistochemistry were performed to locate the bacteria in the
127 different structures of the egg and to investigate any histological lesions. NL_G47 infected
128 eggs were harvested at day 10 of incubation when anomalies of the vessels were observed
129 with candling. Granular basophilic intracellular inclusions were seen in the epithelial cells of
130 both the chorioallantoic membrane and the yolk sac membrane (Fig. 1A and C). These
131 intracellular inclusions were strongly positive for chlamydial antigen labelling (Fig. 1B and
132 D).

133 **Assessment of virulence of *C. gallinacea* in embryonated eggs**

134 Titration experiments in embryonated chicken eggs were performed to quantify the infectious
135 dose and gain further insight in the pathogenic potential of the novel isolates compared to *C.*
136 *psittaci*. Ten-fold serial dilutions of third passage yolk sac cultures of *C. gallinacea* NL_G47
137 and NL_F725, and *C. psittaci* NL_Borg, were used to calculate the egg infectious dose 50
138 (EID₅₀) based on IFT positivity of the yolk sac membrane (with or without mortality of the
139 eggs). As shown in Fig. 2A, the EID₅₀ of *C. psittaci* strain NL_Borg was significantly higher
140 than the EID₅₀ (P<0.05, Wilcoxon-Mann-Whitney test) of *C. gallinacea* NL_G47. The EID₅₀
141 of NL_F725 was in the same range as the EID₅₀ of NL_G47, but could not be statistically
142 assessed due the low number of observations.

143 For *C. psittaci* NL_Borg the lethal dose 50 (LD₅₀) could also be calculated from the
144 experiments. The LD₅₀ of the experiments with *C. psittaci* NL-Borg showed overlap with the
145 calculated EID₅₀ (Fig. 2A). The LD₅₀ from the experiments with *C. gallinacea* NL_G47 and
146 NL_F725 could not be calculated because mortality was below the range of the dilution series
147 that were used to calculate the infectious dose. To get further insight in differences in

148 mortality and infectivity between *C. gallinacea* and *C. psittaci*, the egg data from all separate
149 experiments were merged into one dataset (see supplementary S4).

150 The percentage of eggs that was IFT positive with mortality, IFT positive without
151 mortality and IFT negative is shown per dilution and per *Chlamydia* strain (Fig. 2B-C-D). For
152 strain NL_G47, mortality was observed until the 10^{-2} dilution and IFT positivity until the 10^{-6}
153 dilution (Fig. 2B). For strain NL_F725 no mortality was observed in the dilutions that were
154 tested (from 10^{-2} until 10^{-7}), but IFT positivity was seen until the 10^{-6} dilution similar to strain
155 NL_G47 (Fig. 2C). For strain NL_Borg, mortality was observed until dilution 10^{-7} and IFT
156 positivity until 10^{-8} (Fig. 2D). These results indicate mortality in the *C. psittaci* infected eggs
157 was relatively higher than in the *C. gallinacea* infected eggs and there might be a difference in
158 mortality between *C. gallinacea* strains, although the number of observations was low.

159

160 **General characteristics of the genome sequences of Dutch *C. gallinacea* isolates**

161 After isolation in eggs and one passage in BGM cells, DNA of both isolates was sequenced to
162 identify their genetic background. The genomes of NL_G47 and NL_F725 have a total length
163 of 1,066,007 and 1,064,097 bp, respectively, and include the chromosome and a plasmid (S5).
164 Ribosomal MLST (rMLST) confirmed that both isolates belong to *C. gallinacea* (Fig. 3A),
165 whilst the MLST showed that both isolates are genetically diverse and denoted with unique
166 sequence types (ST280 and ST284). Phylogenetically, these clustered in distinct clades with
167 NL_G47 forming a well-supported clade with the French isolate 08-1274/3, whilst NL_F725
168 clustered in a genetically diverse clade consisting of Chinese *C. gallinacea* strains (Fig. 3B).

169 **Comparative genome analysis of *C. gallinacea* and *C. psittaci***

170 To investigate genomic differences that might be related to the observed differences in the
171 degree of pathology and mortality in eggs, the *C. gallinacea* and *C. psittaci* genomes were
172 analysed and compared. *C. gallinacea* genomes NL_G47 and NL_F725 show approximately
173 100% synteny in genome organization and 99.1 % sequence similarity with *C. gallinacea*
174 strains 08-1274/3 (type strain) and JX-1. All *C. gallinacea* genomes contain conserved
175 hallmark chlamydial virulence genes coding for Incs, Pmps, T3SS and a PZ with a gene
176 coding for the large cytotoxin (*toxB*). Most sequence variation was found in several distinct
177 chromosomal regions and loci, namely in genes encoding the membrane proteins (e.g. *ompA*
178 and *pmps*), a conserved hypothetical protein, a phage tail protein, heme (*hemE*, and *hemN*)
179 and glycogen (*glgP*) metabolism genes (S6). The PZ, a region of high genetic variability in
180 chlamydial species, was conserved among the four *C. gallinacea* genomes with 99.3 – 99.8 %
181 nucleotide identity (Fig. 5).

182 The genome sequence of our in-house reference strain *C. psittaci* NL_Borg was
183 almost identical to reference strain *C. psittaci* NJ1 with only 65 Single Nucleotide
184 Polymorphisms (SNPs). Due to the confirmed synteny in genome organization and high
185 sequence similarity, type strain 08-1274/3 and NJ1 were used as representatives for *C.*
186 *gallinacea* and *C. psittaci* species, in a translated coding sequences (CDSs) comparison. In the
187 whole genome alignment, it was observed that the *C. psittaci* genome is 101.85 Kbp longer
188 than the genome of *C. gallinacea* and contains more CDSs (Fig. 4A).

189 With a local alignment approach, all translated CDSs of *C. gallinacea* 08-1274/3
190 (n=913) and *C. psittaci* NJ1 (n=986) and vice versa were compared to each other to identify
191 regions with less or no homology (S7). The plasmids of *C. gallinacea* and *C. psittaci* were not
192 included, because they are syntenic with both eight CDSs encoding the conserved chlamydial
193 plasmid proteins.

194 As expected in closely related species, the majority of CDSs have orthologues in both
195 species. In *C. gallinacea*, for only seven CDSs an orthologue could not be identified in *C.*
196 *psittaci* (Fig. 4B, S8). Of those, one belonged to the family of putative Incs, a second had a
197 metabolic function related to chromosome partition and the remaining five were hypothetical
198 proteins with unknown function. In *C. psittaci*, 53 CDS could not be identified in *C.*
199 *gallinacea*. Ten of these CDSs were located at the PZ coding for proteins such as the
200 Membrane Attack Complex/Perforin domain-containing protein (MAC/PF), proteins involved
201 in purine metabolism (*guaAB-ADA* operon) and a putative membrane protein. Although the
202 length of the PZ of *C. gallinacea* is reduced compared to *C. psittaci*, it does contain an intact
203 CDS for the cytotoxin (*toxB*), in contrast to the PZ of *C. avium* that lacks this gene (Fig. 5).

204 Outside the PZ, 18 of the unique CDS of *C. psittaci* were related to potential virulence
205 factors (Fig. 4B). Most of these proteins belonged to the family of putative Inc proteins and
206 membrane proteins. The remaining CDS were related to metabolism or to CDS coding for
207 proteins of unknown function. Additional analysis of secretion signals of T3SS effector
208 CDSs, important in *Chlamydia* virulence, revealed that a serine protease referred to as CPAF
209 is not predicted to be excreted in *C. gallinacea* in contrast to *C. psittaci* (21). However, *C.*
210 *psittaci* orthologues of the recently described T3SS that associate with the host's inner nuclear
211 membrane (SINC), and translocated actin-recruiting phosphoprotein (TARP) were identified
212 and predicted to be secreted (S9).

