

1 **African-lineage Zika virus replication dynamics and maternal-fetal** 2 **interface infection in pregnant rhesus macaques**

4 Chelsea M. Crooks^a, Andrea M. Weiler^b, Sierra L. Rybarczyk^{b,*}, Mason Bliss^b, Anna S. Jaeger^c,
5 Megan E. Murphy^{d,*}, Heather A. Simmons^b, Andres Mejia^b, Michael K. Fritsch^e, Jennifer M.
6 Hayes^b, Jens C. Eickhoff^f, Ann M. Mitzey^d, Elaina Razog^g, Katarina M. Braun^a, Elizabeth A.
7 Brown^a, Keisuke Yamamoto^{e,*}, Phoenix M. Shepherd^e, Amber Possell^b, Kara Weaver^b, Kathleen
8 M. Antony^h, Terry K. Morgan^{i,j}, Dawn M. Dudley^e, Eric Peterson^b, Nancy Schultz-Darken^b, David
9 H. O'Connor^{b,e}, Emma L. Mohr^g, Thaddeus G. Golos^{b,d,h}, Matthew T. Aliota^c, and Thomas C.
10 Friedrich^{a,b}#

11
12 ^aDepartment of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA

13 ^bWisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI,
14 USA

15 ^cDepartment of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St.
16 Paul, MN, USA

17 ^dDepartment of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA

18 ^eDepartment of Pathology and Laboratory Medicine, University of Wisconsin-Madison,
19 Madison, WI, USA

20 ^fDepartment of Biostatistics and Medical Informatics, University of Wisconsin-Madison,
21 Madison, WI, USA

22 ^gDepartment of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA

23 ^hDepartment of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI,
24 USA

25 ⁱDepartment of Pathology, Oregon Health and Science University, Portland, OR, USA

26 ^jDepartment of and Obstetrics and Gynecology, Oregon Health and Science University,
27 Portland, OR, USA

28
29 Running head (54 characters): African-lineage Zika virus in pregnant rhesus macaques

30
31 #Address correspondence to Thomas C. Friedrich, tfriedri@wisc.edu

32
33 *Present address, Sierra L. Rybarczyk, Sangamo Therapeutics, Richmond, CA, USA

34 *Present address, Megan E. Murphy, Department of Medicine, University of Wisconsin-
35 Madison, Madison, WI, USA

36 *Present address, Keisuke Yamamoto, Touro College of Osteopathic Medicine, New York, NY,
37 USA

38 **ABSTRACT**

39 Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with
40 microcephaly and a range of neurological and developmental symptoms, termed congenital
41 Zika syndrome (CZS). The isolates responsible for this outbreak belonged to the Asian lineage
42 of ZIKV. However, in-vitro and in-vivo studies assessing the pathogenesis of African-lineage
43 ZIKV demonstrated that African-lineage isolates often replicated to high titer and caused more
44 severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage
45 ZIKV in a translational model, particularly during pregnancy, has not been rigorously
46 characterized. Here we infected four pregnant rhesus macaques with a low-passage strain of
47 African-lineage ZIKV and compared its pathogenesis to a cohort of four pregnant rhesus
48 macaques infected with an Asian-lineage isolate and a cohort of mock-infected controls. Viral
49 replication kinetics were not significantly different between the two experimental groups and
50 both groups developed robust neutralizing antibody titers above levels considered to be
51 protective. There was no evidence of significant fetal head growth restriction or gross fetal
52 harm at delivery in either group. However, a significantly higher burden of ZIKV vRNA was
53 found in maternal-fetal interface tissues in the macaques exposed to an African-lineage isolate.
54 Our findings suggest that ZIKV isolates of any genetic lineage pose a threat to women and their
55 infants.

56

57 **IMPORTANCE**

58 ZIKV was first identified over 70 years ago in Africa, but most of our knowledge of ZIKV is
59 based on studies of the distinct Asian genetic lineage, which caused the outbreak in the
60 Americas in 2015-16. In its most recent update, the WHO stated that improved understanding
61 of African-lineage pathogenesis during pregnancy must be a priority. Recent detection of
62 African-lineage isolates in Brazil underscores the need to understand the impact of these
63 viruses. Here we provide the first comprehensive assessment of African-lineage ZIKV infection
64 during pregnancy in a translational non-human primate model. We show African-lineage
65 isolates replicate with similar kinetics to Asian-lineage isolates and are capable of infecting the
66 placenta. However, there was no evidence of more severe outcomes with African-lineage
67 isolates. Our results highlight both the threat that African-lineage ZIKV poses to women and
68 their infants and the need for future epidemiological and translational in-vivo studies with
69 African-lineage ZIKV.

70

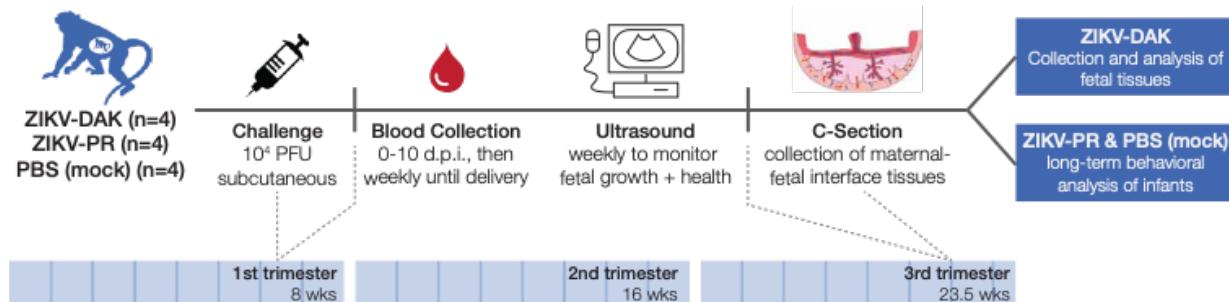
71 **INTRODUCTION**

72 Zika virus (ZIKV) gained global notoriety in 2015 when it caused a large epidemic of febrile
73 illness in the Americas and, for the first time, was causally associated with birth defects in
74 infants born to mothers who became infected while pregnant (1). Why was ZIKV, which was
75 first isolated in Uganda in 1947, not causally linked to birth defects prior to this outbreak in the
76 Americas? Several hypotheses have emerged to explain why congenital ZIKV infection seems
77 like a new complication, including that women in Africa are exposed to and therefore immune
78 to the virus before childbearing age; that ZIKV circulating in the Americas acquired mutations

79 that increased its ability to cause congenital ZIKV syndrome (CZS); or that ZIKV disease is
80 enhanced by prior flavivirus immunity.

81
82 ZIKV circulates as two genetic lineages: African and Asian. The vast majority of animal model
83 and epidemiological studies of ZIKV to date have focused on Asian-lineage viruses because
84 they were responsible for the outbreak in the Americas. Therefore, relatively little is known
85 about the pathogenic potential of African-lineage viruses, particularly with regard to fetal
86 outcomes. In cell culture experiments, African-lineage ZIKV isolates have been shown to
87 replicate to higher titers and induce increased cell lysis as compared to Asian-lineage ZIKV (2–
88 6). Particularly notable was the demonstration that African-lineage ZIKV isolates cause more
89 rapid and more severe cytopathic effects (CPE) than Asian-lineage isolates in human
90 embryonic stem-cell derived trophoblasts, which are cells critical for the development of the
91 placenta (3, 4). Furthermore, in both pregnant and non-pregnant immunocompromised mouse
92 models, African-lineage isolates have consistently shown both increased mortality and
93 increased fetal harm as compared to Asian-lineage strains (5–8). Several experiments have
94 been conducted with African-lineage ZIKV isolates in non-pregnant macaques. Two of the
95 isolates used in these studies have extensive passage histories in mice and therefore cannot
96 be considered natural ZIKV isolates (9). Still, in one study the virus replicated in the rhesus
97 macaque host, but not as robustly as Asian-lineage isolates. A second study showed no
98 replication of the isolate in Mauritian cynomolgus macaques, while a third study showed
99 replication comparable to Asian-lineage viruses and subsequent protection against
100 heterologous challenge (10–12). A low-passage isolate has been used in several non-human
101 primate models and showed modest replication when inoculated intrarectally and
102 intravaginally, and robust replication when inoculated subcutaneously (13, 14).

103
104 In the July 2019 epidemiological update on ZIKV, the WHO identified the assessment of fetal
105 outcomes following infection with African-lineage viruses as a priority (15). This is underscored
106 by recent findings of African-lineage isolates in South America, including evidence of fetal harm
107 in a non-human primate naturally exposed to an African strain of ZIKV most closely related to
108 the prototype strain, MR766 (16, 17). While the ability of African-lineage ZIKV to infect the
109 maternal-fetal interface and cause fetal harm has been rigorously studied in cell culture and
110 immunocompromised mice, it remains unclear how translational these findings are to
111 humans.


112
113 To address this gap, we aimed to assess the pathogenic potential of a low-passage African-
114 lineage ZIKV isolate during pregnancy in our well-established non-human primate model of
115 ZIKV (18, 19). Recently, we demonstrated that the low-passage and highly pathogenic African-
116 lineage ZIKV strain ZIKV/Aedes africanus/SEN/DAK-AR-41524/1984 (ZIKV-DAK; BEI
117 Resources, Manassas, VA) replicated to higher titer in maternal serum and caused significantly
118 greater fetal harm as compared to Asian-lineage ZIKV in *Ifnar1^{-/-}* C57BL/6 mice (8). Notably,
119 placental pathology in mice infected with ZIKV-DAK was more severe than in mice infected
120 with an Asian-lineage virus. Since contemporary ZIKV isolates from Africa are not readily

121 available, this strain is one of the most recent, low-passage isolates available for pathogenesis
122 studies.

