10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.405118; this version posted December 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Integrating gene expression, spatial location and histology to identify spatial

domains and spatially variable genes by graph convolutional network

Jian Hu*’, Xiangjie Li?, Kyle Coleman?, Amelia Schroeder?, David J. Irwin®, Edward B. Lee*®, Russell T.

Shinohara?, Mingyao Li*"

1. Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA 19104, USA.

2. State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular
Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
3. Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
19104, USA.

4. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA 19104, USA.

5. Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine,

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Correspondence:

Jian Hu, jianhu@pennmedicine.upenn.edu

Mingyao Li, mingyao@pennmedicine.upenn.edu

Key words: spatial transcriptomics; histology; spatial domains; spatially variable genes; graph

convolutional network.


mailto:jianhu@pennmedicine.upenn.edu
mailto:mingyao@pennmedicine.upenn.edu
https://doi.org/10.1101/2020.11.30.405118
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

25

26

27

28

29

30

31

32

33

34

35

36

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.405118; this version posted December 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Recent advances in spatial transcriptomics technologies have enabled comprehensive characterization of
gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression
variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression,
spatial location and histology in spatial transcriptomics data analysis. Through graph convolution, SpaGCN
aggregates gene expression of each spot from its neighboring spots, which enables the identification of
spatial domains with coherent expression and histology. The subsequent domain guided differential
expression analysis then detects genes with enriched expression patterns in the identified domains.
Analyzing five spatially resolved transcriptomics datasets using SpaGCN, we show it can detect genes with
much more enriched spatial expression patterns than existing methods. Furthermore, genes detected by
SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other

datasets. SpaGCN is computationally fast, making it a desirable tool for spatial transcriptomics studies.
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Introduction

Recent advances in spatial transcriptomics technologies have enabled gene expression profiling with
spatial information in tissues. Knowledge of the relative locations of different cells in a tissue is critical
for understanding disease pathology because spatial information helps in understanding how the gene
expression of a cell is influenced by its surrounding environment and how neighboring regions interact at
the gene expression level. Experimental methods to generate spatial transcriptomics data can be broadly
classified into two categories: 1) single-molecule fluorescence in situ hybridization (smFISH) based
techniques, such as MERFISH? and seqFISH?, which measure expression level for hundreds of genes with
subcellular spatial resolution in a single cell; and 2) spatial barcoding followed by next generation
sequencing based techniques, such as SLIDE-seq* and 10X Genomics Visium, which measure the
expression level for thousands of genes in captured locations, referred to as spots. These different spatial
transcriptomics techniques have made it possible to uncover the complex transcriptional architecture of

heterogenous tissues and enhanced our understanding of cellular mechanisms in diseases™®.

In spatial transcriptomics studies, an important step is identifying spatial domains defined as regions that
are spatially coherent in both gene expression and histology. Identifying spatial domains requires methods
that can jointly consider gene expression, spatial location, and histology. Traditional clustering methods
such as K-means and Louvain’s method’ can only take gene expression data as input, and the resulting
clusters may not be contiguous due to the lack of consideration of spatial information and histology. To
account for spatial dependency of gene expression, new methods have been developed. For example,
stLearn® uses features extracted from histology image as well as expression of neighboring spots to
spatially smooth gene expression data before clustering; BayesSpace® employs a Bayesian approach for

clustering analysis by imposing a prior that gives higher weight to spots that are physically close; Zhu et
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al.l® uses a Hidden-Markov random field approach to model spatial dependency of gene expression.
Although these methods can cluster spots or cells into distinct groups, they do not provide biological

interpretations of the identified spatial domains.

To link spatial domains with biological functions at the gene expression level, it is crucial to identify genes
that show enriched expression in the identified domains. Due to spatial variation of cell types in tissue,
the difference of gene expression between different domains is mainly driven by cell type composition
variation. On the other hand, information on spatial location and the corresponding histology allows the
construction of an anatomy-based taxonomy of the tissue, which provides a useful perspective on cell
type composition. Although stLearns integrates gene expression, spatial location, and histology
information in clustering, the putative correspondence between cell type difference and organizational
structure of the tissue remains unclear. As reported in Saiselet et al.}}, many spatial regions are highly
intermixed in terms of cell types. Without further downstream gene-level analysis, the spatial domains
detected by stLearn still suffer from the lack of interpretability. Recently, new methods such as
Trendsceek!?, SpatialDE®3, and SPARK!* have been developed to detect spatially variable genes (SVGs).
These methods examine each gene independently and return a p-value to represent the spatial variability
of a gene. However, due to the lack of consideration of tissue taxonomy, genes detected by these methods
do not have a guaranteed spatial expression pattern, making it difficult to utilize these genes for further

biological investigations.

Rather than considering spatial domain identification and SVG detection as separate problems, we
developed SpaGCN, a graph convolutional network-based approach that considers these two problems
jointly. Using a graph convolutional network with an added iterative clustering layer, SpaGCN first

identifies spatial domains by integrating gene expression, spatial location, and histology together through
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85  the construction of an undirected weighted graph that represents the spatial dependency of the data. For
86 each spatial domain, SpaGCN then detects SVGs that are enriched in the domain against its surrounding
87  regions by differential expression analysis guided by domain information. SpaGCN also has the option to
88  detect meta genes that are uniquely expressed in a given domain. The spatial domains and the
89 corresponding SVGs and meta genes detected for these domains provide a comprehensive picture on the

90 spatial gradients in gene expression in tissue.