213 Overall, the analysis revealed the novel *C. gallinacea* genomes NL_G47 and
214 NL_F725 have 99.1 % sequence identity to the Type strain 08-1274/3 and include the
215 hallmark chlamydial virulence genes. However, *C. psittaci* has a larger set of genes that are
216 related to virulence and metabolism, including more *incs*, *pmps*, T3SS effectors and additional
217 genes in the PZ.

218 **Discussion**

219 In this study the pathogenicity and genetic background of two new chicken derived *C.*
220 *gallinacea* strains (NL_G47 and NL_F725) were investigated combining classical methods
221 with embryonated chicken eggs and a modern approach using whole-genome bioinformatic
222 analyses. During isolation of NL_G47 and NL_F725 pathogenic changes, such as deep red
223 colour (rubor), cyanotic toes and skin haemorrhage of the embryo, have been described for
224 other *Chlamydia* species (22). Mortality in embryonated eggs after yolk sac inoculation with
225 *C. gallinacea* has been reported by Guo et al. (2), but was not mentioned by Laroucau et al.
226 (7).

227 The layer flocks from which the strains originated were apparently healthy, which is in
228 line with observations from other field studies (2, 7, 8). It could not be evaluated if *C.*
229 *gallinacea* infection led to impaired production as data on egg production were not collected
230 in this teaching flock. The duration and frequency of shedding during *C. gallinacea* infection
231 was only assessed to a limited extent due to the sampling strategy.

232 In the flock of strain NL_F725 the *C. gallinacea* infection preceded an infection with
233 Infectious Laryngotracheitis (ILT) resulting in preventive culling to limit the spread of ILT.
234 Whether a primary infection of *C. gallinacea* enhances infection with other pathogens or
235 whether co-infection might exacerbate the disease outcome, is currently unknown. For *C.*
236 *gallinacea*, only co-infections with *C. psittaci* have been reported in chickens without details
237 about the clinical outcome (3, 23). For *C. psittaci* it has been suggested that co-infections with
238 respiratory pathogens might lead to a more severe disease outcome (24, 25). The effect of co-
239 infection could be a topic for future investigations.

240 In titration experiments in embryonated eggs, the pathogenicity of *C. gallinacea* was
241 compared to a virulent *C. psittaci* poultry strain. The infectious dose and mortality in *C.*

242 *gallinacea* infected eggs was lower compared to *C. psittaci* infected eggs. Furthermore,
243 although the observations were limited, a small difference in pathogenicity between both *C.*
244 *gallinacea* strains was observed. *C. gallinacea* NL_G47 infection resulted in mortality up to
245 the 10⁻² dilution (1 of 5 eggs), while no mortality was observed in the 10⁻² dilution with strain
246 NL_F725 (0 of 3 eggs). This is a first indication of a possible difference in pathogenicity
247 between genetically different *C. gallinacea* strains, but needs to be confirmed due the low
248 number of observations.

249 Furthermore, a higher mortality in *C. psittaci* infected eggs compared to *C. gallinacea*
250 is in line with findings in available field and experimental studies. In these studies, *C.*
251 *gallinacea* infection led to reduced weight gain in chickens and the absence of clinical
252 symptoms, while exposure to a known high virulent *C. psittaci* strain can lead to severe
253 systemic infections in chickens and turkeys (2, 8, 26, 27). In contrast, exposure to a less
254 virulent *C. psittaci* strain resulted in mild respiratory symptoms indicating the importance of
255 detailed strain knowledge and infection conditions (26).

256 The difference in infectious dose and mortality between *C. gallinacea* and *C. psittaci*
257 in embryonated eggs might be a result of a shorter development cycle of *C. psittaci*. The
258 development cycle of *C. gallinacea* takes about 60 to 72 hours while that of *C. psittaci* about
259 50 hours (1, 28). In the experiments all eggs were harvested at the same time point, which
260 could mean *C. psittaci* was able to replicate to a higher number of bacteria. The difference in
261 replication time could therefore contribute to the virulence of *C. psittaci*.

262 To get further insight in the genetic background of *C. gallinacea* in relation to
263 pathogenicity, additional genomic comparisons were performed. Both *C. gallinacea* isolates
264 were 99.1% identical to *C. gallinacea* Type strain 08-1274/3, with genetic diversity contained
265 to several distinct chromosomal regions, and had a smaller set of potential virulence genes

266 compared to *C. psittaci*. However, the question remains if a smaller set of virulence genes is a
267 disadvantage for the particular isolate or species involved and determines the observed
268 difference in pathogenicity. The closest genetical relative of *C. gallinacea*, *C. avium*, also has
269 a reduced set of virulence genes compared to *C. psittaci*, and exhibits the smallest PZ region
270 of all *Chlamydia*, but in cases involving pigeons and psittacines infection does lead to clinical
271 signs and mortality (29, 30).

272 Moreover, *C. gallinacea* does contain all hallmark virulence factors such as Incs,
273 Pmps T3SS and an intact cytotoxin in the PZ. In addition, *C. gallinacea* has genes encoding
274 for the well-known T3SS effectors TARP and SINC that play a role in the pathogenesis of
275 *Chlamydia* spp. In *C. psittaci*, TARP influences the active uptake in the host cell and SINC
276 targets the nuclear envelope where it is hypothesized to interact with host proteins that control
277 nuclear structure, signalling, chromatin organization, and gene silencing (31, 32). Future
278 studies need to confirm if both effectors are indeed secreted in *C. gallinacea* and with which
279 host proteins they interact.

280 Based on our current results in embryonated eggs and the genomic comparisons, it is
281 too early to conclude if *C. gallinacea* is a phenotypical commensal. Although less pathogenic
282 than the *C. psittaci* strains of avian origin, *C. gallinacea* does possess the hallmark *Chlamydia*
283 virulence genes and infection does lead to mortality in embryonated chicken eggs after yolk
284 sac inoculation. Furthermore, there might be small differences in virulence between *C.*
285 *gallinacea* strains. Additional pathogenesis studies in chickens, including predisposing
286 conditions such as co-infections, are therefore needed to further elucidate the pathogenic
287 potential of *C. gallinacea* and possible strain differences. These future studies will help to
288 assess the importance of this pathogen for poultry industry.

289 **Methods**

290 **Ethical statement**

291 The cloacal and caecal sampling of the chickens was approved by the Dutch Central
292 Authority for Scientific Procedures on Animals and the Animal Experiments Committee
293 (permit number AVD108002016642) of Utrecht University (the Netherlands) and all
294 procedures were conducted in accordance with national regulations on animal
295 experimentation. No ethical approval is required for work with embryonated chicken eggs
296 until day 18 according to Dutch Law.

297 **Biosafety**

298 All culture work with *C. gallinacea* was performed under biosafety level 2 and all culture
299 work with *C. psittaci* under biosafety level 3.