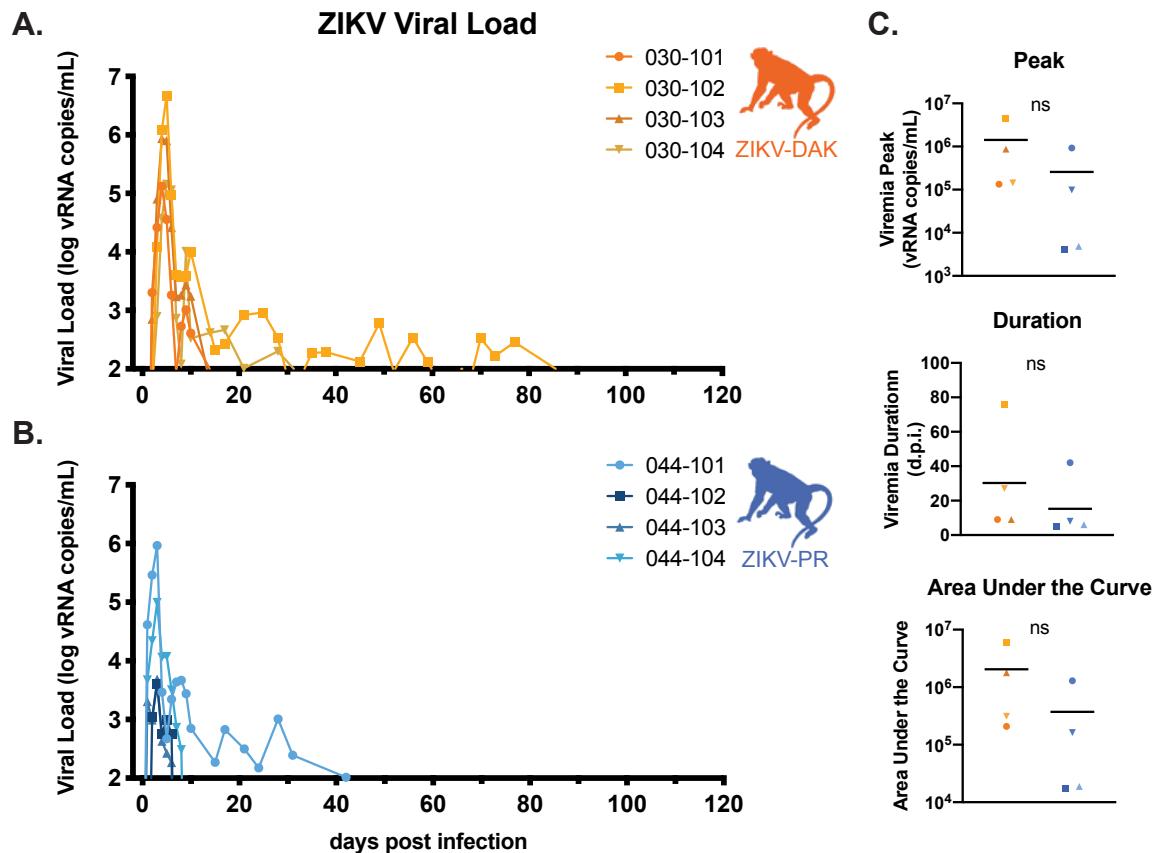
123

124 We infected four pregnant macaques with ZIKV/Aedes-africanus/SEN/DakAr41524/1984 (ZIKV-
125 DAK) during the late first trimester, monitored fetal health and growth throughout pregnancy
126 and assessed fetal outcomes (presence of vRNA, gross abnormalities) at delivery at gestational
127 day 155, approximately 1.5 weeks prior to full term. We compare data from a cohort of four
128 pregnant macaques infected with ZIKV-DAK to a cohort of four pregnant macaques infected
129 with Zika-virus/H.sapiens-tc/PUR/2015/PRVABC59_v3c2 (ZIKV-PR), a low-passage Asian-
130 lineage isolate. This virus, isolated from a human in Puerto Rico in 2015, has been well
131 characterized in rhesus macaques (10, 18–22). Although we did not find evidence of more
132 severe fetal outcomes following infection with an African-lineage virus as compared to Asian-
133 lineage virus, data from this study supports the hypothesis that ZIKV of both African- and
134 Asian-lineage pose a threat to women and their infants.

135

136

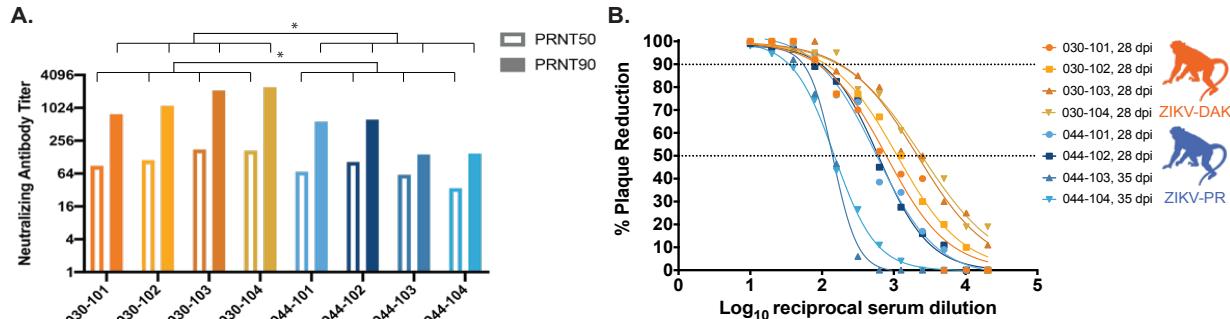
137 **Figure 1. Study overview.** Groups of four pregnant macaques were challenged between gestation days
138 (gd) 45 and 50 (late first trimester) with either ZIKV-DAK, ZIKV-PR, or PBS (mock). Following viral
139 challenge, blood was collected daily from 0-10 d.p.i., then twice weekly until viremia resolved, and then
140 once weekly until delivery. Ultrasounds were performed once weekly to measure fetal health and growth.
141 Between gd 155-160 (1.5 weeks prior to full term), infants were delivered via cesarean section, and
142 maternal-fetal interface tissues, including the placenta, fetal membranes, umbilical cord, and placental
143 bed were collected. Infants born to dams inoculated with ZIKV-DAK were humanely euthanized, and a
144 comprehensive set of tissues were collected. Infants born to dams challenged with ZIKV-PR or PBS
145 (mock) were paired with their mothers and followed for long-term behavioral analysis.


146

RESULTS

ZIKV-DAK replicates to high titer in macaques and with similar replication to ZIKV-PR

147 Four pregnant rhesus macaques (*Macaca mulatta*) were subcutaneously inoculated with 10⁴
148 PFU of ZIKV-DAK between gestation day 45 and 50, late in the first trimester (Figure 1). The
149 first trimester is associated with the greatest risk of CZS in pregnant women and is both a time
150 of active neurological development and a time before which many women know that they are
151 pregnant (23, 24). Following inoculation, plasma was collected daily for 10 days post infection
152 (dpi), then twice weekly until viremia resolved, and then once weekly for the remainder of
153 gestation. Negative viremia was defined as two consecutive timepoints with viral loads below
154 the limit of quantification of our ZIKV QRT-PCR assay (100 copies/mL plasma). Virus replicated
155 to high levels (10⁵-10⁶ vRNA copies/mL) in all four macaques, with viremia persisting through
156 day 10 for all four macaques; two macaques had prolonged viremia out to 28-77 dpi (Figure
157

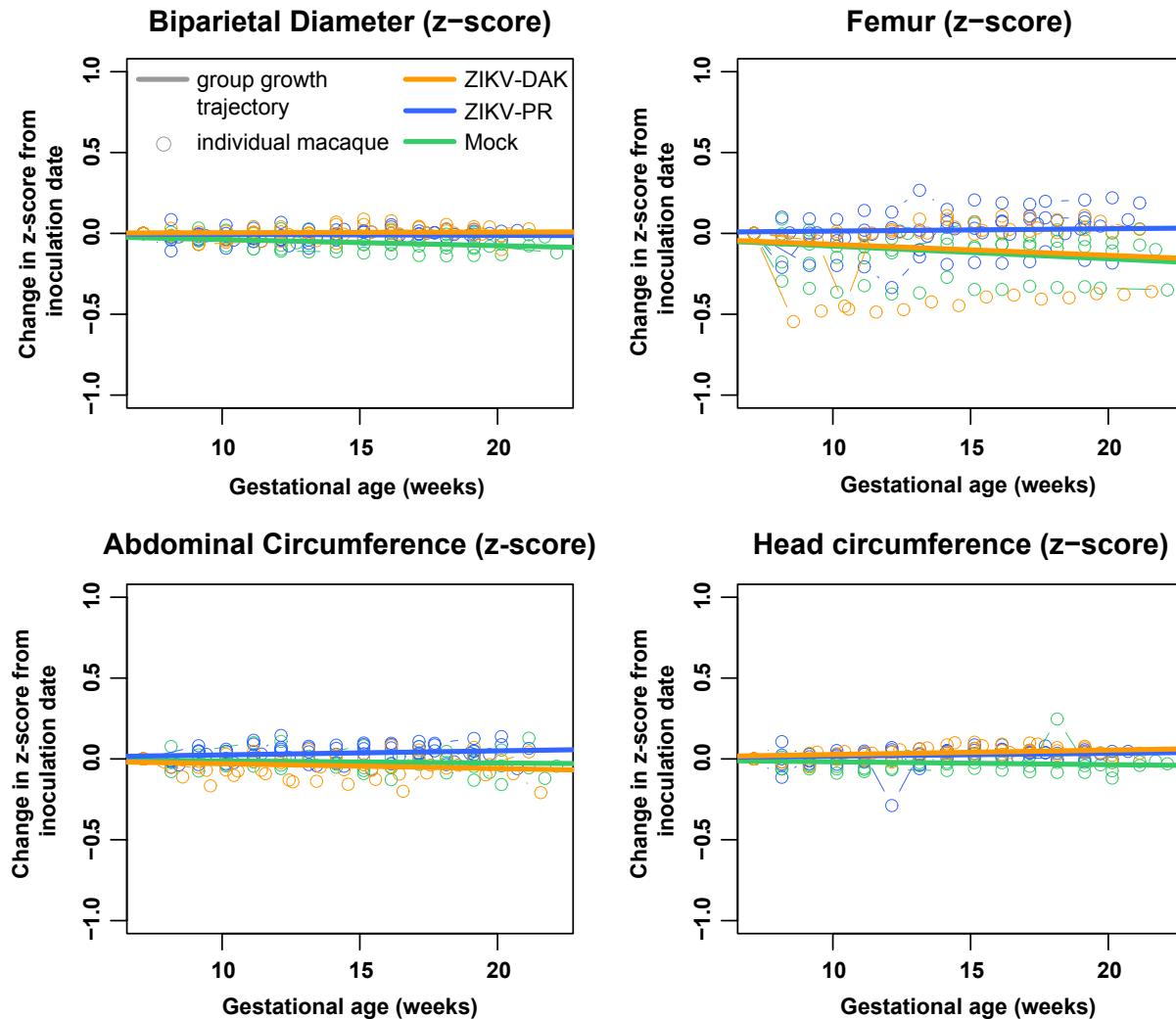

158 2A). When compared to a cohort of four macaques infected with ZIKV-PR using the same
159 inoculation and sampling regimen, there were no statistically significant differences in viremia
160 peak, duration, or area under the curve, suggesting that this African-lineage isolate replicates
161 in pregnant macaques with similar kinetics to Asian-lineage isolates (Figure 2B).
162

163
164 **Figure 2. ZIKV-DAK and ZIKV-PR Viral replication kinetics. A-B.** Viral load was determined using
165 ZIKV-specific QRT-PCR of RNA isolated from plasma. Only values above the assay's limit of
166 quantification (100 copies/ml) are shown. **C.** There were no statistically significant differences in the
167 peak, duration, or area under the curve of viremia between the two groups (two-sample t tests).