91

92  Results

93

94  Overview of SpaGCN and evaluation

95 SpaGCN is applicable to both sequencing-based and smFISH-based data. As shown in Fig. 1a, SpaGCN first

96 builds a graph to represent the relationship of all samples (spots in sequencing-based or cells in smFISH-

97 based data) considering both spatial location and histology information. Next, SpaGCN utilizes a graph

98 convolutional layer to aggregate gene expression information from neighboring samples. Then, SpaGCN

99 uses the aggregated gene expression matrix to cluster samples using an unsupervised iterative clustering
100 algorithm?®®. Each cluster is considered as a spatial domain from which SpaGCN then detects SVGs that are
101 enriched in a domain by differential expression analysis (Fig. 1b). When a single gene cannot mark
102  expression pattern of a spatial domain, SpaGCN will construct a meta gene, formed by the combination
103  of multiple SVGs, to represent gene expression of the domain. Since the expression profile of a spot/cell
104 s heavily influenced by its local microenvironment, SpaGCN also offers the option of subcluster detection
105  within each spatial domain. SVGs can also be detected to help in understanding the function of each sub-
106  spatial domain.
107

108 To showcase the strength and scalability of SpaGCN, we applied it to five publicly available datasets,
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109 including four datasets generated by sequencing-based techniques and one dataset generated by
110 MERFISH (Supplementary Table 1). The spatial domains identified by SpaGCN agree better with known
111  tissue layer structure than K-means and Louvain’s clustering. We also compared SVGs detected by SpaGCN
112 with those detected by SPARK'* and SpatialDE*%, and found that the SVGs detected by SpaGCN have more
113 coherent expression patterns and better biological interpretability than the other two methods. The
114  specificity of spatial expression patterns revealed by SpaGCN detected SVGs were further confirmed by
115 Moran’s [ statistic'®, a metric that quantifies the spatial autocorrelation of detected genes.

116

117  Application to mouse olfactory bulb data

118  To evaluate the performance of SpaGCN, we first analyzed a mouse olfactory bulb (MOB) dataset?’, which
119 consists of 16,218 genes measured in 262 spots. The main olfactory bulb has five layers, ordered from
120 surface to the center as follows: glomerular layer, external plexiform layer, mitral cell layer, internal
121  plexiform layer, and granule cell layer. We compared SpaGCN’s clustering results to K-means and Louvain
122 by setting the number of clusters at 5 for all three methods. As shown in Fig. 2a, K-means only identified
123 3 main spatial domains, with only few spots assigned to domains 1 and 3. Louvain’s method identified 5
124 main spatial domains. However, since it does not consider spatial and histology information, domains 2,
125 3, and 4 have blurred boundaries and more outliers than SpaGCN. By contrast, the domains detected by
126 SpaGCN agree better with the biologically known 5-layer structure of the MOB.

127

128  To understand the functions of the SpaGCN identified spatial domains, we next detected SVGs for each
129 spatial domain. In total, SpaGCN detected 60 SVGs. Fig. 2b-f shows a randomly selected SVG for each
130 domain, and all genes show strong specificity for the corresponding domain. The In Situ Hybridization
131  Ilabelling of these genes from the Allen Brain Institute further confirmed the correspondence of the spatial

132  domains detected by SpaGCN. Additional SVGs detected by SpaGCN are shown in Supplementary Fig. 1.
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133

134  Asacomparison, we also detected SVGs using SpatialDE and SPARK. SpatialDE identified 67 SVGs, but only
135 12 of them overlapped with SpaGCN results (Supplementary Fig. 2). We further looked into the 55 genes
136  detected exclusively by SpatialDE and found many of the genes are expressed in only a few spots or are
137 highly expressed in most of the spots, leading to false detections of significant spatial patterns
138 (Supplementary Fig. 3). By contrast, SpaGCN avoided this issue by filtering out genes using minimum
139  within group expression fraction and maximum between group expression fraction. SPARK detected 772
140  genes, with 49 overlapping with SapGCN (Supplementary Fig. 2). However, we found that the SPARK
141  results indicate that 274 genes have FDR-adjusted p-values less than 0.00001 with 14 of them having the
142 smallest identical FDR-adjusted p-value of 4.42e-13. As a result, the SPARK p-values are not informative
143  indifferentiating the degree of spatial variability between different genes. Of note, none of these 14 genes
144  were detected by SpaGCN. Further examination revealed that some of these genes show spatial variability,
145  but more than half of them are only expressed in a few spots or highly expressed in most of the spots
146  (Supplementary Fig. 4). The FDR-adjusted p-value distribution of SPARK and g-value distribution of
147  SpatialDE are highly skewed toward 0, making it challenging to select informative SVGs based on their p-
148  values or g-values alone (Supplementary Fig. 5).

149

150 To compare SVGs detected by different methods quantitatively, we calculated the Moran’s | statistic,
151  which measures the spatial autocorrelation for each gene. Fig. 2g shows the distribution of Moran’s /.
152  Although all SpaGCN detected SVGs have clear spatial patterns, their Moran’s  values are not significantly
153  higher than the SVGs detected by SPARK and SpatialDE (median of 0.20 for SpaGCN against 0.18 for SPARK
154  and 0.25 for SpatialDE). Further examination revealed that many SVGs detected by SPARK and SpatialDE
155  are expressed in multiple adjacent spatial domains. For example, the gene PCP4 uniquely detected by

156  SpatialDE is expressed in two adjacent layers (domains 2 and 4 defined by SpaGCN) (Supplementary Fig.
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157  6). By contrast, all the SVGs detected by SpaGCN are domain specific, offering interpretation in alignment
158  with our knowledge of layer structure. We note that less informative SVGs with clear, but non-domain
159  specific, spatial patterns, such as PCP4, can also be detected by SpaGCN if the user combines domains 2
160  and 4 as the target domain in SVG detection.

161

162  Application to mouse posterior brain data

163 Next, we analyzed a dataset generated from mouse posterior cerebrum, cerebellum and brainstem by
164 10X Genomics that includes 3,353 spots and 31,053 genes'®. We compared the clustering results of
165 SpaGCN with K-means and Louvain’s clustering. The number of clusters in K-means and resolution in
166 Louvain were set to generate the same number of clusters as SpaGCN (10 clusters). Fig. 3a shows that
167 Louvain’s clustering is similar to SpaGCN, but the spatial domains detected by SpaGCN are more spatially
168 contiguous than Louvain’s results. The integrity of SpaGCN’s spatial domains stems from the aggregation
169  of gene expression based on spatial information and histology, which ensures that the genes detected by
170 differential expression analysis have clear spatial expression patterns.