300 **Sample collection and inoculum preparation**

301 Layer flocks at the Faculty of Veterinary Medicine in Utrecht, the Netherlands were
302 monitored for the presence of *C. gallinacea* with boot sock sampling. The flocks were
303 obtained from commercial laying hen rearing farms at 18-weeks of age and had an average
304 size of 50 hens that were distributed evenly over two pens. Background data on the flock are
305 supplied in S1 and S2. From each pen, environmental boot sock samples were collected
306 monthly. When the boot socks turned PCR positive for *C. gallinacea*, individual cloacal
307 swabs and caeca were collected. Swabs were stored in one millilitre Sucrose Phosphate
308 Glutamate (SPG) and caeca in ten percent weight per volume (w/v) according to standard
309 protocols (33, 34). SPG contains sucrose (75 g/litre), KH₂PO₄ (0.52 g/litre), K₂HPO₄ (1.25
310 g/litre) and L-glutamic acid (0.92 g/litre). Before use, fetal bovine serum (0.1 ml/ml),
311 amphotericin B (4 µg/ml), gentamicin (40 µg/ml and vancomycin (25 µg/ml) were added.
312 Samples were stored at -80 °C.

313 To prepare the inoculum for the eggs, swabs were thawed at room temperature for
314 approximately one hour. Swabs were centrifuged for ten minutes at 500 x g and 200
315 microliter of the supernatant was used for inoculation. Caeca were prepared following two
316 methods. For the isolation of NL_G47 the caecum was cut lengthways in parts of
317 approximately 2 cm. Subsequently the parts were washed in SPG and the epithelium was
318 removed by scraping with a scalpel. The scrapings of epithelium were washed in 2 ml of SPG
319 and the suspension was filtered over a 0.8 µm filter (Acrodisc® Syringe Filter, Pall Life
320 Sciences). After 1 hour of incubation at room temperature the suspension was used for
321 inoculation.

322 For the isolation of NL_F725, caeca were homogenized in a ten percent w/v
323 suspension in an ULTRA-TURRAX tube (BMT-20-S, IKA) on an ULTRA-TURRAX® Tube
324 Drive (IKA) at 6000 RPM for 90 seconds and switching direction every 30 seconds. The
325 suspension was centrifuged at 500 x g for 15 minutes and the supernatant was used for
326 culturing.

327 **Isolation in eggs**

328 Inoculation

329 Specific pathogen free (SPF) embryonated chicken eggs were delivered after five days of
330 incubation, candled to check viability and incubated overnight at 37.5 – 38 °C and 65 %
331 relative humidity in small egg incubators (Octagon 20 Advance, Brinsea). Inoculation was
332 performed at day six of incubation (one day after delivery).

333 Before inoculation, the eggs were candled, and the air chamber was marked with a
334 pencil. The eggs were cleaned with a wipe drenched in 70 percent ethanol. In the middle of
335 the area of the marked air chamber, a hole was drilled with a 0.8 mm engraving bit
336 (26150105JA, Dremel). Subsequently, the eggs were moved to a flow cabinet and sprayed

337 with 70 percent ethanol. Per egg, 200 µl was inoculated in the yolk sac with a one millilitre
338 syringe and a 22G x 40mm needle. The full needle was inserted perpendicularly into the
339 drilled hole.

340 Per clinical sample, four eggs were inoculated. As a negative control, 2 eggs were
341 inoculated with Dulbecco's Phosphate Buffered Saline (DPBS, Gibco, Life Technologies
342 Limited) and, as a positive control, 2 eggs were inoculated with *C. gallinacea* strain 08DC65.
343 Strain 08DC65 was obtained from the Friedrich Loeffler Institute in Jena, Germany.

344 After inoculation eggs were wiped with 70 % ethanol and the hole was closed with a
345 droplet of nail polish. The eggs were placed in the egg incubators and incubated until day 16
346 or until mortality. At day 16, eggs were chilled overnight at 4 °C for further processing.

347 **Candling**

348 Mortality was monitored by daily candling. With candling, the appearance of vessels and
349 movement of the embryo was monitored (35). The result of candling was graded:

350 - no abnormalities observed: vessels are visible, movement of the embryo
351 - abnormalities observed: congestion or bleeding from vessels, decreased movement
352 of the embryo
353 - mortality: no or less vessels visible and no movement of the embryo

354 When abnormalities were observed an extra check was performed on the same day. After
355 mortality or an increase in the severity of the abnormalities, eggs were chilled overnight at 4
356 °C until harvesting.

357 **Harvesting**

358 Mortality within three days after inoculation (day nine of incubation) was considered as acute
359 mortality inconsistent with a *Chlamydia* infection (22). These eggs were disinfected with 70

360 percent ethanol, opened at the air sac side and checked for any visual deformations.
361 Furthermore, a sheep blood agar plate was inoculated with a loopful from the yolk sac and
362 incubated overnight at 37 °C to check for bacterial contamination.

363 Eggs were harvested for the isolation of *C. gallinacea* when mortality occurred from
364 day nine of incubation or when no mortality was observed at day 16 of incubation. At
365 harvesting the part of the egg shell covering the air sac was removed, and subsequently the
366 egg shell membrane and the allantois membrane were opened with disposable tweezers. The
367 allantoic fluid was removed with a pipette, the egg was then emptied in a Petri dish to harvest
368 the yolk sac membrane. The yolk sac membrane was weighted and transferred to an ULTRA-
369 TURRAX tube (BMT-20-S, IKA). Depending on the volume of the yolk sac and the size of
370 the tube, SPG buffer was added and the yolk sac membrane was homogenized on an ULTRA-
371 TURRAX® Tube Drive (IKA) during 90 seconds (switching between forward and reverse
372 every 30 seconds) at 6000 RPM. The suspension was transferred to 50 ml Falcon tubes and
373 SPG buffer was added until a 20 % w/v suspension.

374 The yolk sac membranes from eggs inoculated with the same sample and harvested at
375 the same day were pooled. A 10 µl droplet of the yolk sac suspension was spotted in duplo on
376 glass slides and air dried. The glass slides were tested with the IMAGEN™ Chlamydia test kit
377 according to manufacturer's instructions (Thermo Scientific). Two hundred µl of the
378 suspension was used for PCR testing.

379 **Titration experiments in embryonated eggs**

380 The isolated strains and *C. psittaci* strain NL_Borg were tested in titration experiments. The
381 experiments were repeated 7 times for NL_G47, 2 times for NL_F725 and 3 times for
382 NL_Borg. Strain NL_Borg was selected because it is genetically closely related to strain
383 FalTex and NJ1, which are both isolated from outbreaks in poultry (turkeys) (36).

384 To standardise the inocula before the experiments all three strains were passaged three
385 times in embryonated eggs under similar conditions. The third passage yolk sac membrane
386 suspensions were used to prepare tenfold serial dilutions in DPBS (Gibco, Life Technologies
387 Limited) for inoculation of the yolk sac of 6-day incubated chicken eggs. The eggs were
388 incubated at 37 °C and 65% relative humidity in egg incubators (Octagon 20 Advance,
389 Brinsea). After mortality or 6 days after inoculation the eggs were chilled overnight at 4 °C
390 and harvested as described earlier.

391 In a first experiment the range for the dilution series was defined by inoculating a
392 limited number of eggs per dilution. In a subsequent experiment the range was limited to four
393 dilution steps. Per dilution step four or five eggs were inoculated with 200 µl suspension. Two
394 eggs were inoculated with sterile DPBS (Gibco, Life Technologies Limited) as a negative
395 control and, as a positive control, 2 eggs were inoculated with a lower dilution of the
396 *Chlamydia* strain that was used in the experiment.