168 **ZIKV-DAK induces a robust nAb response**

169 By 28 dpi, all macaques infected with either ZIKV-DAK or ZIKV-PR, regardless of viremia
170 duration, had developed a robust neutralizing antibody titer (Figure 3A). The PRNT50 and 90
171 titers developed in response to ZIKV-DAK infection are significantly higher than those
172 developed in response to ZIKV-PR infection (Figure 3B). The PRNT90 titers in macaques
173 exposed to ZIKV-DAK are greater than the titers of macaques in a different study infected with
174 the mouse-adapted isolate ZIKV-MR766, which were shown to be protective against
175 heterologous challenge (10). Therefore, we expect that the immune response produced in
176 these macaques infected with ZIKV-DAK during pregnancy would be protective against
177 secondary ZIKV challenge.

178
179
180
181
182
183
184
185


Figure 3. Neutralizing antibody titers. Plaque reduction neutralization tests (PRNT) were performed on serum samples collected between 28-35 days post infection to determine the titer of ZIKV-specific neutralizing antibodies. Neutralization curves were constructed using GraphPad Prism. PRNT90 and PRNT50 values were estimated using non-linear regression analysis and are shown on the bar graph in (A) and indicated with dotted lines in (B). PRNT50 and 90 titers were compared using an unpaired, parametric t-test. ZIKV-DAK-infected macaques had significantly higher PRNT50 ($p=0.0371$) and PRNT90 ($p=0.0243$) titers than ZIKV-PR-infected macaques.

186
187
188
189
190
191
192
193
194

No reduction in fetal growth during gestation
Sonographic imaging was conducted weekly beginning one week prior to inoculation to evaluate fetal health (heart rate), overall fetal growth (abdominal circumference, femur length) and head growth (head circumference, biparietal diameter). No gross fetal or placental anomalies were observed. Varying amounts of placental calcification were noted on ultrasound in all four macaques exposed to ZIKV-DAK; however, calcifications were also observed in macaques infected with ZIKV-PR and in mock-inoculated macaques, suggesting that these qualitative observations are normal for gestational age or unrelated to viral infection.

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Femur length, abdominal circumference, head circumference, and biparietal diameter measurements were compared to normative data developed from $n=85$ cynomolgus and rhesus macaques at the California National Primate Research Center (25, 26). We calculated the number of standard deviations that each fetal measurement differed from the normative data (z-score) at that gestational age. A linear mixed effects model with animal-specific random effects was used to evaluate the change in the outcome measures between gestation days 50-160. Growth was quantified by calculating the slope parameters for each experimental group. We then compared fetal growth in each group both to the normative data and to each of the other groups (Figure 4). When compared to the normative data, mock-infected animals had significantly reduced biparietal diameter growth ($p=0.0207$), while ZIKV-PR and ZIKV-DAK had a very modest, but statistically significant increase in head circumference growth ($p=0.0230$; $p=0.0179$). All other values were not significantly different from the normative data. When each of the experimental groups were compared to the mock-infected group, there was no significant reduction or increase in any of the growth measurements in the experimental group, suggesting that infection with either lineage of ZIKV did not restrict or enhance fetal growth.

211

212 **Figure 4. Intrauterine fetal growth.** Sonographic imaging was performed weekly to measure fetal
213 health and growth. Normative measurement data from the California National Primate Research Center
214 was used to calculate z-scores for each weekly measurement for each macaque. The change in the z-
215 score from the baseline measurement is plotted for each macaque with an open circle. Growth
216 trajectories were quantified by calculating the regression slope parameters from baseline for each
217 experimental group (solid line). When compared to the normative data, mock-infected animals had
218 significantly reduced biparietal diameter growth ($p=0.0207$); ZIKV-PR and ZIKV-DAK had a very modest,
219 but statistically significant increase in head circumference growth ($p=0.0230$; $p=0.0179$).

220 **No evidence of vertical transmission at delivery**

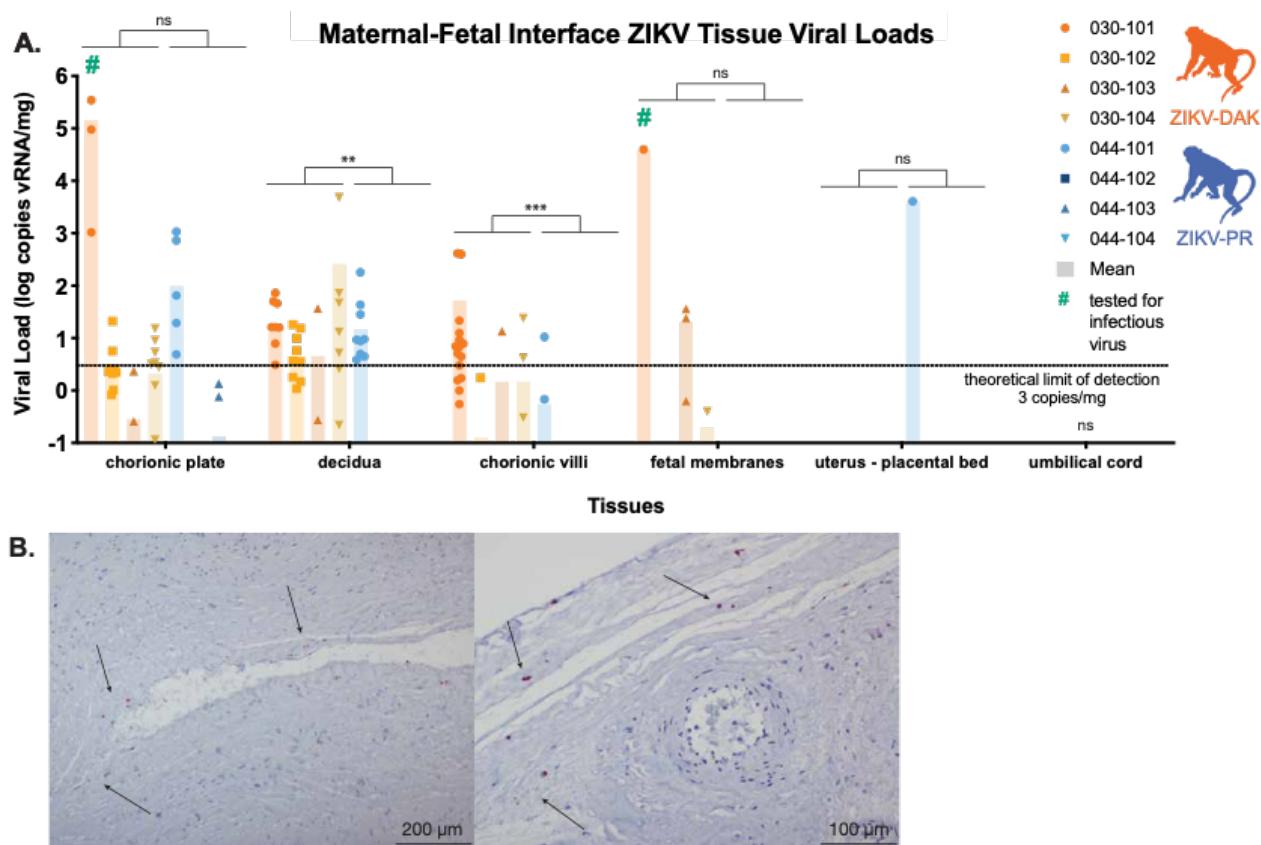
221 At approximately gestation day 155 (full term is 165 ± 10 days in rhesus macaques), fetuses of
222 ZIKV-DAK-infected dams were delivered via cesarean section and humanely euthanized. No
223 gross abnormalities were noted in any of the infants at delivery. A comprehensive set of
224 maternal biopsies, maternal-fetal interface tissues, and fetal tissues were collected for vRNA
225 measurements and histopathological analysis. In the fetus, emphasis was placed on collecting
226 tissues that may be involved in transmission of the virus and tissues that are likely to be sites
227 of ZIKV replication, including the central nervous system. Infants of ZIKV-PR-infected dams
228 were delivered via cesarean section at approximately gestation day 160 and are being

229 assessed for long-term neurodevelopmental sequelae. As a result, no fetal tissues were
230 collected for comparison. No ZIKV RNA was detected in any of the fetal tissues collected at
231 the time of delivery from the four ZIKV-DAK pregnancies (Supplemental table 2). Because
232 pregnancies were allowed to go to term, we cannot exclude the possibility that ZIKV-DAK was
233 vertically transmitted earlier in gestation but cleared from the fetus before delivery.
234 Histopathological examination of fetal tissues revealed evidence of minimal to mild neutrophilic
235 lymphadenitis in 3 of 4 ZIKV-exposed animals. Because we also observed neutrophilic
236 lymphadenitis in four mock-infected animals that underwent the same experimental regimen,
237 this inflammation may be a feature of normal development or from experimental procedures
238 rather than viral infection.