171

172 SpaGCN detected 523 SVGs for the 10 spatial domains while SPARK and SpatialDE detected 9,678 and
173 12,676 SVGs, respectively (Supplementary Fig. 7). We hypothesized that the substantially larger number
174  of SVGs detected by SPARK and SpatialDE are due to the lack of spatial expression patterns that exist in
175 the data. To confirm this hypothesis, we calculated the Moran’s [ statistic for all detected SVGs (Fig. 3b).
176  The Moran’s | values of SpaGCN detected SVGs are much higher than those detected by SPARK and
177  SpatialDE (median of 0.50 for SpaGCN against 0.21 for SPARK and 0.16 for SpatialDE). Closer examination
178  of the SVGs detected by SPARK and SpatialDE revealed that most of the SVGs suffer from one of the two
179  problems observed previously in the MOB dataset: they are (1) only expressed in a few spots or highly

180  expressedin most of the spots, suggesting high false positive rates for SPARK and SpatialDE or (2) spatially
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181  variable, but expressed in multiple adjacent spatial domains, making it difficult to interpret. Another
182 limitation of these two methods is that the FDR-adjusted p-value from SPARK and g-value from SpatialDE
183  are not informative. Genes with similar p-values/g-values do not necessarily show similar spatial pattern
184  and a smaller p-value/g-value does not guarantee a better spatial pattern (Supplementary Fig. 8 and
185 Supplementary Fig. 9). The p-value and g-value distributions of SPARK and SpatialDE are highly skewed
186  toward O (Supplementary Fig. 10). By contrast, the SVGs detected by SpaGCN were enriched in specific
187 spatial domains (Supplementary Fig. 11) and their expression patterns are transferable to an adjacent
188 tissue slice in the mouse posterior brain (Supplementary Fig. 12). Further, multiple domain adaptive
189 filtering criteria implemented in SpaGCN allow it to eliminate false positive SVGs and ensure all detected
190  SVGs have clear spatial expression patterns.

191

192  Toillustrate why appropriate filtering is important, we use domains 1, 5, and 8 as an example. For each of
193  these domains, SpaGCN detected a single SVG enriched in that region. As shown in Fig. 3c, PVALB is
194  enriched in domain 1, and TRM62 is enriched in domain 8. Although domains 1 and 8 are adjacent to each
195 other, these two SVGs can still well mark these domains. NRGN is a SVG that SpaGCN detected for domains
196 5 and 7. The high expression of NRGN in domains 5 and 7 also indicate that these two domains are
197 neuroanatomically similar — both consisting of cortex and the pyramidal layer of the hippocampus. Both
198  the cortex and hippocampus are regions that are on the curved surface of the brain. This posterior brain
199 tissue section has the top part of the curved surface in domain 5 and the bottom part of the curved surface
200 in domain 7. Domains 5 and 7, which would be contiguous in a complete 3D reconstruction, are
201 artifactually separated due to the way the section was cut. Therefore, it is not surprising that in addition
202  to NRGN, SpaGCN also detected many other SVGs, such as APP, ATP6V1G2, CALM2, CHN1, CLSTN1,

203  ARPP21, CYP46A1, DCLK1, LINGO1, and MARCKS, that are highly expressed in both domains 5 and 7
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204 (Supplementary Fig. 11). The unique and powerful SVG detection procedure in SpaGCN ensures that genes
205  like these are not missed.

206

207  SpaGCN did not identify any SVGs for domain 0. However, we reason that a meta gene, formed by the
208 combination of multiple genes, may better reveal spatial patterns than any single genes. We used domain
209 0 as an example to show how SpaGCN can create informative meta genes to mark a spatial domain (Fig.
210 3d). First, by lowering the filtering thresholds, SpaGCN identified KLK6 which is highly expressed in the
211 lower part of domain 0. Using KLK6 as a starting gene, SpaGCN used a novel approach to find a log-linear
212 combination of gene expression of KLK6, MBP and ATP1B1, which accurately marked the spatial domain
213 0. In this meta gene, KLK6 and MBP are considered as positive markers because they are highly expressed
214 in some spots in domain 0, whereas ATP1B1 is considered a negative marker as it is mainly expressed in
215 regions other than domain 0. Previous studies have shown that KLK6 and MBP expression is restricted to
216  oligodendrocytes, while ATP1B1 is mainly expressed in neurons and astrocytes'®. This resonates the fact
217  that domain O represents white matter which is dominated by oligodendrocytes and has few neuronal cell
218 bodies. Therefore, the genes that make up this meta gene have meaningful biological interpretation.
219 Using this meta gene detection procedure, we also detected meta genes for domains 2, 7, 8 and 9, and
220  found that these meta genes are transferrable to an adjacent tissue slice (Supplementary Fig. 13).

221

222  The expression profile and biological function of a spot is heavily influenced by its neighboring spots. The
223 surrounding spots can trigger a response pathway or signal the spot to perform certain tasks. Although
224  the spots in one spatial domain detected by SpaGCN are spatially coherent and have similar gene
225  expression patterns, they may still have different functions since their surrounding spots are different. For
226  instance, spots located near the boundary of a spatial domain may have different functions compared to

227  spots located in the inner part of the domain. To learn more about the effect of different neighborhoods

10
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228 on the spots, we performed sub-domain detection. For example, domain 2 is located in the center of the
229  tissue slice and surrounded by multiple other spatial domains. As a result, the neighboring environment
230  for spots in domain 2 varies. As shown in Fig. 3e, domain 2 was separated into 5 sub-domains which are
231  located either in the center or different boundary regions of domain 2, suggesting that differences in the
232 neighborhoods of spots contribute to within-domain heterogeneity. SVGs detected for each sub-domain
233 can help us understand the gene expression variability of spots within each sub-domain.

234

235 Application to LIBD human dorsolateral prefrontal cortex data

236 In addition to the datasets described previously, SpaGCN also showed advantage over competing methods
237  when evaluated on the LIBD human dorsolateral prefrontal cortex (DLPFC) data®. The LIBD study
238 sequenced 12 slices from DLPFC that spans six neuronal layers plus white matter. We started from
239 analyzing slice 151673, which includes 3,639 spots and 33,538 genes. As the original publication manually
240 annotated the tissue into 7 layers, for fair comparison, the number of clusters was also set at 7 for SpaGCN,
241 K-means, and Louvain. As shown in Fig. 4a, K-means and Louvain failed to separate the tissue into layers
242  with clear boundary. By contrast, SpaGCN successfully identified layer structures with clear boundaries.
243  The Adjusted Rand Indexes (ARIs) for the SpaGCN, K-means, and Louvain identified domains are 0.42, 0.24,
244  and 0.33, respectively, suggesting that the SpaGCN results better agree with the manually curated layer
245 structure reported in the original study.