397 After each titration experiment the 50% egg infectious dose (EID₅₀) and, when
398 possible, the 50% egg lethal dose (LD₅₀) per ml inoculum was calculated according the
399 Spearman-Karber method (37, 38). The difference in EID₅₀ between strains was assessed
400 using the Wilcoxon-Mann-Whitney test.

401 **Isolation in cell culture**

402 Isolation and propagation in cell culture was performed as described earlier (29). Briefly,
403 Buffalo Green Monkey (BGM) cells were seeded with Dulbecco 's Modified Eagle Medium
404 (DMEM, Gibco, Life Technologies Limited) and 10% serum in 24-well plates (Greiner Bio-
405 One GmbH, Germany). The plates were incubated at 37 °C with 5% CO₂ in a humidified
406 incubator until 80% confluence of the monolayer. After inoculation, the plates were
407 centrifuged at 2450 × g and 37 °C for 60 min and subsequently incubated for two hours. The

408 medium was then replaced with UltraMDCK serum-free medium (Lonza). At day 1 and day
409 4, 200 μ l of the supernatant was collected for PCR to monitor replication. Plates were
410 harvested at day 4 for DNA isolation, further passaging or storage at -80 °C.

411 **Histology and immunohistochemistry**

412 From infected and non-infected eggs the chorioallantoic membrane, yolk sac and embryo
413 were harvested for histology and immunohistochemistry. After fixation in 10% neutral
414 buffered formalin, tissues were routinely processed into paraffin blocks. Four micrometer
415 sections were cut and collected on coated glass slides. Sections were stained with
416 haematoxylin-eosin (HE) or immuno-stained with a polyclonal anti-Chlamydia antibody (LS-
417 C85741) and a monoclonal anti-Chlamydia antibody (MBS830551).

418 For the polyclonal antibody the antigen was retrieved by proteolysis-induced epitope
419 retrieval (0.1% Trypsin in TBS for 30 min at 37 °C). For the monoclonal antibody heat-
420 induced epitope retrieval was used (citrate buffer, pH 6.0, 21°C for 5 min). The primary
421 antibody (dilution 1:100) was incubated for 60 minutes. HRP EnVision anti-Mouse or HRP
422 Envision anti-Rabbit (Dakopatts) were used as a secondary antibody for 30 min, depending
423 on the nature of the first antibody. Subsequently, sections were incubated for 5 minutes in
424 DAB+ substrate (Dakopatts) and then counterstained with Mayer's haematoxylin.

425 **Molecular techniques**

426 **PCR**

427 Two hundred μ l of the washing suspension, yolk sac suspension or cell culture supernatant
428 was used for DNA isolation. DNA isolation was performed with a MagNA Pure LC total
429 Nucleic Acid Isolation kit in the MagNA Pure® system (Roche Diagnostics, Almere, the
430 Netherlands). Samples were tested with a *Chlamydiaceae* PCR targeting the 23S rRNA and *C.*
431 *gallinacea* PCR targeting the *enoA* gene or *C. psittaci* PCR targeting the *ompA* gene as
432 described earlier (8, 39).

433 Genome Sequencing, Assembly, Annotation and Mapping

434 Twenty-four-well cell culture plates were freeze-thawed twice and the cells were
435 subsequently harvested for DNA isolation as described earlier (29). DNA was isolated
436 according to the DNeasy Blood and Tissue kit (Qiagen GmbH, Germany).

437 The DNA samples were prepared for Illumina sequencing using the SMARTer®
438 ThruPLEX® DNA-Seq kit (Takara Bio, USA) according to manufacturer protocol. Quality
439 control of the library preparation was performed on a Tapestation 2200 (Agilent
440 Technologies, Germany) and the DNA concentration was determined on a Clariostar (BMG
441 Labtech, the Netherlands) with use of the Quant-IT PicoGreen® dsDNA kit (Invitrogen Ltd,
442 UK). Sequencing was performed on an Illumina MiSeq platform. The complete genome and
443 plasmid sequences were assembled using SPAdes 3.9 (40). Contigs containing sequences of
444 BGM cells were removed prior to subsequent analysis. Genome size was determined to be
445 114660 bp for NL_G47 (coverage depth 366), 1064097 bp for NL_F725 (coverage depth
446 181), 1167736 bp for NL_Borg (coverage depth 633). All strains had a plasmid size of 7500
447 bp.

448 Genomic DNA of isolates NL_G47 and NL_F725 was also used for long read
449 sequencing on the Oxford Nanopore Technologies platform. Multiplex libraries were prepared
450 using the Ligation sequencing Kit SQK-LSK109 according to the manufacturer's protocol.
451 Sequencing was performed on the MinION Mk-1C using a FLO-MIN106D flowcell.
452 Nanopore sequences were cleared from adapters with Porechop v0.2.3_seqan2.1.1 and reads
453 of low quality and shorter than 1000 bp were removed with NanoFilt v2.7.1 (41, 42).

454 To generate a closed genome for *C. gallinacea* isolate NL_F725 we used a hybrid
455 assembly approach where contigs constructed from Illumina reads and Nanopore reads are

456 combined. The hybrid assembly was generated using the Unicycler v0.4.8 in *conservative*
457 mode (43).

458 Assembled contigs were annotated using the RGAP pipeline using a corresponding
459 reference genome (44).

460 Accession numbers

461 Read data generated for this study, and the annotated assemblies for the strains, can be found
462 in ...needs to be added...

463 The sequences are deposited into xxx and the public available Bacterial Isolate Genome
464 Sequence Database (BIGSdb) (<http://pubmlst.org/chlamydiales>) (*C. gallinacea* isolates
465 NL_G47 (id: 4548) and NL_725 (id: 4560) and *C. psittaci* NL_Borg (id: 4561).

466 Molecular typing

467 Phylogenetic trees were generated by exporting gene sequences from the *Chlamydiales*
468 database (<http://pubmlst.org/chlamydiales>) as an XMFA file containing each locus as an
469 aligned block. The XMFA file was converted to an aligned concatenated sequence for
470 neighbor-joining tree analysis using MEGA7(12).

471 For rMLST complete sequences (~22.000 bp) of 52 genes encoding ribosomal
472 proteins (*rps*) were analysed (16). The *rps* gene *rpmD*, encoding the 50S ribosomal protein
473 L30 is absent in genomes of *Chlamydia* isolates analysed so far.

474 For MLST, sequences of fragments (400 – 500 base pairs) from seven housekeeping
475 genes (*enoA*, *fumC*, *gatA*, *gidA*, *hemN*, *hlfX*, *oppA*) were analysed (17). Isolates used for
476 rMLST and MLST including provenance and allelic profile data are listed in the
477 supplementary (S12 and S13).

478 *Genome comparisons*

479 Average nucleotide identity (ANI) determination for the newly sequenced *C. gallinacea*
480 genomes was performed at enve-omics.ce.gatech.edu/ani/, whilst the genome completeness
481 and quality of the assemblies was estimated using Quast (45-47). SNPs in contigs assembled
482 from Illumina reads were identified using Snippy v4.6.0 (48).

483 *C. gallinacea* pairwise genome comparisons were performed using the Geneious
484 Prime 2020.2 platform (<https://www.geneious.com>). The genomic regions of interest and/or
485 polymorphic loci were extracted from the analysed genomes and aligned with MAFFT and/or
486 Clustal Omega (as implemented in Geneious Prime) for further nucleotide and/or translated
487 protein sequence analyses performed using DNAsp 6.0 (49). The total number of
488 polymorphisms (and gaps), % nucleotide and amino acid sequence identity, number of
489 haplotypes and haplotype diversity (Hd), and ratios of the rates of non-synonymous to
490 synonymous nucleotide substitutions per site (dn/ds) averaged over the entire alignment were
491 calculated.