239

240 **ZIKV is present in a variety of maternal-fetal interface tissues at delivery**

241 Macaques typically have a bidiscoid placenta. To understand ZIKV distribution in the placenta,
242 each placental disc was dissected into its individual cotyledons (perfusion domains), and a
243 sample from the decidua, chorionic villi, and chorionic plate were taken from each cotyledon
244 for both viral loads and histology (27). To understand ZIKV distribution in the maternal-fetal
245 interface, additional samples were taken from the fetal membranes, uterine placental bed, and
246 umbilical cord for both viral loads and histology. To assess the presence of virus in the dam, a
247 biopsy of the mesenteric lymph node, liver, and spleen was taken from dams exposed to ZIKV-
248 DAK for viral loads and histology. Only mesenteric lymph node biopsies were collected from
249 dams exposed to ZIKV-PR. In the ZIKV-DAK dams, 3 of 12 biopsies, representing 2 different
250 tissue types from 2 different macaques, were positive (Supplementary Table 2). In the ZIKV-PR
251 dams, 1 of 4 mesenteric lymph node biopsies were positive.


252

253 ZIKV RNA was present in the placenta and maternal-fetal interface in all four ZIKV-DAK
254 infected animals to varying degrees regardless of the duration of viremia (Figure 5A). The
255 highest burden was found in the decidua (basalis), chorionic plate, and chorionic villi and at
256 lower levels in the fetal membranes. No vRNA was identified in the placental bed of the uterus
257 or umbilical cord tissues (Figure 5A) or in the amniotic fluid or umbilical cord blood
258 (Supplemental Table 2). In contrast, there were fewer positive tissues in the maternal-fetal
259 interface tissues of macaques infected with ZIKV-PR. All but one of the tissues positive for
260 ZIKV-PR RNA were from a single macaque, 044-101. No vRNA was detected in the umbilical
261 cord (Figure 5A), amniotic fluid, or umbilical cord plasma (Supplemental Table 2) in ZIKV-PR
262 infected animals. When compared to the cohort of macaques infected with ZIKV-PR, there is a
263 significantly greater burden of ZIKV vRNA present in the ZIKV-DAK cohort in the decidua,
264 chorionic plate, and chorionic villi (Figure 5A). There were no significant differences in the vRNA
265 burden in the fetal membranes, uterine placental bed, or umbilical cord.

266

267 To assess whether there was replicating virus present in the placenta at delivery (105-113 days
268 post infection), three high viral load ($>10^3$ copies/mg) chorionic plate samples and one fetal
269 membrane sample from 030-101 were tested for the presence of infectious virus using plaque
270 assay. Three of the four tissues tested (two chorionic plates and one fetal membrane tissue)
271 were positive for infectious virus via plaque assay (Supplemental Table 3). To further

272 understand the distribution of vRNA within the placenta, tissue sections of the placental
273 cotyledons from 030-101 were evaluated using in-situ hybridization (ISH). ISH probes for the
274 ZIKV genome were used to identify ZIKV RNA in the tissue sections. 11 of the 17 cotyledons
275 tested were positive for ZIKV RNA, primarily in the chorionic plate, which is consistent with
276 both QRT-PCR and plaque assay results (Figure 5B).
277

278
279 **Figure 5. vRNA at the maternal-fetal interface.** For each macaque, tissue biopsies were collected
280 from the chorionic plate, chorionic villi, and decidua from each placental cotyledon; one to three
281 biopsies were collected from the fetal membranes; and one biopsy was collected from the uterine
282 placental bed and umbilical cord. Viral load was determined by ZIKV-specific QRT-PCR from RNA
283 isolated from tissue samples. **A.** Viral load of maternal-fetal interface tissues. A non-parametric Mann-
284 Whitney test was used to assess statistical significance between each experimental group in samples
285 containing more than the theoretical limit of detection of 3 copies vRNA/mg tissue (**p<0.01, ***p<0.001).
286 **B.** Representative images of in situ hybridization performed on fixed tissue sections from each of the
287 placental cotyledons from 030-101. Positive staining for ZIKV RNA (red, arrows) was identified in 11 of
288 the 17 cotyledons tested, primarily in the chorionic plate.

289 **Comprehensive histological examination of placental tissues**

290 To better understand the impact of in-utero ZIKV-DAK infection, maternal-fetal interface
291 tissues were evaluated microscopically. Gross histopathological evaluation of the maternal-
292 fetal interface tissues of ZIKV-DAK-exposed animals revealed a primary finding of transmural
293 infarction of the central section of the placenta (Supplementary Figure 1). Transmural placental
294 infarctions are areas of ischemic necrotic placental villi extending from the trophoblastic shell

295 of the basal plate to the chorionic plate and are considered to be a result of a lack of
296 oxygenated maternal blood flow. These infarctions were present in all four macaques infected
297 with ZIKV-DAK. In contrast, this was observed in 2 of 4 macaques infected with ZIKV-PR and 1
298 of 4 mock-infected macaques.

299

300 Further histological analysis examined a cross-section of each of the individual placental
301 cotyledons for the presence of chronic histiocytic intervillitis (CHIV), infarctions, villous
302 stromal calcifications, and vasculopathy (Table 1). We also compared placental weights. There
303 were no statistically significant differences in weight or pathological findings between the
304 experimental and control groups for any of the features. The presence of infarctions, not often
305 observed in mock-infected controls, could indicate that the pathology observed is a result of
306 normal placental maturation and aging or a result of weekly anesthesia from experimental
307 procedures. Regardless, these evaluations underscore the need to include mock-infected
308 controls when evaluating tissues for viral pathogenesis. In order to quantitatively assess the
309 pathologies present in the maternal-fetal interface, a central cross-section of each placental
310 disc was scored for 22 functional features (Supplementary Table 4; Supplementary Figure 3).
311 There were no statistically significant differences between either of the experimental groups
312 and the mock-infected controls for any of the scored features; however, there was a trend
313 toward increased chronic and acute villitis in the ZIKV-DAK exposed animals.

314

Table 1. Placental cotyledon pathology

Group	Dam	% CHIV+ cotyledons	Infarcted cotyledons/total cotyledons (%)	Villous stromal calcifications (present/absent)	Vasculopathy (present/absent)	Placental weight (g)
Mock	044-105	0.0	5.88	Present	Absent	111.08
	044-106	0.0	12.5	Present	Absent	106.5
	044-107	0.0	0.0	Present	Present	144.48
	044-108	0.0	45.5	Present	Absent	122.92
ZIKV-DAK	030-101	0.0	43.8	Absent	Absent	131.54
	030-102	0.0	0.0	Absent	Absent	111.4
	030-103	0.0	66.7	Absent	Present	135.32
	030-104	0.0	57.9	Present	Present	124.71
ZIKV-PR	044-101	0.0	25.0	Present	Absent	172.59
	044-102	0.0	33.3	Present	Absent	123.87
	044-103	0.0	0.0	Absent	Absent	134.49
	044-104	0.0	18.2	Absent	Absent	120.48

315

316

317

318 **DISCUSSION**

319 Here we provide the first comprehensive analysis of a low-passage, African-lineage ZIKV
320 isolate in pregnant non-human primates. The data presented here demonstrate that this
321 African-lineage ZIKV isolate is capable of robust replication in rhesus macaques. Infection
322 induces a strong neutralizing antibody response, at or above titers that have been shown to be
323 protective against subsequent challenge two years following primary challenge (28). Regular
324 monitoring of fetal growth via ultrasound did not reveal any significant intrauterine growth
325 restriction as compared to mock-infected animals. ZIKV infection of the placenta has been
326 shown to be focal (21); therefore, in addition to assessment of well-established sequelae of
327 viral infection at the maternal-fetal interface, we completed an extensive virological and
328 histological evaluation of the placenta at delivery. Viral load testing of tissues from the
329 extensive dissection of the placental discs into individual cotyledons and specific segments
330 thereof revealed a higher burden of ZIKV in the chorionic plate in animals exposed to ZIKV-
331 DAK, while plaque assay and ISH testing of high viral load samples confirmed the presence of
332 infectious virus in the chorionic plate. ZIKV vRNA was also regularly found in the decidua and
333 chorionic villi, and to a lesser extent in the fetal membranes. Despite a high burden of ZIKV in
334 the chorionic plate – the fetal side of the placenta – there was no evidence of vertical
335 transmission at delivery, even though infectious ZIKV was detected in the chorionic plate of
336 one animal. This suggests that the vRNA burden in the maternal-fetal interface is not a robust
337 predictor of clinical outcome for the fetus, but it does not preclude the possibility that infants
338 may develop clinical sequelae later in life due to viral exposure, or placental insufficiency
339 during gestation. Many normal-appearing infants exposed to ZIKV in utero develop
340 neurodevelopmental delays in the years after birth (29–32).

341
342 This cohort of macaques infected with an African-lineage virus was compared to a cohort of
343 macaques infected with an Asian-lineage virus and a mock-infected control group. Based on
344 previous studies in cell culture and mice, we expected to see a more severe phenotype in the
345 macaques that were infected with the African-lineage virus (2, 3, 3, 4, 4, 5, 5–8). We expected
346 this more severe phenotype to manifest as enhanced viral replication (as determined by higher
347 peak or longer duration of viremia), gross fetal abnormalities at delivery, or fetal demise.
348 However, the only feature that was significantly different between the experimental groups was
349 an increase in the burden of vRNA in the chorionic plate, chorionic villi and decidua.

350
351 To date, few studies of Asian-lineage viruses in non-human primates have shown clear
352 evidence of fetal harm, despite a clear association between Asian-lineage ZIKV and CZS. A
353 minority of human pregnancies known to be affected by ZIKV result in CZS (5–14%) or fetal
354 loss (4–7%) (33); therefore, it is perhaps unsurprising that there is limited evidence of fetal harm
355 in small non-human primate studies. In this study, ZIKV-DAK infection of pregnant macaques
356 resembled infection of ZIKV-PR across several parameters, including infection of MFI tissues.
357 Therefore, although we did not observe direct fetal harm, our findings suggest that African-
358 lineage viruses have similar capacity to cause fetal harm as Asian-lineage viruses. This data
359 suggests that African-lineage ZIKV poses a threat to women and their infants, which should be
360 taken into account when providing public health guidance. While African-lineage ZIKV had

361 been thought to be geographically confined to Africa, recent studies have identified African-
362 lineage isolates in South America (16, 17). This highlights the need for continuing study of ZIKV
363 of both genetic lineages.