246

247 To further validate the identified spatial domains, we then detected SVGs. In total, SpaGCN detected 61
248 SVGs, with 53 of them specific to domain 4, which corresponds to the white matter region (Supplementary
249 Fig. 14). Patterns of SVGs for other domains are not very clear. These results indicate that gene expression
250  profiles of spots from white matter are distinct from spots in the neuronal layers, while gene expression

251  differences among the six neuronal layers are much smaller and more difficult to distinguish using

11
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252 individual marker genes. SVGs detected by SPARK and SpatialDE also suffered from the same problem.
253  SPARK detected 3,187 SVGs with 1,131 of them having FDR-adjusted p-values equal to 0, most of which
254  only marked the white matter region. We also found that the SVGs detected by SPARK lack domain
255  specificity (Supplementary Fig. 15). SpatialDE detected 3,654 SVGs with 806 of them having g-values equal
256  to 0, but these genes do not necessarily show better spatial pattern than genes with larger g-values
257 (Supplementary Fig. 16). Although SPARK and SpatialDE detected much larger numbers of SVGs than
258 SpaGCN (Supplementary Fig. 17), the genes detected by these two methods lack ability to distinguish
259 different degrees of spatial variability in expression as their p-value and g-value distributions are highly
260  skewed toward O (Supplementary Fig. 18). Fig. 4b shows that the Moran’s | values for SpaGCN detected
261  SVGs are significantly higher than those detected by SpatialDE and SPARK (median of 0.39 for SpaGCN
262  against 0.09 for SPARK and 0.08 for SpatialDE). For 3 out of the 6 neuronal layers, SpaGCN detected a
263  single SVG to mark that region (Fig. 4c). For example, NEFM is enriched in domain O (layer 3) and PCP4 is
264  enriched in domain 1 (layer 4). Although it is difficult to identify single genes to mark the other neuronal
265 layers, SpaGCN was able to find layer-specific meta genes. As shown in Fig. 4c, the meta gene formed by
266  KRT19, MYL9, MBP, GFAP, and SNAP25 for domain 5 is specific to layer 1. Since layer 1 only has few spots,
267  itis difficult to find a highly enriched gene. However, by adding depleted genes like MBP and SNAP25, the
268 expression pattern in this region is strengthened. Furthermore, the SVGs and meta genes detected by
269 SpaGCN are transferrable to slice 151676 obtained from the same study (Supplementary Fig. 19 and
270  Supplementary Fig. 20).

271

272  Toshow the SVGs and meta genes detected by SpaGCN are useful for downstream analysis, we performed
273 K-means clustering on slice 151676 using SVGs and meta genes detected from slice 151673 by SpaGCN.
274  Specifically, we selected 2 SVGs or meta genes detected by SpaGCN for each spatial domain, resulting in

275 14 features (18 unique genes involved in total) used in K-means clustering. Comparing with manually

12
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276 curated layer assignment reported in the original study, this clustering analysis had an ARI of 0.25 (Fig.
277  4d). We performed similar clustering analysis using SVGs detected by SpatialDE and SPARK. When only
278  using their top 18 SVGs, the ARI is only 0.07 for SpatialDE and 0.05 for SPARK. Even when using the 806
279  most significant SpatialDE detected SVGs, the ARI is only 0.14. When using the 1,114 most significant
280  SPARK detected SVGs, the ARl is 0.15 (Fig. 4e). The ARIs of both SpatialDE and SPARK are much lower than
281 SpaGCN, even though both used many more SVGs than SpaGCN, which further confirmed the lack of
282 spatial expression specificity for genes detected by these methods.

283

284  Application to human primary pancreatic cancer tissue

285  Wealso analyzed a human primary pancreatic cancer tissue dataset®, which includes 224 spots and 16,448
286  genes across 3 manually annotated sections, to show SpaGCN’s ability in detecting tumorous regions. The
287 original study identified and annotated the cancer region on the histology image. However, the cancer
288  region detected by their clustering method based on gene expression information alone did not closely
289  match the pathologist annotated cancer region (Fig. 5a). Since the cancer region in the histology image is
290 darker in color than non-cancer regions, it is informative for clustering. To give histology information
291 higher weight, we increased the scaling parameter s in SpaGCN from 1 to 2 when calculating distance
292 between each spot pair. This step ensured that spots in the same dark region in the histology are more
293  likely to be clustered together. Fig. 5a shows that domain 2 detected by SpaGCN has a better
294  correspondence to the cancer region than clusters reported in the original study. In total, SpaGCN
295 detected 12 SVGs, with 3, 8, and 1 SVGs for domains 0, 1, and 2, respectively (Fig. 5b; Supplementary Fig.
296 21). Furthermore, a meta gene using KRT17, MMP11, and SERPINA1 marked the cancer region better than
297  the originally identified SVG KRT17 (Fig. 5¢). KRT17 functions as a tumor promoter and regulates
298  proliferation in pancreatic cancer’, and MMP11 has been found to be a prognostic biomarker for

299  pancreatic cancer??. Our identification of KRT17 and MMP11 as the two positive genes for the cancer
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300 region agree well with pancreatic cancer biology. SPARK and SpatialDE detected 203 and 163 SVGs,
301 respectively (Supplementary Fig. 22). However, the Moran’s / values for their SVGs are much lower than
302 those detected by SpaGCN, suggesting their lack of spatial expression patterns (Fig. 5d).

303

304  Application to MERFISH mouse hypothalamus data

305 Next, we show that SpaGCN can also be applied to smFISH-based data. To this end, we analyzed a MERFISH
306 dataset generated from the preoptic region of hypothalamus in mouse brain?, which includes 5,665 cells
307 and 161 genes. One important difference between MERFISH and sequencing-based spatial
308 transcriptomics data is that the captured tissue area is much smaller and less genes are measured, making
309 it difficult to detect spatial domains since the cells within such a small area are more similar to each other.
310  Thus, when utilizing these types of data, we suggest increasing the contribution of neighboring cells when
311 calculating the weighted gene expression of each cell. Using this approach, SpaGCN detected spatial
312  domains that agreed well with the annotated hypothalamic nuclei (Fig. 6a), with domain 2 corresponding
313  to ACA, domain 3 corresponding to PS, and domain 7 corresponding to MnPo. By contrast, the domains
314 identified from the Hidden Markov Random Field (HMRF) approach showed little overlap with the
315 hypothalamic region annotation. Using SpaGCN, we further detected 19 SVGs including DGKK, ERMN, and
316  SLN that showed enriched expression patterns for domains 2, 3, and 7 (Fig. 6b; Supplementary Fig. 23).