492 As the Type 3 Secretion System (T3SS) play a key role in the interaction of chlamydia
493 and hosts, EffectiveDB (<http://effectivedb.org>) was used to predict the T3S secreted proteins
494 of *C. gallinacea*. For prediction the standard Effective T3 classification module 2.0.1 was
495 used with a cut-off score of 0.9999 (20). Similarly, to predict transmembrane *C. gallinacea*
496 proteins, and identify inclusion membrane proteins characterised by bilobed hydrophobic
497 domains, TMHMM 2.0 server (<https://services.healthtech.dtu.dk/service.php?TMHMM-2.0>)
498 was used (50).

499 The visualisation of BLAST comparisons of our newly sequenced draft *C. gallinacea*
500 genomes to published *C. gallinacea* genomes 08-1274/3 and JX-1, and/or *C. psittaci* NJ1 was
501 performed with BLAST Ring Image Generator (BRIG) (18). Visualisation of the BLAST

502 comparison, sequence identity and genomic structure of the plasticity zone for *C. gallinacea*
503 and those from other related species was performed using EasyFig (19).

504 **Comparative analyses of *C. psittaci* and *C. gallinacea* CDSs (translated proteins)**

505 For the identification of orthologous genes in *C. gallinacea* and *C. psittaci*, an all-vs.-all
506 comparison of the translated coding sequences (CDSs) was performed using global sequence
507 alignment of each CDS. Translated CDSs were aligned using DIAMOND v0.9.14 and the
508 best hit for each query was selected (51). Only hits with an expect (E) value less than 10^{-3}
509 were included. CDS with no hits or hits with an E-value above the threshold were further
510 investigated and the annotation artefacts were removed. The remaining CDS were assigned
511 unique. Results of the alignment were structured and visualized using the *tidyverse* package
512 and R v3.6.1 (52, 53).

513 **Acknowledgements**

514 **Funding (Declaration of interest)**

515 This work was supported by the Dutch Ministry of Agriculture, Nature and the Environment
516 (grant WOT-01-002-005.02, WOT-01-01-002-005.13 and KB-21-006-022) and the Australian
517 Research Council Discovery Early Career Research Award (DE190100238) awarded to MJ.

518

519 **Acknowledgements**

520 The authors acknowledge Herma Buys, Irene Oud and Marianne Vahl of the WBVR
521 diagnostic lab and for their assistance with PCR tests; Marielle van den Esker for proof
522 reading; Lars Ravesloot for optimizing pictures in the supplementary; Arie Kant and Quillan
523 Dijkstra for technical assistance with Nanopore sequencing; the animal caretakers, Carmen
524 Minnee, Freek Weites and Marc Kranenburg of the department Population Health Sciences,

525 division Farm Animal Health of the faculty of Veterinary Medicine in Utrecht for their
526 assistance in sampling the chickens. The authors would also like to thank Dr Christiane
527 Schnee from the Friedrich Loeffler Institute in Jena, Germany for providing strain *C.*
528 *gallinacea* 08DC65.

529 **References**

- 530 1. Harkinezhad T, Geens T, Vanrompay D. 2009. *Chlamydophila psittaci* infections in
531 birds: a review with emphasis on zoonotic consequences. *Vet Microbiol* 135:68-77.
- 532 2. Guo W, Li J, Kaltenboeck B, Gong J, Fan W, Wang C. 2016. *Chlamydia gallinacea*,
533 not *C. psittaci*, is the endemic chlamydial species in chicken (*Gallus gallus*). *Sci Rep*
534 6:19638.
- 535 3. Hulin V, Oger S, Vorimore F, Aaziz R, de Barbeyrac B, Berruchon J, Sachse K,
536 Laroucau K. 2015. Host preference and zoonotic potential of *Chlamydia psittaci* and
537 *C. gallinacea* in poultry. *Pathog Dis* 73:1-11.
- 538 4. Li L, Luther M, Macklin K, Pugh D, Li J, Zhang J, Roberts J, Kaltenboeck B, Wang
539 C. 2017. *Chlamydia gallinacea*: a widespread emerging *Chlamydia* agent with
540 zoonotic potential in backyard poultry. *Epidemiol Infect* 145:2701-2703.
- 541 5. Stokes HS, Martens JM, Chamings A, Walder K, Berg ML, Segal Y, Bennett A. 2019.
542 Identification of *Chlamydia gallinacea* in a parrot and in free-range chickens in
543 Australia. *Aust Vet J* 97:398-400.
- 544 6. Li J, Guo W, Kaltenboeck B, Sachse K, Yang Y, Lu G, Zhang J, Luan L, You J,
545 Huang K, Qiu H, Wang Y, Li M, Yang Z, Wang C. 2016. *Chlamydia pecorum* is the
546 endemic intestinal species in cattle while *C. gallinacea*, *C. psittaci* and *C. pneumoniae*
547 associate with sporadic systemic infection. *Vet Microbiol* 193:93-9.

548 7. Laroucau K, Vorimore F, Aaziz R, Berndt A, Schubert E, Sachse K. 2009. Isolation of
549 a new chlamydial agent from infected domestic poultry coincided with cases of
550 atypical pneumonia among slaughterhouse workers in France. *Infect Genet Evol*
551 9:1240-7.

552 8. Heijne M, van der Goot JA, Fijten H, van der Giessen JW, Kuijt E, Maassen CBM,
553 van Roon A, Wit B, Koets AP, Roest HIJ. 2018. A cross sectional study on Dutch
554 layer farms to investigate the prevalence and potential risk factors for different
555 Chlamydia species. *PLoS One* 13:e0190774.

556 9. You J, Wu Y, Zhang X, Wang X, Gong J, Zhao Z, Zhang J, Zhang J, Sun Z, Li J, Guo
557 W, Wang J, Wang Y, Li M, Zhang R, Yang Y, Ye J, Poudel A, Kaltenboeck B, Wang
558 C. 2019. Efficient fecal-oral and possible vertical, but not respiratory, transmission of
559 emerging Chlamydia gallinacea in broilers. *Vet Microbiol* 230:90-94.

560 10. Guo W, Jelocnik M, Li J, Sachse K, Polkinghorne A, Pannekoek Y, Kaltenboeck B,
561 Gong J, You J, Wang C. 2017. From genomes to genotypes: molecular
562 epidemiological analysis of Chlamydia gallinacea reveals a high level of genetic
563 diversity for this newly emerging chlamydial pathogen. *BMC Genomics* 18:949.

564 11. Holzer M, Barf LM, Lamkiewicz K, Vorimore F, Lataretu M, Favaroni A, Schnee C,
565 Laroucau K, Marz M, Sachse K. 2020. Comparative Genome Analysis of 33
566 Chlamydia Strains Reveals Characteristic Features of Chlamydia Psittaci and Closely
567 Related Species. *Pathogens* 9.

568 12. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics
569 Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* 33:1870-4.

570 13. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for
571 reconstructing phylogenetic trees. *Mol Biol Evol* 4:406-25.

572 14. Felsenstein J. 1985. Confidence Limits on Phylogenies: An Approach Using the
573 Bootstrap. *Evolution* 39:783-791.