364
365 A significant limitation of this study is the small sample size (n=4) in each of the experimental
366 groups. Particularly when studying a pathogen whose most severe effects are only found in a
367 minority of cases (33), modeling rare events in a small study is difficult and we cannot capture
368 the full range of disease experienced by women infected with ZIKV during pregnancy. We also
369 tested a single inoculation dose, virus strain, and inoculation time point; different experimental
370 conditions may reveal different outcomes, which could include more stark differences between
371 the lineages. Furthermore, this study focused on characterizing the pathogenesis of African-
372 lineage ZIKV as compared to Asian-lineage but did not seek to understand the mechanisms of
373 the vertical transmission of ZIKV or the potential mechanisms underlying differences between
374 the lineages. Future studies should investigate these mechanisms and conduct more thorough
375 epidemiological studies of African-lineage ZIKV, which may shed light on the reasons why ZIKV
376 had not been associated with fetal harm prior to the outbreak in the Americas.

377

378 **METHODS**

379 **Experimental design**

380 This study was designed to assess the pathogenic potential of a low-passage African-lineage
381 ZIKV isolate during pregnancy in a non-human primate model. Four pregnant Indian origin
382 rhesus macaques (*Macaca mulatta*) were inoculated subcutaneously with 1×10^4 PFU of ZIKV-
383 DAK between 44-50 days of gestation (term is 165 ± 10 days). Macaques were monitored
384 throughout the remainder of gestation. At approximately gestation day 155, infants were
385 delivered via c-section and humanely euthanized. A comprehensive set of maternal biopsies,
386 maternal-fetal interface and fetal tissues were collected for analysis. For the Asian-lineage
387 group, four pregnant Indian origin rhesus macaques (*Macaca mulatta*) were inoculated
388 subcutaneously with 1×10^4 PFU of ZIKV-PR between 44-50 days of gestation (term is 165 ± 10
389 days). Macaques were monitored throughout the remainder of gestation. At approximately
390 gestation day 160, infants were delivered via cesarean section and monitored for long-term
391 development. A comprehensive set of maternal biopsies and maternal-fetal interface were
392 collected for analysis. A cohort of four pregnant PBS-inoculated animals served as a control
393 group and underwent the same experimental regimen, including the sedation for all blood
394 draws and ultrasounds, as the ZIKV-PR cohort. Data used in this manuscript are publicly
395 available at openresearch.labkey.com under study ZIKV-030 (ZIKV-DAK) and ZIKV-044 (ZIKV-
396 PR and mock).

397

398 **Ethical approval**

399 This study was approved by the University of Wisconsin College of Letters and Sciences and
400 Vice Chancellor for Research and Graduate Education Centers Institutional Animal Care and
401 Use Committee (Protocol numbers: G005401 and G006139).

402

403 **Care and use of macaques**

404 All macaque monkeys used in this study were cared for by the staff at the WNPRC in
405 accordance with the regulations and guidelines outlined in the Animal Welfare Act and the
406 Guide for the Care and Use of Laboratory Animals and the recommendations of the Weatherall
407 report (<https://royalsociety.org/topics-policy/publications/2006/weatherall-report/>). All
408 macaques used in the study were free of *Macacine herpesvirus 1*, simian retrovirus type D
409 (SRV), simian T-lymphotropic virus type 1 (STLV), and simian immunodeficiency virus. For all
410 procedures (including physical examinations, virus inoculations, ultrasound examinations, and
411 blood collection), animals were anaesthetized with an intramuscular dose of ketamine (10
412 mg/kg). Blood samples were obtained using a vacutainer system or needle and syringe from
413 the femoral or saphenous vein.

414

415 **Cells and viruses**

416 ZIKV/Aedes-africanus/SEN/DakAr41524/1984 (ZIKV-DAK) was originally isolated from *Aedes*
417 *africanus* mosquitoes with a round of amplification on *Aedes pseudocutellaris* cells, followed by
418 amplification on C6/36 cells and two rounds of amplification on Vero cells. ZIKV-DAK was
419 obtained from BEI resources (Manassas, VA). Zika-virus/H.sapiens-
420 tc/PUR/2015/PRVABC59_v3c2 (ZIKV-PR) was originally isolated from a human in Puerto Rico
421 in 2015, with three rounds of amplification on Vero cells, was obtained from Brandy Russell
422 (CDC, Fort Collins, CO, USA). African Green Monkey kidney cells (Vero; ATCC #CCL-81) were
423 maintained in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal
424 bovine serum (FBS; Hyclone, Logan, UT), 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 100
425 U/ml penicillin, 100 µg/ml of streptomycin, and incubated at 37°C in 5% CO₂. *Aedes albopictus*
426 mosquito cells (C6/36; ATCC #CRL-1660) were maintained in DMEM supplemented with 10%
427 fetal bovine serum (FBS; Hyclone, Logan, UT), 2mM L-glutamine, 1.5 g/L sodium bicarbonate,
428 100 U/ml penicillin, 100 µg/ml of streptomycin, and incubated at 28°C in 5% CO₂. The cell lines
429 were obtained from the American Type Culture Collection, were not further authenticated, and
430 were not specifically tested for mycoplasma. Virus stocks were prepared by inoculation onto a
431 confluent monolayer of C6/36 cells; a single, clarified stock was harvested for each virus, with
432 a titer of 7.3 x 10⁸ PFU/ml for ZIKV-DAK and 1.58 x 10⁷ PFU/ml for ZIKV-PR. Deep sequencing
433 with limited PCR cycles confirmed that the ZIKV-DAK virus stock was identical to the reported
434 sequence in GenBank (KY348860) at the consensus level. Five nucleotide variants were
435 detected at 5.1-13.1% frequency (Supplementary Table 1). PCR-free deep sequencing did not
436 detect any evidence of Dezidougou virus, an insect-specific *Negevirus* that is present in some
437 ZIKV-DAK stocks. Amplicon deep sequencing of ZIKV-PR virus stock using the methods
438 described in Quick, et al. (34) revealed two consensus-level nucleotide substitutions in the
439 stock as compared to the reported sequence in GenBank (KU501215), as well as seven other
440 minor nucleotide variants detected at 5.3-30.6% frequency (Supplementary Table 1).

441

442 **Plaque Assay**

443 All titrations for virus quantification from virus stocks and screens for infectious ZIKV from
444 macaque tissue were completed by plaque assay on Vero cell cultures as previously described

445 (35). Briefly, duplicate wells were infected with 0.1 ml aliquots from serial 10-fold dilutions in
446 growth media and virus was adsorbed for one hour. Following incubation, the inoculum was
447 removed, and monolayers were overlaid with 3ml containing a 1:1 mixture of 1.2% oxoid agar
448 and 2X DMEM (Gibco, Carlsbad, CA) with 10% (vol/vol) FBS and 2% (vol/vol)
449 penicillin/streptomycin (100 U/ml penicillin, 100 µg/ml of streptomycin). Cells were incubated at
450 37°C in 5% CO₂ for four days for plaque development. Cell monolayers were then stained with
451 3 ml of overlay containing a 1:1 mixture of 1.2% oxoid agar and 2X DMEM with 2% (vol/vol)
452 FBS, 2% (vol/vol) penicillin/streptomycin, and 0.33% neutral red (Gibco). Cells were incubated
453 overnight at 37 °C and plaques were counted.

454

455 **Inoculations**

456 Inocula were prepared from a viral stock propagated on a confluent monolayer of C6/36 cells.
457 The stocks were thawed, diluted in PBS to 10⁴ PFU/ml and loaded into a 1 mL syringe that was
458 kept on ice until challenge. Animals were anesthetized as described above and 1 ml of inocula
459 was delivered subcutaneously over the cranial dorsum. Animals were monitored closely
460 following inoculation for any signs of an adverse reaction.

461

462 **Ultrasound measurements**

463 Ultrasound measurements were taken according to the procedures described previously (19).
464 Briefly, dams were sedated with ketamine hydrochloride (10mg/kg) for weekly sonographic
465 assessment to monitor the health of the fetus (heart rate) and to take fetal growth
466 measurements, including the fetal femur length (FL), biparietal diameter (BPD), head
467 circumference (HC), and abdominal circumference (AC). Weekly fetal measurements were
468 plotted against mean measurement values and standard deviations for fetal macaques
469 developed at the California National Primate Research Center (25, 26). Additional Doppler
470 ultrasounds were taken as requested by veterinary staff.

471

472 Gestational age standardized growth parameters for fetal HC, BPD, AC, and FL were evaluated
473 by calculating gestational age specific z-values from normative fetal growth parameters. Linear
474 mixed effects modeling with animal-specific random effects was used to analyze the fetal
475 growth trajectories with advancing gestational age. In order to account for differences in fetal
476 growth parameters at the date of inoculation, changes in fetal growth parameters from date of
477 inoculation (~day 50) were analyzed. That is, changes in fetal growth parameters from date of
478 inoculation were regressed on gestational age (in weeks). An autoregressive correlation
479 structure was used to account for correlations between repeated measurements of growth
480 parameters over time. The growth trajectories were quantified by calculating the regression
481 slope parameters which were reported along with the corresponding 95% confidence intervals
482 (CI). Fetal growth was evaluated both within and between groups. All reported P-values are
483 two-sided and P<0.05 was used to define statistical significance. Statistical analyses were
484 conducted using SAS software (SAS Institute, Cary NC), version 9.4.

485

486 **Viral RNA isolation from blood**

487 Viral RNA was isolated from macaque blood samples as previously described (18, 35). Briefly,
488 plasma was isolated from EDTA-anticoagulated whole blood on the day of collection either
489 using Ficoll density centrifugation for 30 minutes at 1860 x g if the blood was being processed
490 for PBMC, or it was centrifuged in the blood tube at 1400 x g for 15 minutes. The plasma layer
491 was removed and transferred to a sterile 15 ml conical and spun at 670 x g for an additional 8
492 minutes to remove any remaining cells. Viral RNA was extracted from a 300 μ L plasma aliquot
493 using the Viral Total Nucleic Acid Kit (Promega, Madison, WI) on a Maxwell 16 MDx or Maxwell
494 RSC 48 instrument (Promega, Madison, WI).