317

318 Discussion

319 Identification of spatial domains and detection of SVGs are important steps in spatial transcriptomics data
320 analysis. In this paper, we presented SpaGCN, a graph convolutional network-based approach that
321 integrates gene expression, spatial location, and histology to model spatial dependency of gene
322 expression for clustering analysis of spatial domains and identification of domain enriched SVGs or meta

323  genes. Through the use of a convolutional layer in an undirected weighted graph, SpaGCN aggregates
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324  gene expression of each spot from its neighboring spots, which enables the identification of spatial
325 domains with coherent gene expression and histology. The subsequent domain guided differential
326  expression analysis also enables the detection of SVGs or meta genes with enriched expression patterns
327 intheidentified domains. SpaGCN has been extensively tested on datasets from different species, regions,
328 and tissues generated using both sequencing- and smFISH-based techniques. The results consistently
329 showed that SpaGCN can identify spatial domains with coherent gene expression and histology and detect
330 SVGs and meta genes that have much clearer spatial expression patterns and biological interpretations
331  than genes detected by SPARK and SpatialDE. Additionally, the SpaGCN detected SVGs and meta genes
332 are transferrable and can be utilized for downstream analyses in independent tissue sections.

333

334  The spatial domain detection step in SpaGCN is flexible. For datasets with clear layer structure in histology
335 image, such as the mouse posterior brain data and human primary pancreatic cancer data, higher weight
336  can be given to histology by increasing the scaling parameter s in SpaGCN when calculating distance
337  between each spot pair, which results in spatial domains that are more similar to the anatomy-based
338  taxonomy in the histology image. Another important scaling parameter in SpaGCN is the characteristic
339 length scale I, which controls the relative contribution from other spots when aggregating gene
340 expression. By varying [, users can get spatial domain separations with different patterns in which a higher
341 [ will result in spatial domains with higher contiguity.

342

343  The SVG detection procedure in SpaGCN is also flexible. While we mainly demonstrated SVG detection for
344  asingle domain, SpaGCN also allows users to combine multiple domains as one target domain or specify
345  which neighboring domains to be included in DE analysis. Additionally, SpaGCN allows the users to

346 customize SVG filtering criteria based on p-value and three additional metrics, i.e., in-fraction, in/out
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347  fraction ratio, and fold change, to select SVGs. The resulting genes can be ranked by any of these metrics
348  to select SVGs with desired spatial expression patterns.

349

350  SpaGCN is computationally fast and memory efficient. To showcase the computational advantage of
351 SpaGCN, we recorded its run time and memory usage for the mouse posterior brain data and compared
352  with SPARK and SpatialDE. All analyses were conducted on Mac 0S 10.13.6 with single Intel® Core(TM) i5-
353 8259U CPU @2.30GHz and 16GB memory. As shown in Supplementary Fig. 24, SpaGCN completed spatial
354  domain and SVG detection in less than one minute, whereas the computing time is ~13 minutes for
355 SpatialDE and more than 18 hours for SPARK. Furthermore, SpaGCN only required 1.3 GB of memory,
356  whereas SpatialDE and SPARK required more than 3.1 GB and 7.2 GB of memory, respectively. With the
357 increasing popularity of spatial transcriptomics in biomedical research, we expect SpaGCN will be an
358 attractive tool for large-scale spatial transcriptomics data analysis. Results from SpaGCN will enable

359  researchers to accurately identify spatial domains and SVGs in their studies.

360
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373  Figure legends

374

375 Figure 1. Workflow of SpaGCN. a, SpaGCN starts from integrating gene expression, spatial location and
376 histology information using a graph convolutional network (GCN), then separates spots into different
377 spatial domains using unsupervised iterative clustering. The GCN is based on an undirected weighted
378  graph in which the edge weight between every two spots is determined by Euclidean distance between
379 the two spots, defined by the spatial coordinates (x, y) and the 3-rd dimensional coordinate z, obtained
380  from the RGB values in the histology image. b, For each detected spatial domain, SpaGCN identifies SVGs
381  or meta genes by domain guided differential expression analysis.

382

383  Figure 2. Spatial domains and SVGs detected in the mouse olfactory bulb dataset. a, Histology image of
384  the tissue section and spatial domains detected by SpaGCN, Louvain’s method, and K-means clustering.
385  b-f, Spatial expression patterns of SVGs detected by SpaGCN for domains 0 (LCAT), 1 (NR2F2), 2 (CACNB3),
386 3 (SLC17A7),and 4 (NECAB2), and the corresponding in situ hybridization of these SVGs obtained from the
387  Allen Brain Atlas. g, Boxplot of Moran’s I values for SVGs detected by SpaGCN, SPARK, and SpatialDE.
388

389 Figure 3. Spatial domains and SVGs detected in the mouse brain posterior brain dataset. a, Histology
390 image of the tissue section and spatial domains detected by SpaGCN, Louvain’s method, and K-means
391  clustering. b, Boxplot of Moran’s / values for SVGs detected by SpaGCN, SPARK, and SpatialDE. ¢, Spatial
392  expression patterns of SVGs detected by SpaGCN for domain 1 (PVALB), 8 (TRIM62), and 5 (NRGN). d,
393  Spatial expression patterns of genes KLK6, MBP, ATP1B1, which form the specific marker meta gene for
394  domain 0 (KLK6 + MBP - ATP1B1). e, Clustering results for 5 sub-domains detected by SpaGCN for domain
395 2, and the spatial expression patterns of SVGs for sub-domains 0 (KCNC3), 1 (CAMK2A), and 2 (NRSN2).