574 15. Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by
575 using the neighbor-joining method. *Proc Natl Acad Sci U S A* 101:11030-5.

576 16. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalaratna
577 H, Harrison OB, Sheppard SK, Cody AJ, Maiden MCJ. 2012. Ribosomal multilocus
578 sequence typing: universal characterization of bacteria from domain to strain.
579 *Microbiology (Reading)* 158:1005-1015.

580 17. Pannekoek Y, Morelli G, Kusecek B, Morre SA, Ossewaarde JM, Langerak AA, van
581 der Ende A. 2008. Multi locus sequence typing of Chlamydiales: clonal groupings
582 within the obligate intracellular bacteria Chlamydia trachomatis. *BMC Microbiol* 8:42.

583 18. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image
584 Generator (BRIG): simple prokaryote genome comparisons. *BMC Genomics* 12:402.

585 19. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer.
586 *Bioinformatics* 27:1009-10.

587 20. Eichinger V, Nussbaumer T, Platzer A, Jehl MA, Arnold R, Rattei T. 2016.
588 EffectiveDB--updates and novel features for a better annotation of bacterial secreted
589 proteins and Type III, IV, VI secretion systems. *Nucleic Acids Res* 44:D669-74.

590 21. Knittler MR, Berndt A, Bocker S, Dutow P, Hanel F, Heuer D, Kagebein D, Klos A,
591 Koch S, Liebler-Tenorio E, Ostermann C, Reinhold P, Saluz HP, Schofl G, Sehnert P,
592 Sachse K. 2014. Chlamydia psittaci: new insights into genomic diversity, clinical
593 pathology, host-pathogen interaction and anti-bacterial immunity. *Int J Med Microbiol*
594 304:877-93.

595 22. Storz J. 1971. *Chlamydia and Chlamydia-Induced Diseases*. Charles C Thomas.

596 23. Donati M, Laroucau K, Guerrini A, Balboni A, Salvatore D, Catelli E, Lupini C, Levi
597 A, Di Francesco A. 2018. Chlamydiosis in Backyard Chickens (*Gallus gallus*) in Italy.
598 Vector Borne Zoonotic Dis 18:222-225.

599 24. Chu J, Zhang Q, Zhang T, Han E, Zhao P, Khan A, He C, Wu Y. 2016. Chlamydia
600 psittaci infection increases mortality of avian influenza virus H9N2 by suppressing
601 host immune response. Sci Rep 6:29421.

602 25. Chu J, Zhang Q, Zuo Z, El-Ashram S, Guo Y, Zhao P, Huang S, He C, Khan A. 2017.
603 Co-infection of Chlamydia psittaci with H9N2, ORT and *Aspergillus fumigatus*
604 contributes to severe pneumonia and high mortality in SPF chickens. Sci Rep 7:13997.

605 26. Yin L, Lagae S, Kalmar I, Borel N, Pospischil A, Vanrompay D. 2013. Pathogenicity
606 of low and highly virulent Chlamydia psittaci isolates for specific-pathogen-free
607 chickens. Avian Dis 57:242-7.

608 27. Page LA. 1959. Experimental Ornithosis in Turkeys. Avian Diseases 3:51-66.

609 28. Sachse K, Laroucau K, Riege K, Wehner S, Dilcher M, Creasy HH, Weidmann M,
610 Myers G, Vorimore F, Vicari N, Magnino S, Liebler-Tenorio E, Ruettger A, Bavoil
611 PM, Hufert FT, Rossello-Mora R, Marz M. 2014. Evidence for the existence of two
612 new members of the family Chlamydiaceae and proposal of *Chlamydia avium* sp. nov.
613 and *Chlamydia gallinacea* sp. nov. Syst Appl Microbiol 37:79-88.

614 29. Kik M, Heijne M, Ijzer J, Grinwis G, Pannekoek Y, Gröne A. 2020. Fatal
615 Chlamydia avium Infection in Captive Picazuro Pigeons, the Netherlands.
616 Emerging Infectious Disease journal 26:2520.

617 30. Laroucau K, Popelin-Wedlarski F, Roux A, Aaziz R, Vorimore F, Lagourette P,
618 Crispo M, Borel N. 2020. Multiple cases of Chlamydia avium infection in captive
619 psittacines. Avian Diseases doi:10.1637/aviandiseases-D-20-00043.

620 31. Radomski N, Einenkel R, Muller A, Knittler MR. 2016. Chlamydia-host cell
621 interaction not only from a bird's eye view: some lessons from *Chlamydia psittaci*.
622 FEBS Lett 590:3920-3940.

623 32. Mojica SA, Hovis KM, Frieman MB, Tran B, Hsia RC, Ravel J, Jenkins-Houk C,
624 Wilson KL, Bavoil PM. 2015. SINC, a type III secreted protein of *Chlamydia psittaci*,
625 targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol
626 Biol Cell 26:1918-34.

627 33. Kuo CC, Stephens, R.S., Bavoil, P.M. and Kaltenbroeck, B. 2015. Chlamydia,
628 Bergey's Manual of Systematics of Archaea and Bacteria
629 doi:10.1002/9781118960608.gbm00364.

630 34. Anonymous. 2018. Avian Chlamydiosis, p 783-795, OIE Terrestrial Manual 2018.

631 35. Andersson C, Gripenland J, Johansson J. 2015. Using the chicken embryo to assess
632 virulence of *Listeria monocytogenes* and to model other microbial infections. Nat
633 Protoc 10:1155-64.

634 36. Branley J, Bachmann NL, Jelocnik M, Myers GS, Polkinghorne A. 2016. Australian
635 human and parrot *Chlamydia psittaci* strains cluster within the highly virulent 6BC
636 clade of this important zoonotic pathogen. Sci Rep 6:30019.

637 37. SPEARMAN C. 1908. THE METHOD OF 'RIGHT AND WRONG CASES'
638 ('CONSTANT STIMULI') WITHOUT GAUSS'S FORMULAE. British Journal of
639 Psychology, 1904-1920 2:227-242.

640 38. Kärber G. 1931. Beitrag zur kollektiven Behandlung pharmakologischer
641 Reihenversuche. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und
642 Pharmakologie 162:480-483.

643 39. Ehricht R, Slickers P, Goellner S, Hotzel H, Sachse K. 2006. Optimized DNA
644 microarray assay allows detection and genotyping of single PCR-amplifiable target
645 copies. *Mol Cell Probes* 20:60-3.

646 40. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
647 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler G,
648 Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and
649 its applications to single-cell sequencing. *J Comput Biol* 19:455-77.

650 41. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Completing bacterial genome
651 assemblies with multiplex MinION sequencing. *Microb Genom* 3:e000132.

652 42. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack:
653 visualizing and processing long-read sequencing data. *Bioinformatics* 34:2666-2669.

654 43. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial
655 genome assemblies from short and long sequencing reads. *PLoS Comput Biol*
656 13:e1005595.

657 44. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L,
658 Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome
659 annotation pipeline. *Nucleic Acids Res* 44:6614-24.