495

496 **Viral RNA isolation from tissues**

497 Tissue samples, cut to 0.5 cm thickness on at least one side, were stored in RNAlater at 4°C for
498 2-7 days. RNA was recovered from tissue samples using a modification of the method
499 described by Hansen et al., 2013 (36). Briefly, up to 200 mg of tissue was disrupted in TRIzol
500 (Lifetechnologies) with 2 x 5 mm stainless steel beads using the TissueLyser (Qiagen) for 3
501 minutes at 25 r/s twice. Following homogenization, samples in TRIzol were separated using
502 Bromo-chloro-propane (Sigma). The aqueous phase was collected and glycogen was added
503 as a carrier. The samples were washed in isopropanol and ethanol precipitated. RNA was fully
504 re-suspended in 5 mM tris pH 8.0.

505

506 **Quantitative reverse transcription PCR (QRT-PCR)**

507 vRNA isolated from both fluid and tissue samples was quantified by QRT-PCR as previously
508 described(8). The RT-PCR was performed using the SuperScript III Platinum One-Step
509 Quantitative RT-PCR system (Invitrogen, Carlsbad, CA) on a LightCycler 96 or LightCycler 480
510 instrument (Roche Diagnostics, Indianapolis, IN). Viral RNA concentration was determined by
511 interpolation onto an internal standard curve composed of seven 10-fold serial dilutions of a
512 synthetic ZIKV RNA fragment based on a ZIKV strain derived from French Polynesia that
513 shares >99% similarity at the nucleotide level to the Puerto Rican strain used in the infections
514 described in this manuscript.

515

516 **Statistical analysis of viral loads**

517 Plasma viral load curves were generated using GraphPad Prism software. The area under the
518 curve of 0-10 d.p.i. was calculated and a two-sample t-test was performed to assess
519 differences in the peak, duration, and area under the curve of viremia between macaques
520 infected with ZIKV-DAK and ZIKV-PR. To compare differences in the viral burden in the
521 maternal-fetal interface, a non-parametric Mann-Whitney test was used to assess differences
522 in each of the maternal-fetal interface tissues. GraphPad Prism 8 software was used for these
523 analyses.

524

525 **Plaque reduction neutralization test (PRNT)**

526 Macaque serum was isolated from whole blood on the same day it was collected using a
527 serum separator tube (SST). The SST tube was centrifuged for at least 20 minutes at 1400 x g,
528 the serum layer was removed and placed in a 15 ml conical and centrifuged for 8 minutes at

529 670 x g to remove any additional cells. Serum was screened for ZIKV neutralizing antibody
530 utilizing a plaque reduction neutralization test (PRNT) on Vero cells as described in (37) against
531 ZIKV-PR and ZIKV-DAK. Neutralization curves were generated using GraphPad Prism 8
532 software. The resulting data were analyzed by non-linear regression to estimate the dilution of
533 serum required to inhibit 50% and 90% of infection.

534

535 **Cesarean section and tissue collection**

536 Between 155-160 days gestation, infants were delivered via cesarean section and tissues were
537 collected. The fetus, placenta, fetal membranes, umbilical cord, and amniotic fluid were
538 collected at surgical uterotomy and maternal tissues were biopsied during laparotomy. These
539 were survival surgeries for the dams. For fetuses born to dams infected with ZIKV-DAK, the
540 fetus was euthanized with an overdose of sodium pentobarbital (50 mg/kg) and the entire
541 conceptus (fetus, placenta, fetal membranes, umbilical cord, and amniotic fluid) was collected
542 and submitted for tissue collection and necropsy. For fetuses born to dams infected with ZIKV-
543 PR, the infant was removed from the amniotic sac, the umbilical cord clamped, and neonatal
544 resuscitation performed as needed. The placenta, amniotic fluid, and fetal membranes were
545 then collected. Infants were placed with their mothers following the dam's recovery from
546 surgery.

547

548 Tissues were dissected as previously described(19) using sterile instruments that were
549 changed between each organ and tissue type to minimize possible cross contamination. Each
550 organ/tissue was evaluated grossly *in situ*, removed with sterile instruments, placed in a sterile
551 culture dish, and sectioned for histology, viral burden assay, and/or banked for future assays.
552 Sampling priority for small or limited fetal tissue volumes (e.g., thyroid gland, eyes) was vRNA
553 followed by histopathology, so not all tissues were available for both analyses. A
554 comprehensive listing of all specific tissues collected and analyzed is presented in Figure 5A
555 (maternal-fetal interface tissues) and Supplementary Table 2 (maternal biopsies and fetal
556 tissues). Biopsies of the placental bed (uterine placental attachment site containing deep
557 decidua basalis and myometrium), maternal liver, spleen, and a mesenteric lymph node were
558 collected aseptically during surgery into sterile petri dishes, weighed, and further processed for
559 viral burden and when sufficient sample size was obtained, histology.

560

561 In order to more accurately capture the distribution of ZIKV in the placenta, each placental disc
562 was separated, fetal membranes sharply dissected from the margin, weighed, measured, and
563 placed in a sterile dish on ice. A 1-cm-wide cross section was taken from the center of each
564 disc, including the umbilical cord insertion on the primary disc, and placed in 4%
565 paraformaldehyde. Individual cotyledons, or perfusion domains, were dissected using a scalpel
566 and placed into individual petri dishes. From each cotyledon, a thin center cut was taken using
567 a razor blade and placed into a cassette in 4% paraformaldehyde. Once the center cut was
568 collected, the decidua and the chorionic plate were removed from the remaining placenta.
569 From each cotyledon, pieces of decidua, chorionic plate, and chorionic villi were collected into
570 two different tubes with different media for vRNA isolation and for other virological assays.

571

572 **Histology**

573 Following collection, tissues were handled as described previously (35). All tissues (except
574 neural tissues) were fixed in 4% paraformaldehyde for 24 hours and transferred into 70%
575 ethanol until processed and embedded in paraffin. Neural tissues were fixed in 10% neutral
576 buffered formalin for 14 days until processed and embedded in paraffin. Paraffin sections (5
577 μm for all tissues other than the brain (sectioned at 8 μm) were stained with hematoxylin and
578 eosin (H&E). Pathologists were blinded to vRNA findings when tissue sections were evaluated
579 microscopically. Photomicrographs were obtained using a bright light microscope Olympus
580 BX43 and Olympus BX46 (Olympus Inc., Center Valley, PA) with attached Olympus DP72
581 digital camera (Olympus Inc.) and Spot Flex 152 64 Mp camera (Spot Imaging) and captured
582 using commercially available image-analysis software (cellSens DimensionR, Olympus Inc. and
583 spot software 5.2).

584

585 **Placental Histology Scoring**

586 Pathological evaluation of the cross-sections of each of the placental cotyledons were
587 performed blinded to experimental condition. Each of the cross sections were evaluated for the
588 presence of chronic histiocytic intervillitis (CHIV), infarctions, villous stromal calcifications,
589 and vasculopathy. A three-way ANOVA was performed to assess statistical significance among
590 groups for each parameter, including placental weight.

591

592 Two of three boarded pathologists, blinded to vRNA findings, independently reviewed the
593 central cross section of each placental disc and quantitatively scored the placentas on 22
594 independent criteria. Six of the criteria are general criteria assessing placental function, 2
595 assess villitis, three criteria assessing the presence of fetal malperfusion, and 11 criteria
596 assessing the presence of maternal malperfusion. The scoring system was developed by Dr.
597 Michael Fritsch, Dr. Heather Simmons, and Dr. Andres Mejia. A summary table of the criteria
598 scored and the scale used for each criterion can be found in Supplementary Table 3. Once
599 initial scores were assigned, pathologists met to discuss and resolve any significant
600 discrepancies in scoring. Scores were assigned to each placental disc for most parameters,
601 unless the evaluation score corresponded to the function of the entire placenta.

602

603 For criteria that are measured on a quantitative scale, median scores and interquartile range
604 were calculated for each experimental group. For criteria that were measured on a binary
605 “present/not present” scale, the cumulative incidence in each experimental group was
606 calculated as a frequency and a percentage. For quantitative criteria, a non-parametric
607 Wilcoxon rank test was used to calculate statistical significance between each of the groups
608 and between the mock-infected group and the two ZIKV-infected groups. For binary features,
609 Fisher’s exact test was used to calculate statistical significance between each of the groups
610 and between the mock-infected group and the two ZIKV-infected groups. To determine
611 whether chronic villitis correlated with the criteria assessing fetal malperfusion and whether
612 chronic deciduitis correlated with the criteria assessing maternal malperfusion, scores were
613 adjusted to be on the same scale (i.e., converting measures on a 0-1 scale to a 0-2 scale) so

614 that each parameter carried equal weight in the combined score. A non-parametric
615 Spearman's correlation was used to determine the correlation.
616

617 **In situ hybridization**

618 In situ hybridization was conducted on cross sections of placental cotyledons as previously
619 described(20). Briefly, tissues were fixed in 4% PFA, alcohol processed, and paraffin
620 embedded. Commercial ISH probes against the ZIKV genome (Advanced Cell Diagnostics, Cat
621 No. 468361, Newark, California, USA) were used. ISH was performed using RNAscope® Red
622 2.5 Kit (Advanced Cell Diagnostics, Cat No. 322350) according to the manufacturer's
623 instructions.
624

625 **Data availability**

626 All of the data used for figure generation and statistical analysis in this manuscript can be
627 found at <https://github.com/cmc0043/african-lineage-zikv-in-pregnant-macaques>. In the
628 future, primary data that support the findings of this study will also be available at the Zika
629 Open Research Portal (<https://openresearch.labkey.com/project/ZEST/begin.view>). Data for the
630 ZIKV-DAK infected cohort can be found under study ZIKV-030; data for ZIKV-PR and mock-
631 infected cohorts can be found under ZIKV-044. Raw FASTQ reads (BioProject: PRJNA673500)
632 and a FASTA consensus sequence (BioProject: PRJNA476611) of the challenge stock of
633 ZIKV/Aedes africanus/SEN/DAK-AR-41524/1984 are available at the Sequence Read Archive.
634 Raw FASTQ reads of the challenge stock of ZIKV PRVABC59 are available at the Sequence
635 Read Archive, BioProject accession number PRJNA392686. The authors declare that all other
636 data supporting the findings of this study are available within the article and its supplementary
637 information files.
638