396
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397 Figure 4. Spatial domains and SVGs detected in the LIBD human dorsolateral prefrontal cortex dataset.
398 a, Manually annotated layer structure for slice 151673 from the original study?’, and spatial domains
399  detected by SpaGCN, Louvain’s method, and K-means clustering. b, Boxplot of Moran’s / values for SVGs
400  detected by SpaGCN, SPARK, and SpatialDE for slice 151673. ¢, Spatial expression patterns of SVGs for
401 domain 0 (NEFM) and domains 1 (PCP4), and a meta gene formed by KRT19, MYL9, MBP, GFAP, and
402  SNAP25 for domain 5 (KRT19 + MYL9 — MBP + GFAP — SNAP25). d, Manually annotated layer structure for
403  slice 151676 from the original study®®, and K-means clustering results for slice 151676 using 18 genes
404  selected by SpaGCN, SPARK, and SpatialDE. For SpaGCN, we selected the following genes, domain 0 (NEFL,
405 NEFM), domain 1 (PCP4, TMSB10 + PCP4 — KRT19), domain 2 (CCK + KRT17 — MT-ND1, CPLX2 + KRT17 —
406  MT-ND2), domain 3 (CAMK2N1, ENC1), domain 4 (MBP, FTL), domain 5 (KRT19 + MYL9 — MBP + GFAP —
407  PLP1, KRT8 + MYL9 — MBP + GFAP — PLP1), and domain 6 (GFAP, MBP), resulting in 18 unique genes in
408  total. For SPARK and SpatialDE, the 18 SVGs with the smallest FDR-adjusted p-value or g-value were
409 randomly selected. e, ARIs between manually annotated layers and K-means’ clustering using SVGs
410  selected by different methods. For SpaGCN, we only used the selected SVGs and meta genes, with 18
411  genes involved in total while for SPARK and SpatialDE, we used top 18, 100, 200, 500 and all SVGs with
412  theidentical smallest FDR-adjusted p-value or g-value.

413

414 Figure 5. Spatial domains and SVGs detected in the human primary pancreatic cancer tissue dataset. a,
415 Histology image of the tissue section with manually annotated regions from the original study>, spatial
416 domains detected by SpaGCN, and clustering results from the original study. b, Spatial expression pattern
417  of SVGs detected by SpaGCN for domain 0 (AEBP1) and domain 1 (SERPINA1). ¢, Spatial expression
418  patterns of genes KRT17, MMP11, SERPINA1, which form the specific marker meta gene for domain 2
419  (KRT17 + MMP11 - SERPINA1). d, Boxplot of Moran’s I values for SVGs detected by SpaGCN, SPARK, and

420  SpatialDE.
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421

422 Figure 6. Spatial domains and SVGs detected in the MERFISH mouse brain hypothalamus dataset. a,
423  Spatial domains detected by SpaGCN and the HMRF method overlayed with annotated hypothalamic
424 nuclei from the original study?, and cell type distribution from the original study. d, Spatial expression

425  patterns of SVGs detected by SpaGCN for domain 2 (ERMN), domain 3 (DGKK), and domain 7 (SLN).
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426 Methods

427

428  Data preprocessing

429  SpaGCN takes spatial gene expression and histology image data (when available) as input. The spatial gene
430  expression data are storedinan N X D matrix of unique molecular identifier (UMI) counts with N samples
431 and D genes, along with the (x, y) 2-dimensional spatial coordinates of each sample. In sequencing-based
432 data, each sample represents a spot containing multiple cells, whereas in single-molecule fluorescence in
433  situ hybridization (smFISH)-based data, each sample represents a single cell. For simplicity, we will use
434 ‘spot’ to refer to a sample, as most of the data analyzed in this paper are sequencing based. Genes
435 expressed in less than three spots are eliminated. The gene expression values in each spot are normalized
436  such that the unique molecular identifier (UMI) count for each gene is divided by the total UMI count
437 across all genes in a given spot, multiplied by 10,000, and then transformed to a natural log scale.

438

439  Conversion of spatial transcriptomics data into graph-structured data

440  After preprocessing, SpaGCN converts the gene expression and histology image data into a weighted
441 undirected graph, G(V, E). In this graph, each vertex v € V represents a spot and every two vertices in V
442 are connected via an edge with a specified weight. We focus our analysis on spatial transcriptomics data
443  with histology information, but the method can be easily adapted to analyze smFISH-based data, for which
444  histology information is not available.

445

446  Calculation of distance between two vertices

447  The distance between any two vertices u and v in the graph reflects the relative similarity of the two
448  corresponding spots. This distance is determined by two factors: 1) the physical locations of spots u and

449 v in the tissue slice, and 2) the corresponding histology information of these two spots. Although some
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450 spots are physically close to each other in the tissue, the histology image may reveal that they belong to
451  different tissue layers. Therefore, SpaGCN considers two spots to be close if and only if 1) the two spots
452  are physically close, and 2) they have similar pixel features as shown in the histology image. To define a
453  distance metric considering both aspects, SpaGCN extends the 2-dimensional space in the tissue slice into
454 a3 3-dimensional space that incorporates histology information. For spot v, its physical location in the
455  tissue slice is represented by 2-dimensional coordinates (x,,, y,,). To determine the corresponding pixel in
456  the histology image for spot v, SpaGCN maps spot v to the histology image according to its pixel
457  coordinates (Xpy,Ypy). Instead of using the color of the pixel at (x},y, ¥py), SPaGCN draws a square
458  centered on (X,y, ¥py) containing 50 x 50 pixels and calculates the mean color value for the RGB
459  channels, (13, gy, by,), of all pixels that fall in the square. This step smooths the color value and ensures
460  that the color is not dominated by a single pixel. To derive a single value to represent the histology image

461  features, SpaGCN uses a weighted sum of the RGB values as follows,

462

463 Zv:r,,xl/;+g,,xl(g+b,,va,
i+ V+V

464

465  where V. = Variance(r,) , V,; = Variance(g,) , and V, = Variance(b,) for all v €V. In this
466  transformation, higher weight is given to the channel with larger variance so that this combined value z,
467 captures an accurate representation of the patterns in the histology image.