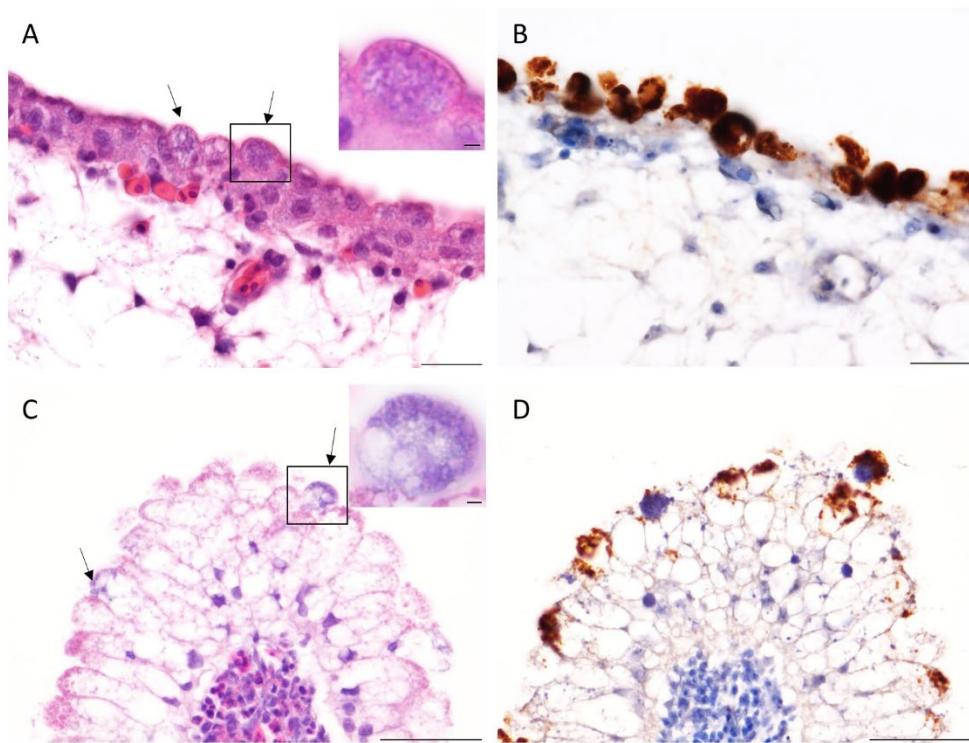
660 45. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High
661 throughput ANI analysis of 90K prokaryotic genomes reveals clear species
662 boundaries. *Nat Commun* 9:5114.

663 46. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM.
664 2007. DNA-DNA hybridization values and their relationship to whole-genome
665 sequence similarities. *Int J Syst Evol Microbiol* 57:81-91.

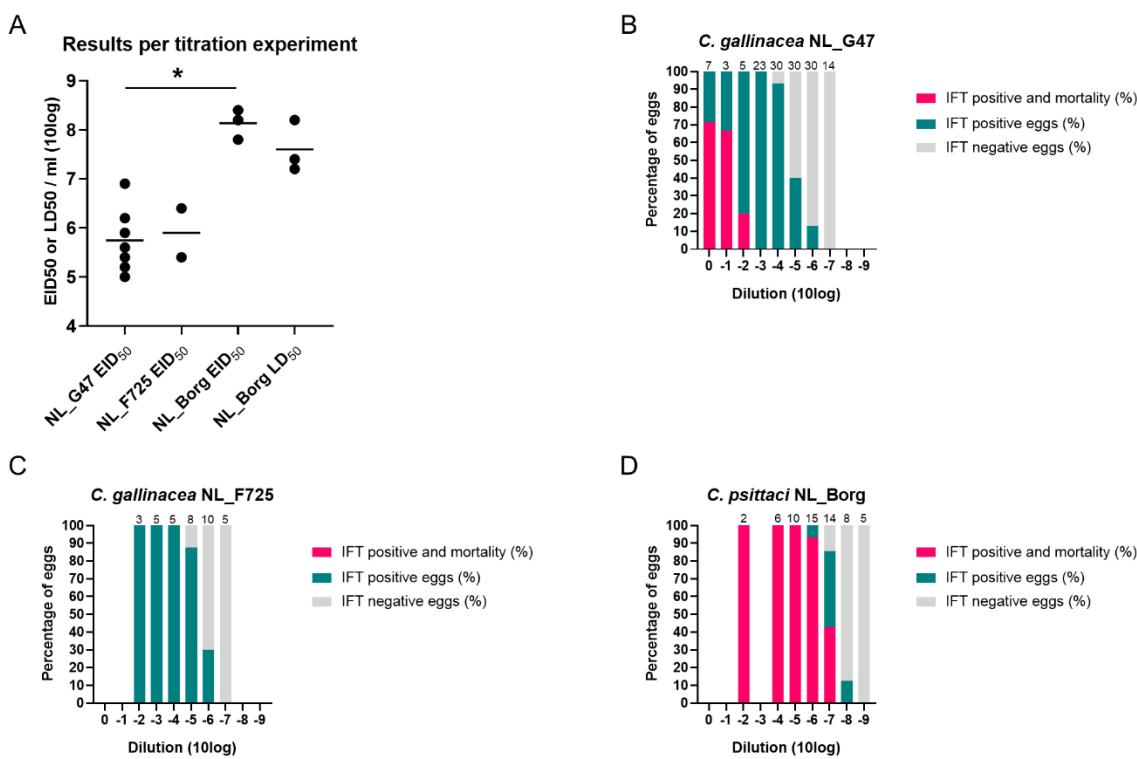
666 47. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool
667 for genome assemblies. *Bioinformatics* 29:1072-5.

668 48. Seeman T. Snippy: fast bacterial variant calling from NGS reads Accessed 30
669 December 2018.

670 49. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-
671 Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA Sequence Polymorphism
672 Analysis of Large Data Sets. Mol Biol Evol 34:3299-3302.


673 50. Moller S, Croning MD, Apweiler R. 2001. Evaluation of methods for the prediction of
674 membrane spanning regions. Bioinformatics 17:646-53.

675 51. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using
676 DIAMOND. Nat Methods 12:59-60.


677 52. Wickham H, Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L., Francois,
678 R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Lin Pedersen, T.,
679 Miller, E., Bache, S.M., Muller, K., Ooms, J., Robinson D., Paige Seidel, D., Spinu,
680 V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., Yutani, H. 2019. Welcome to
681 the Tidyverse. Journal of Open Source Software 4.

682 53. Team RC. 2019. A language and environment for statistical computing, R Foundation
683 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