639 **ACKNOWLEDGEMENTS**

640 We thank the Veterinary Services, Colony Management, Scientific Protocol Implementation,
641 and the Pathology Services staff at the Wisconsin National Primate Research Center (WNPRC)
642 for their contributions to this study. We thank BEI Resources and Brandy Russell for providing
643 virus isolates. This work was supported by 5 R01AI132563-04 from the National Institute of
644 Allergy and Infectious Disease and 5 P51OD011106-59 from the Office of the Director, NIH to
645 the Wisconsin National Primate Research Center. Chelsea M. Crooks was supported by T32
646 AI007414 from the National Institute of Allergy and Infectious Disease.
647

648 **REFERENCES**

- 649 1. Rasmussen, S. A., D. J. Jamieson, M. A. Honein, and L. R. Petersen. 2016. Zika Virus and
650 Birth Defects--Reviewing the Evidence for Causality. *N Engl J Med* 374: 1981-1987.
- 651 2. Simonin, Y., F. Loustalot, C. Desmetz, V. Foulongne, O. Constant, C. Fournier-Wirth, F.
652 Leon, J. P. Molès, A. Goubaud, J. M. Lemaitre, M. Maquart, I. Leparc-Goffart, L. Briant,
653 N. Nagot, P. Van de Perre, and S. Salinas. 2016. Zika Virus Strains Potentially Display
654 Different Infectious Profiles in Human Neural Cells. *EBioMedicine* 12: 161-169.
- 655 3. Sheridan, M. A., D. Yunusov, V. Balaraman, A. P. Alexenko, S. Yabe, S. Verjovski-
656 Almeida, D. J. Schust, A. W. Franz, Y. Sadovsky, T. Ezashi, and R. M. Roberts. 2017.

657 Vulnerability of primitive human placental trophoblast to Zika virus. *Proc Natl Acad Sci U*
658 *S A* 114: E1587-E1596.

659 4. Sheridan, M. A., V. Balaraman, D. J. Schust, T. Ezashi, R. M. Roberts, and A. W. E. Franz.
660 2018. African and Asian strains of Zika virus differ in their ability to infect and lyse
661 primitive human placental trophoblast. *PLoS One* 13: e0200086.

662 5. Smith, D. R., T. R. Sprague, B. S. Hollidge, S. M. Valdez, S. L. Padilla, S. A. Bellanca, J.
663 W. Golden, S. R. Coyne, D. A. Kulesh, L. J. Miller, A. D. Haddow, J. W. Koehler, G. D.
664 Gromowski, R. G. Jarman, M. T. P. Alera, I. K. Yoon, R. Buathong, R. G. Lowen, C. D.
665 Kane, T. D. Minogue, S. Bavari, R. B. Tesh, S. C. Weaver, K. J. Linthicum, M. L. Pitt, and
666 F. Nasar. 2018. African and Asian Zika Virus Isolates Display Phenotypic Differences Both
667 In Vitro and In Vivo. *Am J Trop Med Hyg* 98: 432-444.

668 6. Simonin, Y., D. van Riel, P. Van de Perre, B. Rockx, and S. Salinas. 2017. Differential
669 virulence between Asian and African lineages of Zika virus. *PLoS Negl Trop Dis* 11:
670 e0005821.

671 7. Dowall, S. D., V. A. Graham, E. Rayner, L. Hunter, B. Atkinson, G. Pearson, M. Dennis,
672 and R. Hewson. 2017. Lineage-dependent differences in the disease progression of Zika
673 virus infection in type-I interferon receptor knockout (A129) mice. *PLoS Negl Trop Dis* 11:
674 e0005704.

675 8. Jaeger, A. S., R. A. Murrieta, L. R. Goren, C. M. Crooks, R. V. Moriarty, A. M. Weiler, S.
676 Rybarczyk, M. R. Semler, C. Huffman, A. Mejia, H. A. Simmons, M. Fritsch, J. E. Osorio,
677 J. C. Eickhoff, S. L. O'Connor, G. D. Ebel, T. C. Friedrich, and M. T. Aliota. 2019. Zika
678 viruses of African and Asian lineages cause fetal harm in a mouse model of vertical
679 transmission. *PLoS Negl Trop Dis* 13: e0007343.

680 9. McDonald, E. M., N. K. Duggal, M. J. Delorey, J. Oksanish, J. M. Ritter, and A. C. Brault.
681 2019. Duration of seminal Zika viral RNA shedding in immunocompetent mice inoculated
682 with Asian and African genotype viruses. *Virology* 535: 1-10.

683 10. Aliota, M. T., D. M. Dudley, C. M. Newman, E. L. Mohr, D. D. Gellerup, M. E. Breitbach, C.
684 R. Buechler, M. N. Rasheed, M. S. Mohns, A. M. Weiler, G. L. Barry, K. L. Weisgrau, J. A.
685 Eudailey, E. G. Rakasz, L. J. Vosler, J. Post, S. Capuano, T. G. Golos, S. R. Permar, J. E.
686 Osorio, T. C. Friedrich, S. L. O'Connor, and D. H. O'Connor. 2016. Heterologous
687 Protection against Asian Zika Virus Challenge in Rhesus Macaques. *PLoS Negl Trop Dis*
688 10: e0005168.

689 11. Koide, F., S. Goebel, B. Snyder, K. B. Walters, A. Gast, K. Hagelin, R. Kalkeri, and J.
690 Rayner. 2016. Development of a Zika Virus Infection Model in Cynomolgus Macaques.
691 *Front Microbiol* 7: 2028.

692 12. Rayner, J. O., R. Kalkeri, S. Goebel, Z. Cai, B. Green, S. Lin, B. Snyder, K. Hagelin, K. B.
693 Walters, and F. Koide. 2018. Comparative Pathogenesis of Asian and African-Lineage
694 Zika Virus in Indian Rhesus Macaque's and Development of a Non-Human Primate Model
695 Suitable for the Evaluation of New Drugs and Vaccines. *Viruses* 10:
696 13. Haddow, A. D., A. Nalca, F. D. Rossi, L. J. Miller, M. R. Wiley, U. Perez-Sautu, S. C.
697 Washington, S. L. Norris, S. E. Wollen-Roberts, J. D. Shamblin, A. E. Kimmel, H. A.
698 Bloomfield, S. M. Valdez, T. R. Sprague, L. M. Principe, S. A. Bellanca, S. S. Cinkovich, L.
699 Lugo-Roman, L. H. Cazares, W. D. Pratt, G. F. Palacios, S. Bavari, M. L. Pitt, and F.
700 Nasar. 2017. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal
701 Inoculation with Zika Virus. *Emerg Infect Dis* 23: 1274-1281.

702 14. Haddow, A. D., U. Perez-Sautu, M. R. Wiley, L. J. Miller, A. E. Kimmel, L. M. Principe, S.
703 E. Wollen-Roberts, J. D. Shamblin, S. M. Valdez, L. H. Cazares, W. D. Pratt, F. D. Rossi,
704 L. Lugo-Roman, S. Bavari, G. F. Palacios, A. Nalca, F. Nasar, and M. L. M. Pitt. 2020.

705 Modeling mosquito-borne and sexual transmission of Zika virus in an enzootic host, the
706 African green monkey. *PLoS Negl Trop Dis* 14: e0008107.

707 15. WHO. 2019. Zika Epidemiology Update.

708 16. Kasprzykowski, J. I., K. F. Fukutani, H. Fabio, E. R. Fukutani, L. C. Costa, B. B. Andrade,
709 and A. T. L. Queiroz. 2020. A recursive sub-typing screening surveillance system detects
710 the arising of the ZIKV African lineage in Brazil: Is there risk of a new epidemic. *Int J Infect
711 Dis*

712 17. de Almeida, P. R., L. P. Ehlers, M. Demoliner, A. K. A. Eisen, V. Girardi, C. De Lorenzo, M.
713 V. Bianchi, L. Mello, S. P. Pavarini, D. Driemeier, L. Sonne, and F. R. Spilki. 2019.
714 Detection of a novel African-lineage-like Zika virus naturally infecting free-living
715 neotropical primates in Southern Brazil.

716 18. Dudley, D. M., M. T. Aliota, E. L. Mohr, A. M. Weiler, G. Lehrer-Brey, K. L. Weisgrau, M. S.
717 Mohns, M. E. Breitbach, M. N. Rasheed, C. M. Newman, D. D. Gellerup, L. H. Moncla, J.
718 Post, N. Schultz-Darken, M. L. Schotzko, J. M. Hayes, J. A. Eudailey, M. A. Moody, S. R.
719 Permar, S. L. O'Connor, E. G. Rakasz, H. A. Simmons, S. Capuano, T. G. Golos, J. E.
720 Osorio, T. C. Friedrich, and D. H. O'Connor. 2016. A rhesus macaque model of Asian-
721 lineage Zika virus infection. *Nat Commun* 7: 12204.

722 19. Nguyen, S. M., K. M. Antony, D. M. Dudley, S. Kohn, H. A. Simmons, B. Wolfe, M. S.
723 Salamat, L. B. C. Teixeira, G. J. Wiepz, T. H. Thoong, M. T. Aliota, A. M. Weiler, G. L.
724 Barry, K. L. Weisgrau, L. J. Vosler, M. S. Mohns, M. E. Breitbach, L. M. Stewart, M. N.
725 Rasheed, C. M. Newman, M. E. Graham, O. E. Wieben, P. A. Turski, K. M. Johnson, J.
726 Post, J. M. Hayes, N. Schultz-Darken, M. L. Schotzko, J. A. Eudailey, S. R. Permar, E. G.
727 Rakasz, E. L. Mohr, S. Capuano, A. F. Tarantal, J. E. Osorio, S. L. O'Connor, T. C.
728 Friedrich, D. H. O'Connor, and T. G. Golos. 2017. Highly efficient maternal-fetal Zika virus
729 transmission in pregnant rhesus macaques. *PLoS Pathog* 13: e1006378.