468

469  Next, SpaGCN rescales z, as

470

Zy — U
471 Zy = v Z x max(ax, ay) X s,
O-Z

472
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473 where u, is the mean of z,, g, gy, 0y are the standard deviations of x,, y,, and z,, respectively, forv €
474V, and s is a scaling factor. In our analysis, s is usually set at 1 to make sure that z;, has the same scale
475  variance as x,, and y,,, and we set s to a value larger than 1 when the goal is to increase the weight of
476  histology. The coordinates of spot v are set to be (x,,, ¥, Z;) in the extended 3-dimensional space. Finally,

477  the Euclidean distance between every two spots u and v is calculated as

478

479 d(u,v) = \/(xu - xv)z + O — 3’17)2+(Z1j - Z;)z .
480

481  Calculation of weight for each edge and construction of graph

482  The weight of each edge (u,v) measures the degree of relatedness between spots u and v and is
483  negatively associated with their distance. The graph structure G is stored in an N X N adjacency matrix

484 A = [w(u,v)], where the edge weight between spot u and spot v and is defined as

485

d(u,v)?
486 w(u,v) = exp (— T)
487

488  The hyperparameter [, also known as the characteristic length scale, determines how rapidly the weight
489  decays as a function of distance. A similar function has been employed in SpatialDE®. Let I denote the
490 identity matrix. For spot v, the corresponding row sum of A — I, denoted by a,,, can be interpreted as the
491 relative contribution of other spots to its gene expression. We choose the value of [ such that the average
492 of a,, across all spots is equal to a pre-specified value, e.g. 0.5.

493

494  Graph convolutional layer
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495 SpaGCN reduces the dimension of the preprocessed gene expression matrix using principal component
496 analysis (PCA). The top 50 principal components are used as input, which work well for all datasets
497  analyzed in this paper. Next, utilizing the power of a graph convolutional network, SpaGCN concatenates
498  the gene expression information and edge weights in G to cluster the nodes. Following Kipf and Welling?,
499  the graph convolutional layer can be written as

500

501 f(X,A) = 6§(AXB),

502

503  where X is the N X 50 embedding matrix obtained from PCA, B is a 50 x 50 matrix representing filter
504  parameters of the convolutional layer, and & (+) is a non-linear activation function such as ReLU. The graph
505 convolutional layer ensures that a corresponding row of parameters in B will control the aggregation of
506  neighborhood information for each feature in X, thus offering the flexibility of feature specific aggregation
507 of information provided by neighboring spots. The filter parameters in B are shared across all vertices in
508  thegraphand are automatically updated during an iterative training progress. Through graph convolution,
509 SpaGCN has aggregated the gene expression information according to the edge weights specified in G.
510 The output of this layer is an aggregated matrix that includes information on gene expression, spatial
511 location, and histology. The graph convolutional layer was implemented based on Kipf and Welling?,
512  where the backpropagation is operated via a localized first-order approximation of spectral graph
513  convolution.

514

515  Spatial domain identification by clustering

516 Next, based on the output from the above graph convolutional layer, SpaGCN employs an unsupervised
517 clustering algorithm to iteratively cluster the spots into different spatial domains®>. Each cluster identified

518 from this analysis is considered to be a spatial domain, which contains spots that are coherent in gene
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519 expression and histology. To initialize cluster centroids, we use Louvain’s method’ on the aggregated
520 output matrix from the graph convolutional layer. If the number of domains in the tissue is known, the
521  resolution parameter in Louvain will be set to generate the same number of spatial domains. Otherwise,
522  we vary the resolution parameter from 0.2 to 1.0 and select the resolution that gives the highest
523  Silhouette score?.

524

525  To update the cluster assignments iteratively, we define a metric to measure the distance from a spot to
526 a cluster centroid using the Student’s t-distribution as a kernel. The distance between the embedded

527  point h; for spot i and centroid p; for cluster j

528
o\—1
(1 + [|hi = wl )
529 qij = X -1’
K (1 [lr = )
530

531 can be interpreted as the probability of assigning cell i to cluster j.
532

533 Next, we iteratively refine the clusters by defining an auxiliary target distribution P based on g;;

534
qz'zj/zyﬂ qij
535 Pij = S 2 N ’
Zj’:l(qij’/2i=1 ql'j’)
536

537  which upweights spots assigned with high confidence, and normalizes the contribution of each centroid
538  to the overall loss function to prevent large clusters from distorting the hidden feature space. Now that
539  we have the soft assignment q;; and the auxiliary distribution p;;, we can define the objective function as

540  a Kullback-Leibler (KL) divergence loss,
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541
N K L.
Dij
542 L =KL(P||Q) = log—=L.
(P11Q) Zizlzjzlpl, 09

543

544  The network parameters and cluster centroids are simultaneously optimized by minimizing L using
545 stochastic gradient descent with momentum. This unsupervised iterative clustering algorithm has been
546 previously utilized for scRNA-seq analysis and showed superior performance over Louvain’s method?>2¢,
547

548  Detection of spatially variable genes

549  We are interested in detecting spatially variable genes (SVGs) that are enriched in each spatial domain.
550  We note that some genes may be expressed in multiple but disconnected domains. Although they are not
551  uniquely expressed in a particular domain, these genes are still useful for understanding spatial variation
552 of gene expression and can be used to form meta genes that are uniquely expressed in a specific domain.
553  Therefore, rather than doing differential expression (DE) analysis using spots from a target domain versus
554  all other spots, we first select spots to form a neighboring set of the target domain. The goal is to detect
555  genes that are highly expressed in the target domain but are not expressed or are expressed at low levels
556 in the neighboring spots. To determine which spots should be considered as neighbors, we draw a circle
557  with a prespecified radius around each spot in the target domain. All spots from non-target domains that
558 reside in the circle are considered its neighbors. The radius is set such that all spots in the target domain
559 have approximately 8 neighbors on average. Next, neighbors of all spots in the target domain are collected
560 and form a neighboring set. For each non-target domain, if more than 50% (default) of its spots are in the
561 neighboring set, this domain is then selected as a neighboring domain. This criterion is set to avoid the
562 situation when a domain is selected as a neighboring domain, but only a small proportion of its spots are

563  adjacent to the target domain.

564
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565  After neighboring domains are determined, SpaGCN then performs DE analysis between spots in the
566  target domain and the neighboring domain(s) using Wilcoxon rank-sum test. Genes with a false discovery
567  rate (FDR) adjusted p-value <0.05 are selected as SVGs. To ensure only genes with enriched expression
568  patternsin the target domain are selected, we further require a gene to meet the following three criteria:
569 1) the percentage of spots expressing the gene in the target domain, i.e., in-fraction, is >80%; 2) for each
570 neighboring domain, the ratio of the percentages of spots expressing the gene in the target domain and
571  the neighboring domain(s), i.e., in/out fraction ratio, is >1; and 3) the expression fold change between the
572  targetand neighboring domain(s) is >1.5. If a user is interested in finding SVGs for a particular combination
573  of spatial domains, SpaGCN offers the option to do so.