684

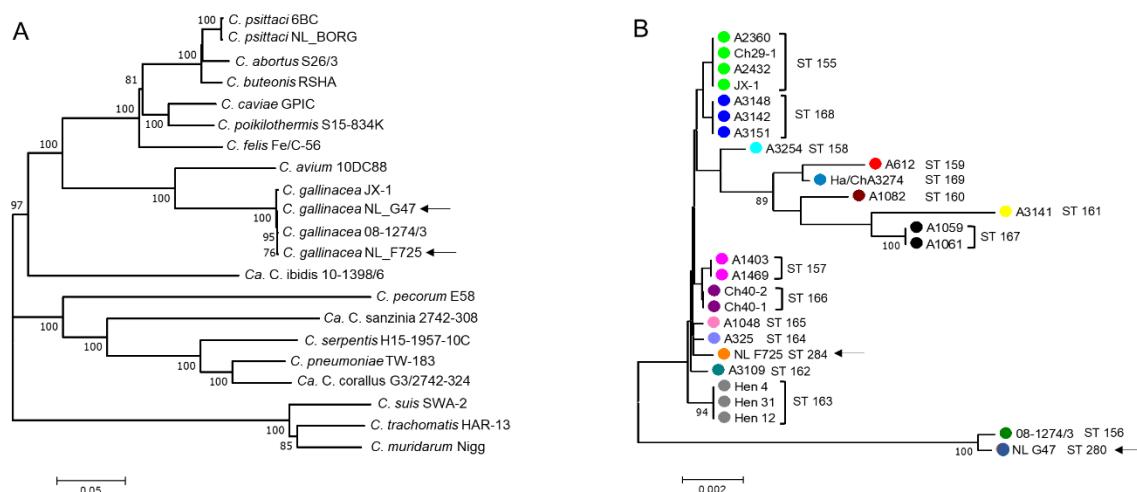

Fig. 1 Chorioallantoic membrane and yolk sac membrane of 10 days embryonated eggs infected with NL_G47. Intracellular inclusions (arrows) in the epithelial cells of the chorioallantoic membrane (**A**) and yolk sac membrane (**C**). Inset: higher magnification showing the granular basophilic inclusions in the HE staining. Positive immunolabelling of the intracellular inclusions for chlamydial antigen in the chorioallantoic membrane (**B**) and yolk sac membrane (**D**). Scale bar is 20 micrometer (**A,B**), 50 micrometer (**C,D**) or 5 micrometer (insets).

Fig. 2 Assessment of virulence of *C. gallinacea* in embryonated eggs

A shows the egg infectious dose 50 (EID₅₀) of *C. gallinacea* NL_G47, NL_F725 and *C. psittaci* NL_Borg based on IFT of the yolk sac. The difference between EID₅₀ of NL_G47 and NL_Borg was significantly different (*, P<0.05, Wilcoxon-Mann-Whitney test). For *C. psittaci* NL_Borg the lethal dose 50 (LD₅₀) was also calculated. The median is indicated with a bar.

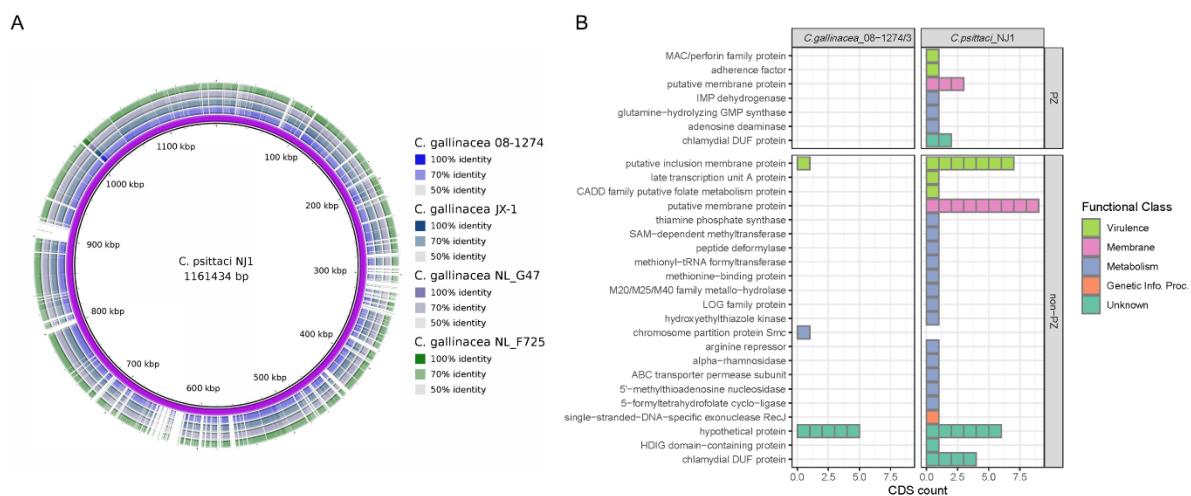

B, C and D depict the cumulative results of the separate titration experiments per Chlamydia strain. Per dilution the percentage of eggs that was IFT positive with mortality, IFT positive without mortality and IFT negative are shown. The total number of eggs per dilution are presented at the top of every bar. These data are also included in the supplementary (S5).

Fig. 3 Phylogenetic analyses of concatenated sequences of *Chlamydia*. Concatenated sequences were aligned and analysed in MEGA7 (12). Phylogenetic trees were constructed by the Neighbour-Joining algorithm using the Maximum Composite Likelihood model. Bootstrap tests were for 1000 repetitions (13-15). Numbers on tree nodes indicate bootstrap values over 75% of the main branches. Horizontal lines are scale for genetic distances.

A Neighbour-Joining tree of concatenated sequences of 52 ribosomal genes (rMLST)(16) of *Chlamydia* Type strains as well as three *Candidatus* (*Ca. C. corallus*, *Ca. C. ibidis* and *Ca. C. sanzinia*), *C. psittaci* strain NL_Borg and three additional *C. gallinacea* strains. All *C. gallinacea* strains (Dutch strains indicated by an arrow) clustered together in a well-supported and distinct clade with *Chlamydia avium* as the closest relative.

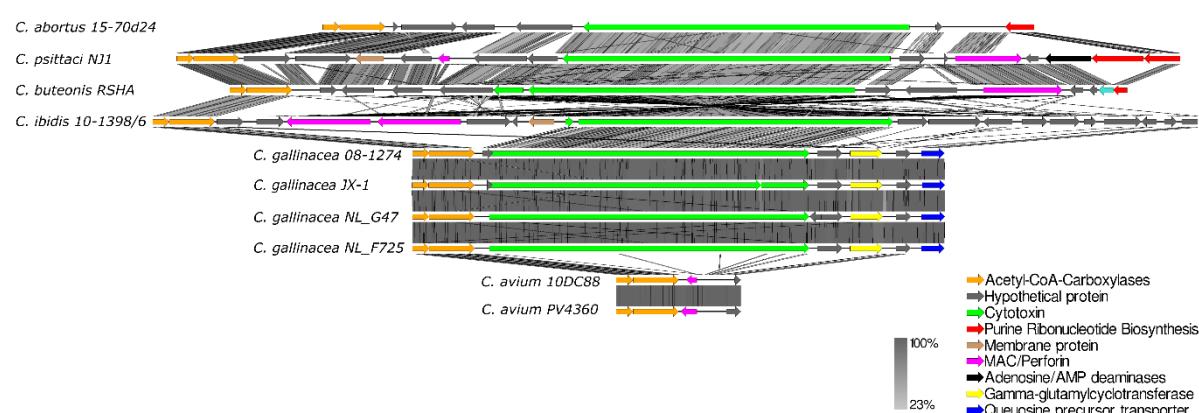

B Neighbour-Joining tree of concatenated sequences of 7 housekeeping genes fragments (MLST)(17) of 27 *C. gallinacea* strains. Shared Sequence type (ST) in clades are indicated by color and ST number noted after brackets. Dutch *C. gallinacea* strains are indicated by an arrow.

Fig. 4 Genome comparison of *C. gallinacea* and *C. psittaci*

A Whole genome BLAST comparisons between *C. psittaci* NJ1 and available *C. gallinacea* genomes created with BLAST Ring Image Generator (BRIG)(18).

B CDS for which no homologue could be identified in *C. gallinacea* or *C. psittaci*. The proteins are categorized according to their function and location.

Fig. 5 Graphical representation of the gene content of the PZ's of representative Chlamydia

species of avian origin including the Dutch *C. gallinacea* strains analysed in this study. Coloured arrows in the legend represent PZ genes according to function. Grey shading scale denotes % sequence similarity. The image was created with Easyfig (19).