730 20. Mohr, E. L., L. N. Block, C. M. Newman, L. M. Stewart, M. Koenig, M. Semler, M. E.
731 Breitbach, L. B. C. Teixeira, X. Zeng, A. M. Weiler, G. L. Barry, T. H. Thoong, G. J. Wiepz,
732 D. M. Dudley, H. A. Simmons, A. Mejia, T. K. Morgan, M. S. Salamat, S. Kohn, K. M.
733 Antony, M. T. Aliota, M. S. Mohns, J. M. Hayes, N. Schultz-Darken, M. L. Schotzko, E.
734 Peterson, S. Capuano, J. E. Osorio, S. L. O'Connor, T. C. Friedrich, D. H. O'Connor, and
735 T. G. Golos. 2018. Ocular and uteroplacental pathology in a macaque pregnancy with
736 congenital Zika virus infection. *PLoS One* 13: e0190617.

737 21. Hirsch, A. J., V. H. J. Roberts, P. L. Grigsby, N. Haese, M. C. Schabel, X. Wang, J. O. Lo,
738 Z. Liu, C. D. Kroenke, J. L. Smith, M. Kelleher, R. Broeckel, C. N. Kreklywich, C. J.
739 Parkins, M. Denton, P. Smith, V. DeFilippis, W. Messer, J. A. Nelson, J. D. Hennebold, M.
740 Grafe, L. Colgin, A. Lewis, R. Ducore, T. Swanson, A. W. Legasse, M. K. Axthelm, R.
741 MacAllister, A. V. Moses, T. K. Morgan, A. E. Frias, and D. N. Streblow. 2018. Zika virus
742 infection in pregnant rhesus macaques causes placental dysfunction and
743 immunopathology. *Nat Commun* 9: 263.

744 22. Mavigner, M., J. Raper, Z. Kovacs-Balint, S. Gumber, J. T. O'Neal, S. K. Bhaumik, X.
745 Zhang, J. Habib, C. Mattingly, C. E. McDonald, V. Avanzato, M. W. Burke, D. M. Magnani,
746 V. K. Bailey, D. I. Watkins, T. H. Vanderford, D. Fair, E. Earl, E. Feczko, M. Styner, S. M.
747 Jean, J. K. Cohen, G. Silvestri, R. P. Johnson, D. H. O'Connor, J. Wrammert, M. S.
748 Suthar, M. M. Sanchez, M. C. Alvarado, and A. Chahroudi. 2018. Postnatal Zika virus
749 infection is associated with persistent abnormalities in brain structure, function, and
750 behavior in infant macaques. *Sci Transl Med* 10:

751 23. Cragan, J. D., C. T. Mai, E. E. Petersen, R. F. Liberman, N. E. Forestieri, A. C. Stevens, A.
752 Delaney, A. L. Dawson, S. R. Ellington, C. K. Shapiro-Mendoza, J. E. Dunn, C. A. Higgins,
753 R. E. Meyer, T. Williams, K. N. Polen, K. Newsome, M. Reynolds, J. Isenburg, S. M.

754 Gilboa, D. M. Meaney-Delman, C. A. Moore, C. A. Boyle, and M. A. Honein. 2017.
755 Baseline Prevalence of Birth Defects Associated with Congenital Zika Virus Infection -
756 Massachusetts, North Carolina, and Atlanta, Georgia, 2013-2014. *MMWR Morb Mortal*
757 *Wkly Rep* 66: 219-222.

758 24. Reynolds, M. R., A. M. Jones, E. E. Petersen, E. H. Lee, M. E. Rice, A. Bingham, S. R.
759 Ellington, N. Evert, S. Reagan-Steiner, T. Oduyebo, C. M. Brown, S. Martin, N. Ahmad, J.
760 Bhatnagar, J. Macdonald, C. Gould, A. D. Fine, K. D. Polen, H. Lake-Burger, C. L. Hillard,
761 N. Hall, M. M. Yazdy, K. Slaughter, J. N. Sommer, A. Adamski, M. Raycraft, S. Fleck-
762 Derderian, J. Gupta, K. Newsome, M. Baez-Santiago, S. Slavinski, J. L. White, C. A.
763 Moore, C. K. Shapiro-Mendoza, L. Petersen, C. Boyle, D. J. Jamieson, D. Meaney-
764 Delman, M. A. Honein, and Z. P. R. C. U.S. 2017. Vital Signs: Update on Zika Virus-
765 Associated Birth Defects and Evaluation of All U.S. Infants with Congenital Zika Virus
766 Exposure - U.S. Zika Pregnancy Registry, 2016. *MMWR Morb Mortal Wkly Rep* 66: 366-
767 373.

768 25. Tarantal, A. F., and A. G. Hendrickx. 1988. Prenatal growth in the cynomolgus and rhesus
769 macaque (*Macaca fascicularis* and *Macaca mulatta*): A comparison by ultrasonography.
770 *Am J Primatol* 15: 309-323.

771 26. Tarantal, A. F. 2005. Ultrasound Imaging in Rhesus (*Macaca Mulatta*) and Long-Tailed
772 (*Macaca fascicularis*) Macaques. Reproductive and Research Applications. The
773 Laboratory Primate: 317-352.

774 27. de Rijk, E. P. C. T., and E. Van Esch. 2008. The Macaque Placenta—A Mini-Review.
775 *Toxicologic Pathology* 36: 108S-118S.

776 28. Moreno, G. K., C. M. Newman, M. R. Koenig, M. S. Mohns, A. M. Weiler, S. Rybarczyk, K.
777 L. Weisgrau, L. J. Vosler, N. Pomplun, N. Schultz-Darken, E. Rakasz, D. M. Dudley, T. C.
778 Friedrich, and D. H. O'Connor. 2020. Long-Term Protection of Rhesus Macaques from
779 Zika Virus Reinfection. *J Virol* 94:

780 29. Mulkey, S. B., G. Vezina, D. I. Bulas, Z. Khademian, A. Blask, Y. Kousa, C. Cristante, L.
781 Pesacreta, A. J. du Plessis, and R. L. DeBiasi. 2018. Neuroimaging Findings in
782 Normocephalic Newborns With Intrauterine Zika Virus Exposure. *Pediatr Neurol* 78: 75-
783 78.

784 30. Valdes, V., C. D. Zorrilla, L. Gabard-Durnam, N. Muler-Mendez, Z. I. Rahman, D. Rivera,
785 and C. A. Nelson. 2019. Cognitive Development of Infants Exposed to the Zika Virus in
786 Puerto Rico. *JAMA Netw Open* 2: e1914061.

787 31. Mulkey, S. B., M. Arroyave-Wessel, C. Peyton, D. I. Bulas, Y. Fourzali, J. Jiang, S. Russo,
788 R. McCarter, M. E. Msall, A. J. du Plessis, R. L. DeBiasi, and C. Cure. 2020.
789 Neurodevelopmental Abnormalities in Children With In Utero Zika Virus Exposure Without
790 Congenital Zika Syndrome. *JAMA Pediatr*

791 32. Nielsen-Saines, K., P. Brasil, T. Kerin, Z. Vasconcelos, C. R. Gabaglia, L. Damasceno, M.
792 Pone, L. M. Abreu de Carvalho, S. M. Pone, A. A. Zin, I. Tsui, T. R. S. Salles, D. C. da
793 Cunha, R. P. Costa, J. Malacarne, A. B. Reis, R. H. Hasue, C. Y. P. Aizawa, F. F.
794 Genovesi, C. Einspieler, P. B. Marschik, J. P. Pereira, S. L. Gaw, K. Adachi, J. D. Cherry,
795 Z. Xu, G. Cheng, and M. E. Moreira. 2019. Delayed childhood neurodevelopment and
796 neurosensory alterations in the second year of life in a prospective cohort of ZIKV-
797 exposed children. *Nat Med* 25: 1213-1217.

798 33. Musso, D., A. I. Ko, and D. Baud. 2019. Zika Virus Infection - After the Pandemic. *N Engl*
799 *J Med* 381: 1444-1457.

800 34. Quick, J., N. D. Grubaugh, S. T. Pullan, I. M. Claro, A. D. Smith, K. Gangavarapu, G.
801 Oliveira, R. Robles-Sikisaka, T. F. Rogers, N. A. Beutler, D. R. Burton, L. L. Lewis-
802 Ximenez, J. G. de Jesus, M. Giovanetti, S. C. Hill, A. Black, T. Bedford, M. W. Carroll, M.

803 Nunes, L. C. Alcantara, E. C. Sabino, S. A. Baylis, N. R. Faria, M. Loose, J. T. Simpson,
804 O. G. Pybus, K. G. Andersen, and N. J. Loman. 2017. Multiplex PCR method for MinION
805 and Illumina sequencing of Zika and other virus genomes directly from clinical samples.
806 *Nat Protoc* 12: 1261-1276.

807 35. Aliota, M. T., D. M. Dudley, C. M. Newman, J. Weger-Lucarelli, L. M. Stewart, M. R.
808 Koenig, M. E. Breitbach, A. M. Weiler, M. R. Semler, G. L. Barry, K. R. Zarbock, A. K. Haj,
809 R. V. Moriarty, M. S. Mohns, E. L. Mohr, V. Venturi, N. Schultz-Darken, E. Peterson, W.
810 Newton, M. L. Schotzko, H. A. Simmons, A. Mejia, J. M. Hayes, S. Capuano, M. P.
811 Davenport, T. C. Friedrich, G. D. Ebel, S. L. O'Connor, and D. H. O'Connor. 2018.
812 Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics. *PLoS*
813 *Pathog* 14: e1006964.

814 36. Hansen, S. G., M. Piatak, A. B. Ventura, C. M. Hughes, R. M. Gilbride, J. C. Ford, K.
815 Oswald, R. Shoemaker, Y. Li, M. S. Lewis, A. N. Gilliam, G. Xu, N. Whizin, B. J. Burwitz,
816 S. L. Planer, J. M. Turner, A. W. Legasse, M. K. Axthelm, J. A. Nelson, K. Früh, J. B.
817 Sacha, J. D. Estes, B. F. Keele, P. T. Edlefsen, J. D. Lifson, and L. J. Picker. 2013.
818 Immune clearance of highly pathogenic SIV infection. *Nature* 502: 100-104.

819 37. Lindsey, H. S., C. H. Calisher, and J. H. Mathews. 1976. Serum dilution neutralization test
820 for California group virus identification and serology. *J Clin Microbiol* 4: 503-510.

821