574

575  Detection of spatially variable meta genes

576  The spatial domain-specific DE analysis described above typically detects SVGs with enriched expression
577  for the majority of the domains. For domains in which no such SVGs are detected, we aim to identify a set
578  of genes that, when combined to form a meta gene, shows an enriched expression pattern in the given
579 domain. To identify genes to form a meta gene, we employ a multi-step approach. First, we lower the
580  thresholds for SVG filtering, e.g., change the minimum fold change threshold from 1.5 to 1.2, to identify
581  genes showing weaker enriched expression pattern in the target domain. In the presence of multiple such
582  weaker SVGs, we randomly select one of them as the base gene and denote it as gene,. Second, we aim
583  to aggregate expression from other genes to the base gene to enhance the spatial pattern for the target
584  domain. To achieve this goal, we first calculate the mean expression level of gene, for spots in the target
585  domain as eg. Then, all spots from non-target domains with gene,’s expression level higher than e, are
586  extracted to form a control group. Next, we perform DE analysis using spots from the target domain
587  against spots in the control group using Wilcoxon rank-sum test. The gene with the smallest FDR-adjusted

588  p-value and higher expression in the target domain is selected as gene,, . Similarly, we perform DE
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589 analysis using spots from the control group against those from the target domain and select a gene with
590  the smallest FDR-adjusted p-value and higher expression in the control group as gene,_. The meta gene’s
591  expression is calculated as

592

593 log(meta_gene,) = log(gene,) + log(gene,,) — log(geney_) + C,,

594

595  where C, is a constant to make log(meta_gene;) non-negative. The log transformation is used to rescale
596 expression and make the expression levels comparable across different genes. We have found that
597 including negative genes can strengthen spatial expression pattern for domains that do not have enriched
598 positive marker genes. This algorithm can be used iteratively to find additional genes to form an updated
yeh

599 meta gene with a clearer spatial pattern for the target domain. For the (t + 1)*" iteration, the meta gene

600  expression is calculated as

601

602 log(meta_gene;,,) = log(meta_gene,) + log(gene;,) — log(gene;_) + C;

603

604  Inthe (t + 1)t" iteration, after adding gene,, and subtracting gene,_, SpaGCN will select the (¢t + 1)"
605 control group based on meta_gene, . The size of the new control group, which is the number of spots
606 not in the target domain but have higher expression of meta_gene;,, than spots in the target domain,
607  should be smaller than the size of the t*" control group, to ensure that meta_gene,,, has a clearer
608  spatial pattern than meta_gene;. Also, meta_gene;, is expected to have a larger difference of mean
609  expression between the target and control groups than meta_gene;. Therefore, at each iteration,
610  SpaGCN checks whether both criteria are met, and the search of additional genes will stop otherwise. An

611 illustration of this iterative meta gene search is shown in Supplementary Fig. 25.

612
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613  Evaluation of spatially variable genes using Moran’s [ statistic

614  The Moran’s I statistic® is a measure of spatial autocorrelation, which can be used to measure the degree
615  of spatial variability in gene expression?’. The Moran’s / value ranges from —1 to 1, where a value close to
616 lindicates a clear spatial pattern, a value close to 0 indicates random spatial expression, and a value close
617 to-—1indicates a chess board like pattern. To evaluate the spatial variability of a given gene, we calculate

618  the Moran’s I using the following formula,

619

N ZiZj[Wij (x; — 0)(x; — )]
620 S e R
621

622  where x; and x;j are gene expression of spots i and j, X is the mean expression of the gene, N is the total
623  number of spots, w;;j is spatial weight between spots i and j calculated using the 2-dimensional spatial
624  coordinates of the spots, and W is the sum of w;;. For each spot, we select the k nearest neighbors using
625  spatial coordinates. Moran’s / statistic is robust to the choice of k and is set at 4 in our analysis. We assign
626  w;; = 1if spotj is in the nearest neighbors of spot i, and w;; = 0 otherwise.

627

628  Detection of subclusters within a spatial domain

629  To better characterize heterogeneity within a spatial domain due to the influence of its neighborhood,
630  SpaGCN can further detect sub-domains within each spatial domain by utilizing information from
631 neighboring spots. SpaGCN draws a circle around each spot with a pre-specified radius, and all spots that
632 reside in the circle are considered as neighbors of this spot. The value of the radius is set to ensure that
633 every spot in the target domain have ten neighbors on average. Next, SpaGCN records the number of
634 neighbors from different spatial domains for each spot and stores this information in a T X K matrix,

635  where T is the number of spots in the target domain and K is the total number of spatial domains
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636 detected. The value for the it" row and jth column is the number of neighbors of spot i belonging to
637 domain j. Next, this matrix is fed into a K-means classifier to detect sub-clusters. Differential expression

638  analysis as described above can be performed to identify subcluster enriched genes.

639
640 Data availability
641  We analyzed multiple spatial transcriptomics datasets. Publicly available data were acquired from the

642  following websites or accession numbers: (1) mouse olfactory bulb

643  (https://drive.google.com/drive/folders/1C4131BaYI7uuV2AA200WDz0O mkc bOpv?usp=sharing); (2)

644 mouse posterior brain (https://support.10xgenomics.com/spatial-gene-

645 expression/datasets/1.0.0/V1 Mouse Brain Sagittal Posterior); (3) LIBD human dorsolateral prefrontal

646 cortex Dorsolateral pre-frontal cortex (http://research.libd.org/spatialLIBD/); (4) human primary

647  pancreatic cancer data (GSE111672); (5) MERFISH mouse hypothalamus data

648  (https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248). Details of the datasets analyzed in

649  this paper were described in Supplementary Table 1.

650

651 Software availability

652 An open-source implementation of the SpaGCN algorithm can be downloaded from

653 https://github.com/jianhuupenn/SpaGCN

654

655 Life sciences reporting summary

656 Further information on experimental design is available in the Life Sciences Reporting Summary.
657